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We consider the problem of sampling from a strongly log-concave density in R
d, and prove

an information theoretic lower bound on the number of stochastic gradient queries of the log
density needed. Several popular sampling algorithms (including many Markov chain Monte
Carlo methods) operate by using stochastic gradients of the log density to generate a sample;
our results establish an information theoretic limit for all these algorithms.

We show that for every algorithm, there exists a well-conditioned strongly log-concave target
density for which the distribution of points generated by the algorithm would be at least ε
away from the target in total variation distance if the number of gradient queries is less than
Ω(σ2d/ε2), where σ2d is the variance of the stochastic gradient. Our lower bound follows by com-
bining the ideas of Le Cam deficiency routinely used in the comparison of statistical experiments
along with standard information theoretic tools used in lower bounding Bayes risk functions.
To the best of our knowledge our results provide the first nontrivial dimension-dependent lower
bound for this problem.

Keywords: Information theoretic lower bounds, Sampling lower bounds, Markov chain Monte
Carlo, Stochastic gradient Monte Carlo.

1. Introduction

Sampling from a distribution is a crucial computational step in several domains such as
Bayesian inference, prediction in adversarial environments, Monte Carlo approximation
and reinforcement learning. In the high dimensional setting, a common approach is to
use Markov chain Monte Carlo (MCMC) methods to generate a sample. Among these
methods, particularly useful and widely applicable are MCMC algorithms that generate a
sample from a probability distribution with a density on a continuous state space [41]. A
broad class of such algorithms are first-order (gradient) methods. These methods operate
by using the gradient of the log density at different points in the space.

Recently, the focus has been on methods that work with stochastic estimates of the
gradient given the emergence of large-scale datasets [49]. On these datasets it is compu-
tationally challenging to calculate the exact gradient over the entire data. An example of
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2 Chatterji, Bartlett and Long

this, of course, is the case of sampling from a posterior distribution when the log density
is sum decomposable over a large dataset.

While there is a large body of work studying MCMC methods in this setting (refer
to [6] for a survey of the results in this area), classically, little was known about the
explicit, non-asymptotic dependence of the iteration complexity—the number of steps
of the method needed to get a good sample—of these sampling algorithms in terms
of the dimension and the target accuracy. The seminal work of [11] established a non-
asymptotic bound on the iteration complexity for the Unadjusted Langevin algorithm
(ULA) [18, 36, 20, 43] in terms of the dimension and the target accuracy when the log
density is sufficiently regular. This has kicked off a slew of research in this field and
we now have many upper bounds on the non-asymptotic iteration complexity of several
popular first-order sampling methods [14, 12, 9, 10, 15, 31, 32] in terms of relevant
problem parameters like dimension, condition number and target accuracy.

In spite of this large and growing body of work, what has remained crucially missing is
a characterization of the intrinsic hardness of sampling for a given family of distributions,
that is, an information theoretic lower bound on the iteration complexity in terms of
problem parameters for first-order sampling methods. This is the question that we address
in our work.

We establish a lower bound on the iteration complexity for sampling from continuous
distributions over Rd that have smooth and strongly concave (see Section 2 for definitions)
log densities of the form:

p∗(x) =
exp(−f(x))∫

y∈Rd exp(−f(y))dy
, for all x ∈ R

d.

Prototypical examples of such distributions include the Gaussian distribution and the
posterior distribution that arises in Bayesian logistic regression with a Gaussian prior.

To establish our lower bounds we borrow the noisy oracle model [35] used in the
allied field of optimization. There, this model was used to establish lower bounds on
the iteration complexity of optimizing a function using gradients/function-values [see
also 39, 1, 40]. In this oracle model an algorithm (in our case a sampling method) is
allowed to query the oracle at a point and the oracle returns the gradient/function value
of the log density at that point corrupted by some independent and unbiased noise
with bounded variance. The iteration complexity of the method is therefore equal to the
number of queries that need to be made to this noisy oracle. The method can be adaptive,
in the sense that it is allowed to choose its next query based on its entire history—
past query points and the values returned by the oracle. Many popular first-order and
zeroth-order (methods that work with function-values) sampling methods, like ULA,
Hamiltonian Monte Carlo [34], Metropolis adjusted Langevin algorithm [43, 42, 5], Ball
walk [27, 16, 28, 30], Metropolized random walk [33, 44], Hit-and-run [45, 2, 23, 26, 29, 30],
underdamped Langevin MCMC [17, 10], Riemannian MALA [50], Proximal-MALA [37]
and Projected ULA [7], can be described by this oracle model.

Our contributions. The main result of this paper is to establish a lower bound on
the iteration complexity of any algorithm with access to a stochastic gradient oracle. We
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Oracle lower bounds for sampling algorithms 3

show that the iteration complexity must grow at least linearly with the noise variance in
the gradients.

More concretely, a sampling algorithm Alg operates in a sequential fashion. It begins
by querying the stochastic gradient oracle at an initial point y0 (which could be chosen in
a randomized fashion). The oracle then returns the gradient of the negative log density
at that point with some noise added to it: z0 = ∇f(y0) + ξ0, where ξ0 is independent
of the query point, has zero mean and has bounded variance E[‖ξ0‖22] ≤ σ2d. Such an
assumption on the gradient oracle is quite common in the study of upper bounds of
sampling algorithms (see, e.g [12, 10]). Denote the distribution of the noisy gradients as
Qx—the conditional distribution of the noisy gradient at a point x. On observing this
noisy gradient z0, the algorithm Alg can now choose to query at a new point y1, where
this point y1 is dependent on the initial query point y0 and the noisy gradient z0. This
protocol continues for n rounds, after which the algorithm is asked to output a point
from a distribution close to the target p∗. Let us denote the distribution of the point
output by such an algorithm after n such queries by Alg[n;Q].

