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Abstract

We undertake a precise study of the asymptotic and non-asymptotic properties of stochastic ap-

proximation procedures with Polyak-Ruppert averaging for solving a linear system Āθ = b̄. When

the matrix Ā is Hurwitz, we prove a central limit theorem (CLT) for the averaged iterates with fixed

step size and number of iterations going to infinity. The CLT characterizes the exact asymptotic

covariance matrix, which is the sum of the classical Polyak-Ruppert covariance and a correction

term that scales with the step size. Under assumptions on the tail of the noise distribution, we

prove a non-asymptotic concentration inequality whose main term matches the covariance in CLT

in any direction, up to universal constants. When the matrix Ā is not Hurwitz but only has non-

negative real parts in its eigenvalues, we prove that the averaged LSA procedure actually achieves

an O(1/T ) rate in mean-squared error. Our results provide a more refined understanding of linear

stochastic approximation in both the asymptotic and non-asymptotic settings. We also show var-

ious applications of the main results, including the study of momentum-based stochastic gradient

methods as well as temporal difference algorithms in reinforcement learning.

Keywords: Linear stochastic approximation, Polyak-Ruppert iteration averaging, TD learning,

Momentum SGD, constant step size.

1. Introduction

Fixed-point algorithms based on stochastic approximation (SA) play a central role in a wide vari-

ety of disciplines (Robbins and Monro, 1951; Bertsekas and Tsitsiklis, 1989; Bottou et al., 2016;

Lai, 2003). In general, given the goal of solving an underlying deterministic equation, SA methods

perform updates based on randomized approximations to the current residual. An important special

case is provided by stochastic gradient methods for optimization, which play an increasingly im-

portant role in large-scale machine learning and statistics (Nemirovski et al., 2009; Moulines and

Bach, 2011).

Moving beyond the setting of optimization, there are many other kinds of problems in which

stochastic approximation is a workhorse. For example, many problems in reinforcement learn-

ing involve the solution of fixed-point equations, and algorithms like TD (Sutton, 1988) and Q-

learning (Watkins and Dayan, 1992) solve them via stochastic approximation. Moreover, even for

stochastic optimization, accelerated methods that include momentum terms in their updates involve

non-symmetric operators, and so require more general SA techniques for their analysis.
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The celebrated Polyak-Ruppert averaging procedure (Polyak and Juditsky, 1992; Ruppert, 1988)

stabilizes and accelerates stochastic approximation algorithms by taking an average over iterates. It

is known that for suitably decaying step sizes, a central limit theorem (CLT) can be established

for the averaged iterates. Moreover, Polyak-Ruppert averaging can achieve an optimal covariance,

in the sense of local asymptotic minimaxity. Asymptotic results of this kind have provided the

underpinnings for the development of online statistical inference methods. Recently, numerous

non-asymptotic results have also been established in the settings of stochastic optimization (see

Section 1.1). Notably, the work of Nemirovski et al. (2009); Moulines and Bach (2011) and Jain

et al. (2017) gives non-asymptotic bounds for stochastic gradient methods as applied to (strongly)

convex objectives; here the main term depends on the trace of the optimal covariance matrix.

There remains, however, a major mismatch between the classical CLTs and the non-asymptotic

rates. Although the non-asymptotic results are valid for a finite number of iterations and are more

reliable, they do lose some of the quantitative aspects of the CLT results. In particular, bounds on

mean square error give much less information than the optimal covariance matrix, and the lack of

high-probability bounds make them inapplicable in important applications such as policy evaluation.

On the other hand, many important effects can vanish when the asymptotic limit is taken. In general,

the trade-off between asymptotic limits and the rate of approach to asymptotic limits can be crucial.

Such trade-offs should reflect the effect of the step size, and provide guidance for step-size selection.

In this paper, we consider the problem of linear stochastic approximation, where the goal is to

solve a system, Āθ = b̄, of linear equations from noisy observations (At, bt)
∞
t=1. This problem is

not only of intrinsic interest, within areas such as linear regression and TD learning, but it provides

leverage on nonlinear SA problems, where analysis generally proceeds via local linearization.

In this paper, we make three primary contributions. First, we characterize the asymptotic covari-

ance for the averaged iterates in the Polyak-Ruppert procedure for constant step size linear stochas-

tic approximation. In addition to the classical Ā−1Σ(Ā−1)⊤ term, we find a correction term that

depends on the step size. A central limit theorem is shown for the averaged constant step-size proce-

dure. Second, under stronger tail assumptions, we show a non-asymptotic concentration inequality

for the averaged iterates in any direction, the leading term of which is the asymptotic covariance in

this direction, while other terms keep the optimal rates. Thus, we achieve the best of both worlds.

Finally, we show that even if the matrix A is not Hurwitz, as long as the real part of eigenvalues are

non-negative, a non-asymptotic second moment bound is still valid for the Polyak-Ruppert proce-

dure, again yielding a 1/
√
T rate. This goes beyond the regime of stable dynamical systems, and

completes the picture of possibilities and impossibilities for linear stochastic approximation. When

applied to momentum-based stochastic gradient descent (SGD) and temporal difference (TD) learn-

ing for value function estimation, our results capture many interesting phenomena, including the

acceleration effect of momentum-based SGD, instance-dependent ℓ∞-bounds for policy evaluation

with near-optimal rates, and gap-independent results for the average-reward TD algorithm.

Technical overview: Similar to past work (Polyak and Juditsky, 1992; Ruppert, 1988), our analy-

sis is based on representing the term Ā(θ̄T − θ∗) using a martingale to account for the noise at each

step, where θ̄T denotes the averaged iterates. Our setting involves additional noise terms, due to the

stochasticity in our observations of the matrix Ā. As a consequence, the conditional covariance of

the martingale difference terms at each step are dependent on the current iterate θt. Handling this

issue requires the ergodicity of {θt}t≥0 as a Markov chain. Having established ergodicity, we can

then prove an asymptotic result by combining Lindeberg-type CLTs with ergodic theorems.
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In order to move from the asymptotic to the non-asymptotic setting, we study the projection

of the iterate θT , for each time T , in some fixed but arbitrary direction. We can then apply the

Burkholder-Davis-Gundy inequality to the higher moments of the supremum of a martingale, which

separates the leading variance term and other terms that vanish at faster rates in T . Similar to the

asymptotic case, the concentration results require a non-asymptotic bound on the deviation of the

empirical averages of a function along a Markov chain, when compared to an expectation under the

stationary distribution. In order to obtain such a bound, we exploit metric ergodic concentration

inequalities (Joulin and Ollivier, 2010) combined with a coupling estimate.

In the case when the matrix Ā is not Hurwitz but has non-negative real parts in its eigenvalues,

the process {θt}t≥0 does not generally approach θ∗. In the critical case, the dynamics is governed

by a pure rotation with stochastic terms diffusing in all directions. However, when averaging is

applied, both the effect of rotation and the random noise can be controlled. The step size is chosen

to decay at the faster rate 1/
√
T in order to prevent an exponenential blowup.

Notation: For a matrix W ∈ C
d×d, we use {λi(W )}di=1 to denote its eigenvalues. The spec-

tral radius is given by ρ(W ) := maxi∈[d] |λi(W )|. For an invertible matrix W , we define the

condition number κ(W ) = |||W |||op · |||W−1|||op, where the operator norm is given by |||W |||op :=
sup‖x‖2=1 ‖Wx‖2. We use aT . bT to denote ∀T ≥ 1, aT ≤ CbT for a universal constant C > 0.

And we use aT - bT to denote aT ≤ bT · logc(T/δ) for a universal constant c > 0.

1.1. Related work

In the past decade, the growth of interest in stochastic gradient descent (SGD) has revived both

theoretical and applied interest in stochastic approximation. There is a long line of work on the

asymptotic regime of stochastic approximation algorithms (Ruppert, 1988; Polyak and Juditsky,

1992; Kushner and Yin, 2003; Borkar, 2008; Benveniste et al., 2012; Li et al., 2018). One core

idea is that of averaging iterates along the path, which can be shown to have favorable statistical

properties in the asymptotic setting (Ruppert, 1988; Polyak and Juditsky, 1992). (See, for instance,

Theorem 1 in Ruppert (1988).) More recent papers (Chen et al., 2020; Su and Zhu, 2018; Liang and

Su, 2019; Li et al., 2018) have developed iterative algorithms for constructing asymptotically valid

confidence intervals for statistical problems.

In addition to asymptotic results, there are also a wide range of non-asymptotic results for

stochastic approximation algorithms (see, e.g., Nemirovski et al. (2009); Rakhlin et al. (2012);

Wang and Bertsekas (2016); Dieuleveut et al. (2017a,b); Jain et al. (2017, 2018, 2019); Laksh-

minarayanan and Szepesvari (2018)). Perhaps most closely related to our work is the analysis

of Lakshminarayanan and Szepesvari (2018), who study linear stochastic approximation with con-

stant step sizes combined with Polyak-Ruppert averaging. Relative to the analysis given here, their

bound has a dependency on the Hurwitz parameter and condition number for eigenvector matrix in

the leading term, which are sub-optimal. Moreover, the effect of the step size choice on the esti-

mation error is not fully captured by the MSE bound. For more discussion about related works in

stochastic optimization and reinforcement learning, see Appendix A.

2. Background and problem formulation

We begin by introducing the stochastic approximation algorithm to be analyzed in this paper, along

with discussion of some of its applications.
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2.1. Linear stochastic approximation

In this paper, we study stochastic approximation procedures for solving a linear system of the form

Āθ = b̄, where the deterministic quantities Ā ∈ R
d×d and b̄ ∈ R

d are parameters of the problem.

Throughout the paper, we assume that the matrix Ā is invertible, so that the solution θ∗ to the

equation exists and is unique. Suppose that we can observe a sequence of random variables of the

form {(At, bt)}t≥1, assumed to be independent and identically distributed (i.i.d.), and exhibiting an

unbiasedness property:

E(At | Ft−1) = Ā, and E(bt | Ft−1) = b̄, (1)

where Ft−1 denotes the σ-field generated by {(Ak, bk)}t−1
k=1. Given observations of this form, our

goal is to form an estimate θ̂ of the solution vector θ∗. For some given initial vector θ0, we consider

the following linear stochastic approximation (LSA) procedure:

θt+1 = θt − η(At+1θt − bt+1), for t = 0, 1, 2, . . ., (2)

where η > 0 is a pre-specified step size. Our focus will be the Polyak-Ruppert averaged sequence

{θ̄T }T≥1 given by

θ̄T :=
1

T

T−1∑

t=0

θt. (3)

In particular, our goals are to establish guarantees for the renormalized error sequence
√
T (θ̄T −θ∗),

both in an asymptotic (i.e., T → ∞) and non-asymptotic (i.e., finite T ) setting.

2.2. Some motivating examples

Let us consider some applications that motivate the analysis of this paper. We begin with the simple

example of stochastic gradient methods for linear regression:

Example 1 (Stochastic gradient methods for linear regression) Let X ∈ R
d be a vector of fea-

tures, and let Y ∈ R be a scalar response. A linear predictor of Y based on X takes the form

〈X, θ〉 = ∑d
j=1Xjθj for some weight vector θ ∈ R

d. If we view the pair (X,Y ) as random, we

can consider a vector θ∗ that is optimal in the sense of minimizing the mean-squared error of the

prediction—that is,

θ∗ ∈ arg min
θ∈Rd

E

[(
Y − 〈X, θ〉

)2]
, (4)

where E denotes an expectation over the joint distribution of (X,Y ). A straightforward computation

yields that θ∗ must be a solution of the linear system Aθ = b, where Ā := E[XX⊤] ∈ R
d×d and

b̄ := E[XY ] ∈ R
d. Note that θ∗ exists and is unique whenever Ā is strictly positive definite.

In practice, we do not know the joint distribution of (X,Y ), but might have access to a sequence

of paired observations, say {(Xt, Yt)}t≥1, i.i.d. across different time instances t. The standard SGD

algorithm computes an estimate of θ∗ via the recursive update

θt+1 = θt − ηXt+1

(
〈Xt+1, θt〉 − Yt+1

)
for t = 0, 1, 2 . . .. (5)

Note that this update is a special case of Eq (2), with the choices At = XtX
T
t and bt = XtYt. ♣

4



FINE-GRAINED ANALYSIS OF LINEAR STOCHASTIC APPROXIMATION

As a continuation of the previous example, let us consider a more sophisticated algorithm for

online linear regression, one based on the introduction of an additional momentum component.

Example 2 (Stochastic gradient with momentum) For this particular example, let us adopt the

shorthand At = XtX
T
t and bt = XtYt. Given a step size η > 0 and a momentum term α > 0,

consider a recursion over a pair (θt, vt) ∈ R
d × R

d, of the following form:

{
θt+1 = θt − ηvt

vt+1 = vt − ηαvt + η(At+1θt+1 − bt+1).
(6)

Let us reformulate these updates in the form (2), where we lift the problem to dimension 2d and use

a tilde to denote lifted quantities. We find that the algorithm can be formulated as an update of the

2d-dimensional vector θ̃t :=
[
θt vt

]T ∈ R
2d according to the recursion (2), where

Ãt :=

[
0 Id

−At αId + ηAt

]
, and b̃t :=

[
0

−bt

]
.

The underlying deterministic problem is to solve the 2d-dimensional linear system Ãθ̃ = b̃, where

Ã = E[Ãt] and b̃ = E[b̃t]. It can be seen that θ∗ ∈ R
d is a solution to the original problem if and

only if the vector θ̃∗ :=
[
θ∗ 0

]T
is a solution to the lifted problem. In the sequel, we will use our

general theoretical results to show why the addition of the momentum term can be beneficial. ♣

The area of stochastic control and reinforcement learning is another fertile source of stochastic

approximation algorithms, and we devote our next two examples to the problems of exact and

approximate policy evaluation.

Example 3 (TD algorithms in reinforcement learning) We now describe how the TD(0)-algorithm

in reinforcement learning can be seen as an instance of the update (2). In this example, we discuss

the TD algorithm for exact policy evaluation; in Example 4 to follow, we discuss the extension to

TD with linear function approximation.

We begin by reviewing the background on Markov reward processes necessary to describe the

problem; see Bertsekas (1995); Puterman (2005); Sutton and Barto (2018) for more details. We

focus on a discrete Markov reward process (MRP) with D states; any such MRP is specified by

a pair (P, r) ∈ R
D×D × R

D. The matrix P ∈ R
D×D is row-stochastic, with entry Pij ∈ [0, 1]

representing the probability of transitioning to state j from state i. The vector r ∈ R
D is the reward

vector, with ri denoting the reward received when in state i.

Discounted case: If future rewards are discounted with a factor γ ∈ (0, 1), then the value function

of the Markov reward process is a vector θ∗ that solves the Bellman equation θ∗ = r + γPθ∗. This

linear equation can be seen as a special case of our general set-up with

Ā := ID − γP, and b̄ := r,

where ID denotes the D-dimensional identity matrix.

There are various observation models in reinforcement learning, with one of the simpler ones

being the generative model. In this setting, at each time t, we observe the following quantities:
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• for each state i ∈ [D], a random rewardRt,i satisfying E[Rt,i] = ri. For simplicity, from now

on, we assume that Rt,i ∈ [−1, 1] almost surely, for any i ∈ [D] and t ≥ 0.

• for each state i ∈ [D], a next state J is drawn randomly according to the transition vector Pi,·.

We place this model in our general LSA framework by setting bt = Rt for each time t, and defining

a random matrix At ∈ {0, 1}D×D with a single one in each row; in particular, row i contains a one

in position J , where J is the randomly drawn next state for i.

Average-reward case: Average-reward TD algorithm solves the fixed-point equation θ∗ = r +
Pθ∗ via stochastic approximation. We assume the same generative model as in the discounted case.

However, the matrix Ā = I − P is not invertible, with λ1(P ) = 1. In such case, the algorithm can

be seen as LSA within the quotient space R
S/Ker(Ā) (assuming the Markov chain is irreducible

and consequently no multiplicity of eigenvalue 1, and dim(Ker(Ā)) = 1), by subtracting the mean.

See Tsitsiklis and Van Roy (2002) for more details. ♣

Our framework can also be applied to TD with linear function approximation and stochastic quadratic

minimax optimization. See Appendix B for detailed discussion with these examples.

3. Main results and their consequences

We now turn to the statements of our main results. We begin with the easier case when the matrix Ā
is Hurwitz (meaning that all its eigenvalues have a positive real part), and provide both asymptotic

and non-asymptotic guarantees for the Polyak-Ruppert sequence. Targeting Example 3, we also

extend the non-asymptotic guarantees to the ℓ∞ case with mild dimension dependency. We then turn

to the more challenging critical case, in which the Hurwitz condition is violated (or the eigengap

is too small to be quantitatively useful), and prove bounds on the mean-squared error. For all our

results, we impose an i.i.d. condition:

Assumption 1 The sequences {At}t≥1 and {bt}t≥1 have i.i.d. entries.

3.1. Asymptotic and Non-asymptotic Guarantees for Hurwitz Matrices

This section is devoted to guarantees that hold for a Hurwitz matrix.

Assumption 2 The matrix Ā ∈ R
d×d is Hurwitz, meaning that

λ := min
i∈[d]

Re
(
λi(Ā)

)
> 0. (7)

Our non-asymptotic statement involves various factors that pertain to properties that are implied

by the Hurwitz condition. In particular, it is known (Perko, 2013) that any Hurwitz matrix is similar

to a complex matrix D such that D +DH is positive definite. Formally, we have:

Lemma 1 For any Hurwitz matrix Ā, there exists a non-degenerate matrix U ∈ C
d×d such that

Ā = UDU−1 for some matrix D ∈ C
d×d that satisfies D +DH � mini∈[d]Re(λi(Ā))Id.

For completeness, we provide a proof of this known result in Appendix K.1. From now on, we will

use this decomposition for the Hurwitz matrix Ā.
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3.1.1. AN ASYMPTOTIC GUARANTEE

We begin with the asymptotic guarantee. In addition to Hurwitz condition on Ā and the i.i.d.

assumption stated previously, this result requires second-moment control on the noise sequences

Ξt = At − Ā and ξt = bt − b̄. (We denote by ΞA and ξb a generic random variable following the

same distributions as Ξt and ξt.)

Assumption 3 There exist finite scalars v2A and v2b such that

E ‖ΞAu‖22 ≤ v2A, and E|ξ⊤b u|2 ≤ v2b ,

for any fixed vector u in the sphere Sd−1. Moreover, the random elements Ξt and ξt are uncorrelated.

