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Abstract

Thompson sampling for multi-armed bandit prob-

lems is known to enjoy favorable performance

in both theory and practice. However, its wider

deployment is restricted due to a significant com-

putational limitation: the need for samples from

posterior distributions at every iteration. In prac-

tice, this limitation is alleviated by making use

of approximate sampling methods, yet provably

incorporating approximate samples into Thomp-

son Sampling algorithms remains an open prob-

lem. In this work we address this by propos-

ing two efficient Langevin MCMC algorithms

tailored to Thompson sampling. The resulting

approximate Thompson Sampling algorithms are

efficiently implementable and provably achieve

optimal instance-dependent regret for the Multi-

Armed Bandit (MAB) problem. To prove these

results we derive novel posterior concentration

bounds and MCMC convergence rates for log-

concave distributions which may be of indepen-

dent interest.

1. Introduction

Sequential decision making under uncertainty has become

one of the fastest developing fields of machine learning. A

central theme in such problems is addressing exploration-

exploitation tradeoffs (Auer et al., 2002; Lattimore and

Szepesvári, 2020), wherein an algorithm must balance be-

tween exploiting its current knowledge and exploring previ-

ously unexplored options.
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The classic stochastic multi-armed bandit problem has

provided a theoretical laboratory for the study of explo-

ration/exploitation tradeoffs (Lai and Robbins, 1985). A

vast literature has emerged that provides algorithms, in-

sights, and matching upper and lower bounds in many

cases. The dominant paradigm in this literature has been

that of frequentist analysis; cf. in particular the analyses

devoted to the celebrated upper confidence bound (UCB) al-

gorithm (Auer et al., 2002). Interestingly, however, Thomp-

son sampling, a Bayesian approach first introduced almost

a century ago (Thompson, 1933) has been shown to be

competitive and sometimes outperform UCB algorithms in

practice (Scott, 2010; Chapelle and Li, 2011). Further, the

fact that Thompson sampling, being a Bayesian method,

explicitly makes use of prior information, has made it par-

ticularly popular in industrial applications (see, e.g., Russo

et al., 2017, and the references therein).

Although most theory in the bandit literature is focused

on non-Bayesian methods, there is a smaller, but nontriv-

ial, theory associated with Thompson sampling. In par-

ticular, Thompson sampling has been shown to achieve

optimal risk bounds in multi-armed bandit settings with

Bernoulli rewards and beta priors (Kaufmann et al., 2012;

Agrawal and Goyal, 2013a), Gaussian rewards with Gaus-

sian priors (Agrawal and Goyal, 2013a), one-dimensional

exponential family models with uninformative priors (Ko-

rda et al., 2013), and finitely-supported priors and observa-

tions (Gopalan et al., 2014). Thompson sampling has fur-

ther been shown to asymptotically achieve optimal instance-

independent performance (Russo and Van Roy, 2016).

Despite these appealing foundational results, the deploy-

ment of Thompson sampling in complex problems is often

constrained by its use of samples from posterior distribu-

tions, which are often difficult to generate in regimes where

the posteriors do not have closed forms. A common solution

to this has been to use approximate sampling techniques

to generate samples from approximations of the posteri-

ors (Russo et al., 2017; Chapelle and Li, 2011; Gómez-

Uribe, 2016; Lu and Van Roy, 2017). Such approaches have

been demonstrated to work effectively in practice (Riquelme

et al., 2018; Urteaga and Wiggins, 2018), but it is unclear

how to maintain performance over arbitrary time horizons

while using approximate sampling. Indeed, to the best of our

knowledge the strongest regret guarantees for Thompson
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sampling with approximate samples, due to Lu and Van Roy

(2017), require a model whose complexity grows with the

time horizon to guarantee optimal performance. Further,

it was recently shown theoretically by Phan et al. (2019)

that a naı̈ve usage of approximate sampling algorithms with

Thompson sampling can yield a drastic drop in performance.

Contributions In this work we analyze Thompson sam-

pling with approximate sampling methods in a class of multi-

armed bandit algorithms where the rewards are unbounded,

but their distributions are log-concave. In Section 3 we

derive posterior contraction rates for posteriors when the

rewards are generated from such distributions and under

general assumptions on the priors. Using these rates, we

show that Thompson sampling with samples from the true

posterior achieves finite-time optimal frequentist regret. Fur-

ther, the regret guarantee we derive has explicit constants

and explicit dependencies on the dimension of the parameter

spaces, variance of the reward distributions, and the quality

of the prior distributions.

In Section 4 we present a simple counterexample demon-

strating the relationship between the approximation error to

the posterior and the resulting regret of the algorithm. Build-

ing on the insight provided by this example, we propose two

approximate sampling schemes based on Langevin dynam-

ics to generate samples from approximate posteriors and

analyze their impact on the regret of Thompson sampling.

We first analyze samples generated from the unadjusted

Langevin algorithm (ULA) and specify the runtime, hy-

perparameters, and initialization required to achieve an ap-

proximation error which provably maintains the optimal re-

gret guarantee of exact Thompson sampling over finite-time

horizons. Crucially, we initialize the ULA algorithm from

the approximate sample generated in the previous round to

make use of the posterior concentration property and en-

sure that only a constant number of iterations are required

to achieve the optimal regret guarantee. Under slightly

stronger assumptions, we then demonstrate that a stochastic

gradient variant called stochastic gradient Langevin dynam-

ics (SGLD) requires only a constant batch size in addition

to the constant number of iterations to achieve logarithmic

regret. Since the computational complexity of this sampling

algorithm does not scale with the time horizon, the proposed

method is a true “anytime” algorithm. Finally, we conclude

in Section F by validating these theoretical results in numeri-

cal simulations where we find that Thompson sampling with

our approximate sampling schemes maintain the desirable

performance of exact Thompson sampling.