We show that for every such algorithm, there exists a log smooth and strongly log-
concave target density for which the distribution of the sample generated by the algorithm
will be at least ε away from the target in total variation distance if the number of queries is
less than Ω(σ2d/ε2). A precise statement of this result with explicit constants is presented
as Theorem 4.1.

This lower bound requires the choice of a different family of distributions for every
target accuracy ε. A result that is easier to interpret is our lower bound for the case
when the target accuracy is a constant. In this regime our results are as follows:

Corollary 1. There exist constants c, c′, C and C ′ such that for all d and σ2, n < cσ2d
implies

inf
Alg

sup
Q

sup
p∗

TV(Alg[n;Q], p∗) > c′,

where the infimum is over all gradient-based sampling algorithms, the supremum over Q
is over unbiased gradient oracles with noise-variance bounded by σ2d, and the supremum
over p∗ is over C-log smooth, C/2-strongly log-concave distributions over R

d with the
mean ‖Ex∼p∗ [x]‖2 ≤ C ′.

This corollary asserts that to get to a distribution that is a constant away from a
well-conditioned target distribution with constant log-smoothness it must make order
σ2d queries to the stochastic gradient oracle in the worst case.

We consider target distributions that have their mean in a ball of constant radius
around the origin. This ensures that most of the mass of these distributions is concen-
trated in a ball of radius O(

√
d) around the mean (as p∗ is C/2-strongly log-concave and

hence
√

2/C-sub-Gaussian).
At a high level the approach here is inspired by the work that proved lower bounds

in stochastic optimization. There, the problem of lower bounding the error of any first-
order optimization algorithm is reduced to that of lower bounding the Bayes risk of an
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4 Chatterji, Bartlett and Long

appropriately constructed statistical problem. We find that this reduction is not directly
possible in our problem. Instead, we relate the problem of lower bounding the iteration
complexity of sampling to that of lower bounding a Le Cam deficiency between two
statistical experiments. Le Cam deficiency is a measure that is widely studied in the
literature on the comparison of statistical experiments [4, 3, 24, 47] and it turns out to
be a useful idea in our problem.

The rest of the paper is organized as follows. In Section 2, we introduce and define
useful quantities used throughout the paper in the statement of our results and their
proofs. In Section 3, we reduce the problem of lower bounding the iteration complexity
of sampling algorithms to that of lower bounding a difference of Bayes risk functions. In
Section 4, we state and prove our main results concerning gradient oracles. We conclude
with a discussion in Section 5. The more technical details of the proofs are deferred to
the appendix.

Notation. We use bold font to denote a random variable, and unbolded font to denote
the particular sample value of that random variable. For example, x denotes a random
variable and x = x denotes that the realization of x is x. We use uppercase letters to
denote matrices and lower case letters to denote vectors. Given any vector v, let ‖v‖2
denote its Euclidean norm. Let Id×d denote the identity matrix in d dimensions, 0d×d

denote the matrix of all zeros and 0d denote a row vector of all zeros. Given any subset
S ⊆ R

d, let B(S) denote the Borel σ-field associated with this set. For any finite set S, let
|S| denote its cardinality. I(·) denotes the indicator of an event. We use c, c′, C, c1, c2, . . .
to denote positive universal constants that are independent of any problem parameters.
We adopt conventional notations O(·) and Ω(·) as suppressing constants independent of

dimension and problem parameters, and Õ(·) and Ω̃(·) as suppressing poly-logarithmic
factors.

2. Definitions and problem set-up

In this section, we define several quantities that are useful in stating and proving our
results.

In our paper, we refer to f , the negative log density of the distribution p∗, as the
potential function. As stated in the introduction, we consider a family of distributions
with smooth and strongly convex potentials. We define smoothness and strong convexity
below.

Definition 1. A function f from R
d 7→ R is α-smooth and β-strongly convex if there

exists constants α ≥ β > 0 such that for all x, y ∈ R
d,

β

2
‖x− y‖22 ≤ f(x) − f(y) − 〈∇f(y), x− y〉 ≤ α

2
‖x− y‖22.

If a function f is smooth and strongly convex then −f is smooth and strongly concave.
Next let us define a probability kernel.
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Oracle lower bounds for sampling algorithms 5

Definition 2. For measurable spaces (X ,S) and (Y, T ), K is a probability kernel
(conditional distribution) from X to probability measures over Y if

1. There is probability measure on (Y, T ) associated with each x ∈ X , which we
denote by K(·|x).

2. The map x 7→ K(A|x) is S-measurable for each A ∈ T .

We will use y ∼ Kx to represent the random variable y drawn from the distribution
K(·|x).

In this paper we will only be using measurable spaces that are product spaces of the
reals. So from this point on we avoid explicitly mentioning the associated σ-field and
always work with the appropriate Borel σ-field.

We use probability kernels to describe the response of the algorithm during its inter-
action with the gradient oracle.

Definition 3. A gradient-based sampling algorithm Alg on R
d consists of the following

elements:

1. A distribution G(0) over R
d from which the initial point y0 is drawn.

2. Probability kernels K(i) for i ∈ {1, . . . , n}, with the ith probability kernel K(i)

being a map from R
d×2i to probability measures over Rd. The kernel K(i) is a map

from the history of queries and gradients seen up to round i to a distribution over
the next query point. The final kernel produces the sample.

