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Abstract

Low-rank matrix estimation is a canonical problem that finds numerous applications in signal
processing, machine learning and imaging science. A popular approach in practice is to factorize
the matrix into two compact low-rank factors, and then optimize these factors directly via simple
iterative methods such as gradient descent and alternating minimization. Despite nonconvexity,
recent literatures have shown that these simple heuristics in fact achieve linear convergence when
initialized properly for a growing number of problems of interest. However, upon closer examination,
existing approaches can still be computationally expensive especially for ill-conditioned matrices:
the convergence rate of gradient descent depends linearly on the condition number of the low-
rank matrix, while the per-iteration cost of alternating minimization is often prohibitive for large
matrices.

The goal of this paper is to set forth a competitive algorithmic approach dubbed Scaled Gradient

Descent (ScaledGD) which can be viewed as preconditioned or diagonally-scaled gradient descent,
where the preconditioners are adaptive and iteration-varying with a minimal computational over-
head. With tailored variants for low-rank matrix sensing, robust principal component analysis
and matrix completion, we theoretically show that ScaledGD achieves the best of both worlds: it
converges linearly at a rate independent of the condition number of the low-rank matrix similar
as alternating minimization, while maintaining the low per-iteration cost of gradient descent. Our
analysis is also applicable to general loss functions that are restricted strongly convex and smooth
over low-rank matrices. To the best of our knowledge, ScaledGD is the first algorithm that provably
has such properties over a wide range of low-rank matrix estimation tasks. At the core of our anal-
ysis is the introduction of a new distance function that takes account of the preconditioners when
measuring the distance between the iterates and the ground truth. Finally, numerical examples
are provided to demonstrate the effectiveness of ScaledGD in accelerating the convergence rate of
ill-conditioned low-rank matrix estimation in a wide number of applications.
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1. Introduction

Low-rank matrix estimation plays a critical role in fields such as machine learning, signal processing,
imaging science, and many others. Broadly speaking, one aims to recover a rank-r matrix X? ∈
R
n1×n2 from a set of observations y = A(X?), where the operator A(·) models the measurement

process. It is natural to minimize the least-squares loss function subject to a rank constraint:

minimize
X∈Rn1×n2

f(X) := 1
2‖A(X)− y‖22 s.t. rank(X) ≤ r, (1)

which is, however, computationally intractable in general due to the rank constraint. Moreover,
as the size of the matrix increases, the costs involved in optimizing over the full matrix space
(i.e. Rn1×n2) are prohibitive in terms of both memory and computation. To cope with these chal-
lenges, one popular approach is to parametrize X = LR> by two low-rank factors L ∈ R

n1×r and
R ∈ R

n2×r that are more memory-efficient, and then to optimize over the factors instead:

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR>). (2)

Although this leads to a nonconvex optimization problem over the factors, recent breakthroughs
have shown that simple algorithms (e.g. gradient descent, alternating minimization), when properly
initialized (e.g. via the spectral method), can provably converge to the true low-rank factors under
mild statistical assumptions. These benign convergence guarantees hold for a growing number of
problems such as low-rank matrix sensing, matrix completion, robust principal component analysis
(robust PCA), phase synchronization, and so on.

However, upon closer examination, existing approaches such as gradient descent and alternating
minimization are still computationally expensive, especially for ill-conditioned matrices. Take low-
rank matrix sensing as an example: although the per-iteration cost is small, the iteration complexity
of gradient descent scales linearly with respect to the condition number of the low-rank matrix X?

Tu et al. (2016); on the other end, while the iteration complexity of alternating minimization Jain
et al. (2013) is independent of the condition number, each iteration requires inverting a linear
system whose size is proportional to the dimension of the matrix and thus the per-iteration cost
is prohibitive for large-scale problems. These together raise an important open question: can one
design an algorithm with a comparable per-iteration cost as gradient descent, but converges much
faster at a rate that is independent of the condition number as alternating minimization in a provable
manner for a wide variety of low-rank matrix estimation tasks?

1.1 Preconditioning helps: scaled gradient descent

In this paper, we answer this question affirmatively by studying the following scaled gradient descent
(ScaledGD) algorithm to optimize (2). Given an initialization (L0,R0), ScaledGD proceeds as follows

Lt+1 = Lt − η∇LL(Lt,Rt)(R
>
t Rt)

−1,

Rt+1 = Rt − η∇RL(Lt,Rt)(L
>
t Lt)

−1,
(3)

where η > 0 is the step size and ∇LL(Lt,Rt) (resp. ∇RL(Lt,Rt)) is the gradient of the loss function
L with respect to the factor Lt (resp. Rt) at the t-th iteration. Comparing to vanilla gradient
descent, the search directions of the low-rank factors Lt,Rt in (3) are scaled by (R>

t Rt)
−1 and

(L>
t Lt)

−1 respectively. Intuitively, the scaling serves as a preconditioner as in quasi-Newton type
algorithms, with the hope of improving the quality of the search direction to allow larger step sizes.
Since the computation of the Hessian is extremely expensive, it is necessary to design preconditioners
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that are both theoretically sound and practically cheap to compute. Such requirements are met by
ScaledGD, where the preconditioners are computed by inverting two r × r matrices, whose size is
much smaller than the dimension of matrix factors. Therefore, each iteration of ScaledGD adds
minimal overhead to the gradient computation and has the order-wise same per-iteration cost as
gradient descent. Moreover, the preconditioners are adaptive and iteration-varying. Another key
property of ScaledGD is that it ensures the iterates are covariant with respect to the parameterization
of low-rank factors up to invertible transforms.

While ScaledGD and its alternating variants have been proposed in Mishra et al. (2012); Mishra
and Sepulchre (2016); Tanner and Wei (2016) for a subset of the problems we studied, none of these
prior art provides any theoretical validations to the empirical success. In this work, we confirm
theoretically that ScaledGD achieves linear convergence at a rate independent of the condition number
of the matrix when initialized properly, e.g. using the standard spectral method, for several canonical
problems: low-rank matrix sensing, robust PCA, and matrix completion. Table 1 summarizes the
performance guarantees of ScaledGD in terms of both statistical and computational complexities
with comparisons to prior algorithms using the vanilla gradient method.

• Low-rank matrix sensing. As long as the measurement operator satisfies the standard restricted
isometry property (RIP) with an RIP constant δ2r . 1/(

√
rκ), where κ is the condition number

of X?, ScaledGD reaches ε-accuracy in O(log(1/ε)) iterations when initialized by the spectral
method. This strictly improves the iteration complexity O(κ log(1/ε)) of gradient descent in Tu
et al. (2016) under the same sample complexity requirement.

• Robust PCA. Under the deterministic corruption model Chandrasekaran et al. (2011), as long
as the fraction α of corruptions per row / column satisfies α . 1/(µr3/2κ), where µ is the in-
coherence parameter of X?, ScaledGD in conjunction with hard thresholding reaches ε-accuracy
in O(log(1/ε)) iterations when initialized by the spectral method. This strictly improves the
iteration complexity of projected gradient descent Yi et al. (2016).

• Matrix completion. Under the random Bernoulli observation model, as long as the sample com-
plexity satisfies n1n2p & (µκ2 ∨ log n)µnr2κ2 with n = n1 ∨ n2, ScaledGD in conjunction with a
properly designed projection operator reaches ε-accuracy in O(log(1/ε)) iterations when initial-
ized by the spectral method. This improves the iteration complexity of projected gradient descent
Zheng and Lafferty (2016) at the expense of requiring a larger sample size.

In addition, ScaledGD does not require any explicit regularizations that balance the norms of two
low-rank factors as required in Tu et al. (2016); Yi et al. (2016); Zheng and Lafferty (2016), and
removed the additional projection that maintains the incoherence properties in robust PCA Yi
et al. (2016), thus unveiling the implicit regularization property of ScaledGD. To the best of our
knowledge, this is the first factored gradient descent algorithm that achieves a fast convergence
rate that is independent of the condition number of the low-rank matrix at near-optimal sample
complexities without increasing the per-iteration computational cost. Our analysis is also applicable
to general loss functions that are restricted strongly convex and smooth over low-rank matrices.

At the core of our analysis, we introduce a new distance metric (i.e. Lyapunov function) that
accounts for the preconditioners, and carefully show the contraction of the ScaledGD iterates under
the new distance metric. We expect that the ScaledGD algorithm can accelerate the convergence
for other low-rank matrix estimation problems, as well as facilitate the design and analysis of
other quasi-Newton first-order algorithms. As a teaser, Figure 1 illustrates the relative error of
completing a 1000 × 1000 incoherent matrix of rank 10 with varying condition numbers from 20%
of its entries, using either ScaledGD or vanilla GD with spectral initialization. Even for moderately
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Matrix sensing Robust PCA Matrix completion

Algorithms
sample iteration corruption iteration sample iteration

complexity complexity fraction complexity complexity complexity

GD nr2κ2 κ log 1
ε

1
µr3/2κ3/2∨µrκ2 κ log 1

ε (µ ∨ log n)µnr2κ2 κ log 1
ε

ScaledGD
nr2κ2 log 1

ε
1

µr3/2κ log 1
ε (µκ2 ∨ log n)µnr2κ2 log 1

ε(this paper)

Table 1: Comparisons of ScaledGD with gradient descent (GD) when tailored to various problems
(with spectral initialization) Tu et al. (2016); Yi et al. (2016); Zheng and Lafferty (2016),
where they have comparable per-iteration costs. Here, we say that the output X of an
algorithm reaches ε-accuracy, if it satisfies ‖X −X?‖F ≤ εσr(X?). Here, n := n1 ∨ n2 =
max{n1, n2}, κ and µ are the condition number and incoherence parameter of X?.
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Figure 1: Performance of ScaledGD and vanilla GD for completing a 1000×1000 incoherent matrix
of rank 10 with different condition numbers κ = 2, 10, 50, where each entry is observed
independently with probability 0.2. Here, both methods are initialized via the spectral
method. It can be seen that ScaledGD converges much faster than vanilla GD even for
moderately large condition numbers.

ill-conditioned matrices, the convergence rate of vanilla GD slows down dramatically, while it is
evident that ScaledGD converges at a rate independent of the condition number and therefore is
much more efficient.