Our results suggest that the tailoring of approximate sam-

pling algorithms to work with Thompson sampling can over-

come the phenomenon studied in Phan et al. (2019), where

approximation error in the samples can yield linear regret.

Indeed, our results suggest that it is possible for Thompson

sampling to achieve order-optimal regret guarantees with an

efficiently implementable approximate sampling algorithm.

2. Preliminaries

In this work we analyze Thompson sampling strategies for

the K-armed stochastic multi-armed bandit (MAB) problem.

In such problems, there is a set of K options, or “arms,”

A = {1, ...,K}, from which a player must choose at each

round t = 1, 2, .... After choosing an arm At ∈ A in round

t, the player receives a real-valued reward XAt
drawn from

a fixed yet unknown distribution associated with the arm,

pAt
. The random rewards obtained from playing an arm

repeatedly are i.i.d. and independent of the rewards obtained

from choosing other arms.

Throughout this paper, we assume that the reward distri-

bution for each arm is a member of a parametric family,

parametrized by θa ∈ R
da , such that the true reward distri-

bution is pa(X) = pa(X; θ∗a), where θ∗a is unknown. More-

over, we assume throughout this paper that the parametric

families are log-concave and Lipschitz smooth in θa:

Assumption 1-Local (Assumption on the family pa(X|θa)
around θ∗a). Assume that log pa(x|θa) is La-smooth and

ma-strongly concave around θ∗a. For all x ∈ R and θa ∈
R

da :

−∇θ log pa(x|θ∗a)⊤ (θa − θ∗a) +
ma

2
‖θa − θ∗a‖2

≤ −
(
log pa(x|θa)− log pa(x|θ∗a)

)
≤

−∇θ log pa(x|θ∗a)⊤ (θa − θ∗a) +
La

2
‖θa − θ∗a‖2.

Additionally we make assumptions on the true distribution

of the rewards:

Assumption 2 (Assumption on true reward distribution

pa(X|θ∗a)). For every a ∈ A assume that pa(X; θ∗a) is

strongly log-concave in X with some parameter νa, and that

∇θ log pa(x|θ∗a) is La-Lipschitz in X . ∀x, x′ ∈ R:

− (∇x log pa(x|θ∗a)−∇x log pa(x
′|θ∗a))T(x− x′)

≥ νa‖x− x′‖22.
‖∇θ log pa(x|θ∗a)−∇θ log pa(x

′|θ∗a)‖ ≤ La‖x− x′‖2.

Parameters νa and La provide lower and upper bounds to the

sub- and super-Gaussianity of the true reward distributions.

We further define κa = max {La/ma, La/νa} to be the

condition number of the model class. Finally, we assume

that for each arm a ∈ A there is a linear map such that for

all θa ∈ R
da , Ex∼pa(x|θa) [X] = αT

a θa, with ‖αa‖ = Aa.

We now review Thompson sampling, the pseudo-code for

which is presented in Algorithm 1. A key advantage of

Thompson sampling over frequentist algorithms for multi-

armed bandit problems is its flexibility in incorporating

prior information. In this paper, we assume that the prior
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distributions over the parameters of the arms have smooth

log-concave densities:

Assumption 3 (Assumptions on the prior distribution). For

every a ∈ A assume that log πa(θa) is concave with La-

Lipschitz gradients for all θa ∈ R
da :1

‖∇θπa(θa)−∇θπa(θ
′
a)‖ ≤ La‖θa−θ′a‖, ∀θa, θ′a ∈ R

da .

Thompson sampling proceeds by maintaining a posterior

distribution over the parameters of each arm a at each round

t. Given the likelihood family, p(X|θa), the prior, π(θa),
and the n data samples from an arm a, Xa,1, · · · , Xa,n, let

Fn,a : Rda → R be Fn,a(θa) = 1
n

∑n
i=1 log pa(Xa,i|θa),

be the average log-likelihood of the data. Then the posterior

distribution over the parameter θa at round t, denoted µ
(n)
a ,

satisfies:

pa(θa|Xa,1, · · · , Xa,n) ∝ πa(θa)

t∏

i=1

(pa(Xt|θa))I{At=a}

= exp (nFn,a(θa) + log π(θa)) .

For any γa > 0 we denote the scaled posterior2 as µ
(n)
a [γa],

whose density is proportional to:

exp (γa(nFn,a(θa) + log π(θa))) . (1)

Letting Ta(t) be the number of samples received from arm

a after t rounds, a Thompson sampling algorithm, at each

round t, first samples the parameters of each arm a from

their (scaled) posterior distributions, θa,t ∼ µ
(Ta(t))
a [γa],

and then chooses the arm for which the sample has the

highest value:

At = argmax
a∈A

αT
a θa,t.

A player’s objective in MAB problems is to maximize her

cumulative reward over any fixed time horizon T . The

measure of performance most commonly used in the MAB

literature is known as the expected regret, R(T ), which

corresponds to the expected difference between the accrued

reward and the reward that would have been accrued had

the learner selected the action with the highest mean reward

during all steps t = 1, · · · , T .3 Recalling that r̄a is the

mean reward for arm a ∈ A, the regret is given by:

R(T ) := E

[
T∑

t=1

r̄a∗ − r̄At

]
,

1We remark that the Lipschitz constants are all assumed to be
the same to simplify notation.