With these assumptions in place, we are now ready to state our first result, which is an asymp-

totic guarantee. We let ΞA denote a random matrix following the same distribution as each Ξt

variable, and similarly, let ξb denote a random vector following the distribution of each ξt vector.

Given these quantities, we define the following covariance matrix:

Σ∗ := cov(ξb + ΞAθ
∗) = cov(ξb) + cov(ΞAθ

∗). (8)

Note that Σ∗ is the sum of the covariances of the two kinds of noise involved in the stochastic

approximation scheme. Given Σ∗ and Ā, we define a linear equation in a matrix variable Λ:

ĀΛ + ΛĀ⊤ − ηĀΛĀ⊤ − ηE(ΞAΛΞ
⊤
A) = ηΣ∗. (9)

As shown in the sequel (cf. Lemma 11), this matrix equation always has a unique PSD solution,

which we denote by Λ∗
η. In fact, the matrix Λ∗

η corresponds to the covariance matrix of the stationary

distribution of the Markov process (θt)t≥0.

Theorem 2 Suppose that the matrix Ā is Hurwitz (Assumption 2), the i.i.d. condition (Assump-

tion 1) and the second-moment condition (Assumption 3) hold, and the random elements At and bt
both have finite (2 + δ)-order moments for some δ > 0. Then there exists a constant η0 > 0 such

that for any η ∈
(
0, η0

)
, we have

√
T (θ̄T − θ∗)

d→ N
(
0, Ā−1

(
E[ΞAΛ

∗
ηΞ

⊤
A] + Σ∗)(Ā−1)⊤

)
,

where the d-dimensional matrix Λ∗
η is the unique solution to equation (9).

See Appendix E for the proof of this theorem.

Note that when η → 0, then equation (9) becomes a rescaled version of the classical Lyapunov

equation ĀΛ + ΛĀT = ηΣ, the solution of which specifies the stationary covariance matrix of a

stochastic linear system. For suitably decaying step sizes, a minor extension1 of arguments due

to Polyak and Juditsky (1992) give an asymptotic statement involving the solution to the classic

Lyapunov equation. On the other hand, for the constant step-size setting studied here, our result

includes an additional correction term corresponding to the lingering effect of the non-zero step

size. Theorem 2 specifies the asymptotic covariance matrix in this more general setting.

1. Such an extension is required to handle the randomness in At in addition to that in bt.
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When η is small, the matrix Λ∗
η scales linearly with η. The main term Ā−1Σ∗(Ā−1)⊤ corre-

sponds to the asymptotic limit of the classical Polyak-Ruppert averaging procedure. However, the

effect of step size is not fully captured by the classical CLT. This additional term precisely charac-

terizes the effect of step size on the asymptotic behavior of the averaged iterates.

As an important application of the general result in Theorem 2, we study SGD with momentum

in Example 2. The momentum does not change the leading term in the asymptotic covariance

matrix. On the other hand, compared to vanilla SGD, the momentum improves both the mixing

time of the process and the correction term in the asymptotic covariance, by a factor of
√
λmin(Ā).

See Section C.1 for more discussions.

3.1.2. NON-ASYMPTOTIC CONCENTRATION

As highlighted in classical Le Cam theory (cf. Van der Vaart (2000)), the asymptotic guarantee in

Theorem 2 leads to asymptotic risk bounds in any fixed direction, and under any bowl-shaped loss

function. It is natural to expect non-asymptotic concentration bounds that relate the error of θ̄T with

that of a Gaussian random variable, up to some high-order terms, in any direction and under any

gauge norm. This section gives an affirmative answer to the question.

For non-asymptotic concentration results, additional tail conditions need to be imposed on the

noise distribution. In particular, we replace the second-moment bounds in Assumption 3 with the

following stronger conditions:

Assumption 3′ For some p ≥ 2, there exist positive scalars σA, σb, α, β > 0 such that for any u
in the Euclidean sphere S

d−1, we have

(E ‖ΞAu‖p2)
1

p

(i)

≤ pασA,
(
E

∣∣∣ξ⊤b u
∣∣∣
p) 1

p
(ii)

≤ pβσb. (10)

Moreover, the noise components (Ξt and ξt) are uncorrelated.

The p-moment condition (10) with the parameters (α, β) provides a natural generalization of the

notions of sub-Gaussian and sub-exponential tails (cf. Chap. 2, Wainwright (2019a)). Focusing on

the inequality (ii) in the condition (10), the setting β = 1
2 corresponds to a vector with sub-Gaussian

tails, whereas the case β = 1 corresponds to the sub-exponential case. Generally, if we take the p-th

power of a sub-Gaussian random variable, then it satisfies the condition (10) with exponent p/2.

Under these conditions, we can prove a result that gives a concentration guarantee at a given

(finite) iteration T . The guarantee depends on the matrix U from Assumption 2 and Lemma 1 via

its condition number, κ(U) = |||U |||op · |||U−1|||op. For a given iteration T and tolerance parameter

δ ∈ (0, 1), we require a positive step size η that satisfies the bound

η <
λ

ρ2(Ā) + κ2(U)σ2A log2α+1(T/δ)
, (11a)

where λ = mini∈[d]Re(λi(Ā)) > 0 is the Hurwitz constant of Ā, and ρ(Ā) is its spectral radius.

Our result also involves the asymptotic covariance matrix from Theorem 2, namely the quantity

Γ∗(η) := Ā−1
(
Σ∗ + E(ΞAΛ

∗
ηΞ

⊤
A)
)
(Ā−1)⊤. (11b)
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We bound the deviations of the rescaled process
√
T (θ̄T − θ∗) in terms of the error term

∆(T, δ) := V (θ∗)

(
σA + σb
T 1/4

+
1 +

√
σA/λ

η
√
T

)
log2max(α,β)+2

(
T

δ

)
, where

V (θ∗) :=
κ2(U)

mini∈[d] |λi(Ā)|
{
‖θ∗ − θ0‖2 + ‖θ∗‖2 +

√
η
λ

(
σA ‖θ∗‖2 + σb

√
d
)}
.

(11c)

Given these definitions, we have the following non-asymptotic bound:

Theorem 3 Fix an iteration number T and a tolerance δ ∈ (0, 1/T ), and suppose that the i.i.d.

condition (Assumption 1), higher-order moment condition (Assumption 3′), and Hurwitz condition

all hold (Assumption 2). Then there exists a constant c > 0 such that for any step size η > 0
satisfying the bound (11a) and for any v ∈ S

d−1, we have

P

[√
T
∣∣v⊤(θ̄T − θ∗)

∣∣ ≤ c
√
log(1δ )

{√
v⊤Γ∗(η)v +∆(T, δ)

}]
≥ 1− δ, (12)

where the matrix Γ∗(η) and deviation term ∆(T, δ) are defined in Eq (11b), (11c), respectively.

See Appendix F for the proof of this theorem.

Remarks: A few comments are in order: first, we note that the leading term of
√
vTΓ∗(η)v of

this non-asymptotic bound matches the term arising from the asymptotic covariance in Theorem 2,

up to universal constants and the
√
log(1/δ) term. This matches the behavior of a Gaussian ran-

dom vector following the asymptotic distribution in Theorem 2 up to universal constants. Second,

although the step size is required to belong to an interval depending on T and δ, the dependence

is only logarithmic. In fact, our step-size condition (11a) differs only by these logarithmic factors

from the stability threshold λ
ρ2(Ā)+κ2(U)v2A

, assuming σA and vA are of the same order.

Second, in the definition of ∆(T, δ), observe that the 1√
T

term is accompanied by a 1
η depen-

dence, while the T− 1

4 term does not diverge as η → 0+. This behavior is natural, because the former

comes from the ergodicity of the process {θt}∞t=0, while the latter comes from the concentration.

Finally, let us consider the issue of how to set the step size η as a function of T so as to achieve

an optimal bound for this pre-specfied T . Note that the step-size-dependent term from the matrix

Γ∗(η) scales linearly in η. Collecting the terms from V (θ∗) and ∆(T, δ) that depend on the pair

(T, η), we arrive at a bound that scales as

η︸︷︷︸
From Γ∗(η)

+
√
η

{
1

T 1/4
+

1

η
√
T

}

︸ ︷︷ ︸
From ∆(T, δ)

.

In order to minimize this bound, the optimal choice is to set η = T−1/3, which leads to the overall

error scaling as T−1/3. Thus, with this scaling, we can conclude that Theorem 3 guarantees a

high-probability bound of the form

√
T
∣∣v⊤(θ̄T − θ∗)

∣∣ -
√
v⊤Ā−1(Σ∗)(Ā−1)⊤v +O

(
T−1/3

)
,

where the notation - denotes inequality up to constants and logarithmic factors in (T, δ).
In addition, we note that Theorem 3 is useful for TD learning with linear function approxima-

tion. See Example 4 and Appendix C.2 for more details.
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Constructing non-asymptotic confidence sets: The classical Polyak-Ruppert procedure gives

a locally asymptotically-optimal covariance matrix, which can also be used for the construction of

asymptotic confidence sets. Theorem 3 has analogous consequences for purposes of non-asymptotic

inference. When going from asymptotically valid inference methods to the non-asymptotic coun-

terparts, Berry-Esseen-type estimates are often used. But the sizes of confidence sets constructed in

this way have polynomial dependence on the confidence level δ, even if the data themselves are not

heavy-tailed. When a large number of confidence sets or tests are needed to be constructed, the size

of each confidence set can expand in a rapid way. In contrast to this undesirable behavior, we now

show how Theorem 3 yields a confidence set with better dependence on the confidence level.

Using the notation of Theorem 3, we define the positive definite matrix

B(T, δ) := Γ∗(η) log(dδ ) + ∆(T, δd)Id, (13)

and the associated weighted Euclidean norm ‖v‖B(T,δ) =
√
v⊤B(T, δ)v. Using this weighted

norm, we then define an ellipse that yields a confidence set that has coverage 1− δ.

Corollary 4 Under the conditions of Theorem 3, there is a universal known constant c > 0 such

that the ellipse E(T, δ) =
{
θ ∈ R

d | ‖θ − θ̄T ‖B(T,δ) ≤ c
√
d/T

}
, centered at the averaged iterate

θ̄T , has the coverage guarantee P [E(T, δ) ∋ θ∗] ≥ 1− δ.

From the definition (13) of the ellipse parameters (recalling the definition of ∆(T, δ) from equa-

tion (11c), it can be seen that the size of our confidence set depends only logarithmically (as opposed

to polynomially) on 1/δ. In terms of computing the confidence ellipse E(T, δ), an obstacle is the

fact that the the matrix Γ∗(η) is unknown (depending on both the unknown Ā, and other aspects

of the noise distribution). However, we believe that it should be possible to estimate Γ∗(η) based

on the sample path of the algorithm itself. Notably, in their study of stochastic gradient methods,

Chen et al. (2020) construct an online estimator for the asymptotic covariance. An interesting di-

rection for future work is to extend estimators of this type to the class of stochastic approximation

procedures considered here.

3.2. Some extensions beyond the basic setting

We now turn to some extensions that move beyond the basic setting of ℓ2-bounds when the matrix

Ā is Hurwitz. We begin in Section 3.2.1 by deriving some ℓ∞-bounds that are useful in the analysis

of the TD algorithm. In Section 3.2.2 to follow, we develop a relaxation of the Hurwitz condition.

3.2.1. BOUNDS IN THE ℓ∞-NORM

In this section, we extend the analysis framework of Theorem 3 to the ℓ∞-setting. Under somewhat

stronger assumption on the linear operator and the noise distribution, we establish an ℓ∞-bound in

which leading term matches the ℓ∞-norm of the asymptotic distribution in Theorem 2. Notably, the

correction term and concentration error bounds has only logarithmic dependence on the dimension-

ality of the problem, as opposed to the polynomial dependence in Theorem 3. This much milder

dimension dependence is important in applications, such as TD algorithms in reinforcement learn-

ing, where the dimension may be very large. See Appendix C.2 for the implication of this general

theorem to TD learning with Example 3.

In order to obtain the tight dimension dependence, we impose the following stronger condition:

10
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Assumption 4 The stochastic oracles satisfy ‖bt‖∞ ≤ 1 and ∀u ∈ R
d, ‖Atu‖∞ ≤ ‖u‖∞ a.s.

In addition, we replace the Hurwitz condition with the following stronger contraction condition:

Assumption 5 There is a constant λ̄ > 0 such that the random matrix I−At is a (1−λ̄)-contractive

with respect to the ℓ∞-norm, almost surely, meaning that

‖(I −At)v‖∞ ≤ (1− λ̄) ‖v‖∞ for all v ∈ R
d.

Under Assumption 4, we are able to establish an upper bound on each coordinate direction ej , lead-

ing to a high-probability upper bound on
∥∥θ̄T − θ∗

∥∥
∞. Naturally, this bound involves the maximal

coordinate-wise variance: σ2max := maxj=1,...,d e
T
j Γ

∗(η)ej .

Theorem 5 Fix an iteration number T and a tolerance δ ∈ (0, 1/T ), and suppose that the i.i.d.

condition (Assumption 1), the almost-sure ℓ∞ bound condition (Assumption 4), and the almost-sure

ℓ∞ contraction condition (Assumption 5) all hold. Then there exists a constant c > 0 such that for

any step size η > 0 satisfying the bound (11a), we have

P

[
√
T
∥∥θ̄T − θ∗

∥∥
∞ ≤ c

√
σ2

max
log(d/δ) + c

λ̄−2η + λ̄−1

T
1

4

√
log

d

δ
+ c

λ̄−
5

2

η
√
T

]
≥ 1− δ.

See Appendix G for the proof of this theorem.

We note that the theorem can actually be slightly refined by replacing the term σ2max log(d/δ)

with the quantity Q
(
(e⊤j Γ

∗(η)ej)dj=1; δ
)

, where for a vector v = (v1, v2, · · · , vd) ∈ R
d, we define

Q(v; δ) := inf
{
q | e−q/v1 + e−q/v2 + · · ·+ e−q/vd ≤ δ

}
. (14)

For example, if the maximal variance σ2max is much larger than second largest term (σ′)2 in the

diagonal of Γ∗(η), the quantity Q is upper bounded by σ2max log(1/δ) + (σ′)2 log(d/δ). For TD

learning, this slightly improves the instance-dependent bound of Pananjady and Wainwright (2019).

3.2.2. CRITICAL CASE

In many real-world situations, the Hurwitz assumption may be violated, or the eigengap can be too

small to be useful. At the population level, solving the deterministic equation Āθ = b is possible as

long as the eigenvalues of Ā are bounded away from zero. Thus, it is natural to wonder whether the

linear stochastic approximation scheme (2) still behaves well without this assumption. Furthermore,

when the Hurwitz constant λ is positive but extremely small, does one necessarily obtain a slow

convergence rate? In this section, we show that the non-asymptotic rates for LSA remain valid even

in the critical case with no contraction at all.

In this section, we prove a non-asymptotic convergence rate for LSA in the critical case. We

replace the Hurwitz condition on Ā (stated as Assumption 2) with the following assumption:

Assumption 2′ The matrix Ā is diagonalizable with Ā = UDU−1, and mini∈[d]Re
(
λi(Ā)

)
≥ 0.

The reader might wonder why Assumption 2′ includes a diagonalizability condition, which was

not needed before. Unfortunately, unlike the Hurwitz case, the diagonalizability assumption is

unavoidable in the critical case. In particular, the Polyak-Ruppert procedure is not even consistent

when A has purely imaginary eigenvalues and is non-diagonalizable at the same time, even in the

noiseless case. We show this with an explicit construction in Appendix K.2.

11
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Theorem 6 Suppose that the i.i.d. condition (Assumption 1), the eigenvalue condition (Assump-

tion 2′), and the second-moment bounds (Assumption 3) all hold. Then, given a total number of

iterations T , for the step size η = 1
(ρ(Ā)+3κ(U)vA)

√
T

, there is a universal constant c such that

E
∥∥Āθ̄T − b̄

∥∥2
2
≤ c

κ2(U)(ρ2(Ā) + κ2(U)v2A)E ‖θ0 − θ∗‖22 + v2bd+ v2A ‖θ∗‖22
T

. (15)

See Appendix H for the proof of this theorem.

Theorem 6 is particularly useful in the asymmetric case, where the eigenvalues of Ā can be

complex though the matrix itself is real. Even if the matrix Ā has an eigenvalue whose real part is

exactly zero but with imaginary part being non-zero, which is beyond the classical regime of stable

dynamical systems, the 1/T rate in mean-squared error is still guaranteed by averaging. More

precisely, we have

E
∥∥θ̄T − θ∗

∥∥2
2
≤ c κ2(U)

κ2(U)(ρ2(Ā) + κ2(U)v2A)E ‖θ0 − θ∗‖22 + v2bd+ v2A ‖θ∗‖22
mini∈[d] |λi(Ā)|2T

.

Although Theorem 6 achieves the correct O(1/T ) rate for mean-squared error, the problem-

dependent pre-factor is not optimal in general. Indeed, a superior problem-dependent rate
v2A‖θ∗‖2

2
+v2bd

T

can be achieved by a plug-in estimator solving Ānθ̂ = b̄n, where Ān and bn are empirical averages.

In comparison, the initial distance E ‖θ∗ − θ0‖22 appears in Theorem 6. Intuitively, one can view

this term as the counterpart of the correction term in Theorem 2 when the dynamics itself fails to

converge. It is also worth noticing that the step size choice O(1/
√
T ) is crucial in this case: a

larger step size makes the dynamical system exponentially blow up, and a smaller step size leads to

a suboptimal rate. It is an interesting open question how to achieve the optimal problem-dependent

constant using stochastic approximation.

That being said, Theorem 6 does exhibit the general effectiveness of LSA as it achieves the

optimal O(1/T ) rate in the critical case, with completely online update and O(d) storage. This is

the first time that a stochastic approximation procedure has been shown to achieve the correct rate

without the Hurwitz assumption, and demonstrates the additional advantage of averaging in such

settings. Note that the quantity mini∈[d] |λi(Ā)| can be much larger than the smallest real part of

eigenvalues in many applications. An important application of Theorem 6 is average-reward TD

learning in Example 3, which is further discussed in Appendix C.2.