To understand why this amounts to a valid and interesting class of sampling algo-
rithms, let us understand the protocol to produce a sample given a stochastic gradient
oracle Q (we use Qx or Q(·|x) to denote the distribution of the gradients when queried
at a point x).
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6 Chatterji, Bartlett and Long

Sampler Alg Gradient Oracle

Choose an initial point

y0 ∼ G(0) Query at y0

Produce noisy gradient

Return z0 z0 ∼ Qy0

Choose new query point

y1 ∼ K
(1)
y0,z0

Query at y1

Produce noisy gradient

Return z1 z1 ∼ Qy1

...

Produce a sample

yn ∼ K
(n)
y0,z0,...,yn−1,zn−1

Given the protocol above it is possible to write down the joint probability distribution
of the path. For the sake of intuition, let us assume that the path of the algorithm has
a density, and let G(0), Q, and K(i) also denote the corresponding densities 1. Then we
can write the density of the path y0 = y0, z0 = z0, . . . ,yn = yn as

G(0)(y0) ·Q(z0|y0) ·K(1)(y1|y0, z0) ·Q(z1|y1) · · ·K(n)(yn|yn−1, zn−1, . . . , y0, z0).

Let the distribution of the sample yn ∈ R
d produced by the interaction between the

algorithm Alg and a gradient oracle Q be denoted by Alg[n;Q]. Explicitly, the marginal
density of yn = yn is given by:

Alg[n;Q](yn)

:=

∫
G(0)(y0)Q(z0|y0) · · ·Q(zn−1|yn−1)K(n)(yn|yn−1, zn−1, . . .)dy0dz0 . . . dzn−1.

Restriction to finite parametric classes. As we are interested in demonstrating a
lower bound for sampling algorithms, it suffices to work with only a finite indexed class
of distributions {pθ}θ∈Θ, where each pθ is α-log smooth and α/2-strongly log-concave.
Let fθ be the negative log density corresponding to the distribution pθ.

In the discussion that follows we let Qθ be a stochastic gradient oracle that outputs
∇fθ(x) + ξ, where ξ is a Gaussian random variable with mean zero and covariance
Σnoise when queried at a point x ∈ R

d. The covariance matrix Σnoise will be specified

1We note that our results hold when G(0),K(1), . . . are arbitrary distributions.
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Oracle lower bounds for sampling algorithms 7

subsequently. It suffices to lower bound the quantity on the right hand side below, which
depends on this finite class of gradient oracles:

inf
Alg

sup
Q

sup
p∗

TV (Alg[n;Q], p∗) ≥ inf
Alg

sup
θ∈Θ

TV
(
Alg[n;Qθ], pθ

)
, (2.1)

where the infimum over Alg is over the class of gradient-based sampling algorithms on
R

d.

Definition 4. An estimator µ on R
d is a probability kernel from R

d to the decision
space R

d.

An estimator µ, when given a sample x from the distribution pθ, yields a distribution
µx over the decision space R

d. We choose the decision space to be R
d which is distinct

from the set of parameters Θ as we will be interested in estimates for the mean of pθ.
Further, we define sequential randomized estimators—distributions over the decision

space R
d that arise by appropriately combining an estimator with a sampling algorithm.

Definition 5 (Sequential estimators). Given an estimator µ on R
d, a gradient-based

sampling algorithm Alg on R
d, and a gradient oracle Qθ, define a sequential estimator

ρ{µ,Alg[n;Qθ]} as

ρ{µ,Alg[n;Qθ]}(S) := Ey∼Alg[n;Qθ] [µ(S|y)] , for all S ∈ B(Rd).

Often we will simply use ρ to refer to the sequential estimator ρ{µ,Alg[n;Qθ]} that is
built using the estimator µ and sampling algorithm Alg. In the remainder of the paper,
when we write infρ, this indicates an infimum over both estimators µ and algorithms Alg
that are used to build ρ.

A loss function L = {Lθ : θ ∈ Θ} on R
d is a family of [0, 1]-valued measurable

functions on R
d. Each L maps a θ ∈ Θ into Lθ where Lθ(t) is the loss we suffer if we

take the decision t ∈ R
d and θ is the true state of nature.

3. A characterization in terms of Bayes risk functions

In this section we prove a proposition that is crucial to prove our lower bound on the
iteration complexity. Operationally, it reduces the problem of lower bounding the total
variation distance between Alg[n;Qθ] and pθ to lower bounding a difference of two Bayes
risk functions. This is advantageous as there exists a large set of well-developed techniques
to both lower and upper bound Bayes risk functions.

As will be clear in the proof, the choice of total variation distance as our metric is
pivotal. The total variation distance lends itself to a variational definition in terms of
bounded loss functions, which is exploited in the proof of this proposition.
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8 Chatterji, Bartlett and Long

Proposition 1. (Randomization criterion) Let Θ be a finite set. Then for any loss
function Lθ on R

d we have

inf
Alg

sup
θ∈Θ

TV
(
Alg[n;Qθ], pθ

)

≥ inf
ρ

1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]} [Lθ(t)] − inf
µ

1

|Θ|
∑

θ∈Θ

Ex∼pθ
[Et∼µx

[Lθ(t)]] ,

where the infimum over Alg is over gradient-based sampling algorithms, the infimum over
ρ is as above, and the infimum over µ is over estimators on R

d.

As mentioned earlier, the infimum over sequential estimator ρ in the proposition above
involves taking an infimum simultaneously over both estimators µ and sampling algo-
rithms Alg that make up ρ. The proof of the proposition is in Appendix A.

