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Abstract

Low-rank matrix estimation is a canonical problem that finds numerous applications in signal
processing, machine learning and imaging science. A popular approach in practice is to factorize
the matrix into two compact low-rank factors, and then optimize these factors directly via simple
iterative methods such as gradient descent and alternating minimization. Despite nonconvexity,
recent literatures have shown that these simple heuristics in fact achieve linear convergence when
initialized properly for a growing number of problems of interest. However, upon closer examination,
existing approaches can still be computationally expensive especially for ill-conditioned matrices:
the convergence rate of gradient descent depends linearly on the condition number of the low-
rank matrix, while the per-iteration cost of alternating minimization is often prohibitive for large
matrices.

The goal of this paper is to set forth a competitive algorithmic approach dubbed Scaled Gradient
Descent (ScaledGD) which can be viewed as preconditioned or diagonally-scaled gradient descent,
where the preconditioners are adaptive and iteration-varying with a minimal computational over-
head. With tailored variants for low-rank matrix sensing, robust principal component analysis
and matrix completion, we theoretically show that ScaledGD achieves the best of both worlds: it
converges linearly at a rate independent of the condition number of the low-rank matrix similar
as alternating minimization, while maintaining the low per-iteration cost of gradient descent. Our
analysis is also applicable to general loss functions that are restricted strongly convex and smooth
over low-rank matrices. To the best of our knowledge, ScaledGD is the first algorithm that provably
has such properties over a wide range of low-rank matrix estimation tasks. At the core of our anal-
ysis is the introduction of a new distance function that takes account of the preconditioners when
measuring the distance between the iterates and the ground truth. Finally, numerical examples
are provided to demonstrate the effectiveness of ScaledGD in accelerating the convergence rate of
ill-conditioned low-rank matrix estimation in a wide number of applications.
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1. Introduction

Low-rank matrix estimation plays a critical role in fields such as machine learning, signal processing,
imaging science, and many others. Broadly speaking, one aims to recover a rank-r matrix X, €
R™*™2 from a set of observations y = A(X,), where the operator A(-) models the measurement
process. It is natural to minimize the least-squares loss function subject to a rank constraint:

minimize f(X) = 3| A(X) —yl3 s.t. rank(X) <, (1)
X €R"1%n2
which is, however, computationally intractable in general due to the rank constraint. Moreover,
as the size of the matrix increases, the costs involved in optimizing over the full matrix space
(i.e. R™*™2) are prohibitive in terms of both memory and computation. To cope with these chal-
lenges, one popular approach is to parametrize X = LR by two low-rank factors L € R™*" and
R € R™*" that are more memory-efficient, and then to optimize over the factors instead:

minimize ~ £(L,R) == f(LR"). (2)
LeR™ X7 RER™2%7

Although this leads to a nonconvex optimization problem over the factors, recent breakthroughs
have shown that simple algorithms (e.g. gradient descent, alternating minimization), when properly
initialized (e.g. via the spectral method), can provably converge to the true low-rank factors under
mild statistical assumptions. These benign convergence guarantees hold for a growing number of
problems such as low-rank matrix sensing, matrix completion, robust principal component analysis
(robust PCA), phase synchronization, and so on.

However, upon closer examination, existing approaches such as gradient descent and alternating
minimization are still computationally expensive, especially for ill-conditioned matrices. Take low-
rank matrix sensing as an example: although the per-iteration cost is small, the iteration complexity
of gradient descent scales linearly with respect to the condition number of the low-rank matrix X,
Tu et al. (2016); on the other end, while the iteration complexity of alternating minimization Jain
et al. (2013) is independent of the condition number, each iteration requires inverting a linear
system whose size is proportional to the dimension of the matrix and thus the per-iteration cost
is prohibitive for large-scale problems. These together raise an important open question: can one
design an algorithm with a comparable per-iteration cost as gradient descent, but converges much
faster at a rate that is independent of the condition number as alternating minimization in a provable
manner for a wide variety of low-rank matriz estimation tasks?

1.1 Preconditioning helps: scaled gradient descent

In this paper, we answer this question affirmatively by studying the following scaled gradient descent
(ScaledGD) algorithm to optimize (2). Given an initialization (Lo, Rp), ScaledGD proceeds as follows

Lis1 = Ly — Vi L(Ly, Re)(R/ Ry) ™",

T (3)

Ry = R —nVRL(Ly, R)(Ly L),
where 17 > 0 is the step size and Vi L(Ly, R:) (resp. VRL(L¢, Ry)) is the gradient of the loss function
L with respect to the factor L; (resp. R;) at the t-th iteration. Comparing to vanilla gradient
descent, the search directions of the low-rank factors Ly, Ry in (3) are scaled by (R} R;)~™! and
(LtT Lt)_1 respectively. Intuitively, the scaling serves as a preconditioner as in quasi-Newton type
algorithms, with the hope of improving the quality of the search direction to allow larger step sizes.
Since the computation of the Hessian is extremely expensive, it is necessary to design preconditioners
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that are both theoretically sound and practically cheap to compute. Such requirements are met by
ScaledGD, where the preconditioners are computed by inverting two r x r matrices, whose size is
much smaller than the dimension of matrix factors. Therefore, each iteration of ScaledGD adds
minimal overhead to the gradient computation and has the order-wise same per-iteration cost as
gradient descent. Moreover, the preconditioners are adaptive and iteration-varying. Another key
property of ScaledGD is that it ensures the iterates are covariant with respect to the parameterization
of low-rank factors up to invertible transforms.

While ScaledGD and its alternating variants have been proposed in Mishra et al. (2012); Mishra
and Sepulchre (2016); Tanner and Wei (2016) for a subset of the problems we studied, none of these
prior art provides any theoretical validations to the empirical success. In this work, we confirm
theoretically that ScaledGD achieves linear convergence at a rate independent of the condition number
of the matrix when initialized properly, e.g. using the standard spectral method, for several canonical
problems: low-rank matrix sensing, robust PCA, and matrix completion. Table 1 summarizes the
performance guarantees of ScaledGD in terms of both statistical and computational complexities
with comparisons to prior algorithms using the vanilla gradient method.

e Low-rank matriz sensing. As long as the measurement operator satisfies the standard restricted
isometry property (RIP) with an RIP constant d9,. < 1/(y/7k), where k is the condition number
of X,, ScaledGD reaches e-accuracy in O(log(1/e)) iterations when initialized by the spectral
method. This strictly improves the iteration complexity O(xlog(1/€)) of gradient descent in Tu

et al. (2016) under the same sample complexity requirement.

e Robust PCA. Under the deterministic corruption model Chandrasekaran et al. (2011), as long
as the fraction a of corruptions per row / column satisfies o < 1/(ur®/?k), where p is the in-
coherence parameter of X, ScaledGD in conjunction with hard thresholding reaches e-accuracy
in O(log(1/¢)) iterations when initialized by the spectral method. This strictly improves the
iteration complexity of projected gradient descent Yi et al. (2016).

o Matriz completion. Under the random Bernoulli observation model, as long as the sample com-
plexity satisfies ninap > (uk? V log n)unr?k? with n = ny V na, ScaledGD in conjunction with a
properly designed projection operator reaches e-accuracy in O(log(1/€)) iterations when initial-
ized by the spectral method. This improves the iteration complexity of projected gradient descent
Zheng and Lafferty (2016) at the expense of requiring a larger sample size.

In addition, ScaledGD does not require any explicit regularizations that balance the norms of two
low-rank factors as required in Tu et al. (2016); Yi et al. (2016); Zheng and Lafferty (2016), and
removed the additional projection that maintains the incoherence properties in robust PCA Yi
et al. (2016), thus unveiling the implicit regularization property of ScaledGD. To the best of our
knowledge, this is the first factored gradient descent algorithm that achieves a fast convergence
rate that is independent of the condition number of the low-rank matrix at near-optimal sample
complexities without increasing the per-iteration computational cost. Our analysis is also applicable
to general loss functions that are restricted strongly convex and smooth over low-rank matrices.
At the core of our analysis, we introduce a new distance metric (i.e. Lyapunov function) that
accounts for the preconditioners, and carefully show the contraction of the ScaledGD iterates under
the new distance metric. We expect that the ScaledGD algorithm can accelerate the convergence
for other low-rank matrix estimation problems, as well as facilitate the design and analysis of
other quasi-Newton first-order algorithms. As a teaser, Figure 1 illustrates the relative error of
completing a 1000 x 1000 incoherent matrix of rank 10 with varying condition numbers from 20%
of its entries, using either ScaledGD or vanilla GD with spectral initialization. Even for moderately
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H Matrix sensing H Robust PCA H Matrix completion
Algorithms sample iteration corruption iteration sample iteration
& complexity | complexity fraction complexity complexity complexity
1
GD nrlk? klog % TR T klog % (1 V log n)unr?k? klog %
ScaledGD 1
(this paper) nrlK? log % TEler log % (ur? V log n)unr?k? log %

Table 1: Comparisons of ScaledGD with gradient descent (GD) when tailored to various problems
(with spectral initialization) Tu et al. (2016); Yi et al. (2016); Zheng and Lafferty (2016),
where they have comparable per-iteration costs. Here, we say that the output X of an
algorithm reaches e-accuracy, if it satisfies || X — X,||r < e0,(X,). Here, n :=ny Vng =
max{ni,ne}, k and p are the condition number and incoherence parameter of X,.

Relative error

—~-ScaledGD £ = 2

—-ScaledGD & = 50

VanillaGD = 10

—ScaledGD £ =10 |1

VanillaGD k=2 | ]

VanillaGD « = 50
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Figure 1: Performance of ScaledGD and vanilla GD for completing a 1000 x 1000 incoherent matrix
of rank 10 with different condition numbers k = 2, 10,50, where each entry is observed
independently with probability 0.2. Here, both methods are initialized via the spectral
method. It can be seen that ScaledGD converges much faster than vanilla GD even for
moderately large condition numbers.

ill-conditioned matrices, the convergence rate of vanilla GD slows down dramatically, while it is
evident that ScaledGD converges at a rate independent of the condition number and therefore is
much more efficient.

Remark 1 (ScaledGD for PSD matrices) When the low-rank matrixz of interest is positive semi-
definite (PSD), we factorize the matriz X € R™" as X = LL", with L € R™*". The update rule
of ScaledGD simplifies to

Lij1 = Ly — Vi L(L;) (L] L)™'

(4)

We focus on the asymmetric case since the analysis is more involved with two factors. Our theory
applies to the PSD case without loss of generality.
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1.2 Related work

Our work contributes to the growing literature of design and analysis of provable nonconvex op-
timization procedures for high-dimensional signal estimation; see e.g. Jain and Kar (2017); Chen
and Chi (2018); Chi et al. (2019) for recent overviews. A growing number of problems have been
demonstrated to possess benign geometry that is amenable for optimization Mei et al. (2018) either
globally or locally under appropriate statistical models. On one end, it is shown that there are no
spurious local minima in the optimization landscape of matrix sensing and completion Ge et al.
(2016); Bhojanapalli et al. (2016b); Park et al. (2017); Ge et al. (2017), phase retrieval Sun et al.
(2018); Davis et al. (2017), dictionary learning Sun et al. (2015), kernel PCA Chen and Li (2019)
and linear neural networks Baldi and Hornik (1989); Kawaguchi (2016). Such landscape analysis
facilitates the adoption of generic saddle-point escaping algorithms Nesterov and Polyak (2006); Ge
et al. (2015); Jin et al. (2017) to ensure global convergence. However, the resulting iteration com-
plexity is typically high. On the other end, local refinements with carefully-designed initializations
often admit fast convergence, for example in phase retrieval Candeés et al. (2015); Ma et al. (2019),
matrix sensing Jain et al. (2013); Zheng and Lafferty (2015); Wei et al. (2016), matrix completion
Sun and Luo (2016); Chen and Wainwright (2015); Ma et al. (2019); Chen et al. (2020a); Zheng
and Lafferty (2016); Chen et al. (2020b), blind deconvolution Li et al. (2019); Ma et al. (2019), and
robust PCA Netrapalli et al. (2014); Yi et al. (2016); Chen et al. (2020c), to name a few.

Existing approaches for asymmetric low-rank matrix estimation often require additional regu-
larization terms to balance the two factors, either in the form of 3||L"L — RT R||# Tu et al. (2016);
Park et al. (2017) or 3| L|# + 3| R||# Zhu et al. (2018); Chen et al. (2020b,c), which ease the
theoretical analysis but are often unnecessary for the practical success, as long as the initializa-
tion is balanced. Some recent work studies the unregularized gradient descent for low-rank matrix
factorization and sensing including Charisopoulos et al. (2021); Du et al. (2018); Ma et al. (2021).
However, the iteration complexity of all these approaches scales at least linearly with respect to the
condition number  of the low-rank matrix, e.g. O(xlog(1/e€)), to reach e-accuracy, therefore they
converge slowly when the underlying matrix becomes ill-conditioned. In contrast, ScaledGD enjoys
a local convergence rate of O(log(1/¢)), therefore incurring a much smaller computational footprint
when « is large. Last but not least, alternating minimization Jain et al. (2013); Hardt and Wootters
(2014) (which alternatively updates L; and R;) or singular value projection Netrapalli et al. (2014);
Jain et al. (2010) (which operates in the matrix space) also converge at the rate O(log(1/¢)), but
the per-iteration cost is much higher than ScaledGD. Another notable algorithm is the Riemannian
gradient descent algorithm in Wei et al. (2016), which also converges at the rate O(log(1/€)) under
the same sample complexity for low-rank matrix sensing, but requires a higher memory complexity
since it operates in the matrix space rather than the factor space.

From an algorithmic perspective, our approach is closely related to the alternating steepest
descent (ASD) method in Tanner and Wei (2016) for low-rank matrix completion, which performs
the proposed updates (3) for the low-rank factors in an alternating manner. Furthermore, the
scaled gradient updates were also introduced in Mishra et al. (2012); Mishra and Sepulchre (2016)
for low-rank matrix completion from the perspective of Riemannian optimization. However, none
of Tanner and Wei (2016); Mishra et al. (2012); Mishra and Sepulchre (2016) offered any statistical
nor computational guarantees for global convergence. Our analysis of ScaledGD can be viewed
as providing justifications to these precursors. Moreover, we have systematically extended the
framework of ScaledGD to work in a large number of low-rank matrix estimation tasks such as
robust PCA.
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1.3 Paper organization and notation

The rest of this paper is organized as follows. Section 2 describes the proposed ScaledGD method
and details its application to low-rank matrix sensing, robust PCA and matrix completion with
theoretical guarantees in terms of both statistical and computational complexities, highlighting the
role of a new distance metric. The convergence guarantee of ScaledGD under the general loss function
is also presented. In Section 3, we outline the proof for our main results. Section 4 illustrates the
excellent empirical performance of ScaledGD in a variety of low-rank matrix estimation problems.
Finally, we conclude in Section 5.

Before continuing, we introduce several notation used throughout the paper. First of all, we use
boldfaced symbols for vectors and matrices. For a vector v, we use ||v]|p to denote its ¢y counting
norm, and ||v||2 to denote the ¢3 norm. For any matrix A, we use 0;(A) to denote its i-th largest
singular value, and let A;. and A. ; denote its i-th row and j-th column, respectively. In addition,
| Allops |AllF, |Al1,005 ||All2,00, and ||A|loc stand for the spectral norm (i.e. the largest singular
value), the Frobenius norm, the ¢; o norm (i.e. the largest ¢; norm of the rows), the {3 o, norm
(i.e. the largest f9 norm of the rows), and the entrywise ¢, norm (the largest magnitude of all
entries) of a matrix A. We denote

Pr(A)= _ min A A} (5)
A:rank(A)<r

as the rank-r approximation of A, which is given by the top-r SVD of A by the Eckart-Young-
Mirsky theorem. We also use vec(A) to denote the vectorization of a matrix A. For matrices A, B
of the same size, we use (A, B) =3, A; ;B; j = tr(AT B) to denote their inner product. The set
of invertible matrices in R"™*" is denoted by GL(r). Let a V b = max{a, b} and a A b = min{a, b}.
Throughout, f(n) < g(n) or f(n) = O(g(n)) means |f(n)|/|g(n)] < C for some constant C' > 0
when n is sufficiently large; f(n) 2 g(n) means |f(n)|/|g(n)| > C for some constant C' > 0 when n
is sufficiently large. Last but not least, we use the terminology “with overwhelming probability” to
denote the event happens with probability at least 1 — cyn™“2, where ¢1,c2 > 0 are some universal
constants, whose values may vary from line to line.

2. Scaled Gradient Descent for Low-Rank Matrix Estimation

This section is devoted to introducing ScaledGD and establishing its statistical and computational
guarantees for various low-rank matrix estimation problems. Before we instantiate tailored versions
of ScaledGD on concrete low-rank matrix estimation problems, we first pause to provide more
insights of the update rule of ScaledGD, by connecting it to the quasi-Newton method. Note that
the update rule (3) for ScaledGD can be equivalently written in a vectorization form as

(RtTRt)fl ® I, 0
0 (L] L) ' ® I,,
= vec(Fy) — nH{l vec(VEL(F)), (6)

vec(Fiy1) = vec(F}) — [ ] vec(VpL(F}))

where we denote F; = [LtT , RJ]T e R(m+n2)xr and by @ the Kronecker product. Here, the block
diagonal matrix Hy is set to be

H, — [(RZ R;) ® I, 0 } '

0 (L L) ® I,

The form (6) makes it apparent that ScaledGD can be interpreted as a quasi-Newton algorithm,
where the inverse of H; can be cheaply computed through inverting two rank-r matrices.