4. Discussion

In this paper, we established several new results for constant step-size linear stochastic approxima-

tion combined with Polyak-Ruppert averaging. In the case where Ā is a Hurwitz matrix, we es-

tablish a central limit theorem, with asymptotic covariance characterizing the effect of the constant

step size. Non-asymptotically, we derive high-probability concentration bounds for the averaged

iterates in any direction, whose leading term matches the non-asymtotic behavior of a Gaussian

random variable with the limiting distribution, and has poly-logarithmic dependence on the failure

probability. We also study the critical case where the real part of eigenvalues are only guaranteed to

be non-negative, and establish a gap-independent O (1/T ) rate in mean-squared error. We illustrate

the effectiveness of our abstract results by considering momentum SGD for linear regression and

TD learning, and uncover new aspects of the LSA approach to these problems.
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Appendix A. Additional Related Works

Several bounds have been established on function values in stochastic optimization. After process-

ing N samples, the averaged iterate enjoys an O(1/N) and O(1/
√
N) optimization error bounds

for strongly convex and convex objectives (Nemirovski et al., 2009; Rakhlin et al., 2012; Shamir and

Zhang, 2013). Such optimization error bounds are optimal in the sense that they match the statisti-

cal lower bounds under a stochastic first-order oracle (Agarwal et al., 2012; Nemirovskii and Yudin,

1983). Dieuleveut et al. (2017b) studied a momentum accelerated stochastic gradient scheme with

appropriate regularization, proving its optimality in the critical case. Nevertheless when applied to

(often high-dimensional) statistical models with specific distributional assumptions, the aforemen-

tioned sharp results often lose essential statistical information due to their coarse-grained nature.

Stochastic approximation methods have also been widely applied in reinforcement learning; in

particular, TD learning (Sutton, 1988) and Q-learning (Watkins and Dayan, 1992) are based on lin-

ear and nonlinear stochastic approximation updates for policy evaluation and Q-function learning,

respectively. It should be noted that the various Bellman-type operators arising in RL do not cor-

respond to gradients of functions, so that the analysis requires different techniques from stochastic

optimization. A recent line of work has focused on the non-asymptotic analysis of TD learning

and Q-learning algorithms. Prashanth et al. (2013) studies TD algorithms with linear function ap-

proximation using Polyak-Ruppert average, but their rate is slower than the optimal O(1/
√
T ) one.

Bhandari et al. (2018) studied TD with linear function approximation and established bounds with

the optimal rate on the mean-squared error. Wainwright (2019b,c) analyzed Q-learning as a spe-

cial case of a cone-contractive operator, and established sharp ℓ∞-norm bounds, both for ordinary

Q-learning and a variance-reduced version thereof. Variance-reduced Q-learning under the gen-

erative model is also analyzed in Sidford et al. (2018). Concurrent to our work, Khamaru et al.

(2020) studies the local asymptotic minimax complexity of the value function estimation problem,

and obtain a non-asymptotic upper bound that matches the leading terms using variance reduced

TD algorithms. Karimi et al. (2019) studied general biased stochastic approximation procedures, in

particular proving convergence of online EM and policy gradient methods.

Additional perspectives and variations on stochastic approximation appear in the literature, with

improved non-asymptotic convergence properties in particular cases. Recent work also studies

tail averaging with parallelization (Jain et al., 2017), momentum-based schemes (Jain et al., 2018;

Dieuleveut et al., 2017b), Markov chain perspectives (Dieuleveut et al., 2017a), variational Bayesian

perspectives (Mandt et al., 2017) and diffusion approximation perspectives (Fan et al., 2018). Pepin

(2018) studies ergodict concentration inequalities of averaged Markov processes, with applications

to a special case of Polyak-Ruppert procedure. Berry-Esseen bounds are also obtained for the nor-

mal approximation in Polyak-Ruppert CLT (Anastasiou et al., 2019). There is also significant work

on last-iterate SGD (Jain et al., 2019) and variance-reduced estimators (see, e.g., Roux et al. (2012);

Johnson and Zhang (2013); Defazio et al. (2014)). Our discussion of these variants is limited in

this paper; it will be interesting to study whether these variants can be shown to have the desirable

statistical properties that we uncover here under a similar set of assumptions.

Appendix B. Additional Examples

In this section, we describe two more examples for the general LSA procedure (2) in addition to

Example 1, 2 and 3.
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We first consider a generalization of Example 3, which allows a linearly parametrized family to

represent the value function.

Example 4 (TD Algorithm with linear function approximation) In practice, the state space X
can be extremely large or possibly infinite. In such settings, the exact approach to policy evaluation,

as described in the previous example, becomes both computationally infeasible and statistically in-

efficient. In practice, it is typical to combine TD algorithms with a linear function approximation

step. Suppose that we are given a feature map φ : X → R
d. We consider the set of value functions

V : X → R that have a linear parameterization of the form Vθ(x) = 〈θ, φ(x)〉 =
∑d

j=1 θjφj(x)

for some vector of weights θ ∈ R
d. We use Lφ to denote the collection of all such linearly parame-

terized value functions.

In this more general context, the TD(0) algorithm seeks to compute a particular approximation

to the original value function, as we now describe. Suppose that the Markov process (Xt)t≥0 has

a unique stationary distribution µ, and let ΠLφ,µ : X → Lφ denote the L2(µ)-projection onto

the linear space Lφ—that is ΠLφ,µ(V ) := argminVθ∈Lφ
‖V − Vθ‖L2(µ). We can then define the

projected Bellman equation as

V = ΠLφ,µ

(
r + γPV

)
, (16)

where r : X → R is the reward function of the Markov reward process. It can be shown that this

equation has a unique fixed point V ∗, known as the TD approximation. Since V ∗ must belong to

Lφ, we can write V ∗(x) = 〈θ∗, φ(x)〉 for some θ∗ ∈ R
d.

With this set-up, we can now describe the more general instantiation of the TD(0) algorithm,

which uses linear stochastic approximation to solve the projected Bellman equation (16). Using

the optimality conditions for projection, it can be shown that the vector θ∗, which characterizes the

projected Bellman fixed point V ∗, must satisfy the linear equation

E(φ(X)φ(X)⊤)θ∗ = E(R(X)φ(X)) + γE(φ(X)φ(X+)⊤)θ∗.

Here the expectations are taken over the joint distribution of a pair (X,X+), where X is distributed

according to the stationary distribution µ, and X+ is drawn from the transition kernel P (condi-

tioned on the previous state being X). Thus, we see that the fixed point θ∗ must satisfy an equation

of the form Āθ∗ = b̄, where

Ā := E(φ(X)φ(X)⊤)− γE(φ(X)φ(X+)⊤), and b̄ = E(R(X)φ(X)).

The TD(0) algorithm corresponds to linear stochastic approximation for solving this equation.

At time t, if we are given a triplet (Xt, X
+
t , Rt), where Xt is distributed according to µ; the next

state X+
t is drawn from P conditioned on the previous state Xt, and Rt is a random reward. We

can then run linear stochastic approximation using the quantities

At = φ(Xt)φ(Xt)
T − γφ(Xt)φ(X

+
t )T and bt = Rtφ(Xt). (17)

We return to analyze this algorithm in Section C.2.2. ♣

Finally, we turn to an example of a minimax saddle-point problem (Rockafellar, 1970), which has

broad application in computational game theory, machine learning and robust statistics (see Pala-

niappan and Bach (2016) and references therein).
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Example 5 (Minimax games) We consider a minimax saddle-point problem of the following form:

min
x∈Rn

max
y∈Rm

1

2



x
y
1



⊤

·



Pxx Pxy cx
P⊤
xy Pyy cy
c⊤x c⊤y 0


 ·



x
y
1


 . (18)

In a computational game theory setting, for example, the vectors x ∈ R
n and y ∈ R

m represent

the actions of the two players. The payoff matrix P ∈ R
(n+m)×(n+m) satisfies the PSD conditions

Pxx � 0 and Pyy � 0, so that the game is of the convex-concave type. The matrix game (18) is a

type of saddle-point problem, and its solution reduces to solving the linear system
[
Pxx Pxy

−P⊤
xy −P22

]
·
[
x
y

]
=

[
−cx
cy

]
. (19)

Thus, this problem fits into our general set-up with Ā = P and b̄ =
[
−cx cy

]T
, so that d = n+m.

Note that the conditions Pxx ≻ 0 and Pyy ≺ 0 imply thatA = P is Hurwitz. The setting of Pxx = 0
and Pyy = 0 corresponds to the so-called critical case. ♣

Appendix C. Applications

In this section, we illustrate the usefulness of our four main theorems by applying them to some

concrete problems, namely the momentum SGD algorithm discussed in Example 2 and the temporal

difference (TD) algorithm discussed in Example 3.

C.1. Stochastic gradient method with momentum

Recall the SGD with momentum algorithm for linear regression that was previously introduced in

Example 2. In this section, we use our general theory to analyze it. As defined in Example 2,

at the population level the algorithm involves a matrix Ã ∈ R
d×d and vector b̃ ∈ R

2d. For the

linear regression setting, we can assume without loss of generality that θ∗ = 0, by the translation

invariance. At each time t, the algorithm makes use of a pair (Ãt, b̃t) that are unbiased estimates of

these population quantities. The momentum SGD update rule takes the form

θ̃t+1 = θ̃t − η(Ãt+1θ̃t − b̃t+1). (20)

Consider the noise variables Ξ̃t = Ãt − Ã and ξ̃t = b̃t − b̃. It can be seen that they satisfy the same

second moment or higher moment assumptions as Ξt and ξt do, with the constants (
√

1 + η2σA, σb)
or (
√
1 + η2vA, vb).

The addition of momentum to SGD has two effects: it changes the mixing time of the process

(θt)t≥0, and it alters the structure of the asymptotic covariance matrix Γ∗(η). The spectrum of Ã
plays a central role in these effects; accordingly, let us investigate the structure of this spectrum.

Suppose that the matrix Ā is positive definite, and let {λi}di=1 denote its eigenvalues.

We claim that for any α ∈ R+ \ {2
√
λi − ηλi}di=1, the matrix Ã ∈ R

2d×2d is diagonalizable,

with paired (complex) eigenvalues
(
(α+ ηλi) +

√
(α+ ηλi)2 − 4λi
2

,
(α+ ηλi) +

√
(α+ ηλi)2 + 4λi
2

)
for i = 1, . . . , d.

(21)
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See Appendix K.3 for the proof of this claim.

Let us now consider the consequences of the spectrum (21) for the mixing time of the process

(θt)t≥0. We claim that when the parameter α is suitably chosen, the mixing rate of the momentum-

based method is faster by a factor of 1/
√
λmin(Ā). Introduce the shorthand

νi :=
(α+ ηλi) +

√
(α+ ηλi)2 − 4λi
2

, for i = 1, . . . , d.

For an index i such that α > 2
√
λi−ηλi, we have νi ∈ R, and for index i such that α < 2

√
λi−ηλi,

we have Re(νi) = α+ ηλi. Therefore, for λ = λmin(Ā), we have:

min
i

Re(λi(Ã)) =

{
α+ ηλ−

√
(α+ ηλ)2 − 4λ ≥ 2λ

α+ηλ , α ≥ 2
√
λ− ηλ

α+ ηλ, α < 2
√
λ− ηλ.

When we take α ≍
√
λmin(Ā), we have miniRe(λi(Ã)) ≍

√
λmin(Ā).

Now Lemma 12 implies that for given step size η > 0, the mixing time is upper bounded by

1

ηminRe(λi(Ã))
≍ 1

η
√
λmin(Ā)

.

Consequently, the use of momentum speeds up the mixing time by a factor of (1/
√
λmin(Ā)),

which is significant in the regime λmin(Ā) ≪ 1.

Furthermore, we study the effect of momentum on the asymptotic covariance. We make the

following claim:

Claim 1 For the momentum SGD update (6) with α ≍
√
λmin(A), the asymptotic covariance in

Theorem 2 restricted to θ-components is of the form Ā−1Σ∗Ā−1+Lη, where the matrix Lη satisfies

the following upper bound:

Tr(Lη) . η
v2Aκ

2(U)v2bd

λmin(A)3/2
,

where the matrix is written as Ã = UDU−1 in the decomposition in Lemma 1.

A similar analysis can be carried out to show that SGD with averaging achieves a covariance at

stationarity that has a larger correction term O(ηλmin(Ā)
−3) than momentum with SGD. How-

ever, whether momentum SGD can exceed SGD in correction term involves computing κ(U) and

choosing η. We leave this as future work.

A straightforward calculation shows that the leading term Ã−1

[
0 0
0 Σ∗

]
(Ã−1)⊤ in the θ-component

is the same as Ā−1Σ∗Ā−1. Now we consider the correction term Ã−1
E(Ξ̃AΛ

∗
η(Ξ̃A)

⊤)(Ã−1)⊤.

Note that Λ∗
η is the stationary covariance of (θt)t≥0. Simple calculation leads to the upper bound:

Tr(Ã−1
E(Ξ̃AΛ

∗
η(Ξ̃)

⊤
A)(Ã

−1)⊤) ≤ (min
i

|λi(Ã)|)−2(1 + η2)v2AEπη ‖θt − θ∗‖22 .

As we will see in Lemma 11 in Appendix D.1.2, the stationary covariance satisfies the following

upper bound:

Eπη ‖θ − θ∗‖22 ≤ κ2(U)
η

miniReλi(Ã)
v2bd.

Noting that we have miniRe(λi(Ã)) ≍
√
λmin(A), plugging into the above upper bound proves

the trace bound in Claim 1.
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C.2. Temporal difference learning

We discuss the applications of our main theorems in TD learning, in both exact (Example 3) and

linear function approximation (Example 4) settings. We consider both the discounted case (γ < 1)

as well as the undiscounted case (γ = 1). Theorem 3, 5 and 6 turn out to have nontrivial implications

to the TD algorithm in these cases.

C.2.1. ANALYSIS OF TD WITHOUT FUNCTION APPROXIMATION

We start with the case of exact TD(0). We follow the model definition and assumptions in Exam-

ple 3.

Non-asymptotic bounds in the Hurwitz case Recall that in the generative model, the one-step

observation Pt satisfies ‖Pv‖∞ ≤ ‖v‖∞ for any vector v. For discount factor γ ∈ [0, 1), the

matrix γPt is γ-contractive under the ‖·‖∞ norm. Consequently, Assumption 5 is satisfied by the

observation model, and we can apply Theorem 5.

In order to state the result, we require a few additional pieces of notation. Define the D-

dimensional vector σ∗ ∈ R
D of standard deviations, with

σ∗j :=
√
var(R(j)) + var(Z(j, :)θ∗), for j = 1, . . . , D.

Since the rows of Zt and entries of Rt are independent, the matrix Σ∗ in the main term is actually

diag(σ∗(j)2)j∈[D]. It is easy to see that the structure of the stochastic oracles (At, bt) satisfies

Assumption 4 and Assumption 5. Thus, we can apply Theorem 5. Doing so yields a result that

involves the matrix

Γ∗(η) := (I − γP )−1(diag(σ∗(j)2)j∈[D] + Λ∗
η)(I − γP⊤)−1, (22)

where the matrix Λ∗
η was defined in equation (9). The result also involves the function Q defined in

equation (14).

Corollary 7 Consider the i.i.d. observational model for Markov reward processes defined above.

Given a discount factor γ ∈ (0, 1) and a failure probability δ > 0, the averaged TD(0) algorithm

based on step size η ∈ (0, 1) satisfies the bound

√
T
∥∥∥θ̂T − θ∗

∥∥∥
∞

.
√
Q(diag(Γ∗(η)); δ) + T− 1

4

(
η

(1− γ)2
+

1

1− γ

)√
log

d

δ
+

T− 1

2

η(1− γ)−
5

2

,

with probability at least 1− δ.

When the step size is chosen to be of order η = O(T− 1

3 ), the leading term of Corollary 7 is an

instance-dependent term that slightly improves upon that of the offline plug-in estimator in Panan-

jady and Wainwright (2019), which was shown to be minimax optimal.

Critical case: Application of Theorem 6. While most of existing results in policy evaluation

require the discount factor to be bounded away from one, our second result certifies that, even if

there is no discount at all (i.e., when γ = 1, corresponding to the average reward RL setting), the

linear stochastic approximation achieves aO(1/
√
T ) error decay, as long as the error is measured in

terms of Bellman error (i.e., the deficiency in the fixed point relation). Furthermore, for discounted

problems, the results show that the Bellman error can be bounded independently of the (1 − γ)
factor:
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Corollary 8 Suppose the transition matrix P is diagonalizable with P = UDPU
−1, for η =

1
(1+3κ(U)v(P ))

√
T

, for any γ ∈ [0, 1], we have

E
∥∥θ̄T − (γP θ̄T + r)

∥∥2
2
.
κ2(U)(1 + κ2(U)v(P )2)E ‖θ0 − θ∗‖22 + v(r)2D + v(P )2 ‖θ∗‖22

T
.

In the setting of average reward TD learning, by subtracting the stationary average reward (see dis-

cussion in Example 3), we can still translate the bound in Bellman error to the parameter estimation

error. Corollary 8 implies that:

E
∥∥θ̄T − θ∗

∥∥2
2
= O

(
κ2(U)

v(r)2D + v(P )2 ‖θ∗‖22 + κ2(U)(1 + κ2(U)v(P )2)E ‖θ0 − θ∗‖22
T ·mini≥2 |1− λi(P )|2

)
,

where the problem-dependent complexity term is mini≥2 |1−λi(P )|, as opposed to the real-part of

the eigengap mini≥2(1− Re(λi(P ))) in the Hurwitz case. In particular, suppose that the transition

matrix P has a complex eigenvalue of the form eiα for some α ≪ 1.2 In this case, we have

mini≥2 |1 − λi(P )| ≍ α but mini≥2(1 − Re(λi(P ))) ≍ α2. The dependency on α in the critical

case bound can even be better than the bound we get by treating the matrix as Hurwitz. Specifically,

Corollary 8 yields a bound of order O(1/α
√
T ); on the other hand, although the leading term in

Theorem 3 is near-optimal, due to the presence of a 1
ηmini≥2 |1−λi(P )|T term in the bound, it leads

to an O(1/α3T ) term, as the step size has to be chosen such that η . α2. Corollary 8 leads to

a better O( 1
α2ε2

) sample complexity, compared with the O( 1
α2ε2

+ 1
α3ε

) complexity guaranteed by

the theorem in the Hurwitz case. This is mainly because the step size choice η . α2 suggested

by Theorem 3 is too conservative, compared to the gap-independent O(1/
√
T ) choice implied by

Theorem 6.