To understand why this proposition is useful let us unpack the right hand side of the
randomization criterion which is a difference of two Bayes risk functions. Given a fixed
loss function Lθ, the first term is the average risk associated with the optimal estimator
that is fed a fictitious sample generated by the optimal sampling algorithm after n rounds
of interaction with the stochastic gradient oracle. This is compared to the second term
which is the average risk of an optimal estimator that receives a single real sample from
the target distribution pθ.

Thus, to demonstrate a lower bound for sampling we will construct a pair of two
distributions p1 and p2, and a gradient oracle such that:

1. It is extremely easy to estimate the mean of the distribution given a single sample
from the real distribution. This is to ensure that the second term is small and is
independent of dimension.

2. But, the Bayes risk associated with estimating the mean when given a fictitious
sample from the sampler grows at a rate of Ω(σ

√
d/n).

Such a construction ensures that the difference between these Bayes risk functions is large
and proves a lower bound on the iteration complexity of sampling via the randomization
criterion.

The term on the left hand side of our randomization criterion is similar in spirit to a
quantity called the Le Cam deficiency between two families of distributions. Given two
families {Rθ}θ∈Θ and {Sθ}θ∈Θ, the Le Cam deficiency between these families is defined
to be

inf
M

sup
θ∈Θ

TV(MRθ, Sθ),

where M is a probability kernel which takes as input samples from Rθ. It is measure
of how difficult it is to transform a sample from the distribution Rθ to a sample from
Sθ using a probability kernel M (which does not vary with θ). In our setting, in some
sense we want to transform n adaptively chosen samples from the gradient oracle Qθ to
a sample from the target distribution pθ.
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Oracle lower bounds for sampling algorithms 9

The proposition above is similar in flavour to the classical Le Cam randomization
criterion [24] studied extensively in the literature on the comparison of statistical ex-
periments [see, e.g, 47, 25]. In fact, it is a version of Le Cam’s randomization criterion
restricted to a special class of sequential estimators.

Finally, we note that an object similar to the first Bayes risk function (when the
estimator is fed fictitious samples from the sampling algorithm) also arises in the study
of lower bounds on the iteration complexity of gradient-based stochastic optimization
algorithms. At a high level, there, this Bayes risk lower bounds the worst case gap to
the optimum for the optimal stochastic optimization algorithm. We point the interested
reader to the work of [39], [1], and [40] for further details. Interestingly, in the study of
lower bounds for stochastic optimization algorithms, no term analogous to the second
Bayes risk function (when the estimator is fed real samples from pθ) arises, which adds
a level of difficulty to our problem.

4. Lower bounds for stochastic first order methods

We now state our main result for stochastic gradient oracles.

Theorem 4.1. For all d, σ2, n ≥ σ2d/4 and for all α ≤ σ2d/(256n),

inf
Alg

sup
Q

sup
p∗

TV(Alg[n;Q], p∗) ≥ σ

16

√
d

n
,

where the infimum is over all gradient-based sampling algorithms, the supremum over Q
is over unbiased gradient oracles with noise-variance bounded by σ2d, and the supremum
over p∗ is over α-log smooth, α/2-strongly log-concave distributions over R

d with the
mean ‖Ex∼p∗ [x]‖2 ≤ 1

α
.

The interpretation of the theorem given the order of the quantifiers, infAlg supQ supp∗

is as follows: Given any d, σ2 and n, for every gradient-based sampling algorithm, there
exists a noise oracle and a target distribution (both of which could depend on the sam-
pling algorithm and on the problem parameters d, σ2 and n) such that the total variation
between the distribution of points generated by the algorithm and the target distribution
is lower bounded by cσ

√
d/n.

To reiterate, we only consider distributions that have their means in a ball of radius
1/α around the origin. This ensures that most of the mass of these distributions is
concentrated in a ball of radius O(

√
d/α) around the mean (as p∗ is α/2-strongly log-

concave and hence sub-Gaussian). This constraint on the family of target distributions
ensures that the lower bound does not trivially hold by choosing an appropriate family
of distributions with means that are arbitrarily far away from each other.

We note that our lower bound only holds for the case when the gradients are noisy. If
we are given exact gradients there exist methods that use a Metropolis-Hastings filter that
provably converge exponentially fast (in the target accuracy) when the target distribution
is strongly log-concave [see, e.g., 15].
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10 Chatterji, Bartlett and Long

It is also fairly straightforward to run through our argument and also arrive at a lower
bound in terms of Kullback-Leibler divergence by using the Pinsker-Csiszár-Kullback
inequality.

Proof of Corollary 1 and its consequences. If we apply Theorem 4.1 for n = σ2d/4,
then the claim of the corollary follows immediately by choosing α = 1/64.

Corollary 1 dictates that there exists a family of well-conditioned distributions with
constant log-smoothness such that it takes at least order σ2d queries to the stochastic
gradient oracle to obtain a sample whose distribution is a constant (1/8) away from the
target distribution in total variation distance.

When do we have optimal algorithms? One candidate would be the Stochastic
Gradient Langevin Dynamics (SGLD) algorithm [49], which is a version of the ULA
that uses stochastic gradients instead of exact ones. Corollary 25 in [13] characterizes
an upper bound for the rate of convergence of SGLD in total variation distance. Let
SGLD[n;Q] denote the distribution of the sample produced by SGLD (with parameters
tuned according to requirements of their results) after n iterations. Then if α, σ2 ≍ c and
the distribution is well-conditioned their results guarantee,

TV(SGLD[n;Q], p∗) ≤ Õ
(√

d

n

)
.