2In Section 3 we explain the use of scaled posteriors is required
to obtain optimal regret guarantees for our bandit algorithms.

3We remark that the analysis of Thompson sampling has of-
ten been focused on a different quantity known as the Bayes re-
gret, which is simply the expectation of R(T ) over the priors:
Eπ[R(T )]. However, in an effort to demonstrate that Thompson
sampling is an effective alternative to frequentist methods like
UCB, we analyze the frequentist regret R(T ).

Algorithm 1 Thompson sampling

Input :Priors πa for a ∈ A; posterior scaling: γa
1 Set µa,t = πa for a ∈ A.

for t = 0, 1, · · · do

2 Sample θa,t ∼ µ
(Ta(t))
a [γa].

Choose action At = argmaxa∈A αT
a θa,t.

Receive reward XAt
.

Update posterior distribution for arm At: µ
(Ta(t+1))
a .

where r̄a∗ = maxa∈A r̄a. Without loss of generality,

we assume throughout this paper that the optimal arm,

a∗ = argmaxa∈A r̄a, is arm 1. Further, we assume that

the optimal arm is unique4: r̄1 > r̄a for a > 1.

Traditional treatment of Thompson sampling algorithms

often overlooks one of its most critical aspects: ensuring

compatibility between the mechanism that produces sam-

ples from the posterior distributions and the algorithm’s

regret guarantees. This issue is usually addressed by assum-

ing that the prior distributions and the reward distributions

are conjugate pairs. Although this approach is simple and

prevalent in the literature (see, e.g., Russo et al., 2017), it

fails to capture more complex distributional families for

which this assumption may not hold. Indeed, it was recently

shown in Phan et al. (2019) that if the samples come from

distributions that approximate the posteriors with a constant

error, the regret may grow at a linear rate. A more nuanced

understanding of the relationship between the quality of the

samples and the regret of the algorithms is, however, still

lacking.

In the following sections we analyze Thompson sampling

in two settings. In the first, the algorithm uses samples

corresponding to the true scaled posterior distributions,

{µ(Ta(t))
a [γa]}a∈A, at each round. In the second, Thompson

sampling makes use of samples coming from two approx-

imate sampling schemes that we propose, such that the

samples can be seen as corresponding to approximations

of the scaled posteriors, {µ̄(Ta(t))
a [γa]}a∈A. We refer to

the former as exact Thompson sampling, and the latter as

approximate Thompson sampling.

For the analysis of exact Thompson sampling in Section 3

we derive posterior concentration theorems which charac-

terize the rate at which the posterior distributions for the

arms, µ
(n)
a , converge to delta functions centered at θ∗a as a

function of the number of n, the number of samples received

from the arm. We then use these rates to show that Thomp-

son sampling in this family of multi-armed bandit problems

achieves the optimal finite-time regret. Further, our results

demonstrate an explicit dependence on the quality of the pri-

4We introduce this assumption merely for the purpose of sim-
plifying our analysis.
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ors and other problem-dependent constants, which improve

upon prior works.

In Section 4, we propose two efficiently implementable

Langevin-MCMC-based sampling schemes for which the

regret of approximate Thompson sampling still achieves the

optimal logarithmic regret. To do so, we derive new results

for the convergence of Langevin-MCMC-based sampling

schemes in the Wasserstein-p distance which we then use to

prove optimal regret bounds.

3. Exact Thompson Sampling

In this section we first derive posterior concentration rates

on the parameters of the reward distributions when the data,

the priors, and the likelihoods satisfy our assumptions. We

then make use of these concentration results to give finite-

time regret guarantees for exact Thompson sampling in

log-concave bandits.

3.1. Posterior Concentration Results

Core to the analysis of Thompson sampling is understanding

the behavior of the posterior distributions over the parame-

ters of the arms’ distributions as the algorithm progresses

and samples from the arms are collected.

The literature on understanding how posteriors evolve as

data is collected goes back to Doob (1949) and his proof

of the asymptotic normality of posteriors. More recently,

there has been a line of work (see, e.g., van der Vaart and

van Zanten, 2008; Ghosal and van der Vaart, 2007) that de-

rives rates of convergence of posteriors in various regimes,

mostly following the framework first developed in Ghosal

et al. (2000) for finite- and infinite-dimensional models.

Such results, though quite general, do not have explicit

constants or forms which make them amenable for use in

analyzing bandit algorithms. Indeed, finite-time rates re-

main an active area of research but have been developed us-

ing information-theoretic arguments (Shen and Wasserman,

2001), and more recently through the analysis of stochastic

differential equations (Mou et al., 2019), though in both

cases the assumptions, burn-in times, and lack of precise

constants make them difficult to integrate with the analy-

sis of Thompson sampling. Due to this, Thompson sam-

pling has, for the most part, been only well understood for

conjugate prior/likelihood families like beta/Bernoulli and

Gaussian/Gaussian (Agrawal and Goyal, 2013a), or in more

generality in well-behaved families such as one-dimensional

exponential families with uninformative priors (Korda et al.,

2013) or finitely supported prior/likelihood pairs (Gopalan

et al., 2014).