ACCELERATING ILL-CONDITIONED LOW-RANK MATRIX ESTIMATION VIA SCALED GRADIENT DESCENT

2.1 Assumptions and error metric

Denote by U, X, V," the compact singular value decomposition (SVD) of the rank-r matrix X, €
R™>*72 - Here U, € R™*" and V, € R"™*" are composed of r left and right singular vectors,
respectively, and 3, € R"*" is a diagonal matrix consisting of r singular values of X, organized in
a non-increasing order, i.e. 01(Xy) > -+ > 0,(X,) > 0. Define

k= 01(Xy)/or(X) (7)

as the condition number of X,. Define the ground truth low-rank factors as

L,=UXY?  and R,=V,2Y2 (8)

so that X, = LR/ . Correspondingly, denote the stacked factor matrix as

L,

F, = [R*

] e R(mtn2)xr, (9)

Next, we are in need of a right metric to measure the performance of the ScaledGD iterates
F, = [L],R]]T. Obviously, the factored representation is not unique in that for any invertible
matrix @ € GL(r), one has LR" = (LQ)(RQ~")". Therefore, the reconstruction error metric
needs to take into account this identifiability issue. More importantly, we need a diagonal scaling in
the distance error metric to properly account for the effect of preconditioning. To provide intuition,
note that the update rule (3) can be viewed as finding the best local quadratic approximation of
L(+) in the following sense:

(Lt+1, Rt+1) = ar%rgin E(Lt, Rt) + <VL£(L15, Rt), L — Lt> + <VR£(L¢, Rt), R — Rt>

o <H<L ~ LR R)|| 4 ||(R - RO(E] LMHi) ,

where it is different from the common interpretation of gradient descent in the way the quadratic
approximation is taken by a scaled norm. When L; ~ L, and R; =~ R, are approaching the ground
truth, the additional scaling factors can be approximated by LtTLt ~ X, and RtT R; =~ ¥, leading
to the following error metric

TN [ ISA=TE t ECa ST SR

Correspondingly, we define the optimal alignment matrix @ between F' and F} as

Q = argmin H(LQ - L*)Ei/QHQ + H(RQ*T — R*)E}(/QHQ , (11)
QeGL(r) F F

whenever the minimum is achieved.! It turns out that for the ScaledGD iterates { F}}, the optimal
alignment matrices {Q;} always exist (at least when properly initialized) and hence are well-defined.
The design and analysis of this new distance metric are of crucial importance in obtaining the
improved rate of ScaledGD; see Appendix A.1 for a collection of its properties. In comparison, the
previously studied distance metrics (proposed mainly for GD) either do not include the diagonal
scaling Ma et al. (2021); Tu et al. (2016), or only consider the ambiguity class up to orthonormal
transforms Tu et al. (2016), which fail to unveil the benefit of ScaledGD.

1. If there are multiple minimizers, we can arbitrarily take one to be Q.



Tonag, Ma, CH1

2.2 Matrix sensing

Assume that we have collected a set of linear measurements about a rank-r matrix X, € R™1*"2,
given as

y = A(X,) €R™, (12)

where A(X) = {(Ag, X)}}2, : R"*"2 — R™ is the linear map modeling the measurement process.
The goal of low-rank matrix sensing is to recover X, from y, especially when the number of mea-
surements m < nine, by exploiting the low-rank property. This problem has wide applications in
medical imaging, signal processing, and data compression Candés and Plan (2011).

Algorithm. Writing X € R™*™ into a factored form X = LR, we consider the following
optimization problem:

1 2
minimize L(F) = - HA(LRT) - yH . (13)
FeR(n1+ng)xr 2 2

Here as before, F' denotes the stacked factor matrix [LT, RT]T. We suggest running ScaledGD (3)
with the spectral initialization to solve (13), which performs the top-r SVD on A*(y), where A*(-)
is the adjoint operator of A(-). The full algorithm is stated in Algorithm 1. The low-rank matrix
can be estimated as X7 = LTR; after running 7' iterations of ScaledGD.

Algorithm 1 ScaledGD for low-rank matrix sensing with spectral initialization
Spectral initialization: Let UpXoV,' be the top-r SVD of A*(y), and set

Lo=Ux)? and Ry=V,5? (14)

Scaled gradient updates: for t =0,1,2,...,7 — 1 do

Liyi = Ly — nA*(A(LiR]) — y)Ry(R/ Ry) ™,
Ri1=R;— UA*(A(LthT) - y)TLt(LtTLt)il-

Theoretical guarantees. To understand the performance of ScaledGD for low-rank matrix sens-
ing, we adopt a standard assumption on the sensing operator A(-), namely the Restricted Isometry
Property (RIP).

Definition 2 (RIP Recht et al. (2010)) The linear map A(-) is said to obey the rank-r RIP
with a constant 0, € [0,1), if for all matrices M € R™*"2 of rank at most r, one has

(1= o) IMIIE < A5 < (1+6,)||M]|z.

It is well-known that many measurement ensembles satisfy the RIP property Recht et al. (2010);
Candeés and Plan (2011). For example, if the entries of A;’s are composed of i.i.d. Gaussian entries
N(0,1/m), then the RIP is satisfied for a constant &, as long as m is on the order of (ny +mng)r/d2.
With the RIP condition in place, the following theorem demonstrates that ScaledGD converges
linearly — in terms of the new distance metric (cf. (10)) — at a constant rate as long as the sensing
operator A(-) has a sufficiently small RIP constant.
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Theorem 3 Suppose that A(-) obeys the 2r-RIP with 62, < 0.02/(\/rk). If the step size obeys
0 <n<2/3, then for all t > 0, the iterates of the ScaledGD method in Algorithm 1 satisfy

dist(Fy, F,) < (1 — 0.69)'0.10,(X,), and HLthT ~ X,

< (1 —0.61)"0.150,.(X,).

Theorem 3 establishes that the distance dist(F}, F}) contracts linearly at a constant rate, as long
as the sample size satisfies m = O(nr?x?) with Gaussian random measurements Recht et al. (2010),
where we recall that n = n; V ng. To reach e-accuracy, i.e. |L;R, — X,||F < €0(X,), ScaledGD
takes at most 7' = O(log(1/e)) iterations, which is independent of the condition number s of X,.
In comparison, alternating minimization with spectral initialization (AltMinSense) converges in
O(log(1/€)) iterations as long as m = O(nr3k*) Jain et al. (2013), where the per-iteration cost is
much higher.? On the other end, gradient descent with spectral initialization in Tu et al. (2016)
converges in O(r log(1/€)) iterations as long as m = O(nr?k?). Therefore, ScaledGD converges at
a much faster rate than GD at the same sample complexity while requiring a significantly lower
per-iteration cost than AltMinSense.

Remark 4 Tu et al. (2016) suggested that one can employ a more expensive initialization scheme,

e.g. performing multiple projected gradient descent steps over the low-rank matriz, to reduce the sam-

ple complexity. By seeding ScaledGD with the output of updates of the form X, 11 = P (X; — A*(A(X;) — y))
after Ty 2 log(y/Tk) iterations, where Py(-) is defined in (5), ScaledGD succeeds with the sample

size O(nr) which is information theoretically optimal.

2.3 Robust PCA

Assume that we have observed the data matrix
Y - X* + S*u

which is a superposition of a rank-r matrix X,, modeling the clean data, and a sparse matrix S,
modeling the corruption or outliers. The goal of robust PCA Candés et al. (2011); Chandrasekaran
et al. (2011) is to separate the two matrices X, and S, from their mixture Y. This problem finds
numerous applications in video surveillance, image processing, and so on.

Following Chandrasekaran et al. (2011); Netrapalli et al. (2014); Yi et al. (2016), we consider a
deterministic sparsity model for S, in which Sy contains at most a-fraction of nonzero entries per
row and column for some « € [0, 1), i.e. Sy € S,, where we denote

So = {8 e R"*"™ :||S; |lo < any for all 4, and ||S.;|jo < an; for all j}. (16)

Algorithm. Writing X € R™*™2 into the factored form X = LR, we consider the following
optimization problem:

1 2
minimize  L(F,S) = - HLRT TS YH . (17)
FER("1+"2)XT,SESQ 2 F

It is thus natural to alternatively update FF = [LT,R"]T and S, where F is updated via the
proposed ScaledGD algorithm, and S is updated by hard thresholding, which trims the small entries

2. The exact per-iteration complexity of AltMinSense depends on how the least-squares subproblems are solved with
m equations and nr unknowns; see (Luo et al., 2020, Table 1) for detailed comparisons.



Tonag, Ma, CH1

of the residual matrix Y — LR". More specifically, for some truncation level 0 < & < 1, we define
the sparsification operator that only keeps & fraction of largest entries in each row and column:

Aij, if |Alij > Al (any), and |Ali; > [AlGn,),

: ; (18)
0, otherwise

(TalAl)i; = {

where |Al; () (vesp. |A[() ;) denote the k-th largest element in magnitude in the i-th row (resp. j-th
column).

The ScaledGD algorithm with the spectral initialization for solving robust PCA is formally stated
in Algorithm 2. Note that, comparing with Yi et al. (2016), we do not require a balancing term
|LTL — RTR||% in the loss function (17), nor the projection of the low-rank factors onto the £s
ball in each iteration.

Algorithm 2 ScaledGD for robust PCA with spectral initialization
Spectral initialization: Let UyXoV,' be the top-r SVD of Y — 7,[Y], and set

Lo=Uyx)? and Ry= V52 (19)

Scaled gradient updates: for t =0,1,2,...,7 — 1 do
Si = TaalY — LR/,
Ly =Ly — (LR + S -~ Y)R(R/ R,)™", (20)
Riy1 =Ry —n(LiR/ +S, - Y) Ly(L/L;)".

Theoretical guarantee. Before stating our main result for robust PCA, we introduce the inco-
herence condition which is known to be crucial for reliable estimation of the low-rank matrix X, in
robust PCA Chen (2015).

Definition 5 (Incoherence) A rank-r matriz X, € R™*"2 with compact SVD as X, = U*E*V*T
is said to be p-incoherent if

T T
U200 < /LUl = /55, and [[Villaoe < /2 [ Valle = /2.
n1 ni ng n2

The following theorem establishes that ScaledGD converges linearly at a constant rate as long
as the fraction « of corruptions is sufficiently small.

Theorem 6 Suppose that X, is p-incoherent and that the corruption fraction a obeys o < ¢/ (/% k)
for some sufficiently small constant ¢ > 0. If the step size obeys 0.1 < n < 2/3, then for all t > 0,
the iterates of ScaledGD in Algorithm 2 satisfy

dist(F, F.) < (1 — 0.67)'0.020,(X,), and HLthT ~ X,

L < (1 —0.61)"0.030,.(X,).

Theorem 6 establishes that the distance dist(Fi, Fy) contracts linearly at a constant rate, as
long as the fraction of corruptions satisfies o < 1/(ur3/?k). To reach e-accuracy, ie. |[L;R; —
X,||F < €eor(X,), ScaledGD takes at most 7" = O(log(1/¢)) iterations, which is independent of

10
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k. In comparison, the AltProj algorithm® with spectral initialization converges in O(log(1/€))
iterations as long as o« < 1/(ur) Netrapalli et al. (2014), where the per-iteration cost is much higher
both in terms of computation and memory as it requires the computation of the low-rank SVD of
the full matrix. On the other hand, projected gradient descent with spectral initialization in Yi
et al. (2016) converges in O(xlog(1/e)) iterations as long as o < 1/(ur3/2x%/% / prk?). Therefore,
ScaledGD converges at a much faster rate than GD while requesting a significantly lower per-iteration
cost than Al1tProj. In addition, our theory suggests that ScaledGD maintains the incoherence and
balancedness of the low-rank factors without imposing explicit regularizations, which is not captured
in previous analysis Yi et al. (2016).

2.4 Matrix completion

Assume that we have observed a subset € of entries of X, given as Pq(X,), where Pq : R"*"2
R™ "2 ig a projection such that

X5, if(i,5) €Q

: (21)
0, otherwise

(Pa(X))ij = {

Here Q is generated according to the Bernoulli model in the sense that each (i,7) € Q independent
with probability p. The goal of matrix completion is to recover the matrix X, from its partial obser-
vation Pq(X,). This problem has many applications in recommendation systems, signal processing,
sensor network localization, and so on Candés and Recht (2009).

Algorithm. Again, writing X € R™*" into the factored form X = LR', we consider the
following optimization problem:

2
minimize L(F) = ;p HPQ(LRT - X (22)

FeR(n1+n2)xr

Similarly to robust PCA, the underlying low-rank matrix X, needs to be incoherent (cf. Definition 5)
to avoid ill-posedness. One typical strategy to ensure the incoherence condition is to perform
projection after the gradient update, by projecting the iterates to maintain small {9 o, norms of
the factor matrices. However, the standard projection operator Chen and Wainwright (2015) is not
covariant with respect to invertible transforms, and consequently, needs to be modified when using

scaled gradient updates. To that end, we introduce the following new projection operator: for every
ﬁ c R(n1+n2)><r — [iT,ﬁT]T,

Pp(F) = argmin
FcR(n1+ng)xr

s.t. \/771HL(1?2TR)1/2H2 v\/TTQHR(iTE)l/Q‘L <B

](L—i)(ﬁTé)l/2Hi+ H(R—é)(iTi)WHi’ o

which finds a factored matrix that is closest to F and stays incoherent in a weighted sense. Luckily,
the solution to the above scaled projection admits a simple closed-form solution, as stated below.

3. A1tProj employs a multi-stage strategy to remove the dependence on « in a, which we do not consider here. The
same strategy might also improve the dependence on x for ScaledGD, which we leave for future work.

11
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Proposition 7 The solution to (23) is given by

PB(ﬁ) = [L} , where L;.:=|1A # iiy., 1 <1< ny,
R \/TL1HLZ‘7.RTH2

R,., 1<j<

B
Rj’. = IN— R]"., S 7 S na.
Vn2||R;. LTl

Proof See Appendix E.1.1. [ ]

With the new projection operator in place, we propose the scaled projected gradient descent
(ScaledPGD) method with the spectral initialization for solving matrix completion, formally stated
in Algorithm 3.

Algorithm 3 ScaledPGD for matrix completion with spectral initialization
Spectral initialization: Let UyXoV,' be the top-r SVD of %PQ(X*), and set

Ly UpSy”
—p o 1. 25
[Ro] B( 128 ()

Scaled projected gradient updates: for t =0,1,2,...,7 — 1 do
L
=P . 26
|:Rt+1:| B ( ) ( )

Theoretical guarantee. Consider a random observation model, where each index (7, ) belongs
to the index set (2 independently with probability 0 < p < 1. The following theorem establishes that
ScaledPGD converges linearly at a constant rate as long as the number of observations is sufficiently
large.

L; — 1Po(LiR] — X,)Ry(R} R;)™"
Rt - Iﬂ),PQ(I/tR;r - X*)TLt(L;I—Lt)_l

Theorem 8 Suppose that X, is i-incoherent, and that p satisfies p > C(ur?Vlog(niVne))ur?s2/(niA
ng) for some sufficiently large constant C. Set the projection radius as B = Cp\/proi(Xy) for
some constant Cp > 1.02. If the step size obeys 0 < n < 2/3, then with probability at least
1 —ci(n1 Vna)~, for allt > 0, the iterates of ScaledPGD in (26) satisfy

dist(F, F.) < (1 — 0.67)'0.020,(X,), and HLthT ~ X,

< (1 —0.61)"0.030,.(X,).
Here c1,co > 0 are two universal constants.

Theorem 8 establishes that the distance dist(Fy, Fy) contracts linearly at a constant rate, as
long as the probability of observation satisfies p > (ux? Vv log(ni V no))ur?s2/(n1 Ang). To reach e-
accuracy, i.e. | LR} — X, ||F < e0(X,), ScaledPGD takes at most T = O(log(1/¢)) iterations, which
is independent of k. In comparison, projected gradient descent Zheng and Lafferty (2016) with spec-
tral initialization converges in O(klog(1/€)) iterations as long as p > (1 V log(ny V na))ur?sk?/(ny A
ng). Therefore, ScaledPGD achieves much faster convergence than its unscaled counterpart, at an
expense of higher sample complexity. We believe this higher sample complexity is an artifact of our
proof techniques, as numerically we do not observe a degradation in terms of sample complexity.

12
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2.5 Optimizing general loss functions

Last but not least, we generalize our analysis of ScaledGD to minimize a general loss function in
the form of (2), where the update rule of ScaledGD is given by

Ly =L —nVf(L:R])R(R] R))™",

_ (27)
Riy1 =R, —nVf(L;R]) " Ly(L] L)™'

Two important properties of the loss function f : R™*"2 — R play a key role in the analysis.

Definition 9 (Restricted smoothness) A differentiable function f : R™*"2 +— R is said to be
rank-r restricted L-smooth for some L > 0 if

F(Xa) < FO0) + (VA(X0), X = Xa) + 2 |1 X — X,

for any X1, Xo € R™*™2 with rank at most r.

Definition 10 (Restricted strong convexity) A differentiable function f : R™*"2 — R is said
to be rank-r restricted p-strongly convex for some p > 0 if

F(X2) 2 f(X0) + (VF(X0), X2 = X0) + 5| Xa = X012

for any X1, Xo € R™*™2 with rank at most r. When p =0, we simply say f(-) is rank-r restricted
convez.