Remark 1 (ScaledGD for PSD matrices) When the low-rank matrix of interest is positive semi-
definite (PSD), we factorize the matrix X ∈ R

n×n as X = LL>, with L ∈ R
n×r. The update rule

of ScaledGD simplifies to

Lt+1 = Lt − η∇LL(Lt)(L
>
t Lt)

−1. (4)

We focus on the asymmetric case since the analysis is more involved with two factors. Our theory
applies to the PSD case without loss of generality.
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1.2 Related work

Our work contributes to the growing literature of design and analysis of provable nonconvex op-
timization procedures for high-dimensional signal estimation; see e.g. Jain and Kar (2017); Chen
and Chi (2018); Chi et al. (2019) for recent overviews. A growing number of problems have been
demonstrated to possess benign geometry that is amenable for optimization Mei et al. (2018) either
globally or locally under appropriate statistical models. On one end, it is shown that there are no
spurious local minima in the optimization landscape of matrix sensing and completion Ge et al.
(2016); Bhojanapalli et al. (2016b); Park et al. (2017); Ge et al. (2017), phase retrieval Sun et al.
(2018); Davis et al. (2017), dictionary learning Sun et al. (2015), kernel PCA Chen and Li (2019)
and linear neural networks Baldi and Hornik (1989); Kawaguchi (2016). Such landscape analysis
facilitates the adoption of generic saddle-point escaping algorithms Nesterov and Polyak (2006); Ge
et al. (2015); Jin et al. (2017) to ensure global convergence. However, the resulting iteration com-
plexity is typically high. On the other end, local refinements with carefully-designed initializations
often admit fast convergence, for example in phase retrieval Candès et al. (2015); Ma et al. (2019),
matrix sensing Jain et al. (2013); Zheng and Lafferty (2015); Wei et al. (2016), matrix completion
Sun and Luo (2016); Chen and Wainwright (2015); Ma et al. (2019); Chen et al. (2020a); Zheng
and Lafferty (2016); Chen et al. (2020b), blind deconvolution Li et al. (2019); Ma et al. (2019), and
robust PCA Netrapalli et al. (2014); Yi et al. (2016); Chen et al. (2020c), to name a few.

Existing approaches for asymmetric low-rank matrix estimation often require additional regu-
larization terms to balance the two factors, either in the form of 1

2‖L>L−R>R‖2F Tu et al. (2016);
Park et al. (2017) or 1

2‖L‖2F + 1
2‖R‖2F Zhu et al. (2018); Chen et al. (2020b,c), which ease the

theoretical analysis but are often unnecessary for the practical success, as long as the initializa-
tion is balanced. Some recent work studies the unregularized gradient descent for low-rank matrix
factorization and sensing including Charisopoulos et al. (2021); Du et al. (2018); Ma et al. (2021).
However, the iteration complexity of all these approaches scales at least linearly with respect to the
condition number κ of the low-rank matrix, e.g. O(κ log(1/ε)), to reach ε-accuracy, therefore they
converge slowly when the underlying matrix becomes ill-conditioned. In contrast, ScaledGD enjoys
a local convergence rate of O(log(1/ε)), therefore incurring a much smaller computational footprint
when κ is large. Last but not least, alternating minimization Jain et al. (2013); Hardt and Wootters
(2014) (which alternatively updates Lt and Rt) or singular value projection Netrapalli et al. (2014);
Jain et al. (2010) (which operates in the matrix space) also converge at the rate O(log(1/ε)), but
the per-iteration cost is much higher than ScaledGD. Another notable algorithm is the Riemannian
gradient descent algorithm in Wei et al. (2016), which also converges at the rate O(log(1/ε)) under
the same sample complexity for low-rank matrix sensing, but requires a higher memory complexity
since it operates in the matrix space rather than the factor space.

From an algorithmic perspective, our approach is closely related to the alternating steepest
descent (ASD) method in Tanner and Wei (2016) for low-rank matrix completion, which performs
the proposed updates (3) for the low-rank factors in an alternating manner. Furthermore, the
scaled gradient updates were also introduced in Mishra et al. (2012); Mishra and Sepulchre (2016)
for low-rank matrix completion from the perspective of Riemannian optimization. However, none
of Tanner and Wei (2016); Mishra et al. (2012); Mishra and Sepulchre (2016) offered any statistical
nor computational guarantees for global convergence. Our analysis of ScaledGD can be viewed
as providing justifications to these precursors. Moreover, we have systematically extended the
framework of ScaledGD to work in a large number of low-rank matrix estimation tasks such as
robust PCA.
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1.3 Paper organization and notation

The rest of this paper is organized as follows. Section 2 describes the proposed ScaledGD method
and details its application to low-rank matrix sensing, robust PCA and matrix completion with
theoretical guarantees in terms of both statistical and computational complexities, highlighting the
role of a new distance metric. The convergence guarantee of ScaledGD under the general loss function
is also presented. In Section 3, we outline the proof for our main results. Section 4 illustrates the
excellent empirical performance of ScaledGD in a variety of low-rank matrix estimation problems.
Finally, we conclude in Section 5.

Before continuing, we introduce several notation used throughout the paper. First of all, we use
boldfaced symbols for vectors and matrices. For a vector v, we use ‖v‖0 to denote its `0 counting
norm, and ‖v‖2 to denote the `2 norm. For any matrix A, we use σi(A) to denote its i-th largest
singular value, and let Ai,· and A·,j denote its i-th row and j-th column, respectively. In addition,
‖A‖op, ‖A‖F, ‖A‖1,∞, ‖A‖2,∞, and ‖A‖∞ stand for the spectral norm (i.e. the largest singular
value), the Frobenius norm, the `1,∞ norm (i.e. the largest `1 norm of the rows), the `2,∞ norm
(i.e. the largest `2 norm of the rows), and the entrywise `∞ norm (the largest magnitude of all
entries) of a matrix A. We denote

Pr(A) = min
Ã:rank(Ã)≤r

‖A− Ã‖2F (5)

as the rank-r approximation of A, which is given by the top-r SVD of A by the Eckart-Young-
Mirsky theorem. We also use vec(A) to denote the vectorization of a matrix A. For matrices A,B
of the same size, we use 〈A,B〉 =∑i,j Ai,jBi,j = tr(A>B) to denote their inner product. The set

of invertible matrices in R
r×r is denoted by GL(r). Let a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Throughout, f(n) . g(n) or f(n) = O(g(n)) means |f(n)|/|g(n)| ≤ C for some constant C > 0
when n is sufficiently large; f(n) & g(n) means |f(n)|/|g(n)| ≥ C for some constant C > 0 when n
is sufficiently large. Last but not least, we use the terminology “with overwhelming probability” to
denote the event happens with probability at least 1− c1n

−c2 , where c1, c2 > 0 are some universal
constants, whose values may vary from line to line.

2. Scaled Gradient Descent for Low-Rank Matrix Estimation

This section is devoted to introducing ScaledGD and establishing its statistical and computational
guarantees for various low-rank matrix estimation problems. Before we instantiate tailored versions
of ScaledGD on concrete low-rank matrix estimation problems, we first pause to provide more
insights of the update rule of ScaledGD, by connecting it to the quasi-Newton method. Note that
the update rule (3) for ScaledGD can be equivalently written in a vectorization form as

vec(Ft+1) = vec(Ft)− η

[
(R>

t Rt)
−1 ⊗ In1 0

0 (L>
t Lt)

−1 ⊗ In2

]
vec(∇FL(Ft))

= vec(Ft)− ηH−1
t vec(∇FL(Ft)), (6)

where we denote Ft = [L>
t ,R

>
t ]

> ∈ R
(n1+n2)×r, and by ⊗ the Kronecker product. Here, the block

diagonal matrix Ht is set to be

Ht :=

[
(R>

t Rt)⊗ In1 0

0 (L>
t Lt)⊗ In2

]
.

The form (6) makes it apparent that ScaledGD can be interpreted as a quasi-Newton algorithm,
where the inverse of Ht can be cheaply computed through inverting two rank-r matrices.
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2.1 Assumptions and error metric

Denote by U?Σ?V
>
? the compact singular value decomposition (SVD) of the rank-r matrix X? ∈

R
n1×n2 . Here U? ∈ R

n1×r and V? ∈ R
n2×r are composed of r left and right singular vectors,

respectively, and Σ? ∈ R
r×r is a diagonal matrix consisting of r singular values of X? organized in

a non-increasing order, i.e. σ1(X?) ≥ · · · ≥ σr(X?) > 0. Define

κ := σ1(X?)/σr(X?) (7)

as the condition number of X?. Define the ground truth low-rank factors as

L? := U?Σ
1/2
? , and R? := V?Σ

1/2
? , (8)

so that X? = L?R
>
? . Correspondingly, denote the stacked factor matrix as

F? :=

[
L?

R?