C.2.2. TD WITH LINEAR FUNCTION APPROXIMATION

We now consider an application of Theorem 3 and Theorem 6 to the use of the TD algorithm

in conjunction with linear function approximation; recall Example 4. Note that for any vector

v ∈ S
d−1, by the Cauchy-Schwartz inequality, we have

v⊤E(φ(X)φ(X+))v ≤ (v⊤E(φ(X)φ(X))v)
1

2 (v⊤E(φ(X+)φ(X+))v)
1

2 = v⊤E(φ(X)φ(X))v.

So we have miniRe(λi(A)) ≥ (1 − γ)mini λi(Eφ(X)φ(X)⊤) > 0 and Theorem 3 is applicable

in this case. For the following results, we make two assumptions on the tail behavior:

• The feature vector φ(X) is a centered and σφ-sub-Gaussian random vector when X follows

the stationary distribution µ, namely:

Eµφ(X) = 0, ∀v ∈ R
d, p ≥ 2, (Eµ|〈v, φ(X)〉|p)

1

p ≤ σφ
√
p.

• The random reward Rt satisfies the following moment bound:

∀p ≥ 2, (E|Rt|p)
1

p ≤ σr
√
p.

2. This can happen, for example, in an N -state Markov chain where the transition from state i is deterministically to the

state (i+ 1) mod N . In such case the eigenvalues are e
2πk

N
i.
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In stating the resulting corollary, we let µ denote the stationary distribution of the Markov reward

process; define the covariance matrix M = Eµφ(X)φ(X)⊤, and the quantity

V (θ∗) := κ(U)(‖θ∗ − θ0‖2 + ‖θ∗‖2 +
√
η(1− γ)−1(

√
dσφ ‖θ∗‖2 + σr

√
d)) log4

T

δ
.

Corollary 9 Suppose that the model assumptions in Example 4 hold, we are given a discount

factor γ ∈ (0, 1) and a failure probability δ > 0, and we run the LSA algorithm using a step size

η ∈
(
0, 1−γ

1+κ2(U)σ2
φd log

3 T
δ

)
. Then for any vector v ∈ S

d−1, the quantity
√
T
∣∣∣v⊤(θ̂T − θ∗)

∣∣∣ is upper

bounded, up to a universal pre-factor, by

√
v⊤Γ∗(η)v log

1

δ
+
κ(U)V (θ∗)

1− γ

(
σφ

√
d+ σr

T
1

4

+
1 +

√
σr/(1− γ)

ηT

)
. (23)

As a consequence of the bound (23), we are guaranteed that the rescaled error
√
T
∥∥∥θ̂T − θ∗

∥∥∥
L2(µ)

is upper bounded as

√
Tr (Γ∗(η) ·M) log

d

δ
+
κ(U)V (θ∗)

√
|||M |||opd log

4 dT
δ

1− γ

(
σφ

√
d+ σr

T
1

4

+
1 +

√
σr/(1− γ)

ηT

)
,

with probability 1− δ.

The proof of this bound simply follows by applying Corollary 9 on all of the eigenvectors ofM ,

and using a union bound. Using a more refined ε-net argument (cf. Wainwright (2019a), Chapter

5), it is possible to reduce the log factor in the leading term, and match the behavior of a Gaussian

random variable up to a constant factor and high-order terms. We omit the details.

Appendix D. Preliminary Steps in the Proofs

We now turn the proofs of our three main theorems, along with the various corollaries. Before pro-

ceeding to the arguments themselves, in this section, let us summarize some notation, and introduce

the common initial steps used in the proofs of all the theorems.

Summary of notation: For an L2-integrable quasi-martingale {Xt}t≥1 adapted to the filtration

{Ft≥0}, we define

[X]T :=

T−1∑

t=0

var (Xt+1|Ft) , and 〈X〉T :=

T−1∑

t=0

(Xt+1 − E(Xt+1|Ft))
2 .

For two matrices A,B, we use A ⊗ B to denote their Kronecker product and A ⊕ B to denote

their Kronecker sum. When it is clear from the context, we slightly overload the notation to let

A ⊗ B denote the 4-th-order tensor produced by taking the tensor product of A and B. Note that

Kronecker product is just a flattened version of the tensor. For any matrix A, we use vec(A) to

denote the vector obtained by flattening A. For a k-th order tensor T , matrix M and vector v, we

use T [M ] to denote the (k − 2)-th order tensor obtained by applying T to matrix M , and similarly,

we use T [v] to denote the (k − 1)-th order tensor obtained by applying T to vector v.
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D.1. Preliminaries

We now state a few preliminary facts and auxiliary results that play an important role in the proof.

D.1.1. TELESCOPE IDENTITY

The proofs of all theorems make use of a basic telescope identity. In particular, we define the noise

term

et(θ) := (At − Ā)︸ ︷︷ ︸
Ξt

θ − (bt − b)︸ ︷︷ ︸
ξt

. (24)

With this shorthand, some straightforward algebra shows that the Polyak-Ruppert averaged iterate

θ̄T satisfies the telescope relation

Ā(θ̄T − θ∗) =
θ0 − θT
ηT

− 1

T

T−1∑

t=0

et+1(θt), (25)

involving the non-averaged sequence {θt}t≥1.

D.1.2. PROPERTIES OF THE PROCESS {θt}t≥0

We make repeated use of a number of basic properties of the Markov process {θt}t≥0, which we

state here for future reference. All of these claims are proved in Appendix I.

Lemma 10 Under Assumptions 1, 3, and 2, for any step size η ∈
(
0, λ

ρ2(Ā)+κ2(U)v2A

)
and any

t ≥ 1, we have the moment bounds

E ‖θt − θ∗‖22 ≤ κ2(U)
(
E ‖θ0 − θ∗‖22 +

η

λ
(v2A ‖θ∗‖22 + v2bd)

)
. (26a)

If we assume furthermore that (2 + α)-moments of the noises ΞA and ξb are finite, there exists a

constant η0, such that for η < η0 we have:

E ‖θt − θ∗‖2+α
2 ≤M for some M <∞. (26b)

See Appendix I.1 for the proof of this claim.

For future use, we also state a foundational lemma on the stationary distribution of the Markov

chain.

Lemma 11 Under Assumptions 1, 3, and 2, for any choice of step size η ∈
(
0, λ

ρ2(Ā)+κ2(U)v2A

)
, the

Markov process (θt)
+∞
t=0 satisfies the following properties: (i) it has a unique stationary distribution

πη; and (ii) the stationary distribution has finite second moments, and concretely we have

Eπη(θ) = θ∗, and covπη(θ) = Λ∗
η, (27a)

where Λ∗
η is the unique solution to equation (9). Finally, we have the moment bound

Eπη ‖θ − θ∗‖22 ≤ κ2(U)
η

λ
(v2A ‖θ∗‖22 + v2bd). (27b)
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See Appendix I.2 for the proof of this claim.

In the following, we state a coupling result that allows us to prove existence of the stationary

distribution, and to control the rate of convergence to stationarity. We first observe that using stan-

dard properties of the Kronecker product, the matrix equation (9) can be re-written in the following

equivalent but vectorized form:

(A⊕A− ηA⊗A− ηE(ΞA ⊗ ΞA)) vec(Λ) = ηvec(Σ∗). (28)

Moreover, since we haveA⊕A � 2λ under Assumption 2, the minimal requirement (up to constant

factors) on the step size η for equation (9) to have a PSD solution is:

A⊕A− ηA⊗A− ηE(ΞA ⊗ ΞA) � λId×d. (29)

With this definition, we have

Lemma 12 Suppose that Assumptions 1, 3 and 2 all hold, and consider the Markov chain (θt)t≥0

with any step size η > 0 satisfying equation (29). Then for any two starting points θ
(1)
0 and θ

(2)
0 , we

have:

W2(L(θ(1)T ),L(θ(2)T )) ≤ e−ληT/2κ(U)
∥∥∥θ(1)0 − θ

(2)
0

∥∥∥
2
. (30)

In particular, any η ≤ λ
ρ(A)2+κ2(U)v2A

satisfies equation (29) and makes the above claim true.

See Appendix I.3 for the proof of claim.

An elementary consequence of Lemma 12 is the following bound on the Wasserstein-2 distance:

W2 (L(θT ), πη) ≤ e−
ηλT
2 κ(U)W2(µ, πη). (31)

The proof of this claim is straightforward: we simply take the optimal coupling between the initial

laws µ0 and πη, apply Lemma 12 conditionally on the starting points, and then take expectations.

Finally, we give control on the support size and coupling estimates on the process in the ℓ∞
setting, which is used in the proof of Theorem 5.

Lemma 13 Under Assumption 1, 4 and 5, for η ≤ 1, given θ0 ∈ [−λ̄−1, λ̄−1]d, we have ‖θt‖∞ ≤
λ̄−1 for any t ≥ 0. Furthermore, for any two starting points θ

(1)
0 , θ

(2)
0 ∈ [−λ̄−1, λ̄−1]d, we have:

W‖·‖∞,∞(L(θ(1)1 ),L(θ(2)1 )) ≤ (1− ηλ̄)
∥∥∥θ(1)0 − θ

(2)
0

∥∥∥
∞
.

See Appendix I.4 for the proof of this lemma.

Appendix E. Proof of Theorem 2

We are now equipped to prove Theorem 2. First, by the telescope identity (25), we have

θT − θ0

η
√
T

= −Ā
[

1√
T

T−1∑

t=0

(θt − θ∗)

]
− 1√

T

T−1∑

t=0

et+1(θt).
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From its definition, it can be seen that the sequence {et+1(θt)}t≥0 is a vector martingale difference

sequence with respect to the filtration {Ft}t≥0 (for notational consistency, we let F−1 denote the

trivial σ-field). Accordingly, we can apply a martingale CLT en route to establishing the claim. In

order to do so, we begin by computing the relevant conditional second moments.

We let rt := θt − θ∗ denote the error in the non-averaged sequence at time t. Observe that we

have the relation et+1(θt) = e
(1)
t+1 + e

(2)
t+1, where

e
(1)
t+1 := Ξt+1rt, and e

(2)
t+1 := −ξt+1 + Ξt+1θ

∗.

Based on this decomposition, we can expand the conditional covariance of et+1(θt) as a sum of four

terms:

E

[
et+1(θt)et+1(θt)

⊤ | Ft

]
= E

[
e
(1)
t+1(e

(1)
t+1)

⊤ + e
(2)
t+1(e

(2)
t+1)

⊤ + e
(1)
t+1(e

(2)
t+1)

⊤ + e
(2)
t+1(e

(1)
t+1)

⊤ | Ft

]
.

We treat each of these four terms in turn. For the first term, we note that:

1

T

T−1∑

t=0

E

[
e
(1)
t+1(e

(1)
t+1)

⊤ | Ft

]
=

1

T

T−1∑

t=0

E

[
Ξt+1rtr

⊤
t Ξ

⊤
t+1 | Ft

]

= E(ΞA ⊗ ΞA)

[
1

T

T−1∑

t=0

rtr
⊤
t

]
. (32a)

Here E(ΞA ⊗ ΞA) is a fourth-order tensor. As noted in Section D, the square brackets denote the

tensor applying to a matrix 1
T

∑T−1
t=0 rtr

⊤
t , resulting in a d× d matrix.

For the second term, by Assumption 1, the noises Ξt and ξt are uncorrelated, so we have:

E

[
e
(2)
t+1(e

(2)
t+1)

⊤ | Ft

]
= E

[
(−ξt+1 + Ξt+1θ

∗) (−ξt+1 + Ξt+1θ
∗)⊤ | Ft

]

= E(ξξ⊤) + E

(
(ΞAθ

∗)(ΞAθ
∗)⊤
)
. (32b)

For the third term, we note that:

1

T

T−1∑

t=0

E

[
e
(1)
t+1(e

(2)
t+1)

⊤ | Ft

]
=

1

T

T−1∑

t=0

E

[
Ξt+1rt(Ξt+1θ

∗)⊤ | Ft

]

= E(ΞA ⊗ ΞA)

[
1

T

T−1∑

t=0

rtθ
∗⊤
]
. (32c)

Similarly, for the fourth term, we have

1

T

T−1∑

t=0

E

[
e
(2)
t+1(e

(2)
t+1)

⊤ | Ft

]
=

1

T

T∑

t=1

E

[
e
(2)
t+1(e

(1)
t+1)

⊤ | Ft

]

= E(ΞA ⊗ ΞA)

[
1

T

T−1∑

t=0

θ∗r⊤t

]
. (32d)

The second conditional expectation term is a deterministic quantity, while other three terms depend

on the random variable rt. When taking the quadratic variation of the martingale Mt, we get the
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partial sum of functions of a Markov chain (θt)t≥0. Accordingly, we now use Lemma 11, which

guarantees the existence of a unique stationary measure πη, in order to study the limits of the first

three terms.

Note that for any vectors u, v ∈ S
d−1, the functions (u, v) 7→ (u⊤θ)(v⊤θ) and v 7→ (v⊤θ)(v⊤θ∗)

are L1 integrable under the stationary measure πη. Consequently, by Birkhoff’s ergodic theorem

(cf. Kallenberg (2006), Theorem 9.6), we have:

1

T

T−1∑

t=0

u⊤rtr
⊤
t v → u⊤Eπη(θ − θ∗)(θ − θ∗)⊤v = u⊤Λ∗

ηv, a.s.

1

T

T−1∑

t=0

u⊤rtθ
∗⊤v → u⊤(Eπηθ − θ∗)θ∗⊤v = 0, a.s.

Thus, the ergodic averages converge to the corresponding limits, which implies that

1

T

T−1∑

t=0

E

[
e
(1)
t+1(e

(1)
t+1)

⊤ | Ft

]
= E(ΞA ⊗ ΞA)

[
1

T

T−1∑

t=0

rtr
⊤
t

]
→ E

(
ΞAΛ

∗
ηΞ

⊤
A

)
, a.s., and

1

T

T−1∑

t=0

E

[
e
(1)
t+1(e

(2)
t+1)

⊤ | Ft

]
= E(ΞA ⊗ ΞA)

[
1

T

T−1∑

t=0

rtθ
∗⊤
]
→ 0, a.s.

Combining the pieces yields

1

T

T−1∑

t=0

E

[
et+1(θt)(et+1(θt))

⊤ | Ft

]
→ E(ξbξ

⊤
b ) + E

(
(ΞAθ

∗)(ΞAθ
∗)⊤
)
+ E

(
ΞAΛ

∗
ηΞ

⊤
A

)
, a.s.

In order to prove the martingale CLT, it remains to verify that the process et(θt−1) satisfies a

Lindeberg-type condition when projected in an arbitrary direction u ∈ S
d−1. (Doing so is sufficient

since Markov’s inequality allows us to translate it to a Lyapunov-type condition.) Accordingly,

we seek to bound a (2 + α)-moment of the martingale differences, which furthermore requires a

uniform bound on the (2 + α)-moment for the process (θt)t≥0.

Using the (2 + α)-moment bound (26b) from Lemma 11, we have

E|u⊤et+1(θt)|2+α ≤ E

∣∣∣2u⊤e(1)t+1

∣∣∣
2+α

+ E

∣∣∣2u⊤e(2)t+1

∣∣∣
2+α

≤ 22+α
E (|||Ξt+1|||op ‖rt‖2)2+α + 22+α

E ‖ΞAθ
∗ − ξb‖2+α

2

≤ 22+α
E|||ΞA|||2+α

op ·M + 42+α
(
E ‖ΞAθ

∗‖2+α
2 + E ‖ξb‖2+α

2

)
:= Q < +∞.

Notably, the quantity Q is independent of t.

Therefore, for a fixed ǫ > 0, the quantityE := 1
T

∑T−1
t=0 E

[(
u⊤et+1(θt)

)2
1
(∣∣u⊤et+1(θt)

∣∣ > ǫ
√
T
)]

is upper bounded as

E ≤ 1

T

T−1∑

t=0

1

ǫαTα/2
E

[∣∣∣u⊤et+1(θt)
∣∣∣
2+α

1
(∣∣∣u⊤et+1(θt)

∣∣∣ > ǫ
√
T
)]

≤ 1

ǫαTα/2
· 1
T

T−1∑

t=0

E

∣∣∣u⊤et+1(θt)
∣∣∣
2+α

≤ 1

ǫαTα/2
·Q.
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Note that this bound converges to zero as T → ∞.

Applying the one-dimensional martingale central limit theorem (cf. Corollary 3.1 in the book Hall

and Heyde (1980)), we have the convergence of 1√
T

∑T−1
t=0 u

⊤et+1(θt). Combined with the Cramér-

Wold device, we conclude that 1√
T

∑T
t=0 et+1(θt) converges in distribution to a zero-mean Gaussian

with covariance E(ΞAΛ
∗
ηΞ

⊤
A) + Σ∗. By Lemma 10, we have

√
T · 1

ηT (θT − θ∗) → 0 almost surely.

Therefore, by the telescoping equation (25), we have:

A

[
1√
T

T−1∑

t=0

(θt − θ∗)

]
d→ N

(
0,E(ΞAΛΞ

⊤
A) + Σ∗

)
.

Taking the inverse of A completes the proof.

Appendix F. Proof of Theorem 3

In this section, we provide a proof for Theorem 3, the non-asymptotic concentration result. In order

to prove this theorem, we require an auxiliary result that provides bounds on higher-order moments

of the process.

Lemma 14 Suppose that Assumptions 1, 3′ and 2 all hold. Given some p ≥ 2 log T , consider any

step size η ∈
(
0, λ

ρ2(Ā)+Cp2α+1κ2(U)σ2
A

)
. Then there is a universal constant c such that

(E ‖θt − θ∗‖p2)
2

p ≤ c κ2(U)
(
(E ‖θ0 − θ∗‖p2)

2

p +
η

λ
(p2β+1σ2bd+ p2α+1σ2A ‖θ∗‖22)

)
. (33)

See Appendix F.1 for the proof of this claim. Recall that the matrix U is defined in Lemma 1, which

guarantees that Ā = UDU−1. We will use this notation throughout the proof.

Equipped with this lemma, we now turn to the proof of the theorem. We consider the martingale

term Mt :=
∑t−1

s=0 es+1(θs). By the telescope equation (25), we need to bound in any direction the

variation of 1
Tη Ā

−1(θ0 − θT ) and 1
T

∑T−1
t=0 Ā

−1et+1(θt), respectively. For any vector v ∈ S
d−1,

define M
(v)
t :=

∑t−1
s=0 Ā

−1v⊤es+1(θs). Since M
(v)
t is a martingale, we can apply the discrete-time

Burkholder-Davis-Gundy (BDG) inequality (Burkholder et al., 1972): it guarantees the existence of

a finite constant C such that for any p ≥ 4, we have

E sup
0≤t≤T

|M (v)
t |p ≤ (Cp)

p
2E〈M (v)〉

p
2

T = (Cp)
p
2E

(
T−1∑

t=0

(v⊤et+1(θt))
2

) p
2

.