Further, when p > 0, define the condition number of the loss function f(-) over rank-r matrices as

kf=L/p. (28)

Encouragingly, many problems can be viewed as a special case of optimizing this general loss (27),
including but not limited to:

e low-rank matriz factorization, where the loss function f(X) = || X — X,||? in (29) satisfies

kp=1;

e low-rank matriz sensing, where the loss function f(X) = (| A(X — X,)|13 in (13) satisfies s ~ 1
when A(-) obeys the rank-r RIP with a sufficiently small RIP constant;

e quadratic sampling, where the loss function f(X) = 33", [(a;a], X — X,)|? satisfies restricted
strong convexity and smoothness when a;’s are i.i.d. Gaussian vectors for sufficiently large m
Sanghavi et al. (2017); Li et al. (2021);

e exponential-family PCA, where the loss function f(X) = — 3, ;log p(Y; ;| X; ;), where p(Y; ;| X ;)
is the probability density function of Y;; conditional on Xj ;, following an exponential-family
distribution such as Bernoulli and Poisson distributions. The resulting loss function satisfies
restricted strong convexity and smoothness with a condition number xy > 1 depending on the
property of the specific distribution Gunasekar et al. (2014); Lafond (2015).

Indeed, the treatment of a general loss function brings the condition number of f(-) under the
spotlight, since in our earlier case studies xy ~ 1. Our purpose is thus to understand the interplay
of two types of conditioning numbers in the convergence of first-order methods. For simplicity,
we assume that f(-) is minimized at the ground truth rank-r matrix X,.* The following theorem
establishes that as long as properly initialized, then ScaledGD converges linearly at a constant rate.

4. In practice, due to the presence of statistical noise, the minimizer of f(-) might be only approximately low-rank,
to which our analysis can be extended in a straightforward fashion.
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Theorem 11 Suppose that f(-) is rank-2r restricted L-smooth and p-strongly convez, of which X,
is a minimizer, and that the initialization Fy satisfies dist(Fo, Fy) < 0.10,(X,)/\/Rf. If the step
size obeys 0 < n < 0.4/L, then for all t > 0, the iterates of ScaledGD in (27) satisfy

< (1 —0.79p)"0.150,(X.)/\/RF.

Theorem 11 establishes that the distance dist(F}, F}) contracts linearly at a constant rate, as long
as the initialization Fy is sufficiently close to F,. To reach e-accuracy, i.e. | L; R} — X,||f < e0,.(X,),
ScaledGD takes at most T' = O(k s log(1/€)) iterations, which depends only on the condition number
Ky of f(-), but is independent of the condition number x of the matrix X,. In contrast, prior theory
of vanilla gradient descent Park et al. (2018); Bhojanapalli et al. (2016a) requires O(x ¢k log(1/€))
iterations, which is worse than our rate by a factor of k.

dist(Fy, F,) < (1 —0.7q)'0.10,.(X,) / /R, and || L;R] — X,

3. Proof Sketch

In this section, we sketch the proof of the main theorems, highlighting the role of the scaled distance
metric (cf. (10)) in these analyses.

3.1 A warm-up analysis: matrix factorization

Let us consider the problem of factorizing a matrix X, into two low-rank factors:

1 2
minimize L(F) = - HLRT ~ X, (29)
FeR(n1+n2)xr 2 F
For this toy problem, the update rule of ScaledGD is given as
Ly =L — (LR} — X,)Ri(R{ R)) ™", (30)

Riy =R, —n(LR] — X,) L (L] L)~ ".

To shed light on why ScaledGD is robust to ill-conditioning, it is worthwhile to think of ScaledGD
as a quasi-Newton algorithm: the following proposition (proven in Appendix B.1) reveals that
ScaledGD is equivalent to approximating the Hessian of the loss function in (29) by only keeping its
diagonal blocks.

Proposition 12 For the matriz factorization problem (29), ScaledGD is equivalent to the following
update rule
-1

V3 LL(F) 0 vec(VrL(F)).

0 Vi rL(F)
Here, ViLﬁ(Ft) (resp. VéRE(Ft)) denotes the second order derivative w.r.t. L (resp. R) at Fy.

vec(Fiy1) = vec(Fy) — n

The following theorem, whose proof can be found in Appendix B.2, formally establishes that
as long as ScaledGD is initialized close to the ground truth, dist(F}, F}) will contract at a constant
linear rate for the matrix factorization problem.

Theorem 13 Suppose that the initialization Fy satisfies dist(Fy, Fy) < 0.10,(Xy). If the step size
obeys 0 < n < 2/3, then for all t > 0, the iterates of the ScaledGD method in (30) satisfy

dist(Fy, F,) < (1 — 0.79)10.10,(X,), and HLthT _X,

< (1 —0.70)'0.150,.(X,).

Comparing to the rate of contraction (1 — 1/k) of gradient descent for matrix factorization Ma
et al. (2021); Chi et al. (2019), Theorem 13 demonstrates that the preconditioners indeed allow better
search directions in the local neighborhood of the ground truth, and hence a faster convergence rate.
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3.2 Proof outline for matrix sensing

It can be seen that the update rule (15) of ScaledGD in Algorithm 1 closely mimics (30) when
A(-) satisfies the RIP. Therefore, leveraging the RIP of A(-) and Theorem 13, we can establish the
following local convergence guarantee of Algorithm 1, which has a weaker requirement on o, than
the main theorem (cf. Theorem 3).

Lemma 14 Suppose that A(-) obeys the 2r-RIP with 63, < 0.02. If the t-th iterate satisfies
dist(F;, F,) < 0.10,(X,), then |L;R] — X.||[r < 1.5dist(F}, F\). In addition, if the step size
obeys 0 < n < 2/3, then the (t + 1)-th iterate Fy11 of the ScaledGD method in (15) of Algorithm 1
satisfies

diSt(E+1, F*) S (1 — 0677) diSt(Ft, F*)

It then boils to down to finding a good initialization, for which we have the following lemma on
the quality of the spectral initialization.

Lemma 15 Suppose that A(-) obeys the 2r-RIP with a constant do,. Then the spectral initialization
in (14) for low-rank matriz sensing satisfies

diSt(F(], F*) S 552r\/7>“/€(TT(X*).

Therefore, as long as ds, is small enough, say d2, < 0.02/(y/rk) as specified in Theorem 3, the initial
distance satisfies dist(Fp, Fy) < 0.10,(X,), allowing us to invoke Lemma 14 recursively. The proof
of Theorem 3 is then complete. The proofs of Lemmas 14-15 can be found in Appendix C.

3.3 Proof outline for robust PCA

As before, we begin with the following local convergence guarantee of Algorithm 2, which has a
weaker requirement on « than the main theorem (cf. Theorem 6). The difference with low-rank
matrix sensing is that local convergence for robust PCA requires a further incoherence condition on
the iterates (cf. (31)), where we recall from (11) that Q; is the optimal alignment matrix between
F, and F,.

Lemma 16 Suppose that X, is p-incoherent and o < 107%/(ur). If the t-th iterate satisfies
dist(Fy, Fy) < 0.020,(X,) and the incoherence condition
Vit ||(LeQi = Lom| v v |(RQrT - RISV < vimon(X.), (31)
then |LiR; — X, ||f < 1.5dist(Fy, F,). In addition, if the step size obeys 0.1 < n < 2/3, then the
(t + 1)-th iterate Fyy1 of the ScaledGD method in (20) of Algorithm 2 satisfies
dist(Fyy1, F.) < (1 — 0.61) dist(F}, F,),
and the incoherence condition

Vi H(LtJrthJrl — L*)EipHQ’OO V/n2 ‘)(Rt+1Q;+T1 - R*)Ei/QHZOO < Vpro(Xy).

As long as the initialization is close to the ground truth and satisfies the incoherence condition,
Lemma 16 ensures that the iterates of ScaledGD remain incoherent and converge linearly. This
allows us to remove the unnecessary projection step in Yi et al. (2016), whose main objective is to
ensure the incoherence of the iterates.

We are left with checking the initial conditions. The following lemma ensures that the spectral
initialization in (19) is close to the ground truth as long as « is sufficiently small.
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Lemma 17 Suppose that X, is p-incoherent. Then the spectral initialization (19) for robust PCA
satisfies

dist(Fy, F) < 200 ?ko,(X,).

As a result, setting o < 1073/(ur3/%k), the spectral initialization satisfies dist(Fp, Fy) <
0.020,(X,). In addition, we need to make sure that the spectral initialization satisfies the in-
coherence condition, which is provided in the following lemma.

Lemma 18 Suppose that X, is p-incoherent and o < 0.1/(urk), and that dist(Fy, Fy) < 0.020,(X,).
Then the spectral initialization (19) satisfies the incoherence condition

Vi ||(Zo@o — L= vy |[(Re@pT - ROEY | < vime ().

Combining Lemmas 16-18 finishes the proof of Theorem 6. The proofs of the the three supporting
lemmas can be found in Section D.
3.4 Proof outline for matrix completion

A key property of the new projection operator. We start with the following lemma that
entails a key property of the scaled projection (24), which ensures the scaled projection satisfies
both non-expansiveness and incoherence under the scaled metric.

Lemma 19 Suppose that X is p-incoherent, and dist(F, F,) < e0.(X,) for some ¢ < 1. Set
B > (1+¢)/uroi1(X,), then Pp(F) satisfies the non-expansiveness

dist(Pg(F), F,) < dist(F, F,),
and the incoherence condition
VIL||LR||2.00 V /2| RL ||2,00 < B.

It is worth noting that the incoherence condition adopts a slightly different form than that of
robust PCA, which is more convenient for matrix completion. The next lemma guarantees the fast
local convergence of Algorithm 3 as long as the sample complexity is large enough and the parameter
B is set properly.

Lemma 20 Suppose that X, is p-incoherent, and p > C(urx* V log(ny V no))ur/(ni A na) for
some sufficiently large constant C. Set the projection radius as B = Cp./uro1(Xy) for some
constant Cp > 1.02. Under an event €& which happens with overwhelming probability (i.e. at least
1 — c1(n1 V ng)=%), if the t-th iterate satisfies dist(Fy, Fy) < 0.020,(X,), and the incoherence
condition

VL LR ||2.00 V /1| Re Ly ||2,00 < B,

then |LyR] — X,||r < 1.5dist(Fy, Fy). In addition, if the step size obeys 0 < n < 2/3, then the
(t 4+ 1)-th iterate Fy11 of the ScaledPGD method in (26) of Algorithm 3 satisfies

dist(Fiy1, Fy) < (1 — 0.6n) dist(F3, Fy),
and the incoherence condition

VATl L R ||2,00 V /2| Res1 L 2,00 < B
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As long as we can find an initialization that is close to the ground truth and satisfies the incoherence
condition, Lemma 20 ensures that the iterates of ScaledPGD remain incoherent and converge linearly.
The follow lemma ensures that such an initialization can be ensured via the spectral method.

Lemma 21 Suppose that X, is p-incoherent, then with overwhelming probability, the spectral ini-

U,z

Voxi/?

tialization before projection Fy := in (25) satisfies

L~ urlog(ng V ng) prlog(ny V na)
dist(Fy, Fy) < Cy + 5vreo(X,).
(Fo, F) py/ing p(n1 Any) )
Therefore, as long as p > Cur?s?log(n1 V n2)/(n1 A ng) for some sufficiently large constant C, the
initial distance satisfies dist(Fp, Fx) < 0.020,(X,). One can then invoke Lemma 19 to see that
Fy = Pp(Fy) meets the requirements of Lemma 20 due to the non-expansiveness and incoherence
properties of the projection operator. The proofs of the the the supporting lemmas can be found in
Section E.

4. Numerical Experiments

In this section, we provide numerical experiments to corroborate our theoretical findings, with the
codes available at

https://github.com/Titan-Tong/ScaledGD.

The simulations are performed in Matlab with a 3.6 GHz Intel Xeon Gold 6244 CPU.

4.1 Comparison with vanilla GD

To begin, we compare the iteration complexity of ScaledGD with vanilla gradient descent (GD).
The update rule of vanilla GD for solving (2) is given as

Lty = Ly — nepViL(Lt, Ry),

(32)
Rii1 = R — nooVRL(L:, Ry),

where ngp = 1n/01(Xy) stands for the step size for gradient descent. This choice is often recom-
mended by the theory of vanilla GD Tu et al. (2016); Yi et al. (2016); Ma et al. (2019) and the
scaling by o1(X,) is needed for its convergence. For ease of comparison, we fix n = 0.5 for both
ScaledGD and vanilla GD (see Figure 4 for justifications). Both algorithms start from the same
spectral initialization. To avoid notational clutter, we work on square asymmetric matrices with
n1 = ng = n. We consider four low-rank matrix estimation tasks:

e Low-rank matriz sensing. The problem formulation is detailed in Section 2.2. Here, we collect
m = bnr measurements in the form of yr = (Ay, X,)+wyg, in which the measurement matrices Ay
are generated with i.i.d. Gaussian entries with zero mean and variance 1/m, and wy ~ N(0,02)
are i.i.d. Gaussian noises.

e Robust PCA. The problem formulation is stated in Section 2.3. We generate the corruption with
a sparse matrix S, € S, with a = 0.1. More specifically, we generate a matrix with standard
Gaussian entries and pass it through 7,[-] to obtain S,. The observation is Y = X, + S, + W,
where W, j ~ N(0,02) are i.i.d. Gaussian noises.
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Figure 2: The relative errors of ScaledGD and vanilla GD with respect to the iteration count under
different condition numbers x = 1,5,10,20 for (a) matrix sensing, (b) robust PCA, (c)
matrix completion, and (d) Hankel matrix completion.

e Matriz completion. The problem formulation is stated in Section 2.4. We assume random
Bernoulli observations, where each entry of X, is observed with probability p = 0.2 indepen-
dently. The observation is Y = Pq(X, + W), where W, ; ~ N(0,02)) are i.i.d. Gaussian noises.
Moreover, we perform the scaled gradient updates without projections.

e Hankel matriz completion. Briefly speaking, a Hankel matrix shares the same value along each
skew-diagonal, and we aim at recovering a low-rank Hankel matrix from observing a few skew-
diagonals Chen and Chi (2014); Cai et al. (2018). We assume random Bernoulli observations,
where each skew-diagonal of X, is observed with probability p = 0.2 independently. The loss
function is

L(LR) = ;p [Ha(rT - Y)Hi + % |- ”H)(LRT)Hi , (33)

where Z(-) denotes the identity operator, and the Hankel projection is defined as H(X) =

zi?(Hk,X)Hk, which maps X to its closest Hankel matrix. Here, the Hankel basis ma-

18



ACCELERATING ILL-CONDITIONED LOW-RANK MATRIX ESTIMATION

—-ScaledGD SNR = 40dB
——ScaledGD SNR = 60dB
—+ScaledGD SNR = 80dB
VanillaGD SNR = 40dB
VanillaGD SNR = 60dB
VanillaGD SNR = 80dB

VIA

SCALED GRADIENT DESCENT

—-ScaledGD SNR = 40dB
——ScaledGD SNR = 60dB
—-ScaledGD SNR = 80dB
VanillaGD SNR = 40dB
VanillaGD SNR = 60dB

- = VanillaGD SNR = 80dB
g E e
5] 5]
o o |
2 >
kS k]
¢10? E K

10 E ]

105 . . . . . |

100 200 300 400 500

Iteration count

(a) Matrix Sensing
n = 200,r = 10,m = 5nr

600

Relative error

—ScaledGD SNR — 40dB
——ScaledGD SNR = 60dB
—~ScaledGD SNR — 80dB

VanillaGD SNR = 60dB
VanillaGD SNR = 80dB

VanillaGD SNR = 40dB|}

50 100 150 200 250 300

Iteration count

(c¢) Matrix completion
n = 1000, = 10,p = 0.2

Relative error

Iteration count

(b) Robust PCA
n = 1000, = 10, = 0.1

100 150 200 250 300

—=—ScaledGD SNR = 40dB
——ScaledGD SNR = 60dB
—#-ScaledGD SNR = 80dB
VanillaGD SNR = 40dB
VanillaGD SNR = 60dB
VanillaGD SNR = 80dB

50 100 150 200 250 300 350 400 450

Iteration count

(d) Hankel matrix completion
n = 1000, = 10,p = 0.2

Figure 3: The relative errors of ScaledGD and vanilla GD with respect to the iteration count under
the condition number x = 10 and signal-to-noise ratios SNR = 40, 60, 80dB for (a) matrix
sensing, (b) robust PCA, (¢) matrix completion, and (d) Hankel matrix completion.

trix Hj, is the n X n matrix with the entries in the k-th skew diagonal as %, and all other
entries as 0, where wy, is the length of the k-th skew diagonal. Note that X is a Hankel matrix
if and only if (Z — H)(X) = 0. The Hankel projection on the observation index set €2 is defined
as Hao(X) = > pcq(Hy, X)Hy. The observation is Y = Hqo (X, + W), where W is a Hankel
matrix whose entries along each skew-diagonal are i.i.d. Gaussian noises A/(0,02).

For the first three problems, we generate the ground truth matrix X, € R™" in the following
way. We first generate an n x r matrix with i.i.d. random signs, and take its 7 left singular vectors
as Uy, and similarly for V,. The singular values are set to be linearly distributed from 1 to 1/k.
The ground truth is then defined as X, = U,kZJ*V,:r which has the specified condition number s
and rank r. For Hankel matrix completion, we generate X, as an n x n Hankel matrix with entries
given as

r

(XJig = Y ™20 =1, o,
/=1
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where fy, £ = 1,...,r are randomly chosen from 1/n,2/n,..., 1, and o, are linearly distributed from
1 to 1/k. The Vandermonde decomposition lemma tells that X, has rank r and singular values oy,
(=1,...,r.

We first illustrate the convergence performance under noise-free observations, i.e. o, = 0. We
plot the relative reconstruction error || X; — X,||r/|| Xx||r with respect to the iteration count ¢ in
Figure 2 for the four problems under different condition numbers k = 1,5,10,20. For all these
models, we can see that ScaledGD has a convergence rate independent of , with all curves almost
overlay on each other. Under good conditioning x = 1, ScaledGD converges at the same rate as
vanilla GD; under ill conditioning, i.e. when « is large, ScaledGD converges much faster than vanilla
GD and leads to significant computational savings.