To derive posterior concentration rates for parameters in

d-dimensions and for a large class of priors and likelihoods

we analyze the moments of a potential function along tra-

jectories of a stochastic differential equation for which the

posterior is the limiting distribution. Our results expand

upon the recent derivation of novel contraction rates for pos-

terior distributions presented in Mou et al. (2019) to hold

for a finite number of samples and may be of independent

interest. We make use of these concentration results to show

that Thompson sampling with such priors and likelihoods

results in order-optimal regret guarantees.

To begin, we note that classic results (Øksendal, 2003) guar-

antee that, as t → ∞ the distribution Pt of θt which evolves

according to:

dθt =
1

2
∇θFn,a(θt)dt+

1

2n
∇θ log πa(θt))dt+

1√
nγa

dBt,

(2)

is given by:

lim
t→∞

Pt(θ|X1, ..., Xn) ∝ exp(−γa (nFn,a(θ) + log πa(θ))),

almost surely. Comparing with Eq. (1), this limiting dis-

tribution is the scaled posterior distribution µ
(n)
a [γa]. Thus,

by analyzing the limiting properties of θt as it evolves ac-

cording to the stochastic differential equation, we can derive

properties of the scaled posterior distribution.

To do so, we first show that with high probability the gra-

dient of Fn,a(θ
∗) concentrates around zero (given the data

X1, ..., Xn). More precisely in Appendix B we show, us-

ing well-known results on the concentration of Lipschitz

functions of strongly log-concave random variables, that

∇θFa,n(θ
∗
a) has sub-Gaussian tails:

Proposition 1. The random variable ‖∇θFa,n(θ
∗
a)‖ is

La

√
da

nνa
-sub-Gaussian.

Given this proposition, we then analyze how the potential

function,

V (θt) =
1

2
ect‖θt − θ∗‖22,

evolves along trajectories of the stochastic differential equa-

tion (2), where c > 0. By bounding the supremum of V (θt),
we construct bounds on the higher moments of the random

variable ‖θa − θ∗a‖ where θa ∼ µ
(n)
a [γa]. These moment

bounds translate directly into the posterior concentration

bound of θa ∼ µ
(n)
a [γa] around θ∗ presented in the follow-

ing theorem (the proof of which is deferred to Appendix B).

Theorem 1. Suppose that Assumptions 1-3 hold, then for

δ ∈ (0, e−1/2):

P
θ∼µ

(n)
a [γa]

(‖θa − θ∗a‖2 > Γa) < δ,

where:

Γa(δ) =

√

2e

man

(

da

γa
+ logBa +

(

32

γa
+ 8daκ2

a

)

log
1

δ

)

and Ba = maxθ∈Rd
πa(θ)
πa(θ∗

a)
.
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Theorem 1 guarantees that the scaled posterior distribution

over the parameters of the arms concentrate at rate 1√
n

,

where n is the number of times the arm has been pulled.

We remark that this posterior concentration result has a num-

ber of desirable properties. Through the presence of Ba, it

reflects an explicit dependence on the quality of the prior.

In particular, logBa = 0 if the prior is properly centered

such that its mode is at θ∗ or if the prior is uninformative or

nearly flat everywhere. We further remark that the concen-

tration result also scales with the variance of θa which is on

the order of da/(γaman). Lastly, we remark that this con-

centration result holds for any n > 0 and the constants are

explicitly defined in terms of the smoothness and structural

assumptions on the priors, likelihoods, and reward distribu-

tions. This makes it more amenable for use in constructing

regret guarantees, since we do not have to wait for a burn-in

period for the result to hold, as in Shen and Wasserman

(2001) and Mou et al. (2019). Moreover, the dependence

on the dimension of the parameter space and constants are

explicit.

3.2. Exact Regret for Thompson Sampling

We now show that, under our assumptions, Thompson sam-

pling with samples from the scaled posterior enjoys optimal

finite-time regret guarantees. To provide these results we

proceed as is common in regret proofs for multi-armed

bandits by upper bounding Ta(T ), the number of times a

sub-optimal arm a ∈ A is pulled up to time T . Without loss

of generality we assume throughout this section that arm 1
is the optimal arm, and define the filtration associated with a

run of the algorithm as Ft = {A1, X1, A2, X2, ..., At, Xt}.

To upper bound the expected number of times a sub-optimal

arm is pulled up to time T , we first define the low-probability

event that the mean calculated from the value of θa,t sam-

pled from the posterior at time t ≤ T , ra,t(Ta(t)), is greater

than r̄1 − ǫ (recall that r̄1 is the optimal arm’s mean):

Ea(t) = {ra,t(Ta(t)) ≥ r̄1 − ǫ} for some ǫ > 0. Given

these events, we proceed to decompose the expected number

of pulls of a sub-optimal arm a ∈ A as:

E[Ta(T )] = E

[
T∑

t=1

I(At = a)

]
= (3)

E

[
T∑

t=1

I(At = a,Ec
a(t))

]

︸ ︷︷ ︸
I

+E

[
T∑

t=1

I(At = a,Ea(t))

]

︸ ︷︷ ︸
II

.

These two terms satisfy the following standard bounds (see,

e.g., Lattimore and Szepesvári (2020)):

Lemma 1 (Bounding I and II). For a sub-optimal arm a ∈

A, we have that:

I ≤ E

[
T−1∑

s=1

1

p1,s
− 1

]
; (4)

II ≤ 1 + E

[
T∑

s=1

I

(
pa,s >

1

T

)]
, (5)

where pa,s = P(ra,t(s) > r̄1 − ǫ|Ft−1), for some ǫ > 0.

The proof of these results are standard for the regret of

Thompson sampling and can be found in Appendix E, Lem-

mas 13 and 14, for completeness.