Moreover, we have

E

(
T−1∑

t=0

(v⊤et+1(θt))
2

) p
2

= E

(
T−1∑

t=0

(
(v⊤Ξt+1θt)

2 + (ξ⊤t+1v)
2 − 2(v⊤Ξt+1θt)(v

⊤ξt+1)
))

p
2

≤ 6p/2
3∑

j=1

Ij ,
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where I1 := E

(∑T−1
t=0 (v

⊤Ξt+1θt)
2
) p

2

, along with

I2 := E

(
T−1∑

t=0

(v⊤ξt+1)
2

) p
2

, and I3 := E

∣∣∣∣∣

T−1∑

t=0

(v⊤Ξt+1θt)(v
⊤ξt+1)

∣∣∣∣∣

p
2

.

By the Cauchy-Schwartz inequality, we have:

I3 ≤ E




√√√√
T−1∑

t=0

(v⊤Ξt+1θt)2 ·

√√√√
T−1∑

t=0

(v⊤ξt+1)2




p
2

≤

√√√√√E

(
T−1∑

t=0

(v⊤Ξt+1θt)2

) p
2

· E
(

T−1∑

t=0

(v⊤ξt+1)2

) p
2

=
√
I1 · I2 ≤ (I1 + I2)/2.

So we only need to bound the terms I1 and I2.

Denote the following quantity:

Bp := ‖θ0 − θ∗‖2 +
η

λ
(σb

√
d(p log T )β+1/2 + σA ‖θ∗‖2 (p log T )α+1/2). (34)

According to Lemma 14, intuitively, for large p, the quantity κ(U)Bp can be used as a uniform high-

probability upper bound on the distances ‖θt − θ∗‖2, for t = 0, 1, · · · , T . This quantity involves in

the upper bounds of I1. We also denote the matrix Σξ := E(ξbξ
⊤
b ).

We now state an auxiliary result that bounds each of these terms:

Lemma 15 We have the bounds

I2 ≤ (2v⊤ΣξvT )
p
2 + Cp

βσ
p
b

(
(pT )

p
4 + (p log T )

p
2
(1+2β)

)
, (35a)

and

(I1)
2

p ≤ 3Tv⊤E(ΞA(Λ
∗
η + θ∗θ∗⊤)Ξ⊤

A)v +
12v2Aκ

2(U)

λη

(
trace(Λ∗

η) + ‖θ∗‖22 + ‖θ0 − θ∗‖22
)

+ C|||E(ΞAvv
⊤Ξ⊤

A)|||op

κ2(U)

λ
Bp

(
σA(Bp + ‖θ∗‖2)(p log T )α + σb

√
d(p log T )β

)√
pT log T

+
√
CpTσ2Ap

2ακ2(U)B2
p . (35b)

See Section F.2 for the proof of this claim.

Combining the results for I1, I2, I3, we obtain the main moment bound on the supremum of

martingale M
(v)
t . Denote the matrix Σ̃ := E(ΞAΛ

∗
ηΞA), and denote Zp := σA ‖θ∗‖2 (p log T )α +
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σb
√
d(p log T )β . We obtain:

1√
T

(
E sup

0≤t≤T
|M (v)

t |p
) 1

p

.

√
pv⊤(Σ∗ + Σ̃)v +

√
pσb

(
(
p

T
)
1

4 +
(p log T )β+1/2

√
T

)

+ p log T · T− 1

4

κ(U)
√
|||Σ̃|||op√
λη

(

√
η

λ
Zp + ‖θ∗ − θ0‖2) +

vAκ(U)√
Tλη

(‖θ∗‖2 + ‖θ0‖2 +
√
trace(Λ∗

η))

+
√
pT− 1

4 pα+β√σAσbκ(U)(‖θ0 − θ∗‖2 +
√
η

λ
Zp),

for p > 2 log T and η satisfying the assumption in the theorem.

For the bias term, we note that:

(E ‖θT − θ∗‖p2)
2

p ≤ κ2(U)
(
‖θ0 − θ∗‖2 +

η

λ
Zp

)
.

Finally, putting together the previous results and merging the terms, we obtain the upper bound

√
T
(
E|v⊤A(θ̄T − θ∗)|p

) 1

p
.

√
pv⊤(Σ∗ + Σ̃)v

+κ(U)(p log T )2max(α,β)+2

(
σA + σb

T
1

4

+
1 +

√
σA/λ

η
√
T

)(
‖θ∗‖2 + ‖θ0 − θ∗‖2 +

√
η

λ
(σA ‖θ∗‖2 + σb

√
d)

)
.

Applying Markov’s inequality yields the claimed high-probability bound.

F.1. Proof of Lemma 14

We decompose Ā in the form Ā = UDU−1 that is guaranteed by Lemma 1. We study the dynamics

of
∥∥U−1(θt − θ∗)

∥∥
2
. Defining the residual term rt := θt − θ∗, we observe that

∥∥U−1rt+1

∥∥2
2

= (rt − η(A+ Ξt+1)(rt + θ∗)− ηξt+1)
H(U−1)HU−1(rt − η(A+ Ξt+1)(rt + θ∗)− ηξt+1)

= (U−1rt)
H(I − η(D +DH) + η2DHD)(U−1rt)− 2ηRe

(
(Ξt+1(rt + θ∗) + ξt+1)

H(U−1)H(I − ηD)U−1rt

)

+ η2
∥∥U−1(Ξt+1rt + Ξt+1θ

∗ + ξt+1)
∥∥2
2

≤ (1− ηλ+ η2ρ2(Ā))
∥∥U−1rt

∥∥2
2
− 2ηRe

(
(Ξt+1(rt + θ∗) + ξt+1)

H(U−1)H(I − ηD)U−1rt

)

+ 3η2|||U−1|||2op

(
‖Ξt+1rt‖22 + ‖Ξt+1θ

∗‖22 + ‖ξt+1)‖22
)
.
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Telescoping this expression, for η ∈
(
0, λ

ρ2(Ā)

)
, we have:

eηλT
∥∥U−1rT

∥∥2
2
≤
∥∥U−1r0

∥∥2
2
−2η

T−1∑

t=0

eηλtRe
(
(Ξt+1(rt + θ∗) + ξt+1)

H(U−1)H(I − ηD)U−1rt

)

︸ ︷︷ ︸
:=S1(T )

+ 3η2
T−1∑

t=0

eηλt|||U−1|||2op

(
‖Ξt+1rt‖22 + ‖Ξt+1θ

∗‖22 + ‖ξt+1)‖22
)

︸ ︷︷ ︸
:=S2(T )

.

Note that the process {S1(T )} is a martingale and the process {S2(T )} is non-decreasing.

Let us adopt E sup
0≤t≤T

(
eληt

∥∥U−1rt
∥∥2
2

) p
2

as a Lyapunov function. By Young’s inequality we

obtain:

E sup
0≤t≤T

(
eληt

∥∥U−1rt
∥∥2
2

) p
2 ≤ 3

p
2E
∥∥U−1r0

∥∥p
2
+ 6

p
2 η

p
2E sup

1≤t≤T
|S1(t)|

p
2 + 9

p
2 ηpE(S2(T ))

p
2 .

We upper bound the two terms respectively.

Upper bound for |S1|: Note that:

∣∣∣(Ξt+1(rt + θ∗) + ξt+1)
H(U−1)H(I − ηD)U−1rt

∣∣∣
≤
∥∥(U−1Ξt+1rt) + (U−1ξt+1) + U−1Ξt+1θ

∗∥∥
2
· |||I − ηD|||op ·

∥∥U−1rt
∥∥
2

≤ 2|||U−1|||op (‖Ξt+1rt‖2 + ‖ξt+1‖2 + ‖Ξt+1rt‖2)
∥∥U−1rt

∥∥
2
.

Applying the Burkholder-Davis-Gundy inequality to the martingale S1(t), we have:

E sup
1≤t≤T

|S1(t)|
p
2 ≤ (Cp)

p
4 E〈S1〉

p
4

T

= (Cp)
p
4 E

(
T−1∑

t=0

e2ηλt
∣∣∣(Ξt+1(rt + θ∗) + ξt+1)

H(U−1)H(I − ηD)U−1rt

∣∣∣
2
) p

4

≤ (Cp)
p
4 |||U−1|||

p
2
opE

(
T−1∑

t=0

e2ηλt
(
‖Ξt+1rt‖22

∥∥U−1rt
∥∥2
2
+ (‖ξt+1‖22 + ‖Ξt+1θ

∗‖22)
∥∥U−1rt

∥∥2
2

))
p
4

.

By Hölder’s inequality, we have:

(
T−1∑

t=0

e2ηλt
(
(‖Ξt+1rt‖22 + ‖ξt+1‖22 + ‖Ξt+1θ

∗‖22)
∥∥U−1rt

∥∥2
2

))
p
4

≤
(

T−1∑

t=0

e
2p
p−4

ηλt

) p
4
−1(

3
T−1∑

t=0

(‖Ξt+1rt‖
p
2

2 + ‖ξt+1‖
p
2

2 + ‖Ξt+1θ
∗‖

p
2

2 )
∥∥U−1rt

∥∥ p
2

2

)
.
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For the geometric series, we have
(∑T−1

t=0 e
2p
p−4

ηλt
) p

4
−1

≤ 1

(ηλ)
p
4
−1
eηλpT .

By Assumption 3′, we have:

E ‖ξt+1‖
p
2

2 ≤ ppβ/2(σb
√
d)p/2, E ‖Ξt+1v‖

p
2

2 ≤ ppα/2σ
p/2
A ‖v‖p/22 .

Putting together the pieces, we obtain:

E sup
1≤t≤T

|S1(t)|
p
2 ≤ (Cp)

p
4 eηλpT/2

(λη)
p
4

T−1∑

t=0

(
p

pβ
2 (σb

√
d)

p
2 |||U−1|||

p
2
opE
∥∥U−1rt

∥∥ p
2

2

+ p
pα
2 σ

p
2

Aκ(U)
p
2E
∥∥U−1rt

∥∥p
2
+ p

pα
2 σ

p
2

A|||U−1|||
p
2
opE ‖θ∗‖p2

)
.

Upper bounds on S2: By Young’s inequality, we have:

(S2(T ))
p
2 =

(
T−1∑

t=0

eηλt|||U−1|||2op

(
‖Ξt+1rt‖22 + ‖ξt+1‖22 + ‖Ξt+1θ

∗‖22
))

p
2

≤ |||U−1|||pop



(
3

T−1∑

t=0

eηλt ‖ξt+1‖22

) p
2

+

(
3

T−1∑

t=0

eηλt ‖Ξt+1rt‖22

) p
2

+

(
3

T−1∑

t=0

eηλt ‖Ξt+1θ
∗‖22

) p
2


 .

By Hölder’s inequality, we obtain:

(
T−1∑

t=0

eηλt ‖ξt+1‖22

) p
2

≤
(

T−1∑

t=0

e
p

p−2
ηλt

) p
2
−1(T−1∑

t=0

‖ξt+1‖p2

)
,

(
T−1∑

t=0

eηλt ‖Ξt+1θ
∗‖22

) p
2

≤
(

T−1∑

t=0

e
p

p−2
ηλt

) p
2
−1(T−1∑

t=0

‖Ξt+1θ
∗‖p2

)
,

(
T−1∑

t=0

eηλt ‖Ξt+1rt‖22

) p
2

≤
(

T−1∑

t=0

e
p

p−2
ηλt

) p
2
−1(T−1∑

t=0

‖Ξt+1rt‖p2

)
.

For the geometric series, it is easy to see that
(∑T−1

t=0 e
p

p−2
ηλt
) p

2
−1

≤ 1

(ηλ)
p
2
−1
eηλpT/2.

This yields:

E(S2(T ))
p
2 ≤ |||U−1|||pop

3
p
2

(ηλ)
p
2
−1
eηλpT

(
T−1∑

t=0

E ‖ξt+1‖p2 +
T−1∑

t=0

E ‖Ξt+1rt‖p2 +
T−1∑

t=0

E ‖Ξt+1θ
∗‖p2

)
.

By Assumption 3′, we have:

E ‖ξt+1‖p2 ≤ ppβ(σb
√
d)p, E ‖Ξt+1v‖p2 ≤ ppασpA ‖v‖p2 .

Putting the pieces together, we have:

E(S2(T ))
p ≤ eηλpT/2

(ηλ)
p
2

|||U−1|||pop

(
Tppβ(σb

√
d)p + Tppα(σA ‖θ∗‖2)p + ppασpA|||U |||pop

T−1∑

t=0

E
∥∥U−1rt

∥∥p
2

)
.
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Defining HT := e−
ληT
2

(
E sup0≤t≤T

(
eληt

∥∥U−1rt
∥∥2
2

) p
2

) 2

p

, clearly we have the upper bound

(E
∥∥U−1rT

∥∥p
2
)
p
2 ≤ HT . By the decomposition of the Lyapunov function, we get:

HT ≤ (E
∥∥U−1r0

∥∥p
2
)
2

p + 6ηe−
ηηT
2 (E sup

1≤t≤T
|S1(t)|

p
2 )

2

p + 6η2e−
ηηT
2 (ES2(T )

p
2 )

2

p .

Based on the upper bounds for S1 and S2, we have

η2e−
ηηT
2 (ES2(T )

p
2 )

2

p ≤ C
η

λ


|||U−1|||2opT

2

p (p2βσ2bd+ p2ασ2A ‖θ∗‖22) + p2ακ2(U)σ2A

(
T−1∑

t=0

H
p
2

t

) 2

p


 ,

ηe−
ηηT
2 (E sup

1≤t≤T
|S1(t)|

p
2 )

2

p ≤ C

√
pη

λ

(
T−1∑

t=0

((pβσb
√
d+ pασA ‖θ∗‖2)|||U−1|||opHt)

p
4 + (pασAκ(U)Ht)

p
2

) 2

p

.

Letting RT := sup0≤t≤T Ht, and noting that the upper bounds above are non-decreasing in T , we

have:

RT ≤ H0 + C
η

λ
T

2

p

(
|||U−1|||2op(p

2βσ2bd+ p2α ‖θ∗‖22) + p2ακ2(U)σ2ART

)

+ C

√
pη

λ
T

2

p

(
|||U−1|||op(p

βσb
√
d+ pασA ‖θ∗‖2)

√
RT + pασAκ(U)RT

)
.

Take p ≥ 2 log T and η ≤ λ
18C2e2p2α+1κ2(U)σ2

A
, we obtain that:

RT ≤ H0 + Ce
η

λ
|||U−1|||2op(p

βσb
√
d+ pασA ‖θ∗‖2)2 + Ce

√
pη

λ
|||U−1|||op(p

βσb
√
d+ pασA ‖θ∗‖2) +

1

2
RT ,

and therefore:

max
0≤t≤T

(E ‖rt‖p2)
2

p ≤ |||U−1|||2opRT . κ2(U)
(
(E ‖θ0 − θ∗‖p2)

2

p +
η

λ
(p2β+1σ2bd+ p2α+1σ2A ‖θ∗‖22)

)
.

Thus, we have completed the proof of Lemma 14.

F.2. Proof of Lemma 15

The remainder of our effort is devoted to proving the bounds on the terms {I1, I2, I3} claimed in

Lemma 15.

F.2.1. UPPER BOUNDS ON I1

We begin by observing that

E

T−1∑

t=0

(v⊤Ξt+1θt)
2 = E

T−1∑

t=0

v⊤E(Ξt+1 ⊗ Ξ⊤
t+1|Ft)[θtθ

⊤
t , v] = 〈E[ΞAvv

⊤Ξ⊤
A], E

(
T−1∑

t=0

θtθ
⊤
t

)
〉.
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In order to deal with the concentration behavior of this term, we define the two processes:

ΨT :=
T−1∑

t=0

E

(
(θ⊤t Ξt+1v)

2|Ft

)
, and ΥT :=

T−1∑

t=0

(θ⊤t Ξt+1v)
2 −ΨT .

By definition, it is easy to see that Υ is a martingale. Applying the BDG inequality and Hölder’s

inequality, we have:

E sup
0≤t≤T−1

|Υt|
p
2 ≤ (Cp)

p
4E〈Υ〉

p
4

T

= (Cp)
p
4E

(
T−1∑

t=0

(
(θ⊤t Ξt+1v)

2 − E((θ⊤t Ξt+1v)
2 | Ft)

2
))

p
4

≤ (Cp)
p
4E

(
T−1∑

t=0

(θ⊤t Ξt+1v)
4

) p
4

≤ (Cp)
p
4T

p
4
−1

T−1∑

t=0

E|θ⊤t Ξt+1v|p

≤ (Cp)
p
4T

p
4σpAp

αp max
0≤t≤T−1

E ‖θt‖p2 .

As for the process {ΨT }T≥1, a straightforward calculation yields:

ΨT =
T−1∑

t=0

E

(
(θ⊤t Ξt+1v)

2 | Ft

)
= 〈E(ΞAv)(ΞAv)

⊤,
T−1∑

t=0

θtθ
⊤
t 〉.

The summation
∑T−1

t=0 θtθ
⊤
t involves terms that are functions of an ergodic Markov chain. Thus,

metric ergodicity concentration inequalities based on Ricci curvature techniques can show its con-

centration around its expectation. We first study the expectation of this process. Let (θ̃t)t≥0 be

a stationary chain which starts from πη, couple the processes (θt)t≥0 and (θ̃t)t≥0 in the manner

defined by Lemma 12. By definition, there is Eθ̃tθ̃
⊤
t = Eπηθθ

⊤. For any matrix L, we have

∣∣∣∣∣
1

T
E

(
T−1∑

t=0

〈θtθ⊤t , L〉
)

− Eπη〈θθ⊤, L〉
∣∣∣∣∣ ≤

1

T

T−1∑

t=0

E

∣∣∣θ⊤t Lθt − θ̃⊤t Lθ̃t
∣∣∣

≤ 1

T

T−1∑

t=0

(
E

∣∣∣(θt − θ̃)⊤L(θt − θ̃)
∣∣∣+ 2E

∣∣∣(θt − θ̃t)
⊤Lθ̃t

∣∣∣
)

≤ 1

T

T−1∑

t=0

(
|||L|||opE

∥∥∥θt − θ̃t

∥∥∥
2

2
+ 2|||L|||op

√
E

∥∥∥θt − θ̃t

∥∥∥
2

2
·
√
E

∥∥∥θ̃t
∥∥∥
2

2

)
.