We next move to demonstrate that ScaledGD is robust to small additive noises. Denote the
signal-to-noise ratio as SNR := 10log;, lfg;gF in dB. We plot the reconstruction error || X; —
X, |[e/|| X« |lF with respect to the iteration count ¢ in Figure 3 under the condition number x = 10
and various SNR = 40, 60,80dB. We can see that ScaledGD and vanilla GD achieve the same sta-
tistical error eventually, but ScaledGD converges much faster. In addition, the convergence speeds

are not influenced by the noise levels.

Careful readers might wonder how sensitivity our comparisons are with respect to the choice of
step sizes. To address this, we illustrate the convergence speeds of both ScaledGD and vanilla GD
under different step sizes n for matrix completion (under the same setting as Figure 2 (c)), where
similar plots can be obtained for other problems as well. We run both algorithms for at most 80
iterations, and terminate if the relative error exceeds 10? (which happens if the step size is too large
and the algorithm diverges). Figure 4 plots the relative error with respect to the step size n for both
algorithms, where we can see that ScaledGD outperforms vanilla GD over a large range of step sizes,
even under optimized values for performance. Hence, our choice of n = 0.5 in previous experiments
renders a typical comparison between ScaledGD and vanilla GD.

100,

10-5 L

-=ScaledGD k =1
—-ScaledGD k =5
||#ScaledGD & = 10
-5-ScaledGD & = 20
VanillaGD £ =1 [%
VanillaGD k=5
VanillaGD « = 10
10715 H-5- VanillaGD & = 20

Relative error

10-10

01 02 03 04 05 06 07 08 09 1 1.1 12
n

Figure 4: The relative errors of ScaledGD and vanilla GD after 80 iterations with respect to different
step sizes i) from 0.1 to 1.2, for matrix completion with n = 1000, = 10,p = 0.2.

4.2 Run time comparisons

We now compare the run time of ScaledGD with vanilla GD and alternating minimization (A1tMin)
Jain et al. (2013). Specifically, for matrix sensing, alternating minimization (AltMinSense) updates
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Figure 5: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers x = 1, 5, 20 for matrix
sensing with n = 200, and m = 5nr. (a, b): r = 10; (c, d): r = 20.

the factors alternatively as
- 2
L;. 1 = argmin H.A(LRt ) — yHQ,
L
R, = argmin HA(Lt+1R ) — yHZ,
R

which corresponds to solving two least-squares problems. For matrix completion, the update rule
of alternating minimization proceeds as

2
L;; = argmin HPQ(LR: - Y)H2,
L
2

R, = argmin HPQ(Lt+1RT - Y)H2’
R

which can be implemented more efficiently since each row of L (resp. R) can be updated indepen-
dently via solving a much smaller least-squares problem due to the decomposable structure of the
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Figure 6: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers x = 1, 5, 20 for matrix
completion with n = 1000, and p = 0.2. (a, b): r = 10; (¢, d): r = 50.

objective function. It is worth noting that, to the best of our knowledge, this most natural variant
of alternating minimization for matrix completion still eludes from a provable performance guar-
antee, nonetheless, we choose it to compare against due to its popularity and excellent empirical
performance.

Figure 5 plots the relative errors of ScaledGD, vanilla GD and alternating minimization (A1tMin)
with respect to the iteration count and run time (in seconds) under different condition numbers
k = 1,5,20; and similarly, Figure 6 plots the corresponding results for matrix completion. It can be
seen that, both ScaledGD and AltMin admit a convergence rate that is independent of the condition
number, where the per-iteration complexity of AltMin is much higher than that of ScaledGD. As
expected, the run time of ScaledGD only adds a minimal overhead to vanilla GD while being
much more robust to ill-conditioning. Noteworthily, A1tMin takes much more time and becomes
significantly slower than ScaledGD when the rank r is larger. Nonetheless, we emphasize that since
the run time is impacted by many factors in terms of problem parameters as well as implementation
details, our purpose is to demonstrate the competitive performance of ScaledGD over alternatives,
rather than claiming it as the state-of-the-art.
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5. Conclusions

This paper proposes scaled gradient descent (ScaledGD) for factored low-rank matrix estimation,
which maintains the low per-iteration computational complexity of vanilla gradient descent, but
offers significant speed-up in terms of the convergence rate with respect to the condition number
% of the low-rank matrix. In particular, we rigorously establish that for low-rank matrix sensing,
robust PCA, and matrix completion, to reach e-accuracy, ScaledGD only takes O(log(1/¢)) iterations
without the dependency on the condition number when initialized via the spectral method, under
standard assumptions. The key to our analysis is the introduction of a new distance metric that
takes into account the preconditioning and unbalancedness of the low-rank factors, and we have
developed new tools to analyze the trajectory of ScaledGD under this new metric. This work opens
up many venues for future research, as we discuss below.

o Improved analysis. In this paper, we have focused on establishing the fast local convergence
rate. It is interesting to study if the theory developed herein can be further strengthened in
terms of sample complexity and the size of basin of attraction. For matrix completion, it will be
interesting to see if a similar guarantee continues to hold in the absence of the projection, which
will generalize recent works Ma et al. (2019); Chen et al. (2020a) that successfully removed these
projections for vanilla gradient descent.

e Other low-rank recovery problems. Besides the problems studied herein, there are many other
applications involving the recovery of an ill-conditioned low-rank matrix, such as robust PCA
with missing data, quadratic sampling, and so on. It is of interest to establish fast convergence
rates of ScaledGD that are independent of the condition number for these problems as well. In
addition, it is worthwhile to explore if a similar preconditioning trick can be useful to problems
beyond low-rank matrix estimation. One recent attempt is to generalize ScaledGD for low-rank
tensor estimation Tong et al. (2021b).

o Acceleration schemes? As it is evident from our analysis of the general loss case, ScaledGD may
still converge slowly when the loss function is ill-conditioned over low-rank matrices, i.e. ky is
large. In this case, it might be of interest to combine techniques such as momentum Kyrillidis
and Cevher (2012) from the optimization literature to further accelerate the convergence. In our
companion paper Tong et al. (2021a), we have extended ScaledGD to nonsmooth formulations,
which possess better curvatures than their smooth counterparts for certain problems.
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Appendix A. Technical Lemmas

This section gathers several useful lemmas that will be used in the appendix. Throughout all lemmas,
we use X, to denote the ground truth low-rank matrix, with its compact SVD as X, = U*E*VJ,

1/2
and the stacked factor matrix is defined as F, = L, = U*Ef 9 |-
R, vz
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A.1 New distance metric

We begin with the investigation of the new distance metric (10), where the matrix @ that attains
the infimum, if exists, is called the optimal alignment matrix between F' and Fy; see (11). Notice
that (10) involves a minimization problem over an open set (the set of invertible matrices). Hence
the minimizer, i.e. the optimal alignment matrix between F' and Fj is not guaranteed to be attained.
Fortunately, a simple sufficient condition guarantees the existence of the minimizer; see the lemma
below.

Lemma 22 Fix any factor matriz F = [ILZ} e Rm+m2)X7 - Suppose that

dist(F, F,) = \/ mf (2@ - L) z:i/ZHi +|(RQT - R.) WH <on(X.),  (34)

QeGL(r)

then the minimizer of the above minimization problem is attained at some Q € GL(r), i.e. the
optimal alignment matriz Q between F and F, exists.

Proof In view of the condition (34) and the definition of infimum, one knows that there must exist
a matrix Q € GL(r) such that

_ 2 _
\/H(LQ—L*) =+ |(rQ T - R B H < eor(X),
for some € obeying 0 < € < 1. It further implies that

<e.

|(z@ L=
op

R RAE

Invoke Weyl's inequality |0, (A) — 0,(B)| < ||A — Bllop, and use that o,(L, 5, /%) = o,.(U,) = 1
to obtain

o (LQE?) > o0 (L, 2% — H (LQ-L)= VY >1-e (35)
op
In addition, it is straightforward to verify that
2 2

wf ) [Q-zom| 1| (R - ) =

QeGL(r) (LQ ) - (RQ R*) F (36)
2 2

— inf H LQH - L 21/2H H RQ"H T -R 21/2H . 37
HeGL(r) (LQ «) 2 Pt ( Q *) *lF (37)

Indeed, if the minimizer of the second optimization problem (cf. (37)) is attained at some H, then
QH must be the minimizer of the first problem (36). Therefore, from now on, we focus on proving
that the minimizer of the second problem (37) is attained at some H. In view of (36) and (37), one
has

el [(BQH L) 2|+ | (RQTHT - R 5,

o S (LR
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Clearly, for any QH to yield a smaller distance than @, H must obey

9 1/2|)? -TH-T 17212
(LQH — L*) W . + (RQ H-" — R*) I . < eop(Xy).
It further implies that

<e
op

(LQH - L) ="

(et w5

Invoke Weyl’s inequality |o1(A) — 01(B)| < ||A — B||op, and use that al(L*Efl/z) =01(U,) =1
to obtain

A(LQHS,'?) < oy (L.3: ) +||(LQH - L) =1

<l+e (38)
op

Combine (35) and (38), and use the relation o,(A)o;(B) < 01(AB) to obtain

0 (LQE, )0 (S HE, %) < 0/ (LQHE, %) < 0, (LQE. ).

<i
-1

As a result, one has Ul(Ei/QHE*_l/Q) < %i—e

€
Similarly, one can show that 01(21/2H_TZ:1/2) < %—fi, equivalently, UT(Z,{/QHZ:UQ) > %T:
Combining the above two arguments reveals that the minimization problem (37) is equivalent to

the constrained problem:

e [[(0QH - L)+ (RQTHT - R) B

1-— _
. <o (S HEN) <oy (2 HE
€

s.t.

Notice that this is a continuous optimization problem over a compact set. Apply the Weierstrass
extreme value theorem to finish the proof. |

With the existence of the optimal alignment matrix in place, the following lemma provides the
first-order necessary condition for the minimizer.

L

Lemma 23 For any factor matric F = [R

] e Rm+n2)xr - sunnose that the optimal alignment

matrix

Q= i (2@ LSV + (R R
QeGL(r) F ]

between F' and Fy exists, then Q obeys
(LQ)"(LQ - L), =%, (RQ™" —R,)"RQ™". (39)

Proof Expand the squares in the definition of @ to obtain

Q = argmin tr ((LQ ~ L) (LQ - L*)E*) Ftr ((RQ—T ~R)(RQ " - &)2*) .
QeGL(r)
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Clearly, the first order necessary condition (i.e. the gradient is zero) yields
SL"(LQ-L,)%, —-2Q "2, (RQ™ " -R,)"RQ " =0,

which implies the optimal alignment criterion (39). |

Last but not least, we connect the newly proposed distance to the usual Frobenius norm in
Lemma 24, the proof of which is a slight modification to (Tu et al., 2016, Lemma 5.4) and (Ge
et al., 2017, Lemma 41).

IL%] e Rmtn2)xr ype distance between F and F. satisfies

Lemma 24 For any factor matriz F = {

1/2
dist(F, F,) < (\/§+ 1) ILRT — X,

Proof Suppose that X := LR has compact SVD as X = UXV ". Without loss of generality, we

1/2
can assume that F' = [ggl /2} , since any factorization of LR yields the same distance. Introduce
B 1/2 B 1/2
two auxiliary matrices F' = [_2/221 /2] and F, = U‘,;Zgl 2| Apply the dilation trick to obtain
TV
2 [)?T )0(] =FF' —FF'", 2 [)?T )ﬂ —F.F' —FF.
*

As a result, the squared Frobenius norm of X — X, is given by

_ _ _ o _ 2
8| X — X, |2 = HFFT ~FF' - F.F] +FF|

2 _ _ 2 _ _
- HFFT -FF]| + HFFT -EF]| -2t ((FFT _FF)(FFT - EFI))

2 _ _
—2|FFT - FFT|| +2|FT £ + 2| FT

2

)

>9 HFFT _F.F)

where we use the facts that HFFT — F*F*TH?: = HF‘FT — F*F*TH,Q: and FTF=FF, =0.

Let O := sgn(F " F,)° be the optimal orthonormal alignment matrix between F and F,. Denote
A = FO — F,. Follow the same argument as (Tu et al., 2016, Lemma 5.14) and (Ge et al., 2017,
Lemma 41) to obtain

2
41X - X, |2 > ‘ F AT+ AF] + AATHF

— tr (2Fj FEATA +(ATA? 4 2(FTA)? + 4F*TAATA>
= tr <2F*TF*ATA +(ATA + V2FT A2 + (4 — 2\/§)FJAATA)

— tr (2(\/5 _D)EFATA + (ATA +V2F A + (4 2f2)FjF0ATA>

5. Let ASB" be the SVD of F T F,, then the matrix sign is sgn(F ' F}) == AB".
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2

)

> tr <4(\f2_ 1)2*ATA> =4(v/2-1) H(FO - F*)Ei/zl

where the last inequality follows from the facts that F,! F, = 2%, and that F,! FO is positive
semi-definite. Therefore we obtain

|po-F)=| < (va+ 1)1/2 I1X - X, r.

This in conjunction with dist(F', Fy) < ||(FO — F*)Ei/ 2H|: yields the claimed result. [ ]

A.2 Matrix perturbation bounds

Lemma 25 For any L € R™M*" R € R™*" denote Ay, = L — L, and Ar := R — R,. Suppose

that HALE*_1/2Hop v HAREIUQHOP < 1, then one has

1
HL(LTL)*lzi/2 < i (40a)
P 1- HALE* ||0p
1
HR(RTR)*lzi/2 < s (40D)
P 1- HARE* HOP
—1/2
HL(LTL)—lz:i/2 _ul| < YAALS Zlep (40¢)
" 1AL
2 ARS 2
HR(RTR)flz}(/Q . ‘/; S f” R ||0p (40d)

" 1—|ARZop

Proof We only prove claims (40a) and (40c) on the factor L, while the claims on the factor R
follow from a similar argument. We start to prove (40a). Notice that

1

L(LTL) 'xY/? S
H ( ) op UT(L2:1/2)

In addition, invoke Weyl’s inequality to obtain
o (L8?) 2 0 (L) — LD op = 1= [ALETlop,

where we have used the fact that U, = L, X, 1/2 satisfies 0, (U,) = 1. Combine the preceding two
relations to prove (40a).

We proceed to prove (40c). Combine L] U, = /% and (I,, — L(L"L)"'L")L = 0 to obtain
the decomposition

LILTD)'sY? —U, = —L(LTL) AU, + (I,, - LILTL)'LT)A, 3 2

The fact that L(LTL)"*A] U, and (I,,, — L(LTL)_ILT)ALZ*_U2 are orthogonal implies

2
HL(LTL)*lzi/2 —U,

2 2
/17078 ARV A 6 A 76 AN ARy ADV-V5 Rt
op op

op

< HL(LTL)—lzi/2 I, —L(L"L)'LT

2 ~1/2
NAars g+ |
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1AL 7?2, 12,2
T - A s >2+HAL2* lop
- * op

—1/2
21A.5 2,

—_— _1 2 )
(1= |ALE?|lop)?

where we have used (40a) and the fact that ||I,,, — L(LTL) 'L "||op <1 in the third line. [ |

Lemma 26 For any L € R™*" R € R™*", denote Ay, .= L — L, and Ar .= R — R,, then one
has

ILRT — X. || < ||ALRT||F+HL Agllr +lALAllF

—1/2 —1/2 1/2 1/2
< (14 5085 IV 18R Plp)) (1802 + 1405 ]).

Proof In light of the decomposition LR — X, = A R] + L*AE + ALAE and the triangle
inequality, one has
ILR" - X, [lr < [ALR/ |l + [ L AR|lF + AL AR
= [ ALZ e + [ MRS + | ALAKF.

where we have used the facts that
IALR] [|F = |ALS VI = |ALSY Pk, and  [|LAL|F = [USALIF = AR

This together with the simple upper bound

1 _ 1 _
|ALALlF = SIALS 2 (ARSI Te + S ALS P (ARE) e

1/2 —-1/2 -1/2 1/2

S*HAL2 IElARS; Y lop + *HALE P opll ARz e

< SUALS op v [ ARST op) (1813 e + | ARSY)

finishes the proof. |

Lemma 27 For any L € R™*" R € R™*" and any invertible matrices Q,Q € GL(r), suppose
that ||(LQ — L,()El*_l/QHOp VI[(RQ™T — R*)ZII/QHOP < 1, then one has

_ IRQ@T-@ )=
" 1—[[(RQ™T - RSy ?|op
N (o) >

o " 1 [|(LQ — L)'= lop

|=*Q '@z - =,

=fQTe TE - m,

Proof Insert RTR(R'R)™!, and use the relation |AB||op < ||Allop||Blop to obtain

|=V*Qem? - =,

_ Hzi/Q(Q—l -~ Q Y)R'R(R"R)'Qx)”
op

op
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< |r@T-@ =

‘R(RTR)—le:i/2

op op

B HR(Q_T - Q_T)Ei/zHop HRQ—T((RQ—T>TRQ—T)_121/2

op
IRQ T —Q )= |lop
1 [(RQ™T = RS, |lop

IN

where the last line uses Lemma 25.
Similarly, insert LT L(LT L)™', and use the relation ||AB||op < || Allop||B|lop to obtain

I=V*QTe Tm - =,

— Hz}k/z(Q_T . QT)LTL(LTL)lefTZ}k/z
op

< |L@-o= :
op

- |z@- = ) 1Q(1Q) L@ 5

IL(@Q — Q)= |lop
T 1 (LQ - L) lop

‘L(LTL)*Q*TSY2

op

op

where the last line uses Lemma 25. [ |

A.3 Partial Frobenius norm

We introduce the partial Frobenius norm

Xl =

Yo X) = 11Pr(X)IF (41)
=1

as the 5 norm of the vector composed of the top-r singular values of the matrix X, or equivalently
as the Frobenius norm of the rank-r approximation P,(X) defined in (5). It is straightforward
to verify that || - ||, is a norm; see also Mazeika (2016). The following lemma provides several

equivalent and useful characterizations of this partial Frobenius norm.