]
∈ R

(n1+n2)×r. (9)

Next, we are in need of a right metric to measure the performance of the ScaledGD iterates
Ft := [L>

t ,R
>
t ]

>. Obviously, the factored representation is not unique in that for any invertible
matrix Q ∈ GL(r), one has LR> = (LQ)(RQ−>)>. Therefore, the reconstruction error metric
needs to take into account this identifiability issue. More importantly, we need a diagonal scaling in
the distance error metric to properly account for the effect of preconditioning. To provide intuition,
note that the update rule (3) can be viewed as finding the best local quadratic approximation of
L(·) in the following sense:

(Lt+1,Rt+1) = argmin
L,R

L(Lt,Rt) + 〈∇LL(Lt,Rt),L−Lt〉+ 〈∇RL(Lt,Rt),R−Rt〉

+
1

2η

(∥∥∥(L−Lt)(R
>
t Rt)

1/2
∥∥∥
2

F
+
∥∥∥(R−Rt)(L

>
t Lt)

1/2
∥∥∥
2

F

)
,

where it is different from the common interpretation of gradient descent in the way the quadratic
approximation is taken by a scaled norm. When Lt ≈ L? and Rt ≈ R? are approaching the ground
truth, the additional scaling factors can be approximated by L>

t Lt ≈ Σ? and R>
t Rt ≈ Σ?, leading

to the following error metric

dist2(F ,F?) := inf
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥
2

F
. (10)

Correspondingly, we define the optimal alignment matrix Q between F and F? as

Q := argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥
2

F
, (11)

whenever the minimum is achieved.1 It turns out that for the ScaledGD iterates {Ft}, the optimal
alignment matrices {Qt} always exist (at least when properly initialized) and hence are well-defined.
The design and analysis of this new distance metric are of crucial importance in obtaining the
improved rate of ScaledGD; see Appendix A.1 for a collection of its properties. In comparison, the
previously studied distance metrics (proposed mainly for GD) either do not include the diagonal
scaling Ma et al. (2021); Tu et al. (2016), or only consider the ambiguity class up to orthonormal
transforms Tu et al. (2016), which fail to unveil the benefit of ScaledGD.

1. If there are multiple minimizers, we can arbitrarily take one to be Q.
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2.2 Matrix sensing

Assume that we have collected a set of linear measurements about a rank-r matrix X? ∈ R
n1×n2 ,

given as

y = A(X?) ∈ R
m, (12)

where A(X) = {〈Ak,X〉}mk=1 : R
n1×n2 7→ R

m is the linear map modeling the measurement process.
The goal of low-rank matrix sensing is to recover X? from y, especially when the number of mea-
surements m � n1n2, by exploiting the low-rank property. This problem has wide applications in
medical imaging, signal processing, and data compression Candès and Plan (2011).

Algorithm. Writing X ∈ R
n1×n2 into a factored form X = LR>, we consider the following

optimization problem:

minimize
F∈R(n1+n2)×r

L(F ) =
1

2

∥∥∥A(LR>)− y

∥∥∥
2

2
. (13)

Here as before, F denotes the stacked factor matrix [L>,R>]>. We suggest running ScaledGD (3)
with the spectral initialization to solve (13), which performs the top-r SVD on A∗(y), where A∗(·)
is the adjoint operator of A(·). The full algorithm is stated in Algorithm 1. The low-rank matrix
can be estimated as XT = LTR

>
T after running T iterations of ScaledGD.

Algorithm 1 ScaledGD for low-rank matrix sensing with spectral initialization

Spectral initialization: Let U0Σ0V
>
0 be the top-r SVD of A∗(y), and set

L0 = U0Σ
1/2
0 , and R0 = V0Σ

1/2
0 . (14)

Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Lt+1 = Lt − ηA∗(A(LtR
>
t )− y)Rt(R

>
t Rt)

−1,

Rt+1 = Rt − ηA∗(A(LtR
>
t )− y)>Lt(L

>
t Lt)

−1.
(15)

Theoretical guarantees. To understand the performance of ScaledGD for low-rank matrix sens-
ing, we adopt a standard assumption on the sensing operator A(·), namely the Restricted Isometry
Property (RIP).

Definition 2 (RIP Recht et al. (2010)) The linear map A(·) is said to obey the rank-r RIP
with a constant δr ∈ [0, 1), if for all matrices M ∈ R

n1×n2 of rank at most r, one has

(1− δr)‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δr)‖M‖2F.

It is well-known that many measurement ensembles satisfy the RIP property Recht et al. (2010);
Candès and Plan (2011). For example, if the entries of Ai’s are composed of i.i.d. Gaussian entries
N (0, 1/m), then the RIP is satisfied for a constant δr as long as m is on the order of (n1+n2)r/δ

2
r .

With the RIP condition in place, the following theorem demonstrates that ScaledGD converges
linearly — in terms of the new distance metric (cf. (10)) — at a constant rate as long as the sensing
operator A(·) has a sufficiently small RIP constant.

8
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Theorem 3 Suppose that A(·) obeys the 2r-RIP with δ2r ≤ 0.02/(
√
rκ). If the step size obeys

0 < η ≤ 2/3, then for all t ≥ 0, the iterates of the ScaledGD method in Algorithm 1 satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.1σr(X?), and
∥∥∥LtR

>
t −X?

∥∥∥
F
≤ (1− 0.6η)t0.15σr(X?).

Theorem 3 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as long
as the sample size satisfies m = O(nr2κ2) with Gaussian random measurements Recht et al. (2010),
where we recall that n = n1 ∨ n2. To reach ε-accuracy, i.e. ‖LtR

>
t −X?‖F ≤ εσr(X?), ScaledGD

takes at most T = O(log(1/ε)) iterations, which is independent of the condition number κ of X?.
In comparison, alternating minimization with spectral initialization (AltMinSense) converges in
O(log(1/ε)) iterations as long as m = O(nr3κ4) Jain et al. (2013), where the per-iteration cost is
much higher.2 On the other end, gradient descent with spectral initialization in Tu et al. (2016)
converges in O(κ log(1/ε)) iterations as long as m = O(nr2κ2). Therefore, ScaledGD converges at
a much faster rate than GD at the same sample complexity while requiring a significantly lower
per-iteration cost than AltMinSense.

Remark 4 Tu et al. (2016) suggested that one can employ a more expensive initialization scheme,
e.g. performing multiple projected gradient descent steps over the low-rank matrix, to reduce the sam-
ple complexity. By seeding ScaledGD with the output of updates of the form Xτ+1 = Pr (Xτ −A∗(A(Xτ )− y))
after T0 & log(

√
rκ) iterations, where Pr(·) is defined in (5), ScaledGD succeeds with the sample

size O(nr) which is information theoretically optimal.

2.3 Robust PCA

Assume that we have observed the data matrix

Y = X? + S?,

which is a superposition of a rank-r matrix X?, modeling the clean data, and a sparse matrix S?,
modeling the corruption or outliers. The goal of robust PCA Candès et al. (2011); Chandrasekaran
et al. (2011) is to separate the two matrices X? and S? from their mixture Y . This problem finds
numerous applications in video surveillance, image processing, and so on.

Following Chandrasekaran et al. (2011); Netrapalli et al. (2014); Yi et al. (2016), we consider a
deterministic sparsity model for S?, in which S? contains at most α-fraction of nonzero entries per
row and column for some α ∈ [0, 1), i.e. S? ∈ Sα, where we denote

Sα := {S ∈ R
n1×n2 : ‖Si,·‖0 ≤ αn2 for all i, and ‖S·,j‖0 ≤ αn1 for all j}. (16)

Algorithm. Writing X ∈ R
n1×n2 into the factored form X = LR>, we consider the following

optimization problem:

minimize
F∈R(n1+n2)×r,S∈Sα

L(F ,S) =
1

2

∥∥∥LR> + S − Y

∥∥∥
2

F
. (17)

It is thus natural to alternatively update F = [L>,R>]> and S, where F is updated via the
proposed ScaledGD algorithm, and S is updated by hard thresholding, which trims the small entries

2. The exact per-iteration complexity of AltMinSense depends on how the least-squares subproblems are solved with
m equations and nr unknowns; see (Luo et al., 2020, Table 1) for detailed comparisons.

9
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of the residual matrix Y −LR>. More specifically, for some truncation level 0 ≤ ᾱ ≤ 1, we define
the sparsification operator that only keeps ᾱ fraction of largest entries in each row and column:

(Tᾱ[A])i,j =

{
Ai,j , if |A|i,j ≥ |A|i,(ᾱn2), and |A|i,j ≥ |A|(ᾱn1),j

0, otherwise
, (18)

where |A|i,(k) (resp. |A|(k),j) denote the k-th largest element in magnitude in the i-th row (resp. j-th
column).

The ScaledGD algorithm with the spectral initialization for solving robust PCA is formally stated
in Algorithm 2. Note that, comparing with Yi et al. (2016), we do not require a balancing term
‖L>L−R>R‖2F in the loss function (17), nor the projection of the low-rank factors onto the `2,∞
ball in each iteration.

Algorithm 2 ScaledGD for robust PCA with spectral initialization

Spectral initialization: Let U0Σ0V
>
0 be the top-r SVD of Y − Tα[Y ], and set

L0 = U0Σ
1/2
0 , and R0 = V0Σ

1/2
0 . (19)

Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1 do

St = T2α[Y −LtR
>
t ],

Lt+1 = Lt − η(LtR
>
t + St − Y )Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η(LtR
>
t + St − Y )>Lt(L

>
t Lt)

−1.

(20)

Theoretical guarantee. Before stating our main result for robust PCA, we introduce the inco-
herence condition which is known to be crucial for reliable estimation of the low-rank matrix X? in
robust PCA Chen (2015).

Definition 5 (Incoherence) A rank-r matrix X? ∈ R
n1×n2 with compact SVD as X? = U?Σ?V

>
?

is said to be µ-incoherent if

‖U?‖2,∞ ≤
√

µ

n1
‖U?‖F =

√
µr

n1
, and ‖V?‖2,∞ ≤

√
µ

n2
‖V?‖F =

√
µr

n2
.