By Lemma 12, for this coupling, we have:

E

∥∥∥θt − θ̃t

∥∥∥
2

2
≤ κ2(U)e−ληtW2

2 (L(θ0), πη).
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By definition, we have E

∥∥∥θ̃t
∥∥∥
2

2
= trace(Λ∗

η) + ‖θ∗‖22, and it is easy to see that W2
2 (L(θ0), πη) ≤

E ‖θ0 − θ∗‖22 + Eπη ‖θ − θ∗‖22 ≤ ‖θ0 − θ∗‖22 + trace(Λ∗
η). Plugging into the above inequality, we

obtain:

∣∣∣∣∣
1

T
E

(
T−1∑

t=0

〈θtθ⊤t , L〉
)

− Eπη〈θθ⊤, L〉
∣∣∣∣∣ ≤

2|||L|||opκ
2(U)

T

(
trace(Λ∗

η) + ‖θ∗‖22 + ‖θ0 − θ∗‖22
) T−1∑

t=0

e−
ληt
2

≤ 4|||L|||opκ
2(U)

ληT

(
trace(Λ∗

η) + ‖θ∗‖22 + ‖θ0 − θ∗‖22
)
.

In particular, for the matrix L = E((ΞAv)(ΞAv)
⊤), we have:

∣∣∣∣
1

T
EΨT − v⊤E(ΞA(Λ

∗
η + θ∗θ∗⊤)Ξ⊤

A)v

∣∣∣∣ ≤
4v2Aκ

2(U)

ληT

(
trace(Λ∗

η) + ‖θ∗‖22 + ‖θ0 − θ∗‖22
)
.

To obtain a high-probability upper bound for the deviation ΨT − EΨT , we use the following

ergodic concentration inequality:

Lemma 16 Under Assumption 1, Assumption 2 and Assumption 3′, for a given initial point θ0, for

a matrix L and given δ > 0, T > log δ−1, if the step size η satisfies Eq (11a), with probability 1− δ,

we have:
∣∣∣∣∣
1

T

T∑

t=1

(θ⊤t Lθt − Eθ⊤t Lθt)

∣∣∣∣∣ ≤ C|||L|||op

κ2(U)

λ
B

(
σA(B + ‖θ∗‖2) logα

T

δ
+ σb

√
d logβ

T

δ

)√
log δ−1

T
,

where B := ‖θ0 − θ∗‖2 + η
λ(σb

√
d logβ+1/2 T

δ + σA ‖θ∗‖2 logα+1/2 T
δ ).

The proof of this lemma is postponed to Appendix J.1.

By Lemma 16, for any δ > 0, forB = ‖θ0 − θ∗‖2+ η
λ(σb

√
d logβ+1/2 T

δ +σA ‖θ∗‖2 logα+1/2 T
δ ),

for η < λ
ρ2(Ā)+Cκ2(U)σ2

A log2α+1 T/δ
, with probability 1− δ, we have:

|ΨT − EΨT | ≤ C|||E((ΞAv)(ΞAv)
⊤)|||op

κ2(U)

λ
B

(
σA(B + ‖θ∗‖2) logα

T

δ
+ σb

√
d logβ

T

δ

)√
T log δ−1 := Qδ.

Note that this bound holds true only for a fixed failure probability δ. In order to obtain the moment

bounds on Ψ, we also use a coarse estimate: |ΨT−EΨT | ≤ T |||E((ΞAv)(ΞAv)
⊤)|||op max0≤t≤T−1 . ‖θt‖22.

Putting them together, we have:

E|ΨT − EΨT |
p
2 ≤ Q

p
2

δ + E

(
|ΨT − EΨT |

p
21|ΨT−EΨT |>Qδ

)

≤ Q
p
2

δ +

√
δT p|||E((ΞAv)(ΞAv)⊤)|||popE max

0≤t≤T−1
. ‖θt‖2p2 .

By Lemma 14, we have (Emax0≤t≤T−1 . ‖θt‖p2)
1

p ≤ Cκ2(U)(‖θ0 − θ∗‖2+‖θ∗‖2+Tη
λ (σb

√
dpβ+1/2+

σA ‖θ∗‖2 pα+1/2). Choosing some δ ∈
(
0, (CT )−p

)
, we obtain that:

(
E |ΨT − EΨT |

p
2

) 2

p

≤ C|||E((ΞAv)(ΞAv)
⊤)|||op

κ2(U)

λ
Bp

(
σA(Bp + ‖θ∗‖2)(p log T )α + σb

√
d(p log T )β

)√
pT log T ,
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whereBp = ‖θ0 − θ∗‖2+ η
λ(σb

√
d(p log T )β+1/2+σA ‖θ∗‖2 (p log T )α+1/2) is defined in Eq (34).

Recall that we can decompose I1 into three parts:

I1 ≤ E (ΥT +ΨT )
p
2 ≤ 3

p
2

(
E|ΥT |

p
2 + (EΨT )

p
2 + E|ΨT − EΨT |

p
2

)
.

Using the bounds for three terms derived above, we obtain:

(I1)
2

p ≤ 3Tv⊤E(ΞA(Λ
∗
η + θ∗θ∗⊤)Ξ⊤

A)v +
12v2Aκ

2(U)

λη

(
trace(Λ∗

η) + ‖θ∗‖22 + ‖θ0 − θ∗‖22
)

+ C|||E((ΞAv)(ΞAv)
⊤)|||op

κ2(U)

λ
Bp

(
σA(Bp + ‖θ∗‖2)(p log T )α + σb

√
d(p log T )β

)√
pT log T

+
√
CpTσ2Ap

2ακ2(U)B2
p .

F.2.2. UPPER BOUNDS ON I2:

Define ξT :=
∑T−1

t=0 (v
⊤ξt+1)

2, we have EξT = v⊤ΣξvT . It is easy to see that ξt − Eξt is a

martingale difference sequence, and thus by standard sub-exponential martingale concentration in-

equalities and Assumption 3′, for p ≥ 2, we have:

E

(
(v⊤ξt)

2 − E(v⊤ξt)
2
)p

≤ E(v⊤ξt)
2p ≤ p2βpσ2pb .

By the martingale concentration inequality in Lemma 20, for any δ > 0, we have:

P

(
1

T
|ξT − EξT | > Cβσ

2
b

(√
log δ−1

T
+

log1+2β T/δ

T

))
< δ.

Integrating the expression, we obtain the upper bound:

I2 ≤ (2v⊤ΣξvT )
p
2 + 2

∫ +∞

0
P (|ξT − EξT | ≥ ε) ε

p
2
−1dε

≤ (2v⊤ΣξvT )
p
2 + Cp

βσ
p
b

(
(pT )

p
4 + (p log T )

p
2
(1+2β)

)
.

Appendix G. Proof of Theorem 5

We prove a stronger version of the theorem that involves the quantity Q(v; δ) defined in Eq (14). It

is easy to see that σ2max log
d
δ is an upper bound on Q((e⊤j Γ

∗(η)ej)dj=1; δ). So the version stated in

Theorem 5 is implied by the stronger version.

In order to prove the theorem, we require an auxiliary lemma that provides an almost-sure bound

for the ℓ∞ norm of the process.

Let (e1, e2, · · · , ed) denote the standard orthonormal basis of Rd. We consider the projection

of error terms onto the set of vectors vi := (A−1)⊤ei for i = 1, 2, · · · , d. We first note that by

Assumption 5, we have:

‖vi‖1 − 1 ≤ ‖vi − ei‖1 ≤
∥∥∥vi −A⊤vi

∥∥∥
1
= sup

‖u‖∞≤1
v⊤i (Id −A)u ≤ (1− λ̄) ‖vi‖1 ,

and consequently, ‖vi‖1 ≤ λ̄−1.
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We consider the martingales M
(vi)
t for each i = 1, 2, · · · , d. Similar to the proof of Theorem 3,

we use the BDG inequality and decompose the deviation into three terms:

E sup
0≤t≤T

∣∣∣M (vi)
t

∣∣∣
p
≤ (Cp)

p
2E〈M (vi)

t 〉
p
2

T ≤ (6Cp)
p
2 (I1 + I2 + I3) ,

where I1 := E

(∑T−1
t=0 (v

⊤
i Ξt+1θt)

2
) p

2

, along with

I2 := E

(
T−1∑

t=0

(ξ⊤t+1vi)
2

) p
2

, and I3 := E

∣∣∣∣∣

T−1∑

s=0

(v⊤i Ξs+1θ
⊤
s )(v

⊤
i ξs+1)

∣∣∣∣∣

p
2

.

Similar to the proof of Theorem 3, by Cauchy-Schwartz, we know that I3 ≤
√
I1I2 ≤ (I1 + I2)/2.

We now give upper bounds on the terms I1 and I2, respectively.

Upper bound for I2: For the term I2, note that the terms (ξ⊤t vi) are i.i.d. random variables. And

by Assumption 4,
∣∣ξ⊤t v

∣∣ ≤ ‖ξt‖∞ · ‖vi‖1 ≤ λ̄−1. A simple application of Hoeffding’s inequality

leads to:

∀ε > 0, P

(∣∣∣∣∣
1

T

T−1∑

t=0

(ξ⊤t vi)
2 − E(ξ⊤b vi)

2

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−Tε2λ̄4

)
,

which can be easily converted into a moment bound:

I
2

p

2 ≤ C
(
T · E(ξ⊤b vi)2 + p

√
T λ̄−2

)
.

Upper bound for I1: As in the proof of Lemma 15, we decompose the sequence into a mar-

tingale term and a predictable sequence. Let ΨT :=
∑T

t=1 E
(
(v⊤i Ξt+1θt)

2|Ft

)
, and let ΥT :=∑T

t=1(v
⊤
i Ξt+1θt)

2 − ΨT . By definition, it is easy to see that Υ is a martingale. Note that for each

term in Υ, by Lemma 13 and Assumption 4, we have:

∣∣∣(v⊤i Ξt+1θt)
2 − E((v⊤i Ξt+1θt)

2|Ft)
∣∣∣ ≤ 2

∣∣∣(v⊤i Ξt+1θt)
2
∣∣∣ ≤ 2 ‖vi‖21 · ‖Ξt+1θt‖2∞ ≤ 2 ‖vi‖21 · ‖θt‖2∞ ≤ 2λ̄−4.

By the Azuma-Hoeffding inequality, we obtain:

∀ε > 0, P

(
1

T
|ΥT | ≥ ε

)
≤ 2 exp(−Tε2λ̄−8/4),

which can easily be converted to a moment bound:

(
E|ΥT |

p
2

) 2

p ≤ Cp
√
T λ̄−4.

Now we turn to an upper bound for the term ΨT . Define ψ(θ) := E(v⊤i ΞAθ)
2. Note that ΨT is

the partial sum of function ψ applied to the Markov process (θt)t≥0. We seek to use the ergodic

concentration inequalities based on Ricci curvature techniques (Joulin and Ollivier, 2010).
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First, we note that for θ1, θ2 ∈ [−λ̄−1, λ̄−1]d, we have:

ψ(θ1)− ψ(θ2) = E(v⊤i ΞAθ1)
2 − E(v⊤i ΞAθ2)

2

= E

(
(v⊤i ΞAθ1)(v

⊤
i ΞA(θ1 − θ2))

)
+ E

(
(v⊤i ΞAθ2)(v

⊤
i ΞA(θ1 − θ2))

)

≤ ‖vi‖21 E(‖ΞAθ1‖∞ · ‖ΞA(θ1 − θ2)‖∞) + ‖vi‖21 E(‖ΞAθ2‖∞ · ‖ΞA(θ1 − θ2)‖∞)

≤ λ̄−3 ‖θ1 − θ2‖∞ .

So ψ is λ̄−3-Lipschitz under the ‖·‖∞ norm, within the region [−λ̄−1, λ̄−1]d.

Denote by T the transition kernel of the Markov chain (θt)t≥0. By Assumption 5, when we take

the synchronous coupling by using the same oracle for the process starting at two different points,

there is:

W‖·‖∞,1(T δθ1 , T δθ2) ≤ E ‖(I − ηAt)(θ1 − θ2)‖∞ ≤ (1− ηλ̄) ‖θ1 − θ2‖∞ .

So the Markov chain (θt)t≥0 is a W1 contraction with parameter (1− ηλ̄) under ℓ∞ norm. Finally,

by Assumption 4, we note that:

diam‖·‖∞ (supp(T δθ)) ≤ η (1 + ‖θ‖∞) .

So the support size of the one-step transition kernel within the region [−λ̄−1, λ̄−1]d is uniformly

bounded by 2ηλ̄−1.

We apply the ergodic concentration inequality from Theorem 4 in Joulin and Ollivier (2010)

(which is restated in Proposition 19 for completeness), and obtain the following concentration in-

equality:

∀ε > 0, P

(∣∣∣∣∣
1

T

T∑

t=0

(ψ(θt)− Eψ(θt))

∣∣∣∣∣ > λ̄−3ε

)
≤




2 exp

(
− ε2T λ̄2

128η2

)
ε < 8

3 λ̄
−1,

2 exp
(
− εT λ̄

24η

)
, ε > 8

3 λ̄
−1.

This tail probability bound can be easily translated into a moment bound:

(
E |ΨT |

p
2

) 2

p ≤ 2EΨT + Cλ̄−4η
(√

Tp+ p
)
,

for a universal constant C > 0.

For the term EΨT , the W1 contraction implies that:

∣∣Eψ(θt)− Eπηψ(θ)
∣∣ ≤ λ̄−3(1− ηλ̄)tE ‖θ0 − θ‖∞ ≤ λ̄−5(1− ηλ̄)t.

So we obtain EΨT ≤ TEπηψ(θ) +
∑T

t=0 λ̄
−4(1− ηλ̄)t ≤ T ((e⊤i θ

∗)2 + e
⊤
i Λ

∗
ηei) +

1
ηλ̄5 .

Putting these results together, we have:

I
2

p

1 ≤ CT ((e⊤i θ
∗)2 + e

⊤
i Λ

∗
ηei) + Cλ̄−4pη

√
T + Cλ̄−5η−1.
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Obtaining the final bound: Combining the upper bounds for I1 and I2, we obtain:

(
E sup

0≤t≤T

∣∣∣M (vi)
t

∣∣∣
p
) 2

p

≤ CpTe⊤i Γ
∗
ei + C(λ̄−4η + λ−2)p

√
T + Cλ̄−5η−1.

For the term
A−1(θ0−θ∗)

ηT , we note that by Lemma 13, we have ‖θ0 − θT ‖∞ ≤ 2λ̄−1, and further-

more, we note that for any v ∈ R
d, we have:

∥∥A−1v
∥∥
∞ =

∥∥(I −A)A−1v
∥∥
∞ + ‖v‖∞ ≤ ‖v‖∞ + (1− λ̄)

∥∥A−1v
∥∥
∞ ,

which leads to the fact that
∥∥A−1v

∥∥
∞ ≤ λ̄−1 ‖v‖∞ for any v, and consequently, we have the bound∥∥A−1(θ0 − θT )

∥∥
∞ ≤ 2

λ̄2 almost surely.

Putting these results together, we obtain:

(
E

∣∣∣
√
Te⊤i (θ̄T − θ∗)

∣∣∣
p) 1

p ≤ C
√
pe⊤i Γ

∗(η)ei + C(λ̄−2η + λ̄−1)
√
pT− 1

4 + Cλ̄−
5

2 η−1.

Converting this bound into a high-probability bound and taking a union bound over the d coordi-

nates, for any Q > 0, we obtain:

P

(
√
T
∥∥θ̄T − θ∗

∥∥
∞ ≥ C

√
Q+ C

λ̄−2η + λ̄−1

T
1

4

√
log

d

δ
+
Cλ̄−

5

2

η
√
T

)
≤ δ

2
+

d∑

i=1

exp

(
− Q

e
⊤
i Γ

∗(η)ei

)
.

Take Q = Q
(
(e⊤i Γ

∗(η)ei)di=1; δ/2
)

to obtain the result.

Appendix H. Proof of Theorem 6

The proof is also based on the telescope identity (25). The key ingredient in the proof is an upper

bound on the second moment of ‖θt − θ∗‖2, as stated in the following:

Lemma 17 Under Assumptions 2′, 3 and 1, given a step size η ≤ 1
(ρ(Ā)+3κ(U)vA)

√
T

, for any

integer t ∈ [0, T ], we have

E ‖θt − θ∗‖22 ≤ eκ2(U)
(
E ‖θ0 − θ∗‖22 + η2t(v2bd+ v2A ‖θ∗‖22)

)
,

where the matrix U has columns composed of the eigenvectors of Ā.

See Appendix H.1 for the proof of this claim.

Taking Lemma 17 as given, we now prove Theorem 6. By equation (25), we have:

E
∥∥Ā(θ̄T − θ∗)

∥∥2
2
≤ 4

η2T 2

(
E ‖θ0 − θ∗‖22 + E ‖θT − θ∗‖22

)
+

2

T 2
E ‖MT ‖22 .

By Lemma 17, we have:

E ‖θT − θ∗‖22 ≤ eκ2(U)
(
E ‖θ0 − θ∗‖22 + 3η2T (v2bd+ v2A ‖θ∗‖22)

)
.
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For the martingale term, note that:

E ‖MT ‖22 = E

T−1∑

t=0

‖et+1(θt)‖22

≤ 3E

T−1∑

t=0

(
E(‖bt+1 − b‖22 | Ft) + E(

∥∥(At+1 − Ā)(θt − θ∗)
∥∥2
2
| Ft) + E(

∥∥(At+1 − Ā)θ∗
∥∥2
2
| Ft)

)

≤ 3E

T−1∑

t=0

(
v2bd+ v2A ‖θt − θ∗‖22 + v2A ‖θ∗‖22

)

≤ 3Tv2bd+ 3Tv2A ‖θ∗‖22 + 3Tv2Aeκ
2(U)

(
E ‖θ0 − θ∗‖22 + η2T (v2bd+ v2A ‖θ∗‖22)

)
.

Since η ∈
(
0, 1√

T (ρ(Ā)+3κ(U)vA)

)
, we have:

E ‖MT ‖22 ≤ 3Tv2Aeκ
2(U)E ‖θ0 − θ∗‖22 + (3 + e)T (v2bd+ v2A ‖θ∗‖22).