If σ2 and α are viewed as constants, this matches our lower bound on the number of
iterations needed to achieve constant accuracy.

Proof details for Theorem 4.1

Before we start our proof of the main theorem, we set up some quantities that will be
useful in the proof. Let λ ∈ [0, 1/2] be a scalar parameter that will be specified in the
sequel. We consider a family of two Gaussian distributions,

pθ := N (mθ, Id×d/α) , where θ ∈ Θ = {1, 2}. (4.1)

The last d − 1 coordinates of the two mean vectors are all 0. The mean vectors differ
only on the first coordinate. Set m11 = λ/α and m21 = −λ/α, where m11 and m21 refers
to the first coordinate of the vectors. Clearly, these vectors are separated in Euclidean
norm

‖m1 −m2‖2 =
2λ

α
. (4.2)

The distributions we have defined are Gaussian, therefore, each distribution in this
family is α-log smooth and α/2-strongly log-concave (in fact, it is α-strongly log-concave).
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Oracle lower bounds for sampling algorithms 11

We choose our decision space to be the space of vectors in R
d and define a loss function

over this space as,

Lθ(t) := min {α‖t−mθ‖2, 1} , for all θ ∈ Θ. (4.3)

We will be working with a fixed gradient oracle Qθ that adds zero mean Gaussian noise
with covariance

Σnoise =

[
σ2d 0d−1

0⊤d−1 0(d−1)×(d−1)

]
,

to the gradient of fθ when queried at x. Since Tr(Σnoise) = σ2d, this is a valid gradient
oracle.

This noise oracle uses its entire noise budget on the first coordinate and adds Gaussian
noise with variance σ2d to the gradient along this coordinate. We chose such an oracle
because the two distributions p1 and p2 differ only along this single coordinate. The
choice of both the distributions and the noise oracle is guided by Proposition 1. We will
establish our lower bound by lower bounding a difference of Bayes risk functions. The first
Bayes risk function shall correspond to a problem where the learner needs to estimate the
first coordinate of the mean of the distribution when given access to n stochastic gradient
queries of the log-density. Since the noise oracle packs all of the variance into the first
coordinate, this problem is challenging and the first Bayes risk function will be relatively
large. The second Bayes risk function corresponds to a problem where the learner is
asked to estimate the first coordinate of the mean using just a single sample from the
true distribution. As the means of p1 and p2 differ only along the first coordinate, the
estimation of the mean using just a single sample from the underlying distribution is
feasible, which means that the value of the second Bayes risk function will be relatively
small. This shall guarantee that the difference between the two Bayes risk functions is
large. We are now ready to begin the proof.

Proof. : We want a lower bound on the quantity,

inf
Alg

sup
Q

sup
p∗

TV(Alg[n;Q], p∗).

First we replace the supremum over all distributions p∗ with our pair of Gaussian dis-
tributions parameterized by Θ defined in Equation (4.1) above. Further, as mentioned
above we drop the supremum over gradient oracle distributions and consider the gradient
oracle Qθ that adds Gaussian noise to the first coordinate of the gradient. By relaxing
the problem in this manner we must have,

Mn := inf
Alg

sup
Q

sup
p∗

TV(Alg[n;Q], p∗) ≥ inf
Alg

sup
θ∈Θ

TV(Alg[n;Qθ], pθ).

Let µ denote an estimator (see Definition 4) and ρ denote a sequential estimator (see
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12 Chatterji, Bartlett and Long

Definition 5). Then by our randomization criterion (Proposition 1),

Mn ≥ inf
Alg

sup
θ∈Θ

TV(Alg[n;Qθ], pθ)

≥ inf
ρ

1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]} [Lθ(t)]

︸ ︷︷ ︸
=:Ψ1

− inf
µ

1

|Θ|
∑

θ∈Θ

Ex∼pθ
[Et∼µx

[Lθ(t)]]

︸ ︷︷ ︸
=:Ψ2

. (4.4)

To lower bound Mn we need to establish a lower bound on Ψ1 and an upper bound on
Ψ2.

The term Ψ1 is the Bayes risk of the optimal sequential estimator ρ with respect to
the loss function Lθ when the true parameter θ is drawn from a uniform distribution
over the set Θ = {1, 2}. To prove a lower bound on this term we turn to Le Cam’s
method. Roughly, this entails reducing this mean estimation problem to a hypothesis
testing problem via a standard argument (see Lemma 1). Then, we lower bound the
error made in this hypothesis testing problem by the optimal test. This is achieved by
upper bounding the total variation distance between the distributions of the algorithm’s
history over n rounds when the true distribution is either p1 or p2 (in Lemma 2). This
argument leads to the lower bound: Ψ1 > λ(1 − λ

√
n/(σ

√
d)). The details for this lower

bound are presented in Appendix B.1.
Similar to the first term, Ψ2 is the Bayes risk of the optimal estimator µ that is

given a single sample from the true distribution distribution pθ. A bound of Ψ2 <
√
α

follows by considering the estimator that outputs the first coordinate of the sample
along the first dimension (the standard deviation along with dimension is 1/

√
α and

Lθ(t) = α‖t − mθ‖2) and 0 along the remaining dimensions. This simple calculation is
detailed in Appendix B.2.

By combining these results,

Mn ≥ λ

(
1 − λ

σ

√
n

d

)
−√

α.

Pick λ = σ
√
d/(4

√
n). Recall that the number of queries n ≥ σ2d/4, which guarantees

that λ ≤ 1/2. Plugging this value of λ into the inequality above,

Mn ≥ 3σ

16

√
d

n
−√

α ≥ σ

16

√
d

n
,

where the condition on the smoothness α ≤ σ2d/(256n) ensures that the second term in
the inequality above is smaller than the first, which completes the proof.