The following theorem establishes that ScaledGD converges linearly at a constant rate as long
as the fraction α of corruptions is sufficiently small.

Theorem 6 Suppose that X? is µ-incoherent and that the corruption fraction α obeys α ≤ c/(µr3/2κ)
for some sufficiently small constant c > 0. If the step size obeys 0.1 ≤ η ≤ 2/3, then for all t ≥ 0,
the iterates of ScaledGD in Algorithm 2 satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.02σr(X?), and
∥∥∥LtR

>
t −X?

∥∥∥
F
≤ (1− 0.6η)t0.03σr(X?).

Theorem 6 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as
long as the fraction of corruptions satisfies α . 1/(µr3/2κ). To reach ε-accuracy, i.e. ‖LtR

>
t −

X?‖F ≤ εσr(X?), ScaledGD takes at most T = O(log(1/ε)) iterations, which is independent of

10
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κ. In comparison, the AltProj algorithm3 with spectral initialization converges in O(log(1/ε))
iterations as long as α . 1/(µr) Netrapalli et al. (2014), where the per-iteration cost is much higher
both in terms of computation and memory as it requires the computation of the low-rank SVD of
the full matrix. On the other hand, projected gradient descent with spectral initialization in Yi
et al. (2016) converges in O(κ log(1/ε)) iterations as long as α . 1/(µr3/2κ3/2 ∨ µrκ2). Therefore,
ScaledGD converges at a much faster rate than GD while requesting a significantly lower per-iteration
cost than AltProj. In addition, our theory suggests that ScaledGD maintains the incoherence and
balancedness of the low-rank factors without imposing explicit regularizations, which is not captured
in previous analysis Yi et al. (2016).

2.4 Matrix completion

Assume that we have observed a subset Ω of entries of X? given as PΩ(X?), where PΩ : Rn1×n2 7→
R
n1×n2 is a projection such that

(PΩ(X))i,j =

{
Xi,j , if (i, j) ∈ Ω

0, otherwise
. (21)

Here Ω is generated according to the Bernoulli model in the sense that each (i, j) ∈ Ω independent
with probability p. The goal of matrix completion is to recover the matrix X? from its partial obser-
vation PΩ(X?). This problem has many applications in recommendation systems, signal processing,
sensor network localization, and so on Candès and Recht (2009).

Algorithm. Again, writing X ∈ R
n1×n2 into the factored form X = LR>, we consider the

following optimization problem:

minimize
F∈R(n1+n2)×r

L(F ) :=
1

2p

∥∥∥PΩ(LR> −X?)
∥∥∥
2

F
. (22)

Similarly to robust PCA, the underlying low-rank matrix X? needs to be incoherent (cf. Definition 5)
to avoid ill-posedness. One typical strategy to ensure the incoherence condition is to perform
projection after the gradient update, by projecting the iterates to maintain small `2,∞ norms of
the factor matrices. However, the standard projection operator Chen and Wainwright (2015) is not
covariant with respect to invertible transforms, and consequently, needs to be modified when using
scaled gradient updates. To that end, we introduce the following new projection operator: for every
F̃ ∈ R

(n1+n2)×r = [L̃>, R̃>]>,

PB(F̃ ) = argmin
F∈R(n1+n2)×r

∥∥∥(L− L̃)(R̃>R̃)1/2
∥∥∥
2

F
+
∥∥∥(R− R̃)(L̃>L̃)1/2

∥∥∥
2

F

s.t.
√
n1

∥∥∥L(R̃>R̃)1/2
∥∥∥
2,∞

∨√
n2

∥∥∥R(L̃>L̃)1/2
∥∥∥
2,∞

≤ B

, (23)

which finds a factored matrix that is closest to F̃ and stays incoherent in a weighted sense. Luckily,
the solution to the above scaled projection admits a simple closed-form solution, as stated below.

3. AltProj employs a multi-stage strategy to remove the dependence on κ in α, which we do not consider here. The
same strategy might also improve the dependence on κ for ScaledGD, which we leave for future work.

11



Tong, Ma, Chi

Proposition 7 The solution to (23) is given by

PB(F̃ ) :=

[
L

R

]
, where Li,· :=

(
1 ∧ B

√
n1‖L̃i,·R̃>‖2

)
L̃i,·, 1 ≤ i ≤ n1,

Rj,· :=

(
1 ∧ B

√
n2‖R̃j,·L̃>‖2

)
R̃j,·, 1 ≤ j ≤ n2.

(24)

Proof See Appendix E.1.1.

With the new projection operator in place, we propose the scaled projected gradient descent
(ScaledPGD) method with the spectral initialization for solving matrix completion, formally stated
in Algorithm 3.

Algorithm 3 ScaledPGD for matrix completion with spectral initialization

Spectral initialization: Let U0Σ0V
>
0 be the top-r SVD of 1

pPΩ(X?), and set

[
L0

R0

]
= PB

([
U0Σ

1/2
0

V0Σ
1/2
0

])
. (25)

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do

[
Lt+1

Rt+1

]
= PB

([
Lt − η

pPΩ(LtR
>
t −X?)Rt(R

>
t Rt)

−1

Rt − η
pPΩ(LtR

>
t −X?)

>Lt(L
>
t Lt)

−1

])
. (26)

Theoretical guarantee. Consider a random observation model, where each index (i, j) belongs
to the index set Ω independently with probability 0 < p ≤ 1. The following theorem establishes that
ScaledPGD converges linearly at a constant rate as long as the number of observations is sufficiently
large.

Theorem 8 Suppose that X? is µ-incoherent, and that p satisfies p ≥ C(µκ2∨log(n1∨n2))µr
2κ2/(n1∧

n2) for some sufficiently large constant C. Set the projection radius as B = CB
√
µrσ1(X?) for

some constant CB ≥ 1.02. If the step size obeys 0 < η ≤ 2/3, then with probability at least
1− c1(n1 ∨ n2)

−c2 , for all t ≥ 0, the iterates of ScaledPGD in (26) satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.02σr(X?), and
∥∥∥LtR

>
t −X?

∥∥∥
F
≤ (1− 0.6η)t0.03σr(X?).

Here c1, c2 > 0 are two universal constants.

Theorem 8 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as
long as the probability of observation satisfies p & (µκ2 ∨ log(n1 ∨n2))µr

2κ2/(n1 ∧n2). To reach ε-
accuracy, i.e. ‖LtR

>
t −X?‖F ≤ εσr(X?), ScaledPGD takes at most T = O(log(1/ε)) iterations, which

is independent of κ. In comparison, projected gradient descent Zheng and Lafferty (2016) with spec-
tral initialization converges in O(κ log(1/ε)) iterations as long as p & (µ∨ log(n1 ∨n2))µr

2κ2/(n1 ∧
n2). Therefore, ScaledPGD achieves much faster convergence than its unscaled counterpart, at an
expense of higher sample complexity. We believe this higher sample complexity is an artifact of our
proof techniques, as numerically we do not observe a degradation in terms of sample complexity.

12
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2.5 Optimizing general loss functions

Last but not least, we generalize our analysis of ScaledGD to minimize a general loss function in
the form of (2), where the update rule of ScaledGD is given by

Lt+1 = Lt − η∇f(LtR
>
t )Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η∇f(LtR
>
t )

>Lt(L
>
t Lt)

−1.
(27)

Two important properties of the loss function f : Rn1×n2 7→ R play a key role in the analysis.

Definition 9 (Restricted smoothness) A differentiable function f : Rn1×n2 7→ R is said to be
rank-r restricted L-smooth for some L > 0 if

f(X2) ≤ f(X1) + 〈∇f(X1),X2 −X1〉+
L

2
‖X2 −X1‖2F,

for any X1,X2 ∈ R
n1×n2 with rank at most r.

Definition 10 (Restricted strong convexity) A differentiable function f : Rn1×n2 7→ R is said
to be rank-r restricted µ-strongly convex for some µ ≥ 0 if

f(X2) ≥ f(X1) + 〈∇f(X1),X2 −X1〉+
µ

2
‖X2 −X1‖2F,

for any X1,X2 ∈ R
n1×n2 with rank at most r. When µ = 0, we simply say f(·) is rank-r restricted

convex.

Further, when µ > 0, define the condition number of the loss function f(·) over rank-r matrices as

κf := L/µ. (28)

Encouragingly, many problems can be viewed as a special case of optimizing this general loss (27),
including but not limited to:

• low-rank matrix factorization, where the loss function f(X) = 1
2‖X − X?‖2F in (29) satisfies

κf = 1;

• low-rank matrix sensing, where the loss function f(X) = 1
2‖A(X−X?)‖22 in (13) satisfies κf ≈ 1

when A(·) obeys the rank-r RIP with a sufficiently small RIP constant;

• quadratic sampling, where the loss function f(X) = 1
2

∑m
i=1 |〈aia

>
i ,X −X?〉|2 satisfies restricted

strong convexity and smoothness when ai’s are i.i.d. Gaussian vectors for sufficiently large m
Sanghavi et al. (2017); Li et al. (2021);

• exponential-family PCA, where the loss function f(X) = −∑i,j log p(Yi,j |Xi,j), where p(Yi,j |Xi,j)
is the probability density function of Yi,j conditional on Xi,j , following an exponential-family
distribution such as Bernoulli and Poisson distributions. The resulting loss function satisfies
restricted strong convexity and smoothness with a condition number κf > 1 depending on the
property of the specific distribution Gunasekar et al. (2014); Lafond (2015).

Indeed, the treatment of a general loss function brings the condition number of f(·) under the
spotlight, since in our earlier case studies κf ≈ 1. Our purpose is thus to understand the interplay
of two types of conditioning numbers in the convergence of first-order methods. For simplicity,
we assume that f(·) is minimized at the ground truth rank-r matrix X?.