Given Lemma 1, we see that to bound the regret of Thomp-

son Sampling it is sufficient to bound the two terms I and

II.

To bound term I, we first show that for all times t = 1, ..., T ,

and number of samples collected from arm 1, the probabil-

ity p1,n = P(r1,t(n) > r̄1 − ǫ|Ft−1) is lower bounded by

a constant depending only on the quality of the prior for

arm 1. This guarantees the posterior for the optimal arm is

approximately optimistic with at least a constant probability,

and requires a proper choice of γ1. We note the unscaled

posterior provides the correct concentration with respect to

the number of data samples Ta(t), when Ta(t) is large. This

is sufficient to upper bound the trailing terms of I, that is,

summands in Equation 4 for large s. Unfortunately con-

centration is not enough to bound term I, since the early

summands of Equation 4 corresponding to small values of s
could be extremely large. Intuitively, the random variable

r1,t(s) can be thought of as centered around the posterior

mean of arm 1. Though this is close to the true value of r̄1
with high probability, when T1(t) is small, concentration

alone does not preclude the possibility that the posterior

mean underestimates r̄1 by a value of at least ǫ. In order

to ensure p1,s is large enough in these cases, we require

r1,t(s) to have sufficient variance to overcome this poten-

tial underestimation bias. We show that a scaled posterior

µ
(Ta(t))
a [γa] with γa =

(
8daκ

3
a

)−1
in Algorithm 1 ensures

r1,t(s) has enough variance.

Lemma 2. Suppose the likelihood and reward distributions

satisfy Assumptions 1-3, then for all n = 1, ..., T and γ1 =
1

8d1κ3
1

:

E

[
1

p1,n

]
≤ C

√
B1κ1,

where C is a universal constant independent of the problem

dependent parameters.

Remark 1. We find that a proper choice of γ1 is required

to ensure that that the posterior on the optimal arm has a

large enough variance to guarantee a degree of optimism

despite the randomness in its mean. Scaling up the posterior

was also noted to be necessary in linear bandits (see, e.g.,
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Agrawal and Goyal (2013b); Abeille and Lazaric (2017)) to

ensure optimal regret. In practice, since we do not a priori

know which is the optimal arm, we must scale the posterior

of each arm by a parameter γa.

The quantity B1 = maxθ π1(θ)
π1(θ∗

1 )
captures a worst case depen-

dence on the quality of the prior for the optimal arm, and

can be seen as the expected number of samples from the

prior until an optimistic sample is observed.

By using this upper bound in conjunction with the pos-

terior concentration result derived in Theorem 1, we can

further bound I and II. We note that in contrast with sim-

ple sub-Gaussian concentration bounds, our posterior con-

centration rates have a bias term decreasing at a rate of

1/
√

number of samples. In our analysis we carefully track

and control the effects of this bias term ensuring it does

not compromise our log-regret guarantees. Indeed, using

the posterior concentration in the bounds from Lemma 1

we show that, for γa = 1
8daκ3

a
, there are two universal con-

stants C1, C2 > 0 independent of the problem-dependent

parameters such that:

I ≤ C1

√
κ1B1

⌈
A2

1

m1∆2
a

(D1 + σ1)

⌉
+ 1;

II ≤ C2A
2
a

ma∆2
a

(Da + σa log(T )),

where for a ∈ A, Da and σa are given by:

Da = logBa + d2aκ
3
a, σa = daκ

3
a + daκ

2
a.

Finally, combining all these observations we obtain the

following regret guarantee:

Theorem 2 (Regret of Exact Thompson Sampling). When

the likelihood and true reward distributions satisfy Assump-

tions 1-3 and γa = 1
8daκ3

a
we have that the expected regret

after T > 0 rounds of Thompson sampling with exact sam-

pling satisfies:

E[R(T )] ≤
∑

a>1

CA2
a

ma∆a

(
logBa + d2aκ

3
a + daκ

3
a log(T )

)

+
√

κ1B1
CA2

1

m1∆a

(
1 + logB1 + d21κ

3
1

)
+∆a,

where C is a universal constant independent of problem-

dependent parameters.

The proof of the theorem is deferred to Appendix E, where

we also provide the exact value of the universal constant

C. We remark that this regret bound gives an O
(

log (T )
∆

)

asymptotic regret guarantee, but holds for any T > 0. This

further highlights that Thompson sampling is a competitive

alternative to UCB algorithms since it achieves the optimal

problem-dependent rate for multi-armed bandit algorithms

first presented in Lai and Robbins (1985).

Our bound also has explicit dependencies on the dimension

of the parameter space of the likelihood distributions for

each arm, as well as on the quality of the priors through the

presence of Ba and B1. We note that the dependence on

the priors does not distinguish between “good” and “bad”

priors. Indeed, the parameter Ba ≥ 1 is worst case, and

does not capture the potential advantages of good priors

in Thompson sampling, that we observe in our numeri-

cal experiments in Section F. Further, we remark that our

bound exhibits a worse dependence on the prior for the

optimal arm (O(
√
B1 log(B1))) than for sub-optimal arms

(O(log(Ba))). This is also a worst case dependence which

captures the expected number of samples from the prior

until an approximately optimistic sample is observed, which

we believe to be unavoidable.

Finally, we note that our regret bound scales with the vari-

ances of the reward and likelihood families since 1
ma

and 1
νa

reflect the variance of the likelihoods in θ and the rewards

Xa respectively.