5. Discussion and open problems

Many interesting questions remain open related to lower bounding the iteration com-
plexity of sampling algorithms. In our lower bounds we ignored the dependence on the
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Oracle lower bounds for sampling algorithms 13

condition number κ = α/β, an important parameter of the problem, and established a
lower bound for well-conditioned distributions (where κ = 2). It would be interesting to
study if the lower bounds can be extended to also capture the dependence on κ. Another
related question concerns the iteration complexity of sampling when the potentials are
smooth and strongly-convex with respect to general ℓp norms for p ∈ [1,∞).

We have given a lower bound in terms of the variance, number of variables, and
number of samples, for a worst-case smooth distribution. The degree of smoothness in
our construction depends (albeit somewhat mildly) on the other parameters. It would
be interesting to study how the optimal accuracy behaves when the smoothness and the
other parameters are varied independently.

In our construction, all of the noise in the gradients is concentrated in one component.
This noise satisfies the constraints used to prove upper bounds in papers such as [12, 10],
so that our analysis rules out certain kinds of improvements to those bounds. On the
other hand, the noise arising in applications, for example when stochastic gradients are
obtained by subsampling, is often qualitatively unlike this. This raises the question of
whether or not more efficient sampling is possible when noise satisfies constraints other
than bounded variance, for example when it is isotropic, or nearly so.

After this work appeared in preliminary form [8], Johndrow et al. [21] established
lower bounds for a large class of models and subsampled MCMC methods. It would be
interesting to see if these results can be extended to obtain information-theoretic lower
bounds similar to the ones in this paper.

Another direction is to develop techniques to establish lower bounds for sampling
methods when we have access to the exact gradients of the potential function. On this
front, there has been some recent progress on related problems, which may provide some
hints as to how one might proceed. Ge et al. [19] provide a lower bound on the number
of exact gradient queries required to estimate the normalization constant of strongly log-
concave distributions. Rademacher et al. [38] showed that a quadratic number of queries
to a deterministic membership oracle is required to estimate the volume of a convex body
in d dimensions. Talwar [46] recently exhibited a family of distributions with non-convex
potentials for which sampling is NP-Hard.

Appendix A: Proof of Proposition 1

Given any sampling algorithm Alg, for any estimator µ it is possible to define a sequential
estimator ρ{µ,Alg[n;Qθ]} by using both Alg and µ. Then, for all θ ∈ Θ we have,

1

|Θ|
∑

θ∈Θ

(
Et∼ρ{µ,Alg[n;Qθ]} [Lθ(t)] − Ex∼pθ

[Et∼µx
[Lθ(t)]]

)

=
1

|Θ|
∑

θ∈Θ

(
Ex∼Alg[n;Qθ] [Et∼µx

[Lθ(t)]] − Ex∼pθ
[Et∼µx

[Lθ(t)]]
)

where the equality above follows by the definition of the sequential estimator ρ. Define a
function hθ(x) := Et∼µx

[Lθ(t)]. Clearly this function is also bounded, 0 ≤ hθ ≤ 1 since
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14 Chatterji, Bartlett and Long

Lθ is bounded between 0 and 1. Hence, we have,

1

|Θ|
∑

θ∈Θ

(
Et∼ρ{µ,Alg[n;Qθ]} [Lθ(t)] − Ex∼pθ

[Et∼µx
[Lθ(t)]]

)

=
1

|Θ|
∑

θ∈Θ

(
Ex∼Alg[n;Qθ] [hθ(x)] − Ex∼pθ

[hθ(x)]
)

≤ 1

|Θ|
∑

θ∈Θ

sup
hθ:0≤hθ≤1

(
Ex∼Alg[n;Qθ] [hθ(x)] − Ex∼pθ

[hθ(x)]
)

(i)
=

1

|Θ|
∑

θ∈Θ

TV(Alg[n;Qθ], pθ)

≤ sup
θ∈Θ

TV(Alg[n;Qθ], pθ),

where the equality (i) is due to the variational definition of the total variation distance.
Taking an infimum over all possible sequential estimators ρ (by taking an infimum over

all estimators ν and algorithms Ãlg) we find that for all estimators µ,

sup
θ∈Θ

TV(Alg[n;Qθ], pθ)

≥ inf
ν,Ãlg

1

|Θ|
∑

θ∈Θ

(
E
t∼ρ{ν,Ãlg[n;Qθ]}

[Lθ(t)] − Ex∼pθ
[Et∼µx

[Lθ(t)]]
)

= inf
ν,Ãlg

[
1

|Θ|
∑

θ∈Θ

E
t∼ρ{ν,Ãlg[n;Qθ]}

[Lθ(t)]

]
− 1

|Θ|
∑

θ∈Θ

Ex∼pθ
[Et∼µx

[Lθ(t)]] .

As the above inequality holds for all estimators µ and algorithms Alg, taking a supremum
over µ on the right side and an infimum over all gradient-based sampling algorithms on
the left hand side completes the proof.

Appendix B: Additional proof details for lower

bounds with gradient oracles

B.1. Lower Bound on Ψ1

In this subsection we prove a lower bound on Ψ1. By definition

Ψ1 = inf
ρ

{
1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]} [Lθ(t)]

}
.

This is the Bayes risk of sequential estimators with respect to the loss function Lθ defined
in Equation (4.3). We want a lower bound on it, which is a lower bound on the risk of
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the optimal estimator that attempts to identify the underlying value of the mean vector
associated with θ given n adaptive queries to a stochastic gradient oracle.