Putting together the pieces yields

E
∥∥Ā(θ̄T − θ∗)

∥∥2
2
≤ C

(
κ2(U)

η2T 2
E ‖θ0 − θ∗‖22 +

v2bd+ v2A ‖θ∗‖22
T

+
v2Aκ

2(U)

T
E ‖θ0 − θ∗‖22

)
.

Setting the step size as η = 1
(ρ(Ā)+3κ(U)vA)

√
T

yields the claim.

H.1. Proof of Lemma 17

By Assumption 2′, the matrix Ā is diagonalizable. Accordingly, we can write Ā = UDU−1, and

the remaining part of Assumption 2′ implies that D +DH � 0.

We use the function f(θ) =
∥∥U−1(θ − θ∗)

∥∥2
2

as a Lyapunov function. From the process dy-

namics (2), we can write

U−1(θt+1 − θ∗) = U−1(Id − ηĀ)(θt − θ∗) + ηU−1Ξt+1(θt − θ∗) + ηU−1ξt+1 − ηU−1Ξt+1θ
∗.

Using this decomposition, we can write

E[
∥∥U−1(θt+1 − θ∗)

∥∥2
2
] = T1 + η2T2 + 2ηT3,

where

T1 := E
∥∥U−1(I − ηĀ)(θt − θ∗)

∥∥2
2

(36a)

T2 := E
∥∥U−1(Ξt+1(θt − θ∗) + ξt+1 − Ξt+1θ

∗)
∥∥2
2

(36b)

T3 := E
(
〈U−1(I − ηĀ)(θt − θ∗), U−1(Ξt+1(θt − θ∗) + ξt+1 − Ξt+1θ

∗)〉
)
. (36c)

We upper bound each these three terms in succession.

Bounding T1: Using Assumption 2′, we have:

T1 = E(U−1(θt − θ∗))H
(
Id − 2η

(
U−1ĀU + (U−1ĀU)H

)
+ η2(U−1ĀU)H(U−1ĀU)

)
U−1(θt − θ∗)

≤ E
∥∥U−1(θt − θ∗)

∥∥2
2
+ η2ρ2(Ā)E

∥∥U−1(θt − θ∗)
∥∥2
2
.
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Bounding T2: By Young’s inequality and Assumption 3, we find that

T2 = E
∥∥U−1(Ξt+1(θt − θ∗) + ξt+1 − Ξt+1θ

∗)
∥∥2
2

≤ 3|||U−1|||2opE

(
‖Ξt+1(θt − θ∗)‖22 + ‖ξt+1‖22 + ‖Ξt+1θ

∗‖22
)

≤ 3|||U−1|||2op

(
|||U |||2opv

2
AE
∥∥U−1(θt − θ∗)

∥∥2
2
+ v2bd+ v2A ‖θ∗‖22

)
.

Bounding T3: In this case, we have

T3 = E
(
〈U−1(Id − ηĀ)(θt − θ∗), U−1

E (Ξt+1(θt − θ∗) + ξt+1 − Ξt+1θ
∗ | Ft)〉

)
= 0.

This yields:

E
∥∥U−1(θt+1 − θ∗)

∥∥2
2
≤ (1 + η2ρ2(Ā) + 3η2κ2(U)v2A)E

∥∥U−1(θt − θ∗)
∥∥2
2
+ 3|||U−1|||2op(v

2
bd+ v2A ‖θ∗‖22).

Solving the recursion, for η ≤ 1
(ρ(Ā)+3κ(U)vA)

√
T

, we obtain:

E
∥∥U−1(θT − θ∗)

∥∥2
2

≤ exp
(
η2T (ρ2(Ā) + 3κ2(U)v2A)

)
E
∥∥U−1(θ0 − θ∗)

∥∥2
2

+ 3η2|||U−1|||2op(v
2
bd+ v2A ‖θ∗‖22)

T−1∑

t=0

exp
(
η2t(ρ2(Ā) + 3κ2(U)v2A)

)

≤ e
(
E
∥∥U−1(θ0 − θ∗)

∥∥2
2
+ 3η2T |||U−1|||2op(v

2
bd+ v2A ‖θ∗‖22)

)
.

Noting that ‖θT − θ∗‖2 ≤ |||U |||op ·
∥∥U−1(θT − θ∗)

∥∥
2
, we obtain the final result.

Appendix I. Properties of the process {θt}t≥0

In this appendix, we prove a number of claims about the basic properties of the process {θt}t≥0.

I.1. Proof of Lemma 10

Recall that we use rt = θt − θ∗ to denote the error in the process at time t. We make use of

the function f(r) = E
∥∥U−1r

∥∥2
2

for a Lyapunov-type analysis. Observe that the error satisfies the

recursion

rt+1 = rt − η(At+1θt − bt+1) = (Id − ηĀ)rt − ηΞt+1θt + ηξt+1.

Turning to the squared Euclidean norm, we have

E
∥∥U−1rt+1

∥∥2
2
= E

∥∥U−1(Id − ηĀ)rt
∥∥2
2
+ η2E

∥∥U−1(Ξt+1θt + ξt+1)
∥∥2
2
,

where we have expanded the quadratic term and used the i.i.d. condition (Assumption 1). Examining

the first term, we have
∥∥U−1(Id − ηĀ)rt

∥∥2
2
=
∥∥(Id − ηU−1AU)U−1rt

∥∥2
2

=
∥∥U−1rt

∥∥2
2
− η(U−1rt)

H(D +DH)U−1rt + |||DHD|||op

∥∥U−1rt
∥∥2
2

≤
{
1− 2ηλ+ η2ρ2(Ā)

}∥∥U−1rt
∥∥2
2
.
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For the second term, by Assumption 3 and Assumption 1, we have:

E
∥∥U−1(Ξt+1θt + ξt+1)

∥∥2
2
≤ |||U−1|||2opE ‖Ξt+1(θ

∗ + rt) + ξt+1‖22
= |||U−1|||2op

(
E ‖Ξt+1(θ

∗ + rt)‖22 + E ‖ξt+1‖22
)
≤ |||U−1|||2op

(
v2A(‖θ∗‖2 + E ‖rt‖22) + v2bd

)
.

Putting the pieces together and using the fact that η ∈
(
0, λ

ρ2(Ā)+κ2(U)v2A

)
, we find that

E
∥∥U−1rt+1

∥∥2
2
≤ (1− 2ηλ+ η2(ρ2(Ā) + κ2(U)v2A))E

∥∥U−1rt
∥∥2
2
+ η2|||U−1|||2op(v

2
A ‖θ∗‖22 + v2bd)

≤ (1− ηλ)E
∥∥U−1rt

∥∥2
2
+ η2|||U−1|||2op(v

2
A ‖θ∗‖22 + v2bd).

By induction, it is easy to show that for any t ≥ 0,

E
∥∥U−1rt

∥∥2
2
≤ E

∥∥U−1(θ0 − θ∗)
∥∥2
2
+
η

λ
|||U−1|||2op(v

2
A ‖θ∗‖22 + v2bd),

and consequently, we have the bound

E ‖rt‖22 ≤ κ2(U)
(
E ‖θ0 − θ∗‖22 +

η

λ
(v2A ‖θ∗‖22 + v2bd)

)
.

Proof of the bound (26b): In establishing this bound, we use the fact that for scalars A > 0,

z ∈ (−A,+∞) and α ∈ (0, 1), we have

(A+ z)1+α ≤ A1+α + (1 + α)Aαz + |z|1+α.

The proof of this inequality is straightforward: by homogeneity, we only need to prove for the case

of A = 1. Let f(z) := 1 + (1 + α)z + |z|1+α − (1 + z)1+α for z ∈ (−1,+∞). It is easy to see

that f ′(z) > 0 for z > 0 and f ′(z) < 0 for z < 0.

By Assumption 2, we have
∥∥U−1rt+1

∥∥2
2
≤ (1− 2ηλ)

∥∥U−1rt
∥∥2
2
+ 2ηRe(〈U−1(1− ηĀ)rt, U

−1et+1(θt)〉) + η2
∥∥U−1et+1

∥∥2
2
.

Taking the (1 + α/2)-order moment, by the scalar inequality, we obtain:

E
∥∥U−1rt+1

∥∥2+α

2
≤ (1− 2ηλ)E

∥∥U−1rt
∥∥2+α

2
+ E

∣∣∣2ηRe(〈U−1(1− ηĀ)rt, U
−1et+1(θt)〉) + η2

∥∥U−1et+1

∥∥2
2

∣∣∣
1+α

+ E

[(
(1− 2ηλ)

∥∥U−1rt
∥∥2
2

)α
2
(
2ηRe(〈U−1(1− ηĀ)rt, U

−1et+1(θt)〉) + η2
∥∥U−1et+1

∥∥2
2

)]
.

Note that E(et+1(θt)|Ft) = 0. The last term equals E

[(
(1− 2ηλ)

∥∥U−1rt
∥∥2
2

)α
2

η2
∥∥U−1et+1

∥∥2
2

]
.

By the existence of (2 + α)-order moment, there exists constant M1,M2 > 0 such that:

E

∣∣∣2ηRe(〈U−1(1− ηĀ)rt, U
−1et+1(θt)〉) + η2

∥∥U−1et+1

∥∥2
2

∣∣∣
1+α

≤ η1+α
(
M1 +M2E

∥∥U−1rt
∥∥2+α

2

)

E

[(
(1− 2ηλ)

∥∥U−1rt
∥∥2
2

)α
2

η2
∥∥U−1et+1

∥∥2
2

]
≤ η2

(
M1 +M2E

∥∥U−1rt
∥∥2+α

2

)
.

Thus we obtain:

E
∥∥U−1rt+1

∥∥2+α

2
≤ (1− 2ηλ)E

∥∥U−1rt
∥∥2+α

2
+ (η1+α + η2)

(
M1 +M2E

∥∥U−1rt
∥∥2+α

2

)
.

For η < η0 = 1
2(λ/M2)

1

α , we have: E
∥∥U−1rt+1

∥∥2+α

2
≤ (1 − ηλ)E

∥∥U−1rt
∥∥2+α

2
+ η1+αM1. An

induction proof argument leads to E
∥∥U−1rt

∥∥2+α

2
≤ E

∥∥U−1r0
∥∥2+α

2
+ ηα

λ M1 for any t ≥ 0.
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I.2. Proof of Lemma 11

In proving this lemma, we make use of Lemma 12; for zt := U−1rt, there exists a pathwise coupling

such that for any starting points z
(1)
0 , z

(2)
0 , we have E

∥∥∥z(1)t+1 − z
(2)
t+1

∥∥∥
2

2
≤ e−λη

E

∥∥∥z(1)t − z
(2)
t

∥∥∥
2

2
.

(Note that the proof of Lemma 12 does not use any results from this proof.)

We first show the existence and uniqueness of the stationary distribution, as well as the exis-

tence of the second moment. Then we calculate the first and second moment under the stationary

distribution.

I.2.1. PROOF OF EXISTENCE

Since R
d is separable and complete, the Wasserstein space W2 is complete (Villani, 2008). There-

fore, it suffices to show that {L(θt)}+∞
t=0 is a Cauchy sequence in this space.

Given µ ∈ W2 and taking θ0 ∼ µ, take any positive integer N > 0, for any k ≥ N and m ≥ 0,

and we seek to upper bound W2(L(θk),L(θk+m)). Consider the process with two different initial

points θ
(1)
0 ∼ µ and θ

(2)
0 ∼ L(θm), coupled in an arbitrary way. By Lemma 12, we have:

W2

(
L(θ(1)k ),L(θ(2)k )

)
≤ e−

ληk
2 κ(U)

√
E

∥∥∥θ(1)0 − θ
(2)
0

∥∥∥
2

2
≤ e−

ληN
2 κ(U)

√
2 sup

t≥0
E ‖θt − θ∗‖22.

Moreover, by Lemma 10, we have supt≥0 E ‖θt − θ∗‖22 ≤ κ2(U)
(
E ‖θ0 − θ∗‖22 + η

λ(v
2
A ‖θ∗‖22 + v2bd)

)

is a finite constant independent of N . Therefore, (L(θt))t≥0 is a Cauchy sequence in the space W2.

The limit exists in W2.

I.2.2. PROOF OF UNIQUENESS

Suppose that there were two stationary measures π(1) and π(2), let θ
(i)
t ∼ π(i) for i = 1, 2, with an

optimal coupling such that:

E

∥∥∥θ(1)t − θ
(2)
t

∥∥∥
2

2
= W2

2 (π
(1), π(2)).

By stationarity, we have θ
(i)
t+1 ∼ π(i), and consequently:

W2
2 (π

(1), π(2)) ≤ E

∥∥∥θ(1)t+1 − θ
(2)
t+1

∥∥∥
2

2
≤ e−ηλ

E

∥∥∥θ(1)t − θ
(2)
t

∥∥∥
2

2
= e−ηλW2

2 (π
(1), π(2)),

which implies W2(π
(1), π(2)) = 0 and therefore π(1) = π(2).

I.2.3. FIRST MOMENT UNDER THE STATIONARY DISTRIBUTION

Let θt ∼ πη. Consider a stationary chain (θt)t≥0 starting at θ0. By stationarity, we have L(θt+1) =
L(θt) = πη. Note that θt+1 = θ − η(At+1θt − bt+1), taking expectations, we have:

E(θt) = E(θt+1) = E (θt − η(At+1θt − bt)) = E (θt − ηE(At+1θt − bt+1|Ft)) = E (θt − η(Aθt − b)) .

Therefore, we have ĀEπη(θ)− b = 0, which implies θ = θ∗ since Ā is non-degenerate.
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I.2.4. SECOND MOMENT UNDER THE STATIONARY DISTRIBUTION

Let θt ∼ πη. Consider a stationary chain (θt)t≥0 starting at θ0. By stationarity, we have L(θt+1) =
L(θt) = πη. Note that θt+1 = θ − η(At+1θt − bt+1), and consequently, we have:

(θt+1 − θ∗) = (I − ηĀ)(θt − θ∗)− ηΞt+1(θt − θ∗) + ηξt+1 − ηΞt+1θ
∗.

As we have shown, Eπηθ = θ∗. Let rt := θt − θ∗, taking conditional second moments of both sides

of the equation, we obtain:

E

(
rt+1r

⊤
t+1 | Ft

)
= (Id − ηĀ)rtr

⊤
t (Id − ηĀ)⊤ + η2E(Ξt+1rtr

⊤
t Ξ

⊤
t+1|Ft)

+ η2E
(
Ξt+1rt(ξt+1 + Ξt+1θ

∗)⊤ + (ξt+1 + Ξt+1θ
∗)r⊤t Ξ

⊤
t+1 | Ft

)

+ η2E((ξt+1 + Ξt+1θ
∗)(ξt+1 + Ξt+1θ

∗)⊤ | Ft).

Let Λ := Eπη

(
rtr

⊤
t

)
. Taking the expectation of both sides, note that by Assumption 1:

E

(
Ξt+1rtξ

⊤
t+1 | Ft

)
= 0, E((ξt+1 + Ξt+1θ

∗)(ξt+1 + Ξt+1θ
∗)⊤ | Ft) = Σξ + E(ΞAθ

∗θ∗⊤Ξ⊤
A),

E

(
Ξt+1rt(Ξt+1θ

∗)⊤
)
= E (ΞA ⊗ ΞA) · vec(E(rt)θ∗⊤) = E (ΞA ⊗ ΞA) · vec(0 · θ∗⊤) = 0.

Simplifying this equation yields

Λ = (Id − ηĀ)Λ(Id − ηĀ)⊤ + η2E(ΞAΛΞ
⊤
A) + η2Σξ + η2E(ΞAθ

∗θ∗⊤Ξ⊤
A),

which means:

ĀΛ + ΛĀ⊤ = ηĀΛĀ⊤ + ηE(ΞAΛΞ
⊤
A) + ηΣ∗.

By flattening the tensors, we can write the equation in a matrix-vector form:

(
Id ⊗ Ā+ Ā⊤ ⊗ Id − ηĀ⊗ Ā− ηE(ΞA ⊗ ΞA)

)
vec(Λ) = ηvec(Σ∗),

where ⊕ denotes the Kronecker sum and ⊗ denotes the Kronecker product.

To provide an upper bound on the trace of the solution to this matrix equation, which is the

covariance under the stationary distribution, we note that in the proof of Lemma 10, we use a

contraction inequality:

E
∥∥U−1rt+1

∥∥2
2
≤ (1− λη)E

∥∥U−1rt
∥∥2
2
+ η2|||U−1|||2op(v

2
A ‖θ∗‖22 + v2bd).

If θt ∼ πη, we have θt+1 ∼ πη, and hence

Eπη

∥∥U−1(θ − θ∗)
∥∥2
2
≤ (1− λη)Eπη

∥∥U−1(θ − θ∗)
∥∥2
2
+ η2|||U−1|||2op(v

2
A ‖θ∗‖22 + v2bd),

which implies the claimed bound:

Eπη ‖θ − θ∗‖22 ≤
η

λ
κ2(U)(v2A ‖θ∗‖22 + v2bd).

44



FINE-GRAINED ANALYSIS OF LINEAR STOCHASTIC APPROXIMATION

I.3. Proof of Lemma 12

Given two different starting points x(i) ∈ R
d for i = 1, 2, let {θ(i)t }t≥0 be the process starting at

x(i), and let the two processes to be driven by the same sequences of noise variables ξb and ΞA, so

that A
(1)
t = A

(2)
t and b

(1)
t = b

(2)
t almost surely.

By Lemma 1, we can write Ā = UD⊤U−1, such thatD+DH � λId. Introducing the shorthand

rt := θ
(1)
t − θ

(2)
t , some algebra leads to the recursive relation

rt+1 = θ
(1)
t+1−θ

(2)
t+1 = θ

(1)
t −η

(
Āθ

(1)
t − b+ Ξt+1θ

(1)
t − ξt+1

)
−θ(2)t +η

(
Āθ

(2)
t − b+ Ξt+1θ

(2)
t − ξt+1

)

= (Id − ηĀ− ηΞt+1)rt.