Thus, through the use of the posterior contraction rates

we are able to get finite-time regret bounds for Thompson

sampling with multi-dimensional log-concave families and

arbitrary log-concave priors. This generalizes the result of

Korda et al. (2013) to a more general class or priors and

higher-dimensional parametric families.

4. Approximate Thompson Sampling

In this section we present two approximate sampling

schemes for generating samples from approximations of

the (scaled) posteriors at each round. For both, we give the

values of the hyperparameters and computation time needed

to guarantee an approximation error which does not result

in a drastic change in the regret of the Thompson sampling

algorithm.

Before doing so, however, we first present a simple coun-

terexample to illustrate that in the worst case, Thompson

sampling with approximate samples incurs an irreducible

regret dependent on the error between the posterior and the

approximation to the posterior. In particular, by allowing

the approximation error to decrease over time, we extract a

relationship between the order of the regret and the level of

approximation.

Example 1. Consider a Gaussian bandit instance of two

arms A = {1, 2} having mean rewards r̄1 and r̄2 and

known unit variances. Further assume that the unknown

parameters are the means of the distributions such that

θ∗a = r̄a, and consider the case where the learner makes use

of a zero-mean, unit-variance Gaussian prior over θa for

a = 1, 2. Under these assumptions, after obtaining samples

Xa,1, · · · , Xa,n, the posterior updates satisfy the following

well-known formula:
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Algorithm 2 (Stochastic Gradient) Langevin Algorithm for

Arm a
Input :Data {xa,1, · · · , xa,n};

MCMC sample θa,Nh(n−1) from last round

3 Set θ0 = θa,t−1 for a ∈ A
for i = 0, 1, · · ·N do

4 Uniformly subsample S ⊆ {xa,1, · · · , xa,n}.

Compute ∇Û(θih(n)) =
− n

|S|
∑

xk∈S ∇ log pa(xk|θih(n))−∇ log πa(θih(n)).

Sample θ(i+1)h(n) ∼
N

(
θih(n) − h(n)∇Û(θih(n)), 2h(n)I

)
.

Output :θa,Nh(n) = θNh(n) ; θa,t ∼ N
(
θNh(n) , 1

nLaγa
I
)

Pa,n(θa) ∝ N
(

n

n+ 1
,

1

n+ 1

)
.

Let r̄1 = 1 and r̄2 = 0 such that arm 1 is optimal. We now

show there exists an approximate posterior P̃a,t of arm 2,

satisfying TV(P̃2,t, P2,t) ≤ n−α and such that if samples

from P1,t and P̃2,t were to be used by a Thompson sampling

algorithm, its regret would satisfy R(T ) = Ω(T 1−α).

We substantiate this claim by a simple construction. Let

P̃a,t be (1− n−α)Pa,t + n−αδ2, where δ2 denotes a delta

mass centered at 2. P̃a,t is a mixture distribution between

the true posterior and a point mass.

Clearly, for all t ≥ C for some universal constant C, with

probability at least n−α the posterior sample from arm

2 will be larger than the sample from arm 1. Since t >
n, t−α < n−α for α > 0 and since the suboptimality

gap equals 1, we conclude R(T ) = Ω(
∑T

t=1 t
−α). Thus,

to incur logarithmic regret, one needs TV (P̃2,t, P2,t) =
Ω( 1n ).

Example 1 builds on the insights in Phan et al. (2019), who

showed that constant approximation error can incur linear

regret, which highlights the fact that to achieve logarithmic

regret the total variation distance between the approximation

of the posterior µ̄
(n)
a [γa] and the true posterior µ

(n)
a must

decrease as samples are collected. In particular it illustrates

that the rate at which the approximation error decreases is

directly linked to the resulting regret bound.

Given this result, we first propose an unadjusted Langevin

algorithm (ULA) (Durmus and Moulines, 2017), which gen-

erates samples from an approximate posterior which mono-

tonically approaches the true posterior as data is collected

and provably maintains the regret guarantee of exact Thomp-

son sampling. Important to this effort, we demonstrate that

the number of steps inside the ULA procedure does not

scale with the time horizon, though the number of gradient

evaluations scale with the number of times an arm has been

pulled. To over this issue arising from full gradient evalua-

tion, we propose a stochastic gradient Langevin dynamics

(SGLD) (Welling and Teh, 2011) variant of ULA which has

appealing computational benefits: under slightly stronger

assumptions, SGLD takes a constant number of iterations as

well as a constant number of data samples in the stochastic

gradient estimate while maintaining the order-optimal regret

of the exact Thompson sampling algorithm.

4.1. Convergence of (Stochastic Gradient) Langevin

Algorithms

As described in Algorithm 2, in each round t we run the

(stochastic gradient) Langevin algorithm for N steps to

generate a sample of desirable quality for each arm. In

particular, we first run a Langevin MCMC algorithm to

generate a sample from an approximation to the unscaled

posterior. To achieve the scaling with γa that we require for

the analysis of the regret, we add zero-mean Gaussian noise

with variance 1
γaLan

to this sample. The distribution of the

resulting sample has the same characteristics as those from

the scaled posterior analyzed in Sec. 3.