Let random variables in a sample path of the algorithm be y0, z0, . . . ,yn−1, zn−1,yn, t,
where (y1, . . . ,yn−1) are the query points of the algorithm, (z0, . . . , zn−1) are the stochas-
tic gradients returned by the oracle, yn is the sample produced and t is the estimate of
the mean. Define

Π := {y0, z0,y1, z1, . . . ,yn−1, zn−1,yn, t}.
In Lemma 1 below, we prove that

Ψ1 ≥ λ
(
1 − TV

(
P
1
n,P

2
n

))
,

where P
1
n is the distribution of Π when θ = 1 and P

2
n is its distribution when θ = 2. The

proof uses a fairly standard argument (called Le Cam’s method) to reduce from mean
estimation to testing [see, e.g., 48, Chapter 15]. To complete our lower bound, we need
to upper bound the total variation distance between the distributions P

1
n and P

2
n. We do

this by instead controlling the Kullback-Leibler divergence between these distributions,
which bounds the total variation distance. See Lemma 2 below for the details of this
calculation. This upper bound combined with the inequality in the display above yields

Ψ1 ≥ λ

(
1 − λ

σ

√
n

d

)
, (B.1)

which is the desired lower bound on Ψ1.

Auxillary lemmas

Lemma 1. Let the Bayes risk Ψ1 be as defined in (4.4), and P
1
n and P

2
n be as defined

above, then,

Ψ1 ≥ λ
(
1 − TV

(
P
1
n,P

2
n

))
.

Proof. By the definition of a sequential estimator ρ in Definition 5,

ρ{µ,Alg[n;Qθ]}(·) := Ey∼Alg[n;Qθ] [µ(·|y)] .

It is made up of an estimator µ and a sampling algorithm Alg. Let Π be a sample path
of the algorithm, as defined above.

Reduction to testing: We proceed by the standard reduction used in proving lower
bounds on Bayes risk functions, that of reducing from an estimation problem to a testing
problem [see, e.g., 48, Chapter 15]. Recall the definition of Ψ1

Ψ1 = inf
ρ

{
1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]} [Lθ(t)]

}
.

For a fixed ρ, if ‖t−mθ‖2 ≥ λ/α then

Lθ(t) = min{α‖t−mθ‖2, 1} ≥ min {λ, 1} = λ,
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16 Chatterji, Bartlett and Long

as λ ∈ [0, 1/2]. Thus, by applying Markov’s inequality with respect to the distribution ρ
we infer,

Ψ1 = inf
ρ

{
1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]}[Lθ(t)]

}
,

≥ λ · inf
ρ

{
1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]}

[
I

[
‖t−mθ‖ ≥ λ

α

]]

︸ ︷︷ ︸
=:Ξ(ρ)

}
, (B.2)

where Ξ(ρ) is the expectation of the indicator function under the distribution ρ over t
and under the uniform mixture distribution over θ. Let Pjoint denote this joint probability
over the random variables Π and j (which takes values in Θ) then,

1

|Θ|
∑

θ∈Θ

Et∼ρ{µ,Alg[n;Qθ]}

[
I

[
‖t−mθ‖ ≥ λ

α

]]
=: Pjoint

(
‖t−mj‖2 ≥ λ

α

)
.

So we have reduced it to lower bounding the quantity on the right hand side. Toward
this end, let us consider a test φ

φ(Π) := argmin
j∈Θ

{‖t−mj‖2} ,

where we break ties arbitrarily. Conditioned on j = θ: we claim that the event ‖t−mθ‖2 <
λ/α ensures that the test φ(Π) is correct and returns θ. In order to see this, note that
for any other θ′ ∈ Θ, by triangle inequality we have,

‖mθ′ − t‖2 ≥ ‖mθ −mθ′‖2 − ‖mθ − t‖2 >
2λ

α
− λ

α
=

λ

α
.

The lower bound ‖mθ − mθ′‖2 ≥ 2λ/α follows by our construction of the set of mean
vectors, see Inequality (4.2). As these vectors are separated we must also have, ‖mθ′ −
t‖2 ≥ ‖mθ − t‖2, where θ′ 6= θ.

Therefore, conditioned on a value of the random variable j = θ, the event {‖t−mθ‖2 <
λ/α} is contained within the event {φ(Π) = θ}. This implies,

Et∼ρ{µ,Alg[n;Qθ]}

[
I

[
‖t−mθ‖ ≥ λ

α

]]
≥ E(Π,j)∼Pjoint

[I [φ(Π) 6= j]] .

Taking expectations with respect to the uniform mixture distribution over θ yields,

Ξ(ρ) ≥ Pjoint(φ(Π) 6= j).

We take an infimum over all sequential estimators ρ and an infimum over all tests φ,
coupled with Inequality (B.2) to conclude that

Ψ1 ≥ λ · inf
ρ

Ξ(ρ) ≥ λ inf
φ

Pjoint(φ(Π) 6= j). (B.3)
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Le Cam’s Method: The next step is to demonstrate a lower bound on failure probability
of any test φ for this, we use Le Cam’s method [see, e.g., 48, Section 15.2.1],

inf
φ

Pjoint(φ(Π) 6= j) = 1 − TV
(
P
1
n,P

2
n

)
,

where P
1
n and P

2
n denote the distribution of Π when the true underlying target dis-

tribution is p1 and p2 respectively. Combining this lower bound with Inequality (B.3)
completes the proof.