Define the Lyapunov function f(r) = E
∥∥U−1r

∥∥2
2
. By Assumptions 2 and 3, note that ρ(Ā) =√

|||DHD|||op and κ(U) = |||U |||op|||U−1|||op, we have:

E
∥∥U−1rt+1

∥∥2
2

= E

(
rHt (Id − ηĀ− ηΞt+1)

⊤(U−1)HU−1(Id − ηĀ− ηΞt)rt

)

= E

(
(U−1rt)

H(Id − ηD − ηU−1Ξt+1U)H(Id − ηD − ηU−1Ξt+1U)(U−1rt)
)

= E
∥∥(Id − ηD)U−1rt

∥∥2
2
+ η2E ‖UΞt+1rt‖22

≤ E
∥∥U−1rt

∥∥2
2
− ηE(U−1rt)

H(D +DH)(U−1rt) + η2|||DHD|||opE
∥∥U−1rt

∥∥2
2
+ η2|||U |||2opE ‖Ξt+1rt‖22

≤ E
∥∥U−1rt

∥∥2
2
− 2ηλE

∥∥U−1rt
∥∥2
2
+ η2ρ(Ā)2E

∥∥U−1rt
∥∥2
2
+ κ2(U)v2AE

∥∥U−1rt
∥∥2
2
.

For η ∈
(
0, λ

ρ(Ā)2+κ(U)2v2A

)
, we have E

∥∥U−1rt+1

∥∥2
2
≤ (1 − ηλ)E

∥∥U−1rt
∥∥2
2

for any t ≥ 0.

Consequently, we have the coupling estimate:

E ‖rT ‖22 ≤ |||U |||2op

∥∥U−1rT
∥∥2
2
≤ |||U |||2ope

−ηλT
∥∥U−1r0

∥∥2
2
≤ e−ηλTκ2(U)E ‖r0‖22 ,

which completes the proof of the lemma.

I.4. Proof of Lemma 13

We first prove the almost-sure upper bounds on the iterates. Note that for θt ∈ [−λ̄−1, λ̄−1]d, we

have the following sequence of inequalities almost surely:

‖θt+1‖∞ = ‖θt − η(At+1θt − bt+1)‖∞ ≤ ‖(1− η)θt‖∞ + η ‖(Id −At+1)θt‖∞ + η ‖bt+1‖∞
≤ (1− η) ‖θt‖∞ + η(1− λ̄) ‖θt‖∞ + η ≤ (1− ηλ̄)λ̄−1 + η = λ̄−1.

The result then follows by induction.

We then prove the ℓ∞ contraction bound. We take a synchronous coupling where the two

processes use the same sequence of stochastic oracles. We have:

∥∥∥θ(1)t+1 − θ
(2)
t+1

∥∥∥
∞

=
∥∥∥(I − ηAt+1)(θ

(1)
t − θ

(2)
t )
∥∥∥
∞

≤ (1− η)
∥∥∥θ(1)t − θ

(2)
t

∥∥∥
∞

+ η
∥∥∥(I −A)(θ

(1)
t − θ

(2)
t )
∥∥∥
∞

≤ (1− ηλ̄)
∥∥∥θ(1)t − θ

(2)
t

∥∥∥
∞
,

which proves the coupling bound.
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Appendix J. Proof of Concentration Inequalities

In this section, we present the concentration inequalities used in the proof of our main theorems.

We first state and prove a concentration inequality for time averages of functions of a Markov

chain, following the general results from Joulin and Ollivier (2010). Then, we state and prove a

concentration inequality for heavy-tailed martingales.

J.1. Concentration inequalities involving metric ergodocity

In this section, we prove Lemma 16, the metric ergodic concentration inequality for the LSA pro-

cess, which plays an important role in our analysis. To prove it, we need the following general

result, which asserts the concentration inequalities under uniform upper bounds on the tail of the

iterates and stochastic oracles.

Lemma 18 Under Assumption 1, Assumption 2 and Assumption 3, for given T > 0, if for any

δ > 0, there exists R(δ), r(δ) > 0 such that:

• P
(
max0≤t≤T

∥∥U−1θt
∥∥
2
> R(δ)

)
< δ.

• P
(
max0≤t≤T

∥∥U−1(Ξt+1θt − ξt+1)
∥∥
2
> r(δ)

)
< δ,

then, for any matrix L ∈ R
d×d and any δ ∈

(
0, (T 2|||L|||2

op
maxt≤T E ‖θt‖42)−1

)
, we have:

P

(∣∣∣∣∣
1

T

T∑

t=1

(θ⊤t Lθt − Eθ⊤t Lθt)

∣∣∣∣∣ > C|||L|||op|||U |||2
op

R(δ)r(δ)

λ

(√
log δ−1

T
+

log δ−1

T

))
≤ 3δ.

Lemma 16 is actually an instantiation of Lemma 18, which provides concrete upper bounds on the

quantitiesR(δ) and r(δ) based on the tail assumption 3′. In the following, we first prove Lemma 18,

and then prove Lemma 16 by verifying the conditions in the general lemma.

J.1.1. PROOF OF LEMMA 18

In order to prove this lemma, we make use of the following known result due to Joulin and Ol-

livier Joulin and Ollivier (2010):

Proposition 19 (Theorem 4 Joulin and Ollivier (2010), special case) Let (Xt)t≥1 be a discrete-

time Markov chain with transition kernel P , defined on a space X equipped with the metric d(·, ·).
Assume that ∀x, y ∈ X , W1,d(Px, Py) ≤ (1− κ)d(x, y) for some κ > 0. Assume furthermore that

σ∞ := supx∈X diam(supp(Px)). For any function f that is 1-Lipschitz on X with respect to d(·, ·),
given a trajectory (Xt)1≤t≤T of the Markov chain, we have:

P

(∣∣∣∣∣
1

T

T∑

t=1

(f(Xt)− Ef(Xt))

∣∣∣∣∣ > r

)
≤




2 exp

(
− r2T

32 · κ2

σ2
∞

)
r < 4σ∞

3κ

2 exp
(
− rκT

12σ∞

)
r ≥ 4σ∞

3κ

.

Proposition 19 requires bounded noise and global Lipschitzness, neither of which is satisfied by the

process θt with a quadratic function f . In order to circumvent this limitation, we use a standard

truncation argument.
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Under the assumptions of Lemma 18, for any δ > 0, define a stopping time

τ(δ) := inf
{
t ≥ 1 :

∥∥U−1θt
∥∥
2
> R(δ) or

∥∥U−1(Ξtθt − ξt)
∥∥
2
> r(δ)

}
.

LetA = UDU−1 be its eigendecomposition. By the proof of Lemma 12, when η < λ
2(ρ2(Ā)+κ2(U)v2A)

,

the Markov process (U−1θt)t≥0 satisfies:

W1(Px, Py) ≤ W2(Px, Py) ≤ (1− ηλ/2) ‖x− y‖2 , ∀x, y ∈ R
d.

We define a killed Markov process ϑt := U−1θt for t < τ(δ), which gets killed at time τ(δ). The

one-step transition of the process ϑt is defined as ϑt 7→ ϑt−ηU−1(AUϑt− b)−U−1(ΞtUϑt− ξt),
whose support has a diameter bounded by 2ηr(δ) before being killed. Note that the Wasserstein

contraction property remains true for the killed process. The assumptions in Lemma 18 guarantee

that P(τ(δ) ≤ T ) < 2δ. By definition, we have ‖ϑt‖2 ≤ R(δ). Finally, for the function f :
B(0, R(δ)) → R with f(ϑ) := ϑ⊤U⊤LUϑ, we have:

‖∇f(ϑ)‖2 ≤ 2|||L|||op|||U |||2op ‖ϑ‖2 ≤ 2|||U |||2op|||L|||opR(δ).

Applying Proposition 19, for any ε > 0, we obtain:

P

(∣∣∣∣∣
1

T

T∑

t=1

(ϑ⊤t U
⊤LUϑt1t<τ(δ) − Eϑ⊤t U

⊤LUϑt)

∣∣∣∣∣ > 2ε|||L|||op · |||U |||2opR(δ)

)

≤




2 exp

(
− ε2T

32 · (λ)2

16(r(δ))2

)
, ε < 16r(δ)

3λ

2 exp
(
− ελT

48r(δ)

)
, ε ≥ 16r(δ)

3λ .

On the event {T < τ(δ)}, we have ϑt = U−1θt for t = 1, 2, · · · , T . It remains to bound the

difference between Eϑ⊤t U
⊤LUϑt and Eθ⊤t Lθt. Note that:

|Eϑ⊤t U⊤LUϑt − Eθ⊤t Lθt| = |E(θ⊤t Lθt1t<τ )− Eθ⊤t Lθt| ≤ |||L|||opE(‖θt‖22 1τ<t)

≤ |||L|||op

√
E(‖θt‖42)E(12τ<t) ≤ |||L|||op

√
δE ‖θt‖42.

Putting together the pieces yields the claimed result.

J.1.2. PROOF OF LEMMA 16

The proof involves verifying the assumptions in Lemma 18. For the high-probability bound on

max0≤t≤T

∥∥U−1θt
∥∥
2
, we note that by the proof of Lemma 14, for p ≥ 2 log T we have:

E max
0≤t≤T

∥∥U−1θt
∥∥p
2
≤

T∑

t=1

E
∥∥U−1θt

∥∥p
2

≤ T |||U−1|||pop

(
‖θ0 − θ∗‖2 +

η

λ
(σb

√
dpβ+1/2 + σA ‖θ∗‖2 pα+1/2)

)p
.

Taking p = C log T
δ for a universal constant C > 0 and applying Markov inequality, we have:

P

(
max
0≤t≤T

∥∥U−1θt
∥∥
2
> B

)
< δ.
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In order to verify the second condition, we note that by Assumption 3′, conditionally on Ft, the

Markov inequality yields:

P
(
‖Ξt+1θt‖2 > σA ‖θt‖2 logα δ−1|Ft

)
< δ, P

(
‖ξt+1‖2 > σb

√
d logβ δ−1|Ft

)
< δ.

Combined with high probability bounds on θt and take union bound over t ∈ {1, 2, · · · , T}, we

obtain the final result.

J.2. A concentration inequality for heavy-tailed martingales

In this appendix, we state and prove a useful concentration inequality for heavy-tailed martingales.

Lemma 20 For a (scalar) martingale difference sequence (Xt : t ≥ 1) adapted to filtration

(Ft)t≥0, if we have ∀p ≥ 2, E(|Xt|p|Ft−1)
1

p ≤ pγσ almost surely for some γ, σ > 0, for any

δ > 0, we have

P

(∣∣∣∣∣
1

T

T∑

t=1

Xt

∣∣∣∣∣ > Cγσ

(√
log δ−1

T
+

log1+γ T/δ

T

))
< δ.

Proof For a constant M > 0 which will be determined later, define X̃t := Xt1|Xt|≤M be the

truncated version of the process. By the Bernstein inequality for martingales (Freedman, 1975), for

any K > 0, we have:

∀ε > 0, P

(∣∣∣∣∣

T∑

t=1

X̃t − E(X̃t | Ft−1)

∣∣∣∣∣ > ε,

T∑

t=1

var
(
X̃t|Ft−1

)
< K

)
≤ 2 exp

(
− ε2

2K + 2Mε/3

)
.

On the other hand, note that for z > (2e)γσ, we have

P (|Xt| > z) ≤ inf
p≥2

ppγσp

zp
= exp

(
−γ
e

( z
σ

) 1

γ

)
.

Consequently, we have P

(
Xt 6= X̃t|Ft−1

)
≤ exp

(
−γ

e

(
z
σ

) 1

γ

)
.

Furthermore, we note that

∣∣∣E
(
X̃t|Ft−1

)∣∣∣ ≤ E

(
|Xt − X̃t|

∣∣Ft−1

)
≤ 2

∫ +∞

M
exp

(
−γ
e

( z
σ

) 1

γ

)
dz ≤ Cγ

(
M

σ

)1− 1

γ

exp

(
−γ
e

(
M

σ

) 1

γ

)
.

For the conditional second moment, we have:

var(X̃t|Ft−1) ≤ E(X̃2
t |Ft−1) ≤ E(X2

t |Ft−1) ≤ 22γσ2, a.s.

Choosing K = 22γσ2T , we have:

∀ε > 0, P

(∣∣∣∣∣

T∑

t=1

X̃t − E(X̃t|Ft−1)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ε2

Cγσ2T + 2Mε/3

)

Putting together the pieces, we find that

P

(∣∣∣∣∣
1

T

T∑

t=1

Xt

∣∣∣∣∣ > Cγσ

√
log δ−1

T
+
M log δ−1

T
+ Cγ

(
M

σ

)1− 1

γ

e−
γ
e
(M

σ
)1/γ

)
≤ δ + T exp

(
−γ
e

(
M

σ

) 1

γ

)
.

Setting M = Cγσ log
γ(Tδ ) yields the claim.
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Appendix K. Proof of Deterministic Properties of Matrices

In this section, we prove some auxiliary deterministic facts about square matrices. We first prove

Lemma 1, which guarantees the existence of a good similarity transformation for Huriwtz matrices.

Then, we state and prove Proposition 21, which asserts that such nice property does not hold in the

critical case without the diagonalizability condition. In particular, the Polyak-Ruppert procedure

fails for certain non-diagonalizable matrices with pure imaginary eigenvalues. Finally, we compute

the eigen-values for the asymmetric stochastic approximation matrix used in momentum SGD, as

discussed in Section C.1.

K.1. Proof of Lemma 1

In this appendix, we prove Lemma 1. This lemma is a standard fact in linear algebra; for instance,

see Section 1.8 in Perko (2013). We include the proof for completeness and so as to extract the

behavior of λ.

When the matrix Ā is diagonalizable, we can write Ā = UDU−1, which implies the stronger

lower boundD +DH � 2mini∈[d]Re(λi(Ā)). For a non-diagonalizable matrix Ā, we instead write

Ā = UJU−1, where the matrix J = diag(λiIdi + Jdi)
k
i=1 contains the Jordan decomposition. For

each Jordan block, we note that for Qi := diag(1,Re(λi/2), · · · ,Re(λi/2)di−1), we have

Q−1
i (λiIdi + Jdi)Qi = λiIdi +Re(λi/2)Jdi := Bi.

We note that A is similar to diag(B1, B2, · · · , Bk). We only need to study the eigenvalues of

Bi +BH

i . A straightforward calculation yields:

Bi +BH

i =
1

2
Re(λi)




4 1 0 · · · 0
1 4 1 · · · 0

· · ·
0 · · · 1 4 1
0 · · · 0 1 4



:= Re(λi)Tdi .

Note that the matrix Tdi is a symmetric tridiagonal Toeplitz matrix, whose eigenvalues are given by

the formula λj(Tdi) = 4 + 2 cos
(

jπ
(di+1)

)
≥ 2. Therefore, we have Bi + BH

i � Re(λi), which

completes the proof.

K.2. Necessity of diagonalizable Ā in the critical case

In this appendix, we demonstrate that the diagonalizability condition in Assumption 2′ cannot be

removed. More precisely, we show that even in the case of deterministic observations (i.e., At = Ā
and bt = b for all iterations t), there is a choice of matrix Ā and initial vector θ0 for which the

Polyak-Ruppert iterates behave badly.

Proposition 21 For any dimension d ≥ 2 and given initial vector θ0 = [0, 0, · · · , 0, 1]⊤, there

exists a matrix Ā ∈ C
d×d with mini∈[d]Re(λi(Ā)) ≥ 0 and mini |λi(Ā)| ≥ 1 such that for any

positive step size η and any iteration T ≥ 4, the Polyak-Ruppert averaged iterate satisfies the lower

bound

∥∥θ̄T − θ∗
∥∥
2
≥ 1

2
. (37)
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The proof is based on an explicit construction. Consider the d-dimensional matrix

Jd :=




0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 · · · 0 1
0 0 · · · 0 0



.

Define the matrix Ā = −iId − Jd. In this deterministic setting, we have:

θT − θ∗ = (Id − ηĀ)T (θ0 − θ∗) = ((1 + ηi)Id + ηJd)
T (θ0 − θ∗) =

min(d,T )∑

ℓ=0

ηℓ(1 + ηi)T−ℓ

(
T

ℓ

)
J ℓ
d(θ0 − θ∗).

Take θ∗ = 0. Given our initialization θ0 = [0, 0, · · · , 0, 1]⊤. for all T ≥ d − 1, we have θT =∑d−1
ℓ=0 η

ℓ(1 + ηi)T−ℓ
(
T
ℓ

)
ed−ℓ, and consequently, we have:

−(θ̄T − θ∗) =
1

T

T∑

t=1

d−1∑

ℓ=0

ηℓ
(
t

ℓ

)
ed−ℓ =

d−2∑

ℓ=0

ed−ℓη
ℓ 1

T

T∑

t=ℓ

(1 + ηi)t−ℓ

(
t

ℓ

)
.

Consider the coefficient in the (d− 1)-th coordinate, which corresponds to the case with ℓ = 1, we

have:

−eHd−1(θ̄T − θ∗) =
η

T

T∑

t=1

(1 + ηi)t−1t =

(
−i+ 1

T

)
(1 + ηi)T +

i− 1

T

Therefore, for T ≥ 4, we have:

∥∥θ̄T − θ∗
∥∥
2
≥ |eHd−1(θ̄T − θ∗)d−1)| ≥

∣∣∣∣
(
i+

1

T

)
(1 + ηi)T

∣∣∣∣−
√
2

T
≥ (1 + η2)

T
2 −

√
2

T
≥ 1

2
,

which completes the proof.

K.3. Eigenvalue computation for momentum SGD

Since Ā is real symmetric and positive definite, it is guaranteed to have a spectral decomposition of

the form Ā = UDU−1, where U is a orthonormal matrix and D = diag{λi(Ā)}di=1. Using this

fact, we can write

Ã =

[
U 0
0 U

] [
0 Id

−D αId + ηD

] [
U 0
0 U

]−1

=

([
U 0
0 U

]
P0

)
diag

([
0 1

−λi α+ ηλi

])d

i=1

([
U 0
0 U

]
P0

)−1

,

whereP0 is a permutation matrix which turns the order (1, 2, · · · , 2d) into (1, d+1, 2, d+2, · · · , d, 2d).
It can be seen that P0 is orthonormal.
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For α ∈ R+ \ {2
√
λi − ηλi}di=1, each 2 × 2 block has distinct eigenvalues, which makes it

diagonalizable. In particular, we have:

[
0 1

−λi α+ ηλi

]
=

[
λi −ν+i
λi −ν−i

]
·
[
ν+i 0
0 ν−i

]
·
[
λi −ν+i
λi −ν−i

]−1

,

where ν±i =
(α+ηλi)±

√
(α+ηλi)2−4λi

2 .
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