4 The following theorem
establishes that as long as properly initialized, then ScaledGD converges linearly at a constant rate.

4. In practice, due to the presence of statistical noise, the minimizer of f(·) might be only approximately low-rank,
to which our analysis can be extended in a straightforward fashion.
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Theorem 11 Suppose that f(·) is rank-2r restricted L-smooth and µ-strongly convex, of which X?

is a minimizer, and that the initialization F0 satisfies dist(F0,F?) ≤ 0.1σr(X?)/
√
κf . If the step

size obeys 0 < η ≤ 0.4/L, then for all t ≥ 0, the iterates of ScaledGD in (27) satisfy

dist(Ft,F?) ≤ (1− 0.7ηµ)t0.1σr(X?)/
√
κf , and

∥∥∥LtR
>
t −X?

∥∥∥
F
≤ (1− 0.7ηµ)t0.15σr(X?)/

√
κf .

Theorem 11 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as long
as the initialization F0 is sufficiently close to F?. To reach ε-accuracy, i.e. ‖LtR

>
t −X?‖F ≤ εσr(X?),

ScaledGD takes at most T = O(κf log(1/ε)) iterations, which depends only on the condition number
κf of f(·), but is independent of the condition number κ of the matrix X?. In contrast, prior theory
of vanilla gradient descent Park et al. (2018); Bhojanapalli et al. (2016a) requires O(κfκ log(1/ε))
iterations, which is worse than our rate by a factor of κ.

3. Proof Sketch

In this section, we sketch the proof of the main theorems, highlighting the role of the scaled distance
metric (cf. (10)) in these analyses.

3.1 A warm-up analysis: matrix factorization

Let us consider the problem of factorizing a matrix X? into two low-rank factors:

minimize
F∈R(n1+n2)×r

L(F ) =
1

2

∥∥∥LR> −X?

∥∥∥
2

F
. (29)

For this toy problem, the update rule of ScaledGD is given as

Lt+1 = Lt − η(LtR
>
t −X?)Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η(LtR
>
t −X?)

>Lt(L
>
t Lt)

−1.
(30)

To shed light on why ScaledGD is robust to ill-conditioning, it is worthwhile to think of ScaledGD
as a quasi-Newton algorithm: the following proposition (proven in Appendix B.1) reveals that
ScaledGD is equivalent to approximating the Hessian of the loss function in (29) by only keeping its
diagonal blocks.

Proposition 12 For the matrix factorization problem (29), ScaledGD is equivalent to the following
update rule

vec(Ft+1) = vec(Ft)− η

[∇2
L,LL(Ft) 0

0 ∇2
R,RL(Ft)

]−1

vec(∇FL(Ft)).

Here, ∇2
L,LL(Ft) (resp. ∇2

R,RL(Ft)) denotes the second order derivative w.r.t. L (resp. R) at Ft.

The following theorem, whose proof can be found in Appendix B.2, formally establishes that
as long as ScaledGD is initialized close to the ground truth, dist(Ft,F?) will contract at a constant
linear rate for the matrix factorization problem.

Theorem 13 Suppose that the initialization F0 satisfies dist(F0,F?) ≤ 0.1σr(X?). If the step size
obeys 0 < η ≤ 2/3, then for all t ≥ 0, the iterates of the ScaledGD method in (30) satisfy

dist(Ft,F?) ≤ (1− 0.7η)t0.1σr(X?), and
∥∥∥LtR

>
t −X?

∥∥∥
F
≤ (1− 0.7η)t0.15σr(X?).

Comparing to the rate of contraction (1− 1/κ) of gradient descent for matrix factorization Ma
et al. (2021); Chi et al. (2019), Theorem 13 demonstrates that the preconditioners indeed allow better
search directions in the local neighborhood of the ground truth, and hence a faster convergence rate.
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3.2 Proof outline for matrix sensing

It can be seen that the update rule (15) of ScaledGD in Algorithm 1 closely mimics (30) when
A(·) satisfies the RIP. Therefore, leveraging the RIP of A(·) and Theorem 13, we can establish the
following local convergence guarantee of Algorithm 1, which has a weaker requirement on δ2r than
the main theorem (cf. Theorem 3).

Lemma 14 Suppose that A(·) obeys the 2r-RIP with δ2r ≤ 0.02. If the t-th iterate satisfies
dist(Ft,F?) ≤ 0.1σr(X?), then ‖LtR

>
t − X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size

obeys 0 < η ≤ 2/3, then the (t+ 1)-th iterate Ft+1 of the ScaledGD method in (15) of Algorithm 1
satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

It then boils to down to finding a good initialization, for which we have the following lemma on
the quality of the spectral initialization.

Lemma 15 Suppose that A(·) obeys the 2r-RIP with a constant δ2r. Then the spectral initialization
in (14) for low-rank matrix sensing satisfies

dist(F0,F?) ≤ 5δ2r
√
rκσr(X?).

Therefore, as long as δ2r is small enough, say δ2r ≤ 0.02/(
√
rκ) as specified in Theorem 3, the initial

distance satisfies dist(F0,F?) ≤ 0.1σr(X?), allowing us to invoke Lemma 14 recursively. The proof
of Theorem 3 is then complete. The proofs of Lemmas 14-15 can be found in Appendix C.

3.3 Proof outline for robust PCA

As before, we begin with the following local convergence guarantee of Algorithm 2, which has a
weaker requirement on α than the main theorem (cf. Theorem 6). The difference with low-rank
matrix sensing is that local convergence for robust PCA requires a further incoherence condition on
the iterates (cf. (31)), where we recall from (11) that Qt is the optimal alignment matrix between
Ft and F?.

Lemma 16 Suppose that X? is µ-incoherent and α ≤ 10−4/(µr). If the t-th iterate satisfies
dist(Ft,F?) ≤ 0.02σr(X?) and the incoherence condition

√
n1

∥∥∥(LtQt −L?)Σ
1/2
?

∥∥∥
2,∞

∨√
n2

∥∥∥(RtQ
−>
t −R?)Σ

1/2
?

∥∥∥
2,∞

≤ √
µrσr(X?), (31)

then ‖LtR
>
t −X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0.1 ≤ η ≤ 2/3, then the

(t+ 1)-th iterate Ft+1 of the ScaledGD method in (20) of Algorithm 2 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition
√
n1

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞

∨√
n2

∥∥∥(Rt+1Q
−>
t+1 −R?)Σ

1/2
?

∥∥∥
2,∞

≤ √
µrσr(X?).

As long as the initialization is close to the ground truth and satisfies the incoherence condition,
Lemma 16 ensures that the iterates of ScaledGD remain incoherent and converge linearly. This
allows us to remove the unnecessary projection step in Yi et al. (2016), whose main objective is to
ensure the incoherence of the iterates.

We are left with checking the initial conditions. The following lemma ensures that the spectral
initialization in (19) is close to the ground truth as long as α is sufficiently small.
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Lemma 17 Suppose that X? is µ-incoherent. Then the spectral initialization (19) for robust PCA
satisfies

dist(F0,F?) ≤ 20αµr3/2κσr(X?).

As a result, setting α ≤ 10−3/(µr3/2κ), the spectral initialization satisfies dist(F0,F?) ≤
0.02σr(X?). In addition, we need to make sure that the spectral initialization satisfies the in-
coherence condition, which is provided in the following lemma.

Lemma 18 Suppose that X? is µ-incoherent and α ≤ 0.1/(µrκ), and that dist(F0,F?) ≤ 0.02σr(X?).
Then the spectral initialization (19) satisfies the incoherence condition

√
n1

∥∥∥(L0Q0 −L?)Σ
1/2
?

∥∥∥
2,∞

∨√
n2

∥∥∥(R0Q
−>
0 −R?)Σ

1/2
?

∥∥∥
2,∞

≤ √
µrσr(X?).

Combining Lemmas 16-18 finishes the proof of Theorem 6. The proofs of the the three supporting
lemmas can be found in Section D.

3.4 Proof outline for matrix completion

A key property of the new projection operator. We start with the following lemma that
entails a key property of the scaled projection (24), which ensures the scaled projection satisfies
both non-expansiveness and incoherence under the scaled metric.

Lemma 19 Suppose that X? is µ-incoherent, and dist(F̃ ,F?) ≤ εσr(X?) for some ε < 1. Set
B ≥ (1 + ε)

√
µrσ1(X?), then PB(F̃ ) satisfies the non-expansiveness

dist(PB(F̃ ),F?) ≤ dist(F̃ ,F?),

and the incoherence condition

√
n1‖LR>‖2,∞ ∨√

n2‖RL>‖2,∞ ≤ B.

It is worth noting that the incoherence condition adopts a slightly different form than that of
robust PCA, which is more convenient for matrix completion. The next lemma guarantees the fast
local convergence of Algorithm 3 as long as the sample complexity is large enough and the parameter
B is set properly.

Lemma 20 Suppose that X? is µ-incoherent, and p ≥ C(µrκ4 ∨ log(n1 ∨ n2))µr/(n1 ∧ n2) for
some sufficiently large constant C. Set the projection radius as B = CB

√
µrσ1(X?) for some

constant CB ≥ 1.02. Under an event E which happens with overwhelming probability (i.e. at least
1 − c1(n1 ∨ n2)

−c2), if the t-th iterate satisfies dist(Ft,F?) ≤ 0.02σr(X?), and the incoherence
condition

√
n1‖LtR

>
t ‖2,∞ ∨√

n1‖RtL
>
t ‖2,∞ ≤ B,

then ‖LtR
>
t − X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0 < η ≤ 2/3, then the

(t+ 1)-th iterate Ft+1 of the ScaledPGD method in (26) of Algorithm 3 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition

√
n1‖Lt+1R

>
t+1‖2,∞ ∨√

n2‖Rt+1L
>
t+1‖2,∞ ≤ B.