The next lemma establishes an upper bound on the total variation distance between
the distributions P

1
n and P

2
n.

Lemma 2. Let Π,P1
n and P

2
n be as defined above. Then

TV
(
P
1
n,P

2
n

)
≤ λ

σ

√
n

d
.

Proof. Recall that the random variable Π = {y0, z0,y1, z1, . . . ,yn−1, zn−1,yn, t} is
comprised of the query points of the algorithm (y1, . . . ,yn−1), the stochastic gradients
(z0, . . . , zn−1), the output of the sampling algorithm yn and the estimate for the mean
vector t. The distribution P

1
n is the law of Π when θ = 1 and P

2
n is its law when θ = 2.

Recall that the oracle noise distribution Qθ
y ∼ N (∇fθ(y),Σnoise), adds mean-zero

Gaussian noise to the gradient of fθ where

Σnoise =

[
σ2d 0d−1

0⊤d−1 0(d−1)×(d−1)

]
.

By this choice of the noise oracle the probability measure P
1
n is absolutely continuous2

with respect to P
2
n. This allows us to bound the Kullback-Leibler divergence between P

1
n

and P
2
n, which also leads to a bound on the total variation distance between them.

KL(P1
n|P2

n)

= EΠ∼P1
n

[
log

(
G(0)(y0)Q1(z0|y0)K(1)(y1|y0, z0) · · ·K(n)(yn|yn−1, . . .)µ (t|yn)

G(0)(y0)Q2(z0|y0)K(1)(y1|y0, z0) · · ·K(n)(yn|yn−1, . . .)µ (t|yn)

)]

= EΠ∼P1
n

[
log

(
Πn−1

t=0 Q
1(zt|yt)

Πn−1
t=0 Q

2(zt|yt)

)]

=

n−1∑

t=0

Ey0,z0,...,yt∼P1
n

[
Ezt∼Q1

yt

[
log

(
Q1(zt|yt)
Q2(zt|yt)

) ∣∣∣y0 = y0, z0 = z0, . . . zt−1 = zt−1,yt = yt

]]

(i)

≤ n · max
y∈Rd

{
Ez∼Q1

y

[
log

(
Q1(z|y)

Q2(z|y)

)]}

(ii)
=

n

2
max
y∈Rd

[∇f1(y) −∇f2(y)]
⊤

Σ†
noise [∇f1(y) −∇f2(y)] , (B.4)

2See, for example, [22], for a review of absolute continuity.
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18 Chatterji, Bartlett and Long

where (i) follows as we upper bound the sum of the divergences of the conditional distri-
butions by n times the divergence between the conditional distributions at the maximal
point. The equality in (ii) follows by the formula for KL divergence between two Gaus-

sians with the same covariance Σnoise and different means (Σ†
noise is the Moore-Penrose

inverse of Σnoise). Given our definition of the target distributions pθ (defined in Equa-
tion (4.1)), it can be verified that the negative logarithm of the density is

fθ(y) =
α

2
(y −mθ)⊤(y −mθ), for θ ∈ {1, 2}.

Therefore, for any y ∈ R
d,

[∇f1(y) −∇f2(y)]
⊤

Σ†
noise [∇f1(y) −∇f2(y)]

= [α(y −m1) − α(y −m2)]
⊤

Σ†
noise [α(y −m1) − α(y −m2)]

= α2 [m2 −m1]
⊤

Σ†
noise [m2 −m1] =

4λ2

σ2d
,

the final equality is because ‖m2 − m1‖22 = 4λ2/α2. This equation along with Inequal-
ity (B.4) yields

KL(P1
n|P2

n) ≤ 2nλ2

σ2d
.

Finally, the Pinsker-Csiszár-Kullback inequality implies

TV(P1
n,P

2
n) ≤

√
KL(P1

n|P2
n)/2 ≤ λ

√
n/(σ

√
d),

which completes the proof.

B.2. Upper bound on Ψ2

In this section we construct a simple estimator that is given access to a single sample
from the true distribution pθ, and we upper bound its risk. This immediately bounds the
Bayes risk Ψ2.

Lemma 3. The Bayes risk Ψ2 defined in (4.4) satisfies

Ψ2 ≤ √
α.

Proof. Recall the definition of the Gaussian distribution pθ,

pθ = N (mθ, Id×d/α) .

Let x be a sample from the Gaussian distribution pθ which has mean mθ and covariance
Id×d/α. The mean mθ has all components except the first to be equal to 0. Therefore let
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m̂ be an estimator that outputs the first coordinate of the sample it receives in the first
coordinate and 0 in all other coordinates. Then we have,

Ex [‖m̂(x) −mθ‖2] = Ex [|m̂1(x) −mθ1|]
(i)

≤
√
Ex [(m̂1(x) −mθ1)2]

(ii)
=

1√
α
, (B.5)

where (i) is by Jensen’s inequality and equality (ii) holds as the variance of the Gaussian
along the first coordinate is 1/α. Then, with this estimator in place

Ψ2 = inf
µ

1

|Θ|
∑

θ∈Θ

Ex∼pθ
[Et∼µx

[Lθ(t)]]
(i)
=

1

|Θ|
∑

θ∈Θ

Ex∼pθ
[min {α‖m̂(x) −mθ‖2, 1}]

≤ 1

|Θ|
∑

θ∈Θ

αEx∼pθ
[‖m̂(x) −mθ‖]

(ii)

≤ √
α,

where (i) follows by replacing the infimum over all estimator by our estimator and by
the definition of Lθ, and (ii) follows by invoking Inequality (B.5) established above. This
completes our proof.
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