Lemma 28 For any X € R™*™  one has

IXller=_  max XV (42a)
VE]R"2X7':VTV=IT
=_ max (X, X)) (42b)
XeR 72| X||p<1,rank(X) <r
= max | X R (42¢)

ReR™2%7:| R|jop<1

Proof The first representation (42a) follows immediately from the extremal partial trace identity;
see (Mazeika, 2016, Proposition 4.4), by noticing the following relation

T
ZO‘?(X) = max tr (XTX | V) = max ||X‘7H,2:
= VCR™2:dim(V)=r VeRn2xr:VTV=I,
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Here the partial trace over a vector space V is defined as

,
(XX |V)=> 3 X Xu,
i=1
where {v;}1<i<, is any orthonormal basis of V. The partial trace is invariant to the choice of
orthonormal basis and therefore well-defined. - .
To prove the second representation (42b), for any X € R"™*"2 obeying rank(X) < r and
| X||F < 1, denoting X = UXV " as its compact SVD, one has

(X, X)| = (X, USV")| = (XV,UD)| < | XV |e|UZ[F < || X[l

where the last inequality follows from (42a). In addition, the maximum in (42b) is attained at
X = P,(X)/| P, (X)) i i

To prove the third representation (42c), for any R € R™*” obeying ||R|op < 1, combine the
variational representation of the Frobenius norm and (42b) to obtain

IXR|r=  max_ (XR,L)]
LeRmMxm2:||L|g<1
= max ]<X,EﬁT>| <[ XlF s

LeRm xn2:||L|p<1

where the last inequality follows from (42b). In addition, the maximum in (42c) is attained at
R =V where V denotes the top-r right singular vectors of X. |

Remark 29 For self-completeness, we also provide a detailed proof of the first representation (42a).
This proof is inductive on r. When r = 1, we have

o1 (X) = [[Xwvilz = max || X,

BER"2:||B]|2=1

where v1 denotes the top right singular vector of X. Assume that the statement holds for || - ||Fr—1.
Now consider || - ||f,. For any V € R™X" such that V'V = I, we can first pick vs,..., 0, as a
set of orthonormal vectors in the column space of V that are orthogonal to v1, and then pick v1 via
the Gram-Schmidt process, so that {v;};_, provides an orthonormal basis of the column space of V.
Further, by the orthogonality of ‘7, there exists an orthonormal matriz O such that

V =vy,...,v,]0.
Combining this formula with the induction hypothesis yields
IXV[E = [1X[o1, ..., 5]

= | Xo1[3 + [ X[22, ... 5]

= [ X013 + (X = Pu(X))[D2, ..., ]I}

<o (X) + |1 X = PuX)I[E -1

=) ol (X) =X,

i=1

where the first line holds since O is orthonormal, the third line holds since Py(X)[va,...,v,] =0,
the fourth line follows from the induction hypothesis, and the last line follows from the definition

(41). In addition, the mazimum in (42a) is attained at V. =V, where V' denotes the top-r right
singular vectors of X . This finishes the proof.
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Recall that P,(X) denotes the best rank-r approximation of X under the Frobenius norm. It
turns out that P,.(X) is also the best rank-r approximation of X under the partial Frobenius norm
| - llF»- This claim is formally stated below; see also (Mazeika, 2016, Theorem 4.21).

Lemma 30 Fiz any X € R™*"2 qnd recall the definition of Pr(X) in (5). One has

Pr(X)= = argmin [ X — X[|g,.
X eR™1%"2:rank(X)<r

Proof For any X of rank at most 7, invoke Weyl’s inequality to obtain ,4(X) < 03(X — X) +
or41(X) =0y(X — X), for i = 1,...,r. Thus one has

.
IX = Pe(X)IE, = fom X) <) ol X -X) =X - X[,
i=1

The proof is finished by observing that the rank of P,(X) is at most 7. |

Appendix B. Proof for Low-Rank Matrix Factorization

B.1 Proof of Proposition 12

The gradients of £(F') in (29) with respect to L and R are given as
ViL(F)=(LR" — X,)R, VgL(F)=(LR'-X,)'L,

which can be used to compute the Hessian with respect to L and R. Writing for the vectorized
variables, the Hessians are given as

VipL(F)=(R'R)®1I,,, VipL(F)=(L'L)®I,,

Viewed in the vectorized form, the ScaledGD update in (3) can be rewritten as

vec(Lit1) = vec(Ly) —n((R Ry) ' @ I,,) vec((Ls R} — X,)Ry)
= vec(Ly) — (VL L(F)) ™ vee(VLL(F)),

vec(Ryy1) = vec(Ry) — n((L] Ly) "' @ I,,,) vec((L R, — X,) " Ly)
= vec(Ry) — (Vi rL(F)) ™" vec(VRL(F)).

B.2 Proof of Theorem 13

The proof is inductive in nature. More specifically, we intend to show that for all £ > 0,
1. dist(Fy, Fy) < (1 —0.7n)" dist(Fp, Fy) < 0.1(1 — 0.7n)'0,(X,), and
2. the optimal alignment matrix Q; between F; and F, exists.

For the base case, i.e. ¢ = 0, the first induction hypothesis trivially holds, while the second also
holds true in view of Lemma 22 and the assumption that dist(Fp, Fyx) < 0.10,(X,). We therefore
concentrate on the induction step. Suppose that the t-th iterate F; obeys the aforementioned
induction hypotheses. Our goal is to show that F;,; continues to satisfy those.
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For notational convenience, denote L := L;Q;, R := RtQt_T, A; =L—-L,, AR =R—-—R,,
and e := 0.1. By the definition of dist(F}11, Fy), one has

dist?*(Fpt1, Fy) < H(LtHQt — L*)zi/QHi + H(RtHQ;T — R*)Ei/Q‘ i

; (43)

where we recall that Q; is the optimal alignment matrix between F; and F}. Utilize the ScaledGD
update rule (30) and the decomposition LR" — X, = A R" + L,A}, to obtain

(L1 Qi — L)SY? = (L (LR - X)R(R'R)"! - L*) »l/2
_ (AL —n(ALRT + L*A;)R(RTR)*) »L/2
= (1-nALE/* —nLARR(R'R) 'S,
As a result, one can expand the first square in (43) as

H(LtHQt . L*)zl/QHi — (11—t (ALE*A{) — (1 — ) tr (L*A;R(RTR)—lz*Az)

M

2
g HL*A;R(RTR)—lzi/QHF. (44)

Mo

The first term tr(A 3, A] ) is closely related to dist(F;, F,), and hence our focus will be on relating
My and My to dist(Fy, Fy). We start with the term 9%;. Since L and R are aligned with L, and
R,, Lemma 23 tells that E*AIL = RTARE*. This together with L, = L — A, allows us to
rewrite 9y as

My

tr (R(RTR)*E*A}L*AQ

tr (R(RTR)*lz*A{LA;) ~tr (R(RTR)*lz*AIA LA;)
_— (R(RTR)—lRTA RE*A;) ~tr (R(RTR)_lz*AIA LA}) .

Moving on to 9y, we can utilize the fact L] L, = X, and the decomposition ¥, = R'R— (R"R—
3,) to obtain

My = tr (R(RTR)_lz*(RTR)_lRTA RE*A@
— tr (R(RTR)—lRTA Rz*Ag) “tr (R(RTR)—l(RTR ) R'R)'R"A Rz*Ag) .
Putting 9t and 9y back to (44) yields

H(LHIQt ~ L*)zi/QHi —(1-n)2tr (ALE*AI) — (2 3n) tr (R(RTR)—lRTARz*Ag)

1
+ (1 — ) tr (R(RTR)—lz*AZALA;)

2
. (R(RTR)*l(RTR - 2*)(RTR)*1RTAR2*A;> .

S3

In what follows, we will control the three terms §1,§2 and §3 separately.
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1. Notice that §; is the inner product of two positive semi-definite matrices R(R"R)"'R" and
ARE*AE. Consequently we have §1 > 0.

2. To control §s, we need certain control on ||ALX; " ”0p and HARE_l /2

hypothesis

llop- The first induction

dist(F, o) =\ |ALS 28, 2 + ARS8, )2 < con(X,)

together with the relation |AB||g > ||A||ro,(B) tells that

VIALS 22 + 1 ApS: 2 0(X.) < e (X.).
In light of the relation ||A||op < ||A||F, this further implies
1ALSlop v IIARE 2 op < e (45)
Invoke Lemma 25 to see

1
<

HR(RTR)—lzi/2 <4
op 1—c¢

With these consequences, one can bound |§2| by
5 = | (572 ALR(RTR) ' 2.A] A5 |
tr (21/ 2ATALEY 2)

’R (RTR)"'x/?

< Hz;l/QA;R(RTR)—lzi/Q

op
-1/2

IA

|ARX,

"|lop tr(Az.Af)
op

IN

—t (ALE*AZ) :

3. Similarly, one can bound |§3| by

3] < HR(RTR)_l(RTR ~)(R'R)'RT

tr (A Rz*Ag)
op

2
< HR(RTR)*lzi/2 YRTR -3,z

L (A Rz*A;)

HE_1/2 (R'R-3,)s;/?

< A EAT).
(1—6 optr( RExEER

Further notice that

HE*_I/z(RTR— 2*)2*—1/2 1/2

- HE;W(RIAR +ALR, + ALAR)SS

—-1/2

op

< 9|ARE; L1212

§26—|—e.

lop + | AREL13,

Take the preceding two bounds together to arrive at

2¢ + €2

(1-¢€)?

35| < tr (ARz AR>
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Combining the bounds for §1, §2, §3, one has

H(LHth— 1/2H - H (1-nAarsY? —yL,ALR(R'R) 121/2H
2e 2¢ + €2
< ((1 n? + (1 n)) tr (ALE*AL> = )27; tr (ARE AR) (46)
A similarly bound holds for the second square ||(R;4+1Q: — Ry)X >/ 2||F in (43). Therefore we obtain

|21 - 20s?| + (R @i T - RISV < i) dist (B, ),
where we identify
dist?(F;, F,) = tr(ALZ,A]) 4+ tr(AgS,Af) (47)
and the contraction rate p?(n;e) is given by

2¢ 2¢ + 62

2 2 2
pe(nye) = (1— + —n(1—n)+ ——==n".
(na 6) ( 77) 1 677( 77) (1 6)277

With e = 0.1 and 0 < < 2/3, one has p(n;¢) <1 — 0.7n. Thus we conclude that

2 2
dist(Fiy1, F, \/H (Lt+1Qr — 1/2HF + H(Rt—HQt_T - &)21/2“F
(1 —0.7n) dist(Fy, Fy)
< ( —0.7)" dist(Fy, Fy) < (1 —0.77)1710.10,(X,).
This proves the first induction hypothesis. The existence of the optimal alignment matrix Q11
between Fii; and Fy is assured by Lemma 22, which finishes the proof for the second hypothesis.

So far, we have demonstrated the first conclusion in the theorem. The second conclusion is an
easy consequence of Lemma 26 as

HLthT - x|

< (145) (Iar= e + 18Rz )
( ) V2dist(F,, F,) (48)
< 1.5dist(Fy, Fy).

Here, the second line follows from the elementary inequality a+b < /2(a? + b?) and the expression
of dist(Fy, Fy) in (47). The proof is now completed.

Appendix C. Proof for Low-Rank Matrix Sensing

We start by recording a useful lemma.

Lemma 31 (Candés and Plan (2011)) Suppose that A(-) obeys the 2r-RIP with a constant 6.
Then for any X1, Xo € R™*"™2 of rank at most r, one has

[{A(X1), A(X3)) — (X1, Xo)| < o[ X [[F] Xz ]lF,

which can be stated equivalently as

tr (A"A = D)(X0) XT )| < b | X[ X (49)
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As a simple corollary, one has that for any matrix R € R™2*";
(A" A = I)(X1)R|lg < 020 [| X1 [[F[| Rop- (50)
This is due to the fact that

(A" A — T)(X1)R| = et ((A*A - I)(Xl)RiT)

< _max Gyl X1 || LRT ||
LLle<t

< bor[| X1]IF || R[op-

Here, the first line follows from the variational representation of the Frobenius norm, the second
line follows from (49), and the last line follows from the relation ||AB|| < || A|¢||Blop-

C.1 Proof of Lemma 14

The proof mostly mirrors that in Section B.2. First, in view of the condition dist(F, F,) <
0.10,(X,) and Lemma 22, one knows that @Q;, the optimal alignment matrix between F; and
F, exists. Therefore, for notational convenience, denote L = L:;Q:, R := RtQt_T7 A, =L—-L,,
Agrp =R — R,, and € := 0.1. Similar to the derivation in (45), we have

-1

1ALS P lop V | ARS P lop < e (51)

The conclusion | L; R} — X, ||r < 1.5dist(F}, F) is a simple consequence of Lemma 26; see (48) for
a detailed argument. From now on, we focus on proving the distance contraction.
With these notations in place, we have by the definition of dist(F;41, Fy) that

st (Fri1, Fy) < |(Ben@ — LS|+ |(Ren@i ™ — RO (52)
Apply the update rule (15) and the decomposition LR" — X, = A R" + L*AI2 to obtain
(L1 Qi — L)SY? = (L g A*A(LR" — X,)R(R"R)™! — L*> /2
- (AL ~n(LR" - X,)R(R'R)"' — n(A*A—TI)(LR" — X*)R(RTR)_l) »l/2
=(1-nALSY? — gL, ALR(R'R)'SV? - nA*A-T)(LR" - X,)R(R"R)"'=/?,
This allows us to expand the first square in (52) as

2 2
|2 - Loz =@ -nars —gr.afRE RS

N~

61
— (1 — ) tr ((A*A _T)(LR" - X*)R(RTR)_lz*AD

(&P
+ o2 tr <(A*A _“T)(LR" - X*)R(RTR)_lE*(RTR)_lRTARLI)

S3

+p (A A= DERT - XORRTR) 2

Sy
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In what follows, we shall control the four terms separately, of which & is the main term, and Sq, &3
and G4 are perturbation terms.

1. Notice that the main term &; has already been controlled in (46) under the condition (51). It
obeys

2¢ + €2
(I—e)?

2e 1/2 1/2
& < (- 2 - ) 1A + ARl R

2. For the second term &j, decompose LR" — X, = ALR] + L*Ag + ALAg and apply the
triangle inequality to obtain

] = | tr (A" A-T)(ALR] + LA+ ALALR(RTR)'S.A[) |

fr ((A*A ~I)(ALR] >R<RTR>‘12*AZ> )

+ ‘ tr ((A*A - I)(L*AIT%)R(RTR)AE*AZ) ’

tr ((A*A - I)(ALA;)R(RTR)—lz*A{) ‘
Invoke Lemma 31 to further obtain
| < b, (IALRIle + | L ALl + | ALAKlF) | RIBTR) ' S.AL||

< 0o, (|ALR] e+ L. ATl + | ALALIE) | RRTR) 'S ALS .

where the second line follows from the relation |AB|r < ||A|lop||B||r. Take the condition (51)
and Lemmas 25 and 26 together to obtain

1
< ;
op 1—c¢

€
|ALR] e + L AKlE + [ALAK < (14 5) (|ALE e + | ARZY ).

HR(RTR)*IEB 2

These consequences further imply that

O2r(2 4 €) 1/2 1/2 1/2
S < S S (1AL e + | ARS ) |45
_02(2+¢) 1/2)2 1/2 12
oo (”ALZ 12+ 1AL FlARS, HF)

1/2

For the term ||AL3, HFHAREyQHF, we can apply the elementary inequality 2ab < a® + b? to

see
1/2 1/2 1 1/2 1 1/2
| ALl AR r < JIALE R + I ARE 2.
The preceding two bounds taken collectively yield

2+¢€ 3 1
©a < 2PE) (3 A w2 s LA s)
2(1—¢) \2 2
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3. The third term &3 can be similarly bounded as

3| < b, (IALRI|le + | L AKlF + AL AR ) | RIRTR) ' S.(RTR) ' RTARL] ||

2
<o, (|ALR! e+ L. ALl + [ ALATle) [RETR) 72| |ARL] e

d2r(2 + €) 1/2 1/2 1/2
< =~ 7
< 5o (A=l +1ArSle) |ArS e
Sor (2
<G ge (IS 1A ).