Given Assumptions 1-Uniform and 3, we prove (in The-

orem 5 in the Appendix) that running ULA with exact

gradients provides appealing convergence properties. In

particular, for a number of iterations independent of the

number of rounds t or the number of samples from an arm,

n = Ta(t), ULA converges to an accuracy in Wasserstein-p
distance which maintains the logarithmic regret of the exact

algorithm (for more information on such metrics see Vil-

lani (2009)). We note parenthetically that working with the

Wasserstein-p distance provides us with a tighter MCMC

convergence analysis (than with the total variation distance

used in Example 1) that helps in conjunction with the regret

bounds. The proofs of the ULA and SGLD convergence re-

quire a uniform strong log-concavity and Lipschitz smooth-

ness condition of the family pa(X|θa) over the parameter

θa, a strengthening of Assumption 1-Local.

Assumption 1-Uniform (Assumption on the family

pa(X|θa): strengthened for approximate sampling). As-

sume that log pa(x|θa) is La-smooth and ma-strongly con-

cave over the parameter θa. For all θa, θ
′
a ∈ R

da , x ∈ R:

−∇θ log pa(x|θ′a)⊤ (θa − θ′a) +
ma

2
‖θa − θ′a‖2

≤ −
(
log pa(x|θa)− log pa(x|θ′a)

)
≤

−∇θ log pa(x|θ′a)⊤ (θa − θ′a) +
La

2
‖θa − θ′a‖2.

Although the number of iterations required for ULA to con-

verge is constant with respect to the time horizon t, the

number of gradient computations over the likelihood func-

tion within each iteration is Ta(t). To tackle this issue, we

sub-sample the data at each iteration and use a stochastic

gradient MCMC method (Ma et al., 2015). To get conver-
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gence guarantees despite the larger variance this method

incurs, we make a slightly stronger Lipschitz smoothness

assumption on the parametric family of likelihoods.

Assumption 4 (Joint Lipschitz smoothness of the fam-

ily log pa(X|θa): for SGLD). Assume a joint Lipschitz

smoothness condition, which strengthens Assumptions 1-

Uniform and 2 to impose the Lipschitz smoothness on

the entire bivariate function log pa(x; θ). For all θa, θ
′
a ∈

R
da , x, x′ ∈ R :5

‖∇θ log pa(x|θa)−∇θ log pa(x
′|θa)‖ ≤ La ‖θa − θ′a‖

+ L∗
a ‖x− x′‖ .

Under this stronger assumption, we prove the fast conver-

gence of the SGLD method in the following Theorem 3.

Specifically, we demonstrate that for a suitable choice of

stepsize h(n), number of iterations N , and size of the mini-

batch k = |S|, samples generated by Algorithm 2 are dis-

tributed sufficiently close to the true posterior to ensure the

optimal regret guarantee. By examining the number of itera-

tions, N , and size of the minibatch, k, we confirm that the

algorithmic and sample complexity of our method do not

grow with the number of rounds t, as advertised.

Theorem 3 (SGLD Convergence). Assume that the fam-

ily log pa(x; θ), prior distributions, and that the true re-

ward distributions satisfy Assumptions 1-Uniform through 4.

If we take the batch size k = O
(
κ2
a

)
, step size h(n) =

O
(

1
n

1
κaLa

)
and number of steps N = O

(
κ2
a

)
in the SGLD

algorithm, then for δ1 ∈ (0, 1), with probability at least

1− δ1 with respect to Xa,1, ...Xa,n, we have convergence

of the SGLD algorithm in the Wasserstein-p distance. In

particular, between the n-th and the (n+ 1)-th pull of arm

a, samples θa,t approximately follow the posterior µ
(n)
a :

Wp

(
µ̂(n)
a , µ(n)

a

)

≤
√

8

nma

(
da + logBa +

(
32 + 8daκ

2
a

)
p
) 1

2 ,

where µ̂
(n)
a is the probability measure associated with any of

the sample(s) θ
a,Nh

(n)
a

between the n-th and the (n+ 1)-th

pull of arm a.

We are able to keep the number of iterations, N , for both

algorithms constant by initializing the current round of the

approximate sampling algorithm using the output of the last

round of the Langevin MCMC algorithm. If we initialized

the algorithm independently from the prior, we would need

O(log Ta(t)) iterations to achieve this result, which would

in turn yield a Thompson sampling algorithm for which

the computational complexity grows with the time horizon.

5For simplicity of notation, we let Lipschitz constants L∗

a = La

in the main paper.

This warm-starting complicates the regret proof for the ap-

proximate Thompson sampling algorithms since the samples

used by Thompson sampling are no longer independent.

By scrutinizing the stepsize h(n) and the accuracy level of

the sample distribution Wp

(
µ̂
(n)
a , µ

(n)
a

)
, we note that we

are taking smaller steps to get increasingly accurate MCMC

samples as more data are being collected. This is due to

the need of decreasing the error incurred by discretizing the

continuous Langevin dynamics and stochastically estimat-

ing the gradient of the log posterior. However, the number

of iterations and subsampled gradients are not increasing

since the concentration of the posterior provides us with

stronger contraction of the continuous Langevin dynamics

and requires less work because µ
(n)
a and µ

(n+1)
a are closer.

We restate Theorem 3 and give explicit values of the hyper-

parameters in Theorem 6 in the appendix, but remark that

the proof of this theorem is novel in the MCMC literature.

It builds upon and strengthens Durmus and Moulines (2016)

by taking into account the discretization and stochastic gra-

dient error to achieve strong convergence guarantees in the

Wasserstein-p distance up to any finite order p. Other related

works on the convergence of ULA can provide upper bounds

in the Wassertein distances up to the second order (i.e., for

p ≤ 2) (see, e.g., Dalalyan and Karagulyan, 2019; Cheng

and Bartlett, 2018; Ma et al., 2019; Vempala and Wibisono,

2019). This bound in the Wasserstein-p distance for arbi-

trarily large p is necessary in guaranteeing the following

Lemma 3, a similar concentration result as in Theorem 1 for

the approximate samples θa,t ∼ µ̄
(n)
a [γa].