16



Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent

As long as we can find an initialization that is close to the ground truth and satisfies the incoherence
condition, Lemma 20 ensures that the iterates of ScaledPGD remain incoherent and converge linearly.
The follow lemma ensures that such an initialization can be ensured via the spectral method.

Lemma 21 Suppose that X? is µ-incoherent, then with overwhelming probability, the spectral ini-

tialization before projection F̃0 :=

[
U0Σ

1/2
0

V0Σ
1/2
0

]
in (25) satisfies

dist(F̃0,F?) ≤ C0

(
µr log(n1 ∨ n2)

p
√
n1n2

+

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

)
5
√
rκσr(X?).

Therefore, as long as p ≥ Cµr2κ2 log(n1 ∨ n2)/(n1 ∧ n2) for some sufficiently large constant C, the
initial distance satisfies dist(F̃0,F?) ≤ 0.02σr(X?). One can then invoke Lemma 19 to see that
F0 = PB(F̃0) meets the requirements of Lemma 20 due to the non-expansiveness and incoherence
properties of the projection operator. The proofs of the the the supporting lemmas can be found in
Section E.

4. Numerical Experiments

In this section, we provide numerical experiments to corroborate our theoretical findings, with the
codes available at

https://github.com/Titan-Tong/ScaledGD.

The simulations are performed in Matlab with a 3.6 GHz Intel Xeon Gold 6244 CPU.

4.1 Comparison with vanilla GD

To begin, we compare the iteration complexity of ScaledGD with vanilla gradient descent (GD).
The update rule of vanilla GD for solving (2) is given as

Lt+1 = Lt − ηGD∇LL(Lt,Rt),

Rt+1 = Rt − ηGD∇RL(Lt,Rt),
(32)

where ηGD = η/σ1(X?) stands for the step size for gradient descent. This choice is often recom-
mended by the theory of vanilla GD Tu et al. (2016); Yi et al. (2016); Ma et al. (2019) and the
scaling by σ1(X?) is needed for its convergence. For ease of comparison, we fix η = 0.5 for both
ScaledGD and vanilla GD (see Figure 4 for justifications). Both algorithms start from the same
spectral initialization. To avoid notational clutter, we work on square asymmetric matrices with
n1 = n2 = n. We consider four low-rank matrix estimation tasks:

• Low-rank matrix sensing. The problem formulation is detailed in Section 2.2. Here, we collect
m = 5nr measurements in the form of yk = 〈Ak,X?〉+wk, in which the measurement matrices Ak

are generated with i.i.d. Gaussian entries with zero mean and variance 1/m, and wk ∼ N (0, σ2
w)

are i.i.d. Gaussian noises.

• Robust PCA. The problem formulation is stated in Section 2.3. We generate the corruption with
a sparse matrix S? ∈ Sα with α = 0.1. More specifically, we generate a matrix with standard
Gaussian entries and pass it through Tα[·] to obtain S?. The observation is Y = X? + S? +W ,
where Wi,j ∼ N (0, σ2

w) are i.i.d. Gaussian noises.
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(a) Matrix sensing (b) Robust PCA
n = 200, r = 10,m = 5nr n = 1000, r = 10, α = 0.1
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(c) Matrix completion (d) Hankel matrix completion
n = 1000, r = 10, p = 0.2 n = 1000, r = 10, p = 0.2

Figure 2: The relative errors of ScaledGD and vanilla GD with respect to the iteration count under
different condition numbers κ = 1, 5, 10, 20 for (a) matrix sensing, (b) robust PCA, (c)
matrix completion, and (d) Hankel matrix completion.

• Matrix completion. The problem formulation is stated in Section 2.4. We assume random
Bernoulli observations, where each entry of X? is observed with probability p = 0.2 indepen-
dently. The observation is Y = PΩ(X? +W ), where Wi,j ∼ N (0, σ2

w) are i.i.d. Gaussian noises.
Moreover, we perform the scaled gradient updates without projections.

• Hankel matrix completion. Briefly speaking, a Hankel matrix shares the same value along each
skew-diagonal, and we aim at recovering a low-rank Hankel matrix from observing a few skew-
diagonals Chen and Chi (2014); Cai et al. (2018). We assume random Bernoulli observations,
where each skew-diagonal of X? is observed with probability p = 0.2 independently. The loss
function is

L(L,R) =
1

2p

∥∥∥HΩ(LR> − Y )
∥∥∥
2

F
+

1

2

∥∥∥(I −H)(LR>)
∥∥∥
2

F
, (33)

where I(·) denotes the identity operator, and the Hankel projection is defined as H(X) :=∑2n−1
k=1 〈Hk,X〉Hk, which maps X to its closest Hankel matrix. Here, the Hankel basis ma-
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(a) Matrix Sensing (b) Robust PCA
n = 200, r = 10,m = 5nr n = 1000, r = 10, α = 0.1
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(c) Matrix completion (d) Hankel matrix completion
n = 1000, r = 10, p = 0.2 n = 1000, r = 10, p = 0.2

Figure 3: The relative errors of ScaledGD and vanilla GD with respect to the iteration count under
the condition number κ = 10 and signal-to-noise ratios SNR = 40, 60, 80dB for (a) matrix
sensing, (b) robust PCA, (c) matrix completion, and (d) Hankel matrix completion.

trix Hk is the n × n matrix with the entries in the k-th skew diagonal as 1√
ωk

, and all other

entries as 0, where ωk is the length of the k-th skew diagonal. Note that X is a Hankel matrix
if and only if (I − H)(X) = 0. The Hankel projection on the observation index set Ω is defined
as HΩ(X) :=

∑
k∈Ω〈Hk,X〉Hk. The observation is Y = HΩ(X? + W ), where W is a Hankel

matrix whose entries along each skew-diagonal are i.i.d. Gaussian noises N (0, σ2
w).

For the first three problems, we generate the ground truth matrix X? ∈ R
n×n in the following

way. We first generate an n× r matrix with i.i.d. random signs, and take its r left singular vectors
as U?, and similarly for V?. The singular values are set to be linearly distributed from 1 to 1/κ.
The ground truth is then defined as X? = U?Σ?V

>
? which has the specified condition number κ

and rank r. For Hankel matrix completion, we generate X? as an n×n Hankel matrix with entries
given as

(X?)i,j =

r∑

`=1

σ`
n
e2πı(i+j−2)f` , i, j = 1, . . . , n,
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where f`, ` = 1, . . . , r are randomly chosen from 1/n, 2/n, . . . , 1, and σ` are linearly distributed from
1 to 1/κ. The Vandermonde decomposition lemma tells that X? has rank r and singular values σ`,
` = 1, . . . , r.

We first illustrate the convergence performance under noise-free observations, i.e. σw = 0. We
plot the relative reconstruction error ‖Xt − X?‖F/‖X?‖F with respect to the iteration count t in
Figure 2 for the four problems under different condition numbers κ = 1, 5, 10, 20. For all these
models, we can see that ScaledGD has a convergence rate independent of κ, with all curves almost
overlay on each other. Under good conditioning κ = 1, ScaledGD converges at the same rate as
vanilla GD; under ill conditioning, i.e. when κ is large, ScaledGD converges much faster than vanilla
GD and leads to significant computational savings.

We next move to demonstrate that ScaledGD is robust to small additive noises. Denote the
signal-to-noise ratio as SNR := 10 log10

‖X?‖2F
n2σ2

w
in dB. We plot the reconstruction error ‖Xt −

X?‖F/‖X?‖F with respect to the iteration count t in Figure 3 under the condition number κ = 10
and various SNR = 40, 60, 80dB. We can see that ScaledGD and vanilla GD achieve the same sta-
tistical error eventually, but ScaledGD converges much faster. In addition, the convergence speeds
are not influenced by the noise levels.

Careful readers might wonder how sensitivity our comparisons are with respect to the choice of
step sizes. To address this, we illustrate the convergence speeds of both ScaledGD and vanilla GD
under different step sizes η for matrix completion (under the same setting as Figure 2 (c)), where
similar plots can be obtained for other problems as well. We run both algorithms for at most 80
iterations, and terminate if the relative error exceeds 102 (which happens if the step size is too large
and the algorithm diverges). Figure 4 plots the relative error with respect to the step size η for both
algorithms, where we can see that ScaledGD outperforms vanilla GD over a large range of step sizes,
even under optimized values for performance. Hence, our choice of η = 0.5 in previous experiments
renders a typical comparison between ScaledGD and vanilla GD.
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Figure 4: The relative errors of ScaledGD and vanilla GD after 80 iterations with respect to different
step sizes η from 0.1 to 1.2, for matrix completion with n = 1000, r = 10, p = 0.2.

4.2 Run time comparisons

We now compare the run time of ScaledGD with vanilla GD and alternating minimization (AltMin)
Jain et al. (2013). Specifically, for matrix sensing, alternating minimization (AltMinSense) updates
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(a) iteration count with r = 10 (b) run time with r = 10
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(c) iteration count with r = 20 (d) run time with r = 20

Figure 5: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers κ = 1, 5, 20 for matrix
sensing with n = 200, and m = 5nr. (a, b): r = 10; (c, d): r = 20.

the factors alternatively as

Lt+1 = argmin
L

∥∥∥A(LR>
t )− y

∥∥∥
2

2
,

Rt+1 = argmin
R

∥∥∥A(Lt+1R
>)− y

∥∥∥
2

2
,

which corresponds to solving two least-squares problems. For matrix completion, the update rule
of alternating minimization proceeds as

Lt+1 = argmin
L

∥∥∥PΩ(LR>
t − Y )

∥∥∥
2

2
,

Rt+1 = argmin
R

∥∥∥PΩ(Lt+1R
> − Y )

∥∥∥
2

2
,

which can be implemented more efficiently since each row of L (resp. R) can be updated indepen-
dently via solving a much smaller least-squares problem due to the decomposable structure of the
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(a) iteration count with r = 10 (b) run time with r = 10
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(c) iteration count with r = 50 (d) run time with r = 50

Figure 6: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers κ = 1, 5, 20 for matrix
completion with n = 1000, and p = 0.2. (a, b): r = 10; (c, d): r = 50.

objective function. It is worth noting that, to the best of our knowledge, this most natural variant
of alternating minimization for matrix completion still eludes from a provable performance guar-
antee, nonetheless, we choose it to compare against due to its popularity and excellent empirical
performance.