4. We are then left with the last term &4, for which we have
V6, = H(A*A _I)LR' - X*)R(RTR)_lziﬂHF
< | A-D)AR)RET R
n H(A*A - I)(L*AE)R(RTR)—lzi/QHF
+|[a-TyarahrRETR) S

where once again we use the decomposition LR" - X, = ALRI + L*A]Tz + ALAE. Use (50)
to see that

V&1 <o (IALR] I+ L AFle + 1AL AL ) |RIBTR)'E?

op
Repeating the same argument in bounding &2 yields
dor (2 +
VB < 2219 <HA =2 + HAREWHF) .
2(1-¢)
We can then take the squares of both sides and use (a + b)? < 2a? 4 2b* to reach
62.(2+¢
&1 < BT IT (A2 + AR ).
2(1—¢)?
Taking the bounds for &1, &9, S5, &4 collectively yields
2 2e 2¢ + €2
H(LtHQt - L*)Ei/ZHF < <(1 —n)?+ :n(l - 77)) larsy?)2 + 12" 2| AREY 22

d2r(2+€) 3 1/2 1 1/2
+ () SIALE R+ Sl ARS

# 22D (L1am iz + S1ansl? R)

63.(2 4 ¢)? /2,12 1/2)2
o (1A IR+ AsR)

Similarly, we can expand the second square in (52) and obtain a similar bound. Combine both to
obtain

2 2
|@e@e - LB+ |[(Ren@r T = ROBY| < 02, b) dist(F, F),
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where the contraction rate is given by

% + 82y (4 + 2¢)

2€ + €% + 89, (4 + 2¢) + 03,.(2 + 6)2772
1—¢€ '

(1—¢)?
With e = 0.1, 2, < 0.02, and 0 < n < 2/3, one has p(n;€,d2,) <1 — 0.6n. Thus we conclude that

p*(n;€, 0gr) = (1 —n)* +

n(l—mn)+

2 2
dist(Fyy1, F, \/H (Li41Q — iﬂHF + H(Rt-l—th_T - R*)E}(/gHF
(1 — 0.6n) dist(Fy, Fy).

C.2 Proof of Lemma 15

With the knowledge of partial Frobenius norm || - ||r ., we are ready to establish the claimed result.
Invoke Lemma 24 to relate dist(Fp, Fy) to ||[LoRg — X.||r, and use that LoR] — X, has rank at

most 2r to obtain
dist(Fo, F.) < \/V2+1|[LoR) - X, < \/2v2+ 1) | LoR] - X,

Note that LoR] is the best rank-r approximation of A*A(X,), and apply the triangle inequality
combined with Lemma 30 to obtain

T

HLOROT —Xx F

< HA*A(X*) ~ LoR]

A = Xl
<2 (AA =T (Xg,» < 200, X

Here, the last inequality follows from combining Lemma 28 and (50) as

(A A-D( X, = max (A A= D)(X)R|| < 80l X
ReR™2%7:|| R||op<1 F

As a result, one has

dist(Fy, F,) < 21/2(V2 + 1)80, | X, || < 500,v/TRo(X).

Appendix D. Proof for Robust PCA
We first establish a useful property regarding the truncation operator 7Taq[-].
Lemma 32 Given S, € Sy and S = Tao[ Xy + Sx — LRT], one has
IS = Silloc <2 LR — Xl (53)

In addition, for any low-rank matric M = LMR;\F/[ € R™M>*"2 yyith Ly € R™M*" Ry € R™%7 ) one
has

(8 = S M| < V3aw (L = L)B e + | (R - R ) [ M])e

(54)
+2va (V] ARzl Lar|[f| Rasll200) ILRT — Xol|F,

where v obeys

n _
02 V0 (1L 2 e+ L3 o) v 22 (R

—1/2
* / H2,oo>-
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Proof Denote A; =L —L,, Ap:=R—-R,,and Ax .= LR" — X,. Let Q,Q, be the support
of S and S, respectively. As a result, S — S, is supported on QU €Q,.

We start with proving the first claim, i.e. (53). For (i, ) € Q, by the definition of 724]-|, we have
(8—5,4)i; = (—Ax); . For (i,7) € Q,\ Q, one necessarily has S; j; = 0 and therefore (§ —8,); ; =
(—S4)i,j- Again by the definition of the operator 74[], we know |S, — Ax|; ; is either smaller than
|Sx — Axli(2anz) O |Sx — Ax|(2an,),;- Furthermore, we know that S, contains at most a-fraction
nonzero entries per row and column. Consequently, one has [Ss — Ax|ij < [Ax|i (ano) VIAX|(any),j-
Combining the two cases above, we conclude that

A 1,79 .7 j Q
ij < {' xlis (Z. j.) © : (55)
|Axlij+ (|1Axlians) VIAx|(any),) »  (67) € 2\ Q

’S_S*

This immediately implies the fo, norm bound (53).
Next, we prove the second claim (54). Recall that S — S, is supported on QUQ,. We then have

(S =S, M)| < Y [S—S.i;|M

it Y 18— Sili Ml

(3,5)€Q (4,5)€2:\Q
< Z |Ax i | Ml ; + Z (|AX|i,(om2) + |AX‘(am)7j) | M ;,
(i,§) €QUN (4,5)EQN\Q

where the second line follows from (55). Let 8 > 0 be some positive number, whose value will be
determined later. Use 2ab < B~1a? 4+ Bb? to further obtain

1
(S—S, M) < > |Axli;|Ml; +35 > (IAX@,(W) + |AX|%0m1),j) +8 Y IME;.
(4,7) EQUN, (4,7) EQN\Q (4,4) €2\

Aq Ao A3

In regard to the three terms 201, 2 and 23, we have the following claims, whose proofs are deferred
to the end.

Claim 1 The first term 2y satisfies
% < V3ar (1AL + AR ) IM]r.
Claim 2 The second term 2y satisfies
Az < 2| Ax|E.
Claim 3 The third term s satisfies
Az < o (01| Lar |13 o1 Rar [|F A mol| g |[Fl R 13 00) -
Combine the pieces to reach
V3a 1/2 1/2
(S = S M)| < V3av (1AL + 1arS ) |M]le
[Ax|E

gt Ba (| Lag|3 ool Rar IE A mall Las ||| Ras

500)
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One can then choose 8 optimally to yield

(S = S, M) < V3av (1AL + [ AR ) IM]F
+ 2V (V|| Lyllzec [ Rulle A vl Dlel| Rall2,00) [ AxlF-

This finishes the proof. |

Proof [Proof of Claim 1] Use the decomposition Ay = AR+ L, A}, = A R] + LA}, to obtain

|Axlij < ALSY)i o REL 2|2, 2Pl l(ARSY?); 12, and
xlij < L i, « 2,00 « 2,00 (AR D) |2
1Axlij < IALZY)i o ReE: om0 + 125 2 200 (AREY ),

Take the average to yield

[Axli; < ——=[[(ALZ )i 2 + —= [ (ARZ); s

V2 Vi

where we have used the assumption on v. With this upper bound on |A x|; j in place, we can further
control 2; as

we< Y \ﬁH(ALﬁl Dicllal Mg+ > \ﬁH(ARE *)iell21 M1

(4,7)EQUQ (3,7)EQUO

1/2 1
SToArSY 3+ | ARS8/ | v M.

(4,7)EQUQ (4,7) €QUQ

Regarding the first term, one has

ni
SooarEnE=3" S arsd?.

(3,7) QU =1 j:(1,5) €QUQ

2

ni
<3amz Y [I(ALZ2)i 3
=1

= ?)OéngHALEl/z

”Fv

where the second line follows from the fact that € U ), contains at most 3ans non-zero entries in
each row. Similarly, we can show that

1/2 1/2
ST ARS8 < 3am | ARS|I2.
(4,§) EQUL

In all, we arrive at
o < V3ar (|ALS e + AR e ) [ M]r.

which is the desired claim. [ |
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Proof [Proof of Claim 2] Recall that (A x); (an,) denotes the (anz)-th largest entry in the i-th row
of Ax. One necessarily has

ang| Ax[? (anyy < I(AX)i I3

As a result, we obtain

Y AKX ) S DL 1K (any)

(’L,j)EQ*\Q (Zvj)eﬂ*
AX z ||%
<>y lexs
=1 j:(3,5) €0
< Z I(Ax)i |5 = lAx][?,
=1

where the last line follows from the fact that ), contains at most ans nonzero entries in each row.

Similarly one can show that

> AKXy < I1AXIE
(4,7)EQN\Q

Combining the above two bounds with the definition of 2s completes the proof. |

Proof [Proof of Claim 3] By definition, M = Ly R}, and hence one has

As= > [(La)i(Ra)] 1P < D [(Lar)i (Ras)j |

(4,7) €\ (4,7)EQ

We can further upper bound 23 as

A < D (L) 3] (Rar)j 13

(‘,j)eQ*

<Z Y T B RS o

i=1 5:(4,5) €Q

ni
< > anall(Lan)i, B3I B3 0 = cnzl Las|El B3
i=1

where the last line follows from the fact that 2, contains at most ans non-zero entries in each row.

Similarly, one can obtain
Az < ang | Lulf3 o0 B I}

which completes the proof. |
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D.1 Proof of Lemma 16

We begin with introducing several useful notations and facts. In view of the condition dist(F3, Fy) <
0.020,(X,) and Lemma 22, one knows that @y, the optimal alignment matrix between F; and F,
exists. Therefore, for notational convenience, denote L = L;Q;, R = R;Q; " A, =L-L,,
Ar=R-R,, S:=8; = T2a[X, + 8, — LR"], and € := 0.02. Similar to the derivation in (45),

we have
1ALS 2 lop V |ARES Y lop < e. (56)

Moreover, the incoherence condition

VIl ALSY a0 V VT2l AREY? 200 < ViiTor(X) (57)
implies
VAL lase V V2| ARS: 200 < AT, (58)

which combined with the triangle inequality further implies

V| LS00 V /]| RS 2,00 < 20/07. (59)

The conclusion ||L; R, — X, || < 1.5dist(F}, F) is a simple consequence of Lemma 26; see (48) for
a detailed argument. In what follows, we shall prove the distance contraction and the incoherence
condition separately.

D.1.1 DISTANCE CONTRACTION

By the definition of dist?(F}q, F,), one has

2 2
dist*(Fiis, ) < || (Benn@e - LOB|| + |[(Ren@r " - ROZYY| (60)

From now on, we focus on controlling the first square ||(L;4+1Q: — L*)EiﬂH%. In view of the update

rule (20), one has
(Lis1Q; — L)SY? = (L —p(LRT +S - X, - S)R(R'R) - L*) /2
_ (AL —p(LRT — X,)R(RTR)™! — (S — S*)R(RTR)*) »1/2

= (1-nALSY? — gL ALR(R'R) 'SV — (S - S,)R(RTR)"'=L/2.
(61)

Here, we use the notation introduced above and the decomposition LR - X,=A;R" + L*A;.
Take the squared Frobenius norm of both sides of (61) to obtain

2 2
T e R e e !

R

—op(1 — ) tr ((s — s*)R(RTR)*lz*A{)

Ra
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o2t ((s - S*)R(RTR)_l2*(RTR)_1RTARLI)

/

N3

s somamrm

Ry

In the sequel, we shall bound the four terms separately, of which 2R is the main term, and JRo, R3
and R4 are perturbation terms.

1. Notice that the main term fR; has already been controlled in (46) under the condition (56). It
obeys

2¢ 1/2 2¢ + € 1/2
< (- 2= ) IALEY I + Sl aRs Y

2. For the second term Ry, set M == A3, (RTR)"'R" with Ly, == ALE*(RTR)_121/2, Ry =
R2:1/2, and then invoke Lemma 32 with v := 3,/ur/2 to see

3 _
9] < 5 /Bapr (HAin/QHF + HARE}/QHF) HALE*(RTR) 1RTHF
+2\/an; HALz*(RTR)—lziﬂHF IRS, 2 |anILRT — X, |IF
3 .
< SVBaur (|ALEY e + | ARS ) ALY e || R(RTR) 5 .

+ 2 /ans | ALEY? Hzi/Q(RTR)*zWHOP IRS: 2o |ILRT — X, |r.

Take the condition (56) and Lemmas 25 and 26 together to obtain

1
< —
op 1—c¢
- |r(rTR)1=)? to 1 (62)
op * op (1 — 6)2’

€
ILRT = X.e < (1+ 3) (1AL e + AR e)

HR(RTR)—lzi/2

Hzi/?(RTR)—lzi/Q

These consequences combined with the condition (59) yield

3/3agr . o .
%ol < 5 g (IALZle + AR 1) [ ALZ
! 1/2 1 1/2
* (1ﬁ)”AL2/ I+ 5) (IALS e + | ArS:le)
3v/3 + A2 s b b
< YOI T
< Japr 2(1_6) (HALE 12+ |ALSY ? |Fl A RS ||F>

3 1/2 1 1/2
< varr—gn e (sl + LAz R).
where the last inequality holds since 2ab < a? + b.
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3. The third term R3 can be controlled similarly. Set M = L,LALR(R"R)"'E,(R"R)"'R" with
Ly = L,=;"? and Ry = R(RTR)’lZ*(RTR)’lRTARZ]i/Q, and invoke Lemma 32 with
v = 3,/ur/2 to arrive at

3 _ _
9| < 5 v/Bapr (|| AL e + | ARSe) [LALRERTR)'S.(RTR)'RT|

+2an| L3,

2
Sanr (1AL e + |1 ARSY? ) [ AREY e [ R(RTR) 512

op

’R(RTR)*12*(RTR)*1RTAR21/2HF ILRT — X,||r

_ 2
+ 2/ant || LS o0 ’R(RTR)*lzi/QHOP IAREY | LRT - X, .

Use the consequences (62) again to obtain

Rl < S (s e + 1A AREY
+ SN ARRY 1+ ) (1ALZ e + 853 )
< Va3 2E R (st e ans! e + arst? R)
< var 2D (Lia sz + Sanst ).

4. For the last term Ry, utilize the variational representation of the Frobenius norm to see
NG ((s - s*)R(RTR)—lzi/QiT)

for some L € R™*" obeying | L||f = 1. Setting M = I}Ei/Q(RTR)’lRT = Ly R}, with
Ly = IjEi/z(RTR)_IE}/Q and Ry = RZ:UQ, we are ready to apply Lemma 32 again with
v = 3,/ur/2 to see

3 = -
VR < Bagr (180E e+ | AR e | L2 A(RTR)TIRT|
+2yams || LEA(RTR) TS| IRE o ILRT - Xl

sonr (1A + | An=l?)c) R R)E)

op
N Hzi/Q(RTR)—lzi/QH IRS, 2o ILRT — X, |r.
op

This combined with the consequences (62) and condition (59) yields

\[ 3+ 4(2+€
2(1 6)

Take the square, and use the elementary inequality (a + b)? < 2a? + 2b? to reach

(3

VR, < Vapr (1A= e + ARz 2e)

td)2
Ry < apr (1aLs22 + | arsy?)

2(1 - e)
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Taking collectively the bounds for J1,Re, M3 and Ry yields the control of |[(Li+1Q¢ — Ly)X 1/2||F
as

2 26 2€+€
H(Lt+1Qt - L*)Ei/QHF < <(1 -+ (- n)) 1AL 22 + = 2| ARE?2
bvar B (1acsiE + 5lans )
3v3+22+e) , (1 ore 3 "
VA= o (Gl ALE IR+ SlARs
(3V3+ 22y 2y L2
Fapr S (A I+ ArsR).

Similarly, we can obtain the control of ||[(R;11Q; ' — Ry)X 1/2”% Combine them together and
identify dist?(F}, F,) = ||AL21/2||F + HA321/2HF to reach

|2ea@— Loy + || (Ren@ ™ ROSY|” < 2056, ) st (B, B,

where the contraction rate p?(n; e, aur) is given by

2e + Japr(6y/3 + S

P e, apr) = (1= ) + e a1 —n)
N 2¢ + € + Jaur(6v/3 +4(2 +€)) + aur(3v/3 + 4(12:;6))2172
(1-¢)? '

With € = 0.02, aur < 1074, and 0 < 1 < 2/3, one has p(n;¢,aur) < 1 —0.6n. Thus we conclude
that

2 2
dist(Fy41, F; \/H (Li+1Qy — i/QHF + H(RtHQ;T - &)21/2“F
(1 —0.6n) dist(F3, Fy). (63)

D.1.2 INCOHERENCE CONDITION

We start by controlling the term ||(Li+1Q: — Ly )Xs >/

l|2,00- We know from (61) that
(Li1Q — LOE* = (1 —np)ALSY? — gL ALR(R'R) 'SV — (S — S,)R(RTR)"'=L/2.
Apply the triangle inequality to obtain

|(Len@ -2 <0 -m|Ar2on + 0| LARRERT R R

T
. H(s - S*)R(RTR)‘lzll/ZHz N 1

%o

The first term ||A ok 2\]2700 follows from the incoherence condition (57) as

18222 a0 < [ To0(X,).

In the sequel, we shall bound the terms %1 and %,.
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1. For the term ¥, use the relation [|[AB|2. < ||A

< |2,00|| Bllop, and combine the condition (56)
with the consequences (62) to obtain

T < 1227 g0 Hzi/%;R(RTR)—lzl/Q

op
<L el AR op | RIRTR) V|
< ——/Ean(Xu),
1—€e\ nq

2. For the term ¥y, use the relation ||AB||2,00 < ||Al|2,00||Bllop to obtain

T <[IS - Sl |REBTR) B

op

We know from Lemma 32 that § — S, has at most 3ans non-zero entries in each row, and
|8 — Silloo < 2|ILRT — X, || Upper bound the f5 », norm by the £, norm as

IS — Sill2.00 < V3Banz||S — Silloe < 2v3ang|| LRT — X, |-
Split LR" — X, = A R" + L,A},, and take the conditions (57) and (59) to obtain

HLRT - X*Hoo < ||ALRTHOO + HL*Aguoo
< NALE sl RE: P a0 + | L2 ?

T r r T
< JE o x2S (X))
ni no ni no
X,).