Lemma 3. If Assumptions 1-Uniform through 4 hold, then

for δ ∈ (0, e−1/2), the sample θa,t resulting from running

the (stochastic gradient) ULA with N steps, a step size of

h(n), and a batch-size k as defined in Theorem 3 satisfies:

P
θa,t∼µ̄

(n)
a [γa]

(‖θa,t − θ∗a‖2 > Γa(δ)) < δ,

where:

Γa(δ) =

√

36e

man

(

da + logBa + 2

(

σa +
da

18κaγa

)

log
1

δ

)

and σa = 16 + 4daκ
2
a.

4.2. Thompson Sampling Regret with (Stochastic

Gradient) Langevin Algorithms

Given that the concentration results of the samples from

ULA and SGLD have the same form as that of exact Thomp-

son sampling, we now show that approximate Thompson

sampling achieves the same finite-time optimal regret guar-

antees (up to constant factors) as the exact Thompson sam-

pling algorithm. To show this, we require a result analogous

to Lemma 2 on the anti-concentration properties of the ap-

proximations to the scaled posteriors:
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Lemma 4. Suppose the likelihood and true reward distri-

butions satisfy Assumptions 1-Uniform–4: then if γ1 =

O
(

1
d1κ3

1

)
, for all n = 1, ..., T all samples from the

(stochastic gradient) ULA method with the hyperparameters

and runtime as described in Theorem 3 satisfy:

E

[
1

p1,n

]
≤ C

√
B1,

where C is a universal constant independent of problem-

dependent parameters.

The proof of Lemma 4 is similar to that of 2, but we are

able to save a factor of
√
κ1 due to the fact that the last step

of the approximate sampling scheme samples θa,t from a

Gaussian distribution as opposed to a strongly-log concave

distribution which we must approximate with a Gaussian.

Given this lemma and our concentration results presented

in the previous section, the proof of logarithmic regret is

the same as that of the regret for exact Thompson sampling.

However, more care has to be taken to deal with the fact that

the samples from the approximate posteriors are no longer

independent because we warm-start our proposed sampling

algorithms using previous samples. We cope with this issue

by constructing concentration rates (of a similar form as

in Lemma 3) on the distributions of the samples given the

initial sample is sufficiently well behaved (see Lemmas 11

and 12). We then show that this happens with sufficiently

high probability to maintain similar upper bounds on terms

I and II from Lemma 1 in Lemma 17, which in turn allows

us to prove the following Theorem in Appendix E.2.

Theorem 4 (Regret of Thompson sampling with a (stochas-

tic gradient) Langevin algorithm). When the likelihood and

true reward distributions satisfy Assumptions 1-Uniform–4:

the expected regret of T > 0 rounds of Thompson sam-

pling with the (stochastic gradient) ULA method with hyper-

parameters and runtime as in Theorem 3 satisfies:

E[R(T )] ≤
∑

a>1

CA2
a

ma∆a

(
logBa + da + d2aκ

2
a log T

)

+

√
B1CA2

1

m1∆a

(
1 + logB1 + d21κ

2
1 + d1κ

2
1 log T

)
+ 3∆a,

where C is a universal constant and the scale parameter

γa = O
(

1
daκ3

a

)
.

Theorem 3 allows for SGLD to be implemented with a con-

stant number of steps per iteration and a constant batch size

with only the step size decreasing linearly with the num-

ber of samples. Combining this with our regret guarantee

shows that an anytime algorithm for Thompson sampling

with approximate samples can achieve logarithmic regret.

Further, we remark that this bound exhibits a worse de-

pendence on the quality of the prior on the optimal arm

than in the exact sampling regime. In particular, we pay

d21
√
B1 log T in this bound as opposed to d21

√
B1. Our re-

gret bound in the approximate sampling regime exhibits a

slightly better dependence on the condition number of the

family. This, we believe, is an artifact of our analysis and is

due to the fact that a lower bound on the exact posterior was

needed to invoke Gaussian anti-concentration results which

were not needed in the approximate sampling regime due to

the design of the proposed sampling algorithm.

5. Conclusions

Although Thompson sampling has been long been used

successfully in real-world problems there remains a lack

of understanding of how approximate sampling affects its

regret guarantees.

In this work we derived new posterior contraction rates for

log-concave likelihood families with arbitrary log-concave

priors which capture key dependencies between the poste-

rior distributions and various problem-dependent parameters

such as the prior quality and the parameter dimension. We

used these rates to show that exact Thompson sampling

in MAB problems where the reward distributions are log-

concave achieves the optimal finite-time regret guarantee for

MAB bandit problems. As a direction for future work, we

note that although our regret bound demonstrates a depen-

dence on the quality of the prior, it still is unable to capture

the potential advantages of good priors.

We then demonstrated that Thompson sampling using sam-

ples generated from ULA, and under slightly stronger as-

sumptions, SGLD, could still achieve the optimal regret

guarantee with constant algorithmic as well as sample com-

plexity in the stochastic gradient estimate. Thus, by de-

signing approximate sampling algorithms specifically for

use with Thompson sampling, we were able to construct a

computationally tractable, anytime approximate Thompson

sampling algorithm with end-to-end guarantees of logarith-

mic regret.
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