Figure 5 plots the relative errors of ScaledGD, vanilla GD and alternating minimization (AltMin)
with respect to the iteration count and run time (in seconds) under different condition numbers
κ = 1, 5, 20; and similarly, Figure 6 plots the corresponding results for matrix completion. It can be
seen that, both ScaledGD and AltMin admit a convergence rate that is independent of the condition
number, where the per-iteration complexity of AltMin is much higher than that of ScaledGD. As
expected, the run time of ScaledGD only adds a minimal overhead to vanilla GD while being
much more robust to ill-conditioning. Noteworthily, AltMin takes much more time and becomes
significantly slower than ScaledGD when the rank r is larger. Nonetheless, we emphasize that since
the run time is impacted by many factors in terms of problem parameters as well as implementation
details, our purpose is to demonstrate the competitive performance of ScaledGD over alternatives,
rather than claiming it as the state-of-the-art.
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5. Conclusions

This paper proposes scaled gradient descent (ScaledGD) for factored low-rank matrix estimation,
which maintains the low per-iteration computational complexity of vanilla gradient descent, but
offers significant speed-up in terms of the convergence rate with respect to the condition number
κ of the low-rank matrix. In particular, we rigorously establish that for low-rank matrix sensing,
robust PCA, and matrix completion, to reach ε-accuracy, ScaledGD only takes O(log(1/ε)) iterations
without the dependency on the condition number when initialized via the spectral method, under
standard assumptions. The key to our analysis is the introduction of a new distance metric that
takes into account the preconditioning and unbalancedness of the low-rank factors, and we have
developed new tools to analyze the trajectory of ScaledGD under this new metric. This work opens
up many venues for future research, as we discuss below.

• Improved analysis. In this paper, we have focused on establishing the fast local convergence
rate. It is interesting to study if the theory developed herein can be further strengthened in
terms of sample complexity and the size of basin of attraction. For matrix completion, it will be
interesting to see if a similar guarantee continues to hold in the absence of the projection, which
will generalize recent works Ma et al. (2019); Chen et al. (2020a) that successfully removed these
projections for vanilla gradient descent.

• Other low-rank recovery problems. Besides the problems studied herein, there are many other
applications involving the recovery of an ill-conditioned low-rank matrix, such as robust PCA
with missing data, quadratic sampling, and so on. It is of interest to establish fast convergence
rates of ScaledGD that are independent of the condition number for these problems as well. In
addition, it is worthwhile to explore if a similar preconditioning trick can be useful to problems
beyond low-rank matrix estimation. One recent attempt is to generalize ScaledGD for low-rank
tensor estimation Tong et al. (2021b).

• Acceleration schemes? As it is evident from our analysis of the general loss case, ScaledGD may
still converge slowly when the loss function is ill-conditioned over low-rank matrices, i.e. κf is
large. In this case, it might be of interest to combine techniques such as momentum Kyrillidis
and Cevher (2012) from the optimization literature to further accelerate the convergence. In our
companion paper Tong et al. (2021a), we have extended ScaledGD to nonsmooth formulations,
which possess better curvatures than their smooth counterparts for certain problems.
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Appendix A. Technical Lemmas

This section gathers several useful lemmas that will be used in the appendix. Throughout all lemmas,
we use X? to denote the ground truth low-rank matrix, with its compact SVD as X? = U?Σ?V

>
? ,

and the stacked factor matrix is defined as F? =

[
L?

R?

]
=

[
U?Σ

1/2
?

V?Σ
1/2
?

]
.
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A.1 New distance metric

We begin with the investigation of the new distance metric (10), where the matrix Q that attains
the infimum, if exists, is called the optimal alignment matrix between F and F?; see (11). Notice
that (10) involves a minimization problem over an open set (the set of invertible matrices). Hence
the minimizer, i.e. the optimal alignment matrix between F and F? is not guaranteed to be attained.
Fortunately, a simple sufficient condition guarantees the existence of the minimizer; see the lemma
below.

Lemma 22 Fix any factor matrix F =

[
L

R

]
∈ R

(n1+n2)×r. Suppose that

dist(F ,F?) =

√
inf

Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥
2

F
< σr(X?), (34)

then the minimizer of the above minimization problem is attained at some Q ∈ GL(r), i.e. the
optimal alignment matrix Q between F and F? exists.

Proof In view of the condition (34) and the definition of infimum, one knows that there must exist
a matrix Q̄ ∈ GL(r) such that

√∥∥∥
(
LQ̄−L?

)
Σ

1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ̄−> −R?

)
Σ

1/2
?

∥∥∥
2

F
≤ εσr(X?),

for some ε obeying 0 < ε < 1. It further implies that

∥∥∥
(
LQ̄−L?

)
Σ

−1/2
?

∥∥∥
op

∨
∥∥∥
(
RQ̄−> −R?

)
Σ

−1/2
?

∥∥∥
op

≤ ε.

Invoke Weyl’s inequality |σr(A) − σr(B)| ≤ ‖A −B‖op, and use that σr(L?Σ
−1/2
? ) = σr(U?) = 1

to obtain

σr(LQ̄Σ
−1/2
? ) ≥ σr(L?Σ

−1/2
? )−

∥∥∥
(
LQ̄−L?

)
Σ

−1/2
?

∥∥∥
op

≥ 1− ε. (35)

In addition, it is straightforward to verify that

inf
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ−> −R?

)
Σ

1/2
?

∥∥∥
2

F
(36)

= inf
H∈GL(r)

∥∥∥
(
LQ̄H −L?

)
Σ

1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥
2

F
. (37)

Indeed, if the minimizer of the second optimization problem (cf. (37)) is attained at some H, then
Q̄H must be the minimizer of the first problem (36). Therefore, from now on, we focus on proving
that the minimizer of the second problem (37) is attained at some H. In view of (36) and (37), one
has

inf
H∈GL(r)

∥∥∥
(
LQ̄H −L?

)
Σ

1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥
2

F

≤
∥∥∥
(
LQ̄−L?

)
Σ

1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ̄−> −R?

)
Σ

1/2
?

∥∥∥
2

F
,
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Clearly, for any Q̄H to yield a smaller distance than Q̄, H must obey

√∥∥∥
(
LQ̄H −L?

)
Σ

1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥
2

F
≤ εσr(X?).

It further implies that

∥∥∥
(
LQ̄H −L?

)
Σ

−1/2
?

∥∥∥
op

∨
∥∥∥
(
RQ̄−>H−> −R?

)
Σ

−1/2
?

∥∥∥
op

≤ ε.

Invoke Weyl’s inequality |σ1(A) − σ1(B)| ≤ ‖A −B‖op, and use that σ1(L?Σ
−1/2
? ) = σ1(U?) = 1

to obtain

σ1(LQ̄HΣ
−1/2
? ) ≤ σ1(L?Σ

−1/2
? ) +

∥∥∥
(
LQ̄H −L?

)
Σ

−1/2
?

∥∥∥
op

≤ 1 + ε. (38)

Combine (35) and (38), and use the relation σr(A)σ1(B) ≤ σ1(AB) to obtain

σr(LQ̄Σ
−1/2
? )σ1(Σ

1/2
? HΣ

−1/2
? ) ≤ σ1(LQ̄HΣ

−1/2
? ) ≤ 1 + ε

1− ε
σr(LQ̄Σ

−1/2
? ).

As a result, one has σ1(Σ
1/2
? HΣ

−1/2
? ) ≤ 1+ε

1−ε .

Similarly, one can show that σ1(Σ
1/2
? H−>

Σ
−1/2
? ) ≤ 1+ε

1−ε , equivalently, σr(Σ
1/2
? HΣ

−1/2
? ) ≥ 1−ε

1+ε .
Combining the above two arguments reveals that the minimization problem (37) is equivalent to
the constrained problem:

minimize
H∈GL(r)

∥∥∥
(
LQ̄H −L?

)
Σ

1/2
?

∥∥∥
2

F
+
∥∥∥
(
RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥
2

F

s.t.
1− ε

1 + ε
≤ σr(Σ

1/2
? HΣ

−1/2
? ) ≤ σ1(Σ

1/2
? HΣ

−1/2
? ) ≤ 1 + ε

1− ε
.

Notice that this is a continuous optimization problem over a compact set. Apply the Weierstrass
extreme value theorem to finish the proof.

With the existence of the optimal alignment matrix in place, the following lemma provides the
first-order necessary condition for the minimizer.

Lemma 23 For any factor matrix F =

[
L

R

]
∈ R

(n1+n2)×r, suppose that the optimal alignment

matrix

Q = argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥
2

F

between F and F? exists, then Q obeys

(LQ)>(LQ−L?)Σ? = Σ?(RQ−> −R?)
>RQ−>. (39)

Proof Expand the squares in the definition of Q to obtain

Q = argmin
Q∈GL(r)

tr
(
(LQ−L?)

>(LQ−L?)Σ?

)
+ tr

(
(RQ−> −R?)

>(RQ−> −R?)Σ?