2,00 | AR E

2,00

3ur
e ,U/ UT(

\/N1N2

This combined with the consequences (62) yields

T < bysapr ﬂUT(X*).
1—c¢ ni

Taking collectively the bounds for %1, % yields the control

€+ 64/ 3aur T
H(Lt+1Qt — L*)Ei/QHz . < (1 -—n+ 1_6M77> 1/ %Ur(X*)~ (64)

The last step is to switch the alignment matrix from Q; to Q1. (63) together with Lemma 22
demonstrates the existence of Qy11. Apply the triangle inequality to obtain

H(LtJrthJrl — L*)ElﬂH < H(LtJrth — L*)EimH + HLt+1(Qt+1 - Qt)Ei/zH
2,00 2,00 2,00

<@ - L)=|, 4L QE o 2207 QB - 5
,00

We deduct from (64) that

1L 1QiSy gm0 < | L3252

- +6+4/3
200+ ||(Benn@ - L= < <2—n+6 Wn) o
,00

1—e¢ ny
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Regarding the alignment matrix term, invoke Lemma 27 to obtain

IR QT — Q)= [lop
op memqﬂ—*>J%w
-T 1/2 1/2
R Qr T~ RO op + [(Re1Qi s — RIS o
N 1- |(Ren1Qy)) — RO

UT(X*)a

A

|= 0 @zt - =,

lop
2¢

<
—1—c¢

where we deduct from (63) that the distances using either Q; or Q11 are bounded by
-T 1/2
[(Ri41Q; " — Ri)Z " [|op < €0r(X);

I(Re1 Q= RS [lop < €0, (Xo);
(R QT — RS |lop < €.

Combine all pieces to reach

1+ + 6+/3aur 2 r
H(Lt+1Qt+1 - 1/2H < ¢ (1 —n+ 61_6u77> + 6) 'ufdr(X*).

1—c¢ 1—c¢ ni

With € = 0.02, apr < 107%, and 0.1 < 5 < 2/3, we get the desired incoherence condition

.
|(LeaQua - Loz < [Ho(x).
2,00 ni

Similarly, we can prove the other part

M (X,

n2

rnais - ms], <

D.2 Proof of Lemma 17

We first record two lemmas from Yi et al. (2016), which are useful for studying the properties of
the initialization.

Lemma 33 ((Yi et al., 2016, Section 6.1)) Given S, € S,, one has ||Sx — Ta[Xx + Sillloc <
2[| X[ oo -

Lemma 34 ((Yi et al., 2016, Lemma 1)) For any matric M € S, one has || M ||op < ary/nin2|| M| -

With these two lemmas in place, we are ready to establish the claimed result. Invoke Lemma 24

to obtain
dist (Fp, ) < \/vV2 +1 HLORT <\ (VZ+1)2r HLOROT -~ X,

where the last relation uses the fact that LORS— — X, has rank at most 2r. We can further apply
the triangle inequality to see

)

op

s - x|

<|Y - Tyl LoRJ | +Y - T¥] - Xl
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< 2 HY - %[Y] - X*Hop =2 ”S* - 7~OC[X* + S*]Hop :

Here the second inequality hinges on the fact that LORE)r is the best rank-r approximation of
Y — 7,.[Y], and the last identity arises from Y = X, + S,. Follow the same argument as (Yi et al.,
2016, Section 6.1), combining Lemmas 33 and 34 to reach

1Ss = Tal X 4 Sulllop < 2av/mimna |[Ss = Tal X + Silll
<Aday/ning|| Xl < daprko,(Xy),

where the last inequality follows from the incoherence assumption

ur
[ Xlloo < HU*HQ,OOHE*HOPHV;HZOO < \/WHUT(X*)- (65)

Take the above inequalities together to arrive at

dist(Fp, F,) < 84/2(v/2 + Dawr®?ko.(X,) < 200’ ko, (X,).

D.3 Proof of Lemma 18

In view of the condition dist(Fp, Fy) < 0.020,(X,) and Lemma 22, one knows that Qy, the optimal
alignment matrix between Fy and F, exists. Therefore, for notational convenience, denote L :=
LyQp, R = RoQaT, Ap=L—-L,, Arp = R—R,, and € := 0.02. Our objective is then translated

to demonstrate

VALY a0 V /2|l A RS

2,00 < vV /U’TO-T‘(X*)'

From now on, we focus on bounding HALZi/zHgm. Since UpXoV},' is the top-r SVD of Y — T,[Y],
and recall that Y = X, + S,, we have the relation

(X* + S* - ’Ta[X* + S*])‘/E) - U0207

which further implies the following decomposition of A LE}/ 2,

Claim 4 One has
ALY = (S, - To[X, + S)R(RTR)'sY? - L,ALR(R"R)"'s}/?.
Combining Claim 4 with the triangle inequality yields

|82 < | ATRETR SV 4|8 - Taix. + SHRETR) S|

o0

51 52
In what follows, we shall control J; and Js in turn.

1. For the term Jj, use the relation ||AB

2,00 < ||All2,00]| Bllop to obtain

31 <L oo | A RS lop

‘R(RTR)—lz:i/ 2

op
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The incoherence assumption tells ||L*E-:1/2||2,oo = Ux||2,00 < v/pr/nq. In addition, the assump-
tion dist(Fyp, Fy) < eo,(X,) entails the bound ||ARZ,1/2||OP < €0, (Xy). Finally, repeating the

argument for obtaining (56) yields ||AR2_1/2HOP < ¢, which together with Lemma 25 reveals
1
Hz:c(}ﬂ}:z)—lzi/2 < -
op 1—¢
In all, we arrive at
- € ur
J —o, (X
! 1—€e\ m or(X)

2. Proceeding to the term Js, use the relations ||[AB|l2.00 < ||Al1,00/B
| Al|2,00 || Bllop to obtain

32 < 180 = Tal X+ S| o | RRTR)'EV?

2,00

<18y = TalXu + Sy oo IRS:?[l2.00 Hzi”(RTR)—lzi/Z

”l,oo
op

Regarding S, — To[Xs + Si], Lemma 33 tells that S, — 74[X, + S, has at most 2ans non-zero
entries in each row, and ||S, — To[ X« + Sillloc < 2||X.||cc- Consequently, we can upper bound

the ¢1 oo norm by the {,, norm as
[Sx — TalXx + S < 2ang |8k — Ta[Xs + Silll

< Adang|| Xy |loo

||1,oo

< dany rkor(Xy).

wr
\/M1N2
Here the last inequality follows from the incoherence assumption (65). For the term |[R3, 1/2 l|2,00,
one can apply the triangle inequality to see

1/2

_ _ _ r AR¥

IR e < IR e+ AT 2y < [ 4 B2 e
n9 UT(X*)

Last but not least, repeat the argument for (62) to obtain

2 1
Hzi/Q(RTR)—lzi/2 - HR(RTR)—lzi/2 < .
op op (1 - 6)2
Taking together the above bounds yields
dourk r dourk
92 < g o (X + e [ AR

Sa—pVm T T A

Combine the bounds on J; and Js to reach

< € daurk dapurk

VAlALE e < (1 4 _)>mar(x*> 0= o VRl ARE e

Similarly, we have

V2l AREY? 200 <

€ daprk daurk
<1_6+(1_)>WUT<X*> AVl aE .
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Taking the maximum and solving for ./n1||AL2,1(/2H2700 v \/n2||AL2,1(/2H2700 yield the relation

€(1 —€) +4aprk
(1—¢€)2 —4daurk

Vil ALY 2 |a.00 V /T2l AL 2|20 < Vo (X,).

With € = 0.02 and aurk < 0.1, we get the desired conclusion
VI ALS o0 V Vel ALEY P [la.00 < Vo (Xs).

Proof |Proof of Claim 4] Identify Uy (resp. Vp) with L()Egl/2 (resp. R()Eal/Q) to yield

(X* + S, — 7-04[X* + S*])ROEO_l = LO»
which is equivalent to (X, + Sy — Ta[ XK + S*])RO(RJRO)*l = L since Xg = RJRO. Multiply
both sides by QOEi/Q to obtain
(X, + S, — To|[ X, + S,)R(RTR)"'=!/? = L2,
where we recall that L = LygQy and R = RonT. In the end, subtract X,R(R" R _12,1/2 from
0
both sides to reach
(S, — TolX. + S)R(R'R)'2Y? = Lx)?* - L.R R(RTR)'5}/*
=(L-L)SY*+L.(R-R,)"R(R'R)"'x}/?
= A 32+ L ALR(R'R)'sY/?.

This finishes the proof. |

Appendix E. Proof for Matrix Completion
E.1 New projection operator
E.1.1 PROOF OF PROPOSITION 7

First, notice that the optimization of L and R in (23) can be decomposed and done in parallel,
hence we focus on the optimization of L below:

L = argmin

~ o~ o~ 2 ~— o~
(L — L)(RTR)WH st AT HL(RTR)WH <B.
LER™1XT F 2,00

By a change of variables as G := L(RT R)"/2? and G := L(R" R)'/2, we rewrite the above problem
equivalently as

G = argmin |G -G|Z st 1 |Gy < B,
GER™1XT ’

whose solution is given as Chen and Wainwright (2015)

B ~
Gi.=|[1N—=—]Gi, 1<i<n.
VG2

By applying again the change of variable L = G(ﬁTﬁ)_1/2 and L = é(ﬁTﬁ)_1/2, we obtain the
claimed solution.
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E.1.2 PROOF OF LEMMA 19

We begin with proving the non-expansiveness property. Denote the optimal alignment matrix be-
tween F and F, as Q, whose existence is guaranteed by Lemma 22. Denoting Pp(F) = [LT,R"]T,
by the definition of dist(Pg(F'), Fy), we know that

dist?(Pg(F) <ZHL oxY?_ (L, 21/2 ‘+ZHRJ7Q TRU2 (R, 21/2) Hz (66)

Recall that the condition dist(F, Fy) < eo,(X,) implies

<k,
op

|Z@-ro=”

vH (RQ™T — R)=; 2

which, together with R,3; /% = V,, further implies that

e e e A LA

op

<|2eam], (1o + 1RO - Rym ) 0|20

In addition, the p-incoherence of X, yields

B
~14¢€

Vi[5 < VAT el Sallop < ViTor(X.) <

where the last inequality follows from the choice of B. Take the above two relations collectively to
reach

B H L 21/2)
il L, RTH2 HL Qz”QH

We claim that performing the following projection yields a contraction on each row; see also (Zheng
and Lafferty, 2016, Lemma 11).

Claim 5 For vectors u,u, € R" and A > ||uy||2/||u||2, it holds that

[AAN© = w2 < flu — 2.

Apply Claim 5 with u := ii,.éE}C/Q, Uy = (L*E}(/Q)L., and \ == B/(,/n1||ii7.ﬁ—r||2) to obtain

2
L, QxY? — (L. =V%),.

’2
.

Following a similar argument for R, and plugging them back to (66), we conclude that

HLL Qs? (L=,

\ﬁ ILi R |2
= HLi,-QEi/Q - (L*Eiﬂ)iy

2

2 ~
dist?(Pp(F), F,) < Z HL Q=2 (L3, s (R H2 — dist?(F, F,).
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We move on to the incoherence condition. For any 1 <4 < nq, one has

2 2
n2 no B _ _ B
S ] (L =)
j=1 =1 viillLi R 2 na||R;. L2
B 2 no B 2
vilLi.RM2 ) 5= vl Li. R |2
(i) B2
< —.

ni

IN
=
=

B .. B B
—= < 1, and (ii) follows from 1 A 2 < =
vz||R; LTz — 7’ (i) VvaillLi, R |2 = /nil|Li, RT |2

Similarly, one has ||R;.L" |3 < B%/ny. Combining these two bounds completes the proof.

Proof [Proof of Claim 5] When A > 1, the claim holds as an identity. Otherwise A < 1. Denote
h(\) = || Au—wu,||3. Calculate its derivative to conclude that h(\) is monotonically increasing when
A > A= (u,u,)/||ul|3. Note that A > [Juy||2/[|u|l2 > A, thus A(A) < h(1), i.e. the claim holds. W

where (i) follows from 1 A

E.2 Proof of Lemma 20

We first record two useful lemmas regarding the projector Pq(-).

Lemma 35 ((Zheng and Lafferty, 2016, Lemma 10)) Suppose that X, is u-incoherent, and
p 2 prlog(ny Vng)/(n1 Ang). With overwhelming probability, one has

{((7Po — T)(L.R} + LaR]), LR} + LpR] )|

rlog(ny Vn
< 0y LB Y )y p BT L ARTIE|L.RE + LR |,
p(n1 Ang)

simultaneously for all Ly, Ly € R™*" and R4, Rg € R™*", where C1 > 0 is some universal
constant.

Lemma 36 ((Chen and Li, 2019, Lemma 8),(Chen et al., 2020a, Lemma 12)) Suppose that
p 2 log(ni V ng2)/(n1 Ang). With overwhelming probability, one has

(7' Pa ~ ) (LaR}). Lo R})

nivn
< COyyf lp 2 (ILAlFILBl2,00 A I Eall200 | L5IF) (| RAIFIRB]2,00 A [ R

simultaneously for all Ly, Ly € R™*" and R4, Rg € R™*", where Co > 0 is some universal
constant.

|2,00 [ RBIF)

In view of the above two lemmas, define the event £ as the intersection of the events that the
bounds in Lemmas 35 and 36 hold, which happens with overwhelming probability. The rest of the
proof is then performed under the event that £ holds.

By the condition dist(F}, Fy) < 0.020,(X,) and Lemma 22, one knows that @y, the optimal
alignment matrix between F; and F, exists. Therefore, for notational convenience, we denote
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L =L:Q;, R = RtQt_T, A =L—-L,, Ar = R— R,, and € := 0.02. In addition, denote E—&—l
as the update before projection as

L,

B _ [Lt —np~Pa(LiR) — X )R(R[ Ry)™"
t+1 = | 5 =
Ry

R, — np~'Po(LiR} — X,)"Ly(L] L;)~*

and therefore Fy 11 = PB(ﬁ’t+1). Note that in view of Lemma 19, it suffices to prove the following
relation

dist(Fyy1, Fy) < (1 — 0.6n) dist(F}, Fy). (67)

The conclusion ||L; R, — X, ||r < 1.5dist(F}, F) is a simple consequence of Lemma 26; see (48) for
a detailed argument. In what follows, we concentrate on proving (67).
To begin with, we list a few easy consequences under the assumed conditions.

Claim 6 Under conditions dist(F}, Fy) < €0,.(Xy) and /1| LR ||2.00Vy/M2|| RL ||2.00 < Cp/Iiro1(Xy),

one has

1ALZ P lop V | ARS 2 lop < & (68a)
1
|r@ETR) =S| < (68D)
op 1—¢
1
Hzi/Q(RTR)—lzﬁ/2 <. (68c)
op (1 — 6)2
C
VILIEE 200 V VIR RE a0 < T2 Vo1 (X (684)
_ _ Cgk
V|| LS, ”Zuz,oo v V| RS, “2112,00 < T2 VT (68¢)
C
P (1 - 1_BE> Vi1 (X.). (68f)

Now we are ready to embark on the proof of (67). By the definition of dist(ﬁtJrl, F,), one has

_ _ 9 _ 2
dist®(Fy41, Fy) < H(Lt-HQt — L*)Ei/zuF + H(Rt-i-th_T - R*)Evlk/Q‘ i

; (69)

where we recall that Q; is the optimal alignment matrix between F; and Fy. Plug in the update
rule (26) and the decomposition LR" — X, = A R" + L*A]Tz to obtain

(Lis1Q; — L)SY? = (L —p " Po(LR" — X,)R(R'R)™ - L*) »l/2

= A 3? —p(LR" - X,)R(R"R)"'SY? —y(p 'Pq —I)(LR" — X,)R(R"R)"'=/?
= (1-nALSY? — gL ALR(R'R) 'SV —n(p~Pqy -~ T)(LRT — X,)R(R'R)'xY?.

This allows us to expand the first square in (69) as

- 2 2
|Zea@i - Lozl = |0 -nars) - gr.afrRE RS

P1
— (1 — ) tr ((p—17DQ ~T)(LR" - X*)R(RTR)_lzl*AD

B2
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o2 tr ((p_l'PQ ~T)(LR - X*)R(RTR)_lZL(RTR)_lRTARLI)

Bs
+p? H(p—1739 _I)(LR" - X*)R(RTR)_lzi/QHi .

Pa

In the sequel, we shall control the four terms separately, of which ; is the main term, and 9, B3
and P, are perturbation terms.

1. Notice that the main term 37 has already been controlled in (46) under the condition (68a). It
obeys

2¢ 1/2 2¢ + €2 1/2
s (e 20— ) 1A+ S Pl aRs

1—

2. For the second term Po, decompose LR" — X, = AL R/ —&—LAE and apply the triangle inequality
to obtain

Pa| = | tr ((p_po ~I)(ALR] +LA})R(RTR)—12*A{) ’

< |tr (@"Pa - T)(ALRDR(RTR)'S.A] )|

Pa,1

+ |t ((07"Pa ~ T)(ALR])AR(RTR) ' S.AL) |

Po,2

+ |t <(p_1779 - I)(LA;)R(RTR)*E*AE) ) .

P23

For the first term 5 1, under the event £, we can invoke Lemma 35 to obtain

rlog(ny Vn _
Pos < C) w”ALRIHFHALE*(RTR) LIRS
p(n1 Ang) F

)
op

log (1 V
<oy [ Hrloetm Ving) sy H21/2(RTR)—1zi/2
p(n1 Ang)

where the second line follows from the relation |AB||f < ||Allop||B]lr. Use the condition (68c)
to obtain

o) urlog(ny V ng) 1/22
< ALY .
P21 < (1— 6)2\/ p(ni Ans) [ALE " F

Regarding the remaining terms ‘B9 2 and ‘B 3, our main hammer is Lemma 36. Invoking Lemma 36
under the event € with L4 == A X% Ry = R, 2, L = A SY? and R = Ar(RTR)'xY?,

we arrive at

ny VvV ng

Foz = O 1ALE 2o LS [f | REL 0 | AR(RT RISV
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nyVn
e 1 2

IALE ol ALEY 2 FI RS ool AR e 22 (RTR) 122

op

Similarly, with the help of Lemma 36, one has

ny Vng

Pa < C 1L3 2 | ALEY e A RS2 e |RE o [ 212 (RTR) 152

op

Utilizing the consequences in Claim 6, we arrive at

Caok < Cp ) pr 1/2 1/2
< 1+ ALY e ARSY
Bo,2 (=L 1_. s A 1a) AL IFl[ AR I

CyC% K2 wr
(1—e) p(n1 Ang)

We then combine the bounds for B 1,22 and Po 3 to see

1/2

Poy < [N REEPNS >R

Cy wurlog(ng V ng) 12,2
< ALY,
P2 < 1- 6)2\/ p(n1 A o) |ALE R
Cak < Cg C%k > ur 12 "
+ 1+ + A S ALS
G- T Toe T A= 02) oty gy 1 2e 5 IFl AR Te

= S [|ALEY? + 6| ALY || A RS

02 1/2 02 1/2
<@+ PIALZ R+ TARS.

where we denote

4 prlog(ny V ng) Cak ( Cp C%k > ur
(5 = 3 and (5 = 1 + + .
T 6)2\/ p(ny Ang) 2T (1 —e)2 1—¢ (1—¢2) /plni Ana)

. Following a similar argument for controlling 35 (i.e. repeatedly using Lemmas 35 and 36), we can
obtain the following bounds for B3 and PB4, whose proof are deferred to the end of this section.

Claim 7 Under the event £, one has

52 1/2 2 1/2
Pa < SIALE R+ 60+ S)IIARS

P < 51051 + 02) || ALZY |2 + 62(51 + 62) | AR Y2 2.

Taking the bounds for 1, Ps, Vs and P, collectively yields

2e 1/2 2€ + €2 1/2
=) ) IALE R+ SR

1—
(1 —n) (200 +0)| ALY + 6ol AR )
0 (S ALE R + (26 + 6| ARV )

+ 7’ (51(51 +8) | ALS R + 62(61 + 52)HAR21/2H%> :

H(itﬂQt - L*)Ei/QHi < ((1 —n)*+
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A similar upper bound holds for the second square in (69). As a result, we reach the conclusion
that

~ 2 ~ 2
| @@= LZ?| 4+ |(ReaQi T = ROBY?| < p2(r5e,01,00) dist? (B, F),

where the contraction rate p?(n; e, d1,62) is given by

2¢ 2¢ + €2
p*(n;€,01,82) = (1 —n)* + (1_6 +2(61 + 52)) n(l—mn)+ <(1_€)2 +2(01 +02) + (01 + 52)2> .

As long as p > C(urk* V log(ny V na))ur/(n1 A ng) for some sufficiently large constant C, one has
d1+3d2 < 0.1 under the setting € = 0.02. When 0 < n < 2/3, one further has p(n; €, d1,02) < 1—0.61.
Thus we conclude that

~ ~ 2 ~ 2
dist(Fi1, FL) < \/ | @@ - L=+ [(Ren@r T - ROEV
< (1 — 0.6n) dist(F}, F.,),

which is exactly the upper bound we are after; see (67). This finishes the proof.

Proof [Proof of Claim 6] First, repeating the derivation for (45) obtains (68a). Second, take the
condition (68a) and Lemma 25 together to obtain (68b) and (68c). Third, take the incoherence
condition /71| LR [|2,00 V /R2|RL" ||2,00 < Cp+/fito1(X) together with the relations

—1/2 —1/2 1/2
> (o (B2 = 805 lop) 125V ]2

ILR |l200 > 0, (RS )| LY 2,00

> (1- )| L2 o0
|RL |20 > 0 (L2 | RS2
> (L2 ) — AL op ) |RE o
> (1= | R o
to obtain (68d) and (68e). Finally, apply the triangle inequality together with incoherence assump-

tion to obtain (68f). [ |

Proof [Proof of Claim 7] We start with the term B3, for which we have

I905] < ‘tr ((p*m - I)(L*Ag)R(RTR)*12*(RTR)*1RTARLI) ’

PBs,1

+ |t ((p*m - I)(ALRT)R(RTR)*12*(RTR)*1RTARLI) ’ .

PBs,2

Invoke Lemma 35 to bound ‘B3 ;1 as

prlog(ny V no) T H Tr(pT -1 T o1 TH
< Oy | ——————4|| LA LARR(R R) '3, (R R 'R
P31 < 1\/ ol A ) L ARlF rE( ) ( ) .
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1 \% 2
< prlog(ni V ng) HARE}/QHI% HR(RTR)”Ei/Q
p(n1 A na) op

The condition (68b) allows us to obtain a simplified bound

o) prlog(ny V ng) 1/2,2
< ApX .
Pz < (1— 6)2\/ p(n1 Ang) ARSI

In regard to ‘B3 2, we apply Lemma 36 with Ly = ALZ)i/Q, Ry = RE;UQ, Lp = L*Efl/Q, and
Rz = R(R'TR)"'S,(RTR)'RTARZY? to see

V _ —
B < Ooy [T ALE e L3 o[RS oo | RORTR) S (RTR) R AR

V
=G nlanHALEUZHFHL* L2

IRS; 1/2|]200HR R'R) 121/2H IARSY k.

Again, use the consequences in Claim 6 to reach

niLVvn r Cpk T
Pz o < Cr ! QHALEI/QHF”'u B sz 2||AR§31/2||F

- CiCwr NS EETHNS U
(1- 6)3 p(n1 Ang)

Combine the bounds of P31 and B3 2 to reach

o) prlog(ny V no) 1/2,2
< ARXy,
§’133 = (1 — 6)2\/ p(nl A n2) || R ”F

CyCpk ur
(1—¢)3 p(n1 Ang)
<& )|ARSY?)2 + 52|\AL2”2|1FHAREW|\F

ALY |A RS |lr

2 1/2 1/2
< ZIarlR + 6+ 2)|amnl R
Moving on to the term B4, we have

RUE H(p—po ~I)(LR" — X*)R(RTRYlEi/QHF

tr ((0"'Po — I)(ALR]R.(RTR)'SVLT) |

Pa,1

+ |t ((p—lpg _ I)(ALRI)AR(RTR)—lzi/QiT) ‘

Pa,2
n ‘ tr ((~'Po — I)(LA;)R(RTR)—IEWET) ,

Pa,3
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where we have used the variational representation of the Frobenius norm for some L € Ruxr obeying
|IL||r = 1. Note that the decomposition of /4 is extremely similar to that of {Ba. Therefore we
can follow a similar argument (i.e. applying Lemmas 35 and 36) to control these terms as

C rlog(ni Vn
Pa1 < ! \/,u gl Q)HALZ}JZHF?

(1—¢)? p(n1 A ng)
Cok ( Cp ) wur 1/2
< 1+ ARrX, ;
;B4,2 (1 _ 6)2 1—¢ p(n1 A n2) H R HF
CyC% K> r
Pasz < 2B ~ HAREi/QHF‘

(1—-e)4 p(n1 A na)
For conciseness, we omit the details for bounding each term. Combine them to reach
Vs <AL e+ 0ol ARS 7.

Finally take the square on both sides and use 2ab < a® 4+ b? to obtain the upper bound

P < 61061 + 82) | ALS R + 62(81 + 62) | ARy |2

E.3 Proof of Lemma 21

We start by recording a useful lemma below.
Lemma 37 ((Chen, 2015, Lemma 2), (Chen et al., 2020a, Lemma 4)) For any fized X €

R™*"2 ayith overwhelming probability, one has

log(n1 V ng) log(n1 V n2)

(0™ Pa — I)(X)||,, < Co [ X loe + Co (11X [l200 V1 X T l2,00),
where Cy > 0 is some universal constant that does not depend on X.
In view of Lemma 24, one has
dist (Fp, F,) < \/vV2 +1 HUOEOVOT - X[ <2+ HUOZ:OVOT x| . (70
op

where the last relation uses the fact that Uy3oV," — X, has rank at most 2r. Applying the triangle
inequality, we obtain

HUOEOVOT _ X,

< [pPa(x) - OV |+ [0 Pa(X) - X,
op op

<2[|(p"Pa ~ )(X.)| (71)

op”

Here the second inequality hinges on the fact that UOEOVOT is the best rank-r approximation to
P~ Po(X.), ie.

[ Pax) ~ 0BT < [l Pax) - X,
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Combining (70) and (71) yields

dist( Fg, ) <24/ (V24 1)2r H “Pg — *)Hop <5Vr H(p_lpﬁ _I)(X*)Hop-

It then boils down to controlling H p Pa(X,) — X*Hop, which is readily supplied by Lemma 37 as

10g(n1 V TLQ) log(n1 vV ’I’Lg)

[ X«lloo + Co ( VX l2.00).

|0~ Pa ~ T)(X.)],, < Co

which holds with overwhelming probability. The proof is finished by plugging the following bounds
from incoherence assumption of X,:

1Xslloo < U l2.00 B llopl VAll2.00 <~z

[ur
HX*||2,00 < ||U*||2,00H2*||0PHV;”0P < %“UT(X*)§

kor(Xy);

wr
16, ll2.00 < 1Tllop I llopl Vill2.00 < \ 1y (X

Appendix F. Proof for General Loss Functions

We first present a useful property of restricted smooth and convex functions.

Lemma 38 Suppose that f : R™*"2 s R is rank-2r restricted L-smooth and rank-2r restricted
convex. Then for any X1, Xs € R™*"™2 of rank at most r, one has

(VI(X2) ~ V() X1 — Xa) > TIVF(X) — VAR,

Proof Since f(-) is rank-2r restricted L-smooth and convex, it holds for any X € R™*"2 with
rank at most 2r that

_ _ _ L
f(X1) +(Vf(X1), X — X3) < f(X) < f(X2) +(Vf(X2), X — Xo) + §||X - X3
Reorganize the terms to yield
_ L
F(X1) +(Vf(X1), X2 = X1) < f(X2) +(Vf(X2) = VA(X1), X = Xo) + S || X — Xo|2.
Take X = X5 — +P-(Vf(X2) — Vf(X1)), whose rank is at most 2r, to see
F(X0) +(VF(X1), X = Xa) + 57 IIVf(Xz) V(X)lE, < f(Xa).
We can further switch the roles of X7 and X5 to obtain

f(Xo) +(Vf(X2), X X2>+*va(X2) VHXDIE, < f(X).

Adding the above two inequalities yields the desired bound. |
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F.1 Proof of Theorem 11

Suppose that the t-th iterate F; obeys the condition dist(F3, Fy) < 0.10,(X)/\/ky. In view of
Lemma 22, one knows that Q, the optimal alignment matrix between F; and F, exists. Therefore,
for notational convenience, denote L = L;Qy, R = RtQ;T, A, =L—-L,, A =R—- R,, and
€:=0.1/,/ky. Similar to the derivation in (45), we have

—1/2

1AL op v | ARS Y op < e (72)

The conclusion || LR, — X, ||r < 1.5dist(F;, F) is a simple consequence of Lemma 26; see (48) for
a detailed argument. From now on, we focus on proving the distance contraction.
By the definition of dist(F;;1, Fy), one has

2 2
dist*(Fiis, ) < || (Benn@e - LOB|| + |[(Ren@r T - ROZYY| (73)
Introduce an auxiliary function
I
Fu(X) = f(X) = SlIX — X.|I#,

which is rank-2r restricted (L — p)-smooth and rank-2r restricted convex. Using the ScaledGD
update rule (27) and the decomposition LR" — X, = AR + L, A}, we obtain

(Li11Q: — L)%Y = (L= yVf(LRT)R(RTR)™ - L,) 5

- (L —nu(LR" — X,)R(R'R) ' =V, (LR")R(R"R)™" — L*> >/

= (1—nu)ALSY? - puL, ALR(RTR)'SY? — yVf,(LR")R(RTR) 'z},
As a result, one can expand the first square in (73) as

O I e

(5]

1
—2n(1 —np) <VfM(LRT), ALY (R"TR)'R" — A R] — 2ALA;>

~~

(D)
1
—2n(1 —np) <Vfu(LRT), ALR] + QALAE>

+ 22 (Vfu(LR'), LLARR(R' R) 'S, (RTR)'R")

63

+ 2|V A LRDR(RTR) 'z zHi

By
In the sequel, we shall bound the four terms separately.

1. Notice that the main term &; has already been controlled in (46) under the condition (72). It
obeys

2¢ + €2 1/2)2

2e 1/2
& < <(1 —np)? + :77#(1 - 77#)) AL + WW 1P| ART IR,

as long as nu < 2/3.
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2. For the second term &9, note that A;X,(R'TR)"'R" — ALR] — %ALAE has rank at most r.
Hence we can invoke Lemma 28 to obtain

1
G| < V(LR ||r, |ALZ(RTR)'R" — ALR] — §ALA£

F

< IV SBR[ o]l A LS <HR(RTR)‘121/2 -V

1 -
+ 51 ARS: 1/2||c,p> ,
op

where the second line uses R, = V*Ei/ 2 Take the condition (72) and Lemma 25 together to
obtain
1
|rE R <=
op 1—c¢
2
HR(RTR)—lz:i/2 Lyl < Y2
op 1—c¢

These consequences further imply that

\/§€
1—c¢

€
2] < (77 + DIVIER) e AL e

3. As above, the third term &3 can be similarly bounded as

|85 < IV fu(LR)|lfr

L*A;R(RTR)—lz*(RTR)—lRTHF

2
< IVE(LRD|le, | ARSY? e [ RIRTR)™' 5

op

1 1/2
< G VA ERD e AR e

4. For the last term &4, invoke Lemma 28 to obtain

2 1

T py—1%11/2
b <
R(R' R) * o S (L —ep

&4 < |Vfu.(LR")|,

IVf(LRT)|E,.

o

Taking collectively the bounds for &1, Bo, &3 and &4 yields

1/2]|? 2e 1/2 2¢ + € 1/2
[CAART-TE A0) > ((1 )+ o —nm) IALE I+ ol AnE
\/56 €
+2(7 4 ) =)V LRl | A LS

1
—2n(1 — nu) <VfH(LRT), ALR] + QALA;>

2% T
+ (1 o G)QHVfM(LR )”FJ”

2
1/2 n
ARE*/ HF+ (1_6)2”vfM(LRT)H|2:,r

Similarly, we can obtain the control of ||(Ry41Q; ' — R*)Eipﬂg. Combine them together to reach
2 2
H(Lt+1Qt - L*)Ei/QHF + H(Rt+1Qt_T - Rk)Zi/QHF
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2¢ 2¢ + €2 1/2 1/2
< ((1 =) () + s ) (lars? + ars?)

+ 2 ((f_ 0=+ ) IV (LRIl (1AL + | ARSY )

— 291 =) (Vfu(LRT), ALR] + LAL + ALAL) + S IVI(LRDIE,

2 2
(1—-¢)?
2¢ 2€ + €2 1/2 1/2
< ((1 =) gL =) e 2) (1A= + ARz )

+ 21 ((f + 51— ) + (1”_“)) IV £ R (1AL ]e + | ARE )

¢1
_ L—nmp T2
o (2 - 2 ) IVAMERI,

()

where the last line follows from Lemma 38 (notice that V f,(X,) = 0) as

(Vi(LR"),ALR] + L,AL + ALAL) = (VF,(LR"),LR" — X,) >

(LRI,

Notice that €3 > 0 as long as 7 < (1 —¢)?/L. Maximizing the quadratic function of |V f,(LR") |k,
yields

¢? 2
VS ERD e (180226 + 18522 ) ~ GIVAERDIE, < 1o (1AL e + | ArDe)

¢ 1/2 1/2
< 5o, (1822 + AR 7).

where the last inequality holds since (a + b)? < 2(a® + b?). Identify dist®(F}, Fy) = HAL21/2H2
||AR21/2||% to obtain

2 2
|@e1@e = L)B?|| + |[(Ren@ T = RIS < 02 .1, D) dist(R, F),
where the contraction rate is given by

2 L a sere ,, ((Z+90—m)+ )
pr(me p L) = (1= np)” + o—np(l —nu) + 51K+ j- n(L — p).
—€ (I1—e¢) 1—77,u—T7( )
(1-¢)?

With € =0.1/,/Fy and 0 <7 < 0.4/L, one has p(n;€, 1, L) <1 —0.7nu. Thus we conclude that

dist(Fyy1, F, \/ H LiiQi— L) 1/2” + H (Ri41Q; " 1/2Hi
< (1 —0.79p) dist(Fy, Fy),

which is the desired claim.
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Remark 39 We provide numerical details for the contraction rate. For simplicity, we shall prove
p(n; €, L) < 1 —0.Tyu under a stricter condition e = 0.02/,/ky. The stronger result under the
condition € = 0.1/\/@ can be verified through a subtler analysis.

With € = 0.02/,/ky and 0 <n < 0.4/L, one can bound the terms in p*(n; e, 1, L) as

9 2¢ 2¢ + €2 9 9 9 9
(1 =npu)” + T—nu(l —nu) + T < 1 —1.959nu 4 1.002n" 1% (74)
V2e | €y(1 _ o \? 0.0016 2,2
(e + 51 —np) + 7252 00016 4 0.078nu + 1.00572
6 L (L ) < nL
= — ?(f—)’? = 1 —1.042nL
—€
0.001677,% + 0.4 x (0.078nu + 1.005m %)
<
= 1—0.4 x 1.042
< 0.057nu + 0.69n%u?, (75)

where the last line uses the definition (28) of ky. Putting (74) and (75) together further implies
p*(mi€, 1, L) <1 —19nu+ 170 < (1 —0.7np)?,

as long as 0 < nu < 0.4.
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