)
.
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Clearly, the first order necessary condition (i.e. the gradient is zero) yields

2L>(LQ−L?)Σ? − 2Q−>
Σ?(RQ−> −R?)

>RQ−> = 0,

which implies the optimal alignment criterion (39).

Last but not least, we connect the newly proposed distance to the usual Frobenius norm in
Lemma 24, the proof of which is a slight modification to (Tu et al., 2016, Lemma 5.4) and (Ge
et al., 2017, Lemma 41).

Lemma 24 For any factor matrix F =

[
L

R

]
∈ R

(n1+n2)×r, the distance between F and F? satisfies

dist(F ,F?) ≤
(√

2 + 1
)1/2

‖LR> −X?‖F.

Proof Suppose that X := LR> has compact SVD as X = UΣV >. Without loss of generality, we

can assume that F =

[
UΣ

1/2

V Σ
1/2

]
, since any factorization of LR> yields the same distance. Introduce

two auxiliary matrices F̄ :=

[
UΣ

1/2

−V Σ
1/2

]
and F̄? :=

[
U?Σ

1/2
?

−V?Σ
1/2
?

]
. Apply the dilation trick to obtain

2

[
0 X

X>
0

]
= FF> − F̄ F̄>, 2

[
0 X?

X>
? 0

]
= F?F

>
? − F̄?F̄

>
? .

As a result, the squared Frobenius norm of X −X? is given by

8‖X −X?‖2F =
∥∥∥FF> − F̄ F̄> − F?F

>
? + F̄?F̄

>
?

∥∥∥
2

F

=
∥∥∥FF> − F?F

>
?

∥∥∥
2

F
+
∥∥∥F̄ F̄> − F̄?F̄

>
?

∥∥∥
2

F
− 2 tr

(
(FF> − F?F

>
? )(F̄ F̄> − F̄?F̄

>
? )
)

= 2
∥∥∥FF> − F?F

>
?

∥∥∥
2

F
+ 2‖F>F̄?‖2F + 2‖F>

? F̄ ‖2F

≥ 2
∥∥∥FF> − F?F

>
?

∥∥∥
2

F
,

where we use the facts that
∥∥FF> − F?F

>
?

∥∥2
F
=
∥∥F̄ F̄> − F̄?F̄

>
?

∥∥2
F

and F>F̄ = F>
? F̄? = 0.

Let O := sgn(F>F?)
5 be the optimal orthonormal alignment matrix between F and F?. Denote

∆ := FO − F?. Follow the same argument as (Tu et al., 2016, Lemma 5.14) and (Ge et al., 2017,
Lemma 41) to obtain

4‖X −X?‖2F ≥
∥∥∥F?∆

> +∆F>
? +∆∆

>
∥∥∥
2

F

= tr
(
2F>

? F?∆
>
∆+ (∆>

∆)2 + 2(F>
? ∆)2 + 4F>

? ∆∆
>
∆

)

= tr
(
2F>

? F?∆
>
∆+ (∆>

∆+
√
2F>

? ∆)2 + (4− 2
√
2)F>

? ∆∆
>
∆

)

= tr
(
2(
√
2− 1)F>

? F?∆
>
∆+ (∆>

∆+
√
2F>

? ∆)2 + (4− 2
√
2)F>

? FO∆
>
∆

)

5. Let ASB> be the SVD of F>F?, then the matrix sign is sgn(F>F?) := AB>.
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≥ tr
(
4(
√
2− 1)Σ?∆

>
∆

)
= 4(

√
2− 1)

∥∥∥(FO − F?)Σ
1/2
?

∥∥∥
2

F
,

where the last inequality follows from the facts that F>
? F? = 2Σ? and that F>

? FO is positive
semi-definite. Therefore we obtain

∥∥∥(FO − F?)Σ
1/2
?

∥∥∥
F
≤
(√

2 + 1
)1/2

‖X −X?‖F.

This in conjunction with dist(F ,F?) ≤ ‖(FO − F?)Σ
1/2
? ‖F yields the claimed result.

A.2 Matrix perturbation bounds

Lemma 25 For any L ∈ R
n1×r,R ∈ R

n2×r, denote ∆L := L − L? and ∆R := R −R?. Suppose

that ‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op < 1, then one has

∥∥∥L(L>L)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ‖∆LΣ
−1/2
? ‖op

; (40a)

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ‖∆RΣ
−1/2
? ‖op

; (40b)

∥∥∥L(L>L)−1
Σ

1/2
? −U?

∥∥∥
op

≤
√
2‖∆LΣ

−1/2
? ‖op

1− ‖∆LΣ
−1/2
? ‖op

; (40c)

∥∥∥R(R>R)−1
Σ

1/2
? − V?

∥∥∥
op

≤
√
2‖∆RΣ

−1/2
? ‖op

1− ‖∆RΣ
−1/2
? ‖op

. (40d)

Proof We only prove claims (40a) and (40c) on the factor L, while the claims on the factor R

follow from a similar argument. We start to prove (40a). Notice that

∥∥∥L(L>L)−1
Σ

1/2
?

∥∥∥
op

=
1

σr(LΣ
−1/2
? )

.

In addition, invoke Weyl’s inequality to obtain

σr(LΣ
−1/2
? ) ≥ σr(L?Σ

−1/2
? )− ‖∆LΣ

−1/2
? ‖op = 1− ‖∆LΣ

−1/2
? ‖op,

where we have used the fact that U? = L?Σ
−1/2
? satisfies σr(U?) = 1. Combine the preceding two

relations to prove (40a).

We proceed to prove (40c). Combine L>
? U? = Σ

1/2
? and (In1 − L(L>L)−1L>)L = 0 to obtain

the decomposition

L(L>L)−1
Σ

1/2
? −U? = −L(L>L)−1

∆
>
LU? + (In1 −L(L>L)−1L>)∆LΣ

−1/2
? .

The fact that L(L>L)−1
∆

>
LU? and (In1 −L(L>L)−1L>)∆LΣ

−1/2
? are orthogonal implies

∥∥∥L(L>L)−1
Σ

1/2
? −U?

∥∥∥
2

op
≤
∥∥∥L(L>L)−1

∆
>
LU?

∥∥∥
2

op
+
∥∥∥(In1 −L(L>L)−1L>)∆LΣ

−1/2
?

∥∥∥
2

op

≤
∥∥∥L(L>L)−1

Σ
1/2
?

∥∥∥
2

op
‖∆LΣ

−1/2
? ‖2op +

∥∥∥In1 −L(L>L)−1L>
∥∥∥
2

op
‖∆LΣ

−1/2
? ‖2op

27



Tong, Ma, Chi

≤
‖∆LΣ

−1/2
? ‖2op

(1− ‖∆LΣ
−1/2
? ‖op)2

+ ‖∆LΣ
−1/2
? ‖2op

≤
2‖∆LΣ

−1/2
? ‖2op

(1− ‖∆LΣ
−1/2
? ‖op)2

,

where we have used (40a) and the fact that ‖In1 −L(L>L)−1L>‖op ≤ 1 in the third line.

Lemma 26 For any L ∈ R
n1×r,R ∈ R

n2×r, denote ∆L := L − L? and ∆R := R −R?, then one
has

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

≤
(
1 +

1

2
(‖∆LΣ

−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op)

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Proof In light of the decomposition LR> − X? = ∆LR
>
? + L?∆

>
R + ∆L∆

>
R and the triangle

inequality, one has

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

= ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F + ‖∆L∆

>
R‖F,

where we have used the facts that

‖∆LR
>
? ‖F = ‖∆LΣ

1/2
? V >

? ‖F = ‖∆LΣ
1/2
? ‖F, and ‖L?∆

>
R‖F = ‖U?Σ

1/2
? ∆

>
R‖F = ‖∆RΣ

1/2
? ‖F.

This together with the simple upper bound

‖∆L∆
>
R‖F =

1

2
‖∆LΣ

1/2
? (∆RΣ

−1/2
? )>‖F +

1

2
‖∆LΣ

−1/2
? (∆RΣ

1/2
? )>‖F

≤ 1

2
‖∆LΣ

1/2
? ‖F‖∆RΣ

−1/2
? ‖op +

1

2
‖∆LΣ

−1/2
? ‖op‖∆RΣ

1/2
? ‖F

≤ 1

2
(‖∆LΣ

−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

finishes the proof.

Lemma 27 For any L ∈ R
n1×r,R ∈ R

n2×r and any invertible matrices Q, Q̄ ∈ GL(r), suppose

that ‖(LQ−L?)Σ
−1/2
? ‖op ∨ ‖(RQ−> −R?)Σ

−1/2
? ‖op < 1, then one has

∥∥∥Σ1/2
? Q̄−1QΣ

1/2
? −Σ?

∥∥∥
op

≤ ‖R(Q̄−> −Q−>)Σ1/2
? ‖op

1− ‖(RQ−> −R?)Σ
−1/2
? ‖op

;

∥∥∥Σ1/2
? Q̄>Q−>

Σ
1/2
? −Σ?

∥∥∥
op

≤ ‖L(Q̄−Q)Σ
1/2
? ‖op

1− ‖(LQ−L?)Σ
−1/2
? ‖op

.

Proof Insert R>R(R>R)−1, and use the relation ‖AB‖op ≤ ‖A‖op‖B‖op to obtain
∥∥∥Σ1/2

? Q̄−1QΣ
1/2
? −Σ?

∥∥∥
op

=
∥∥∥Σ1/2

? (Q̄−1 −Q−1)R>R(R>R)−1QΣ
1/2
?

∥∥∥
op
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≤
∥∥∥R(Q̄−> −Q−>)Σ1/2

?

∥∥∥
op

∥∥∥R(R>R)−1QΣ
1/2
?

∥∥∥
op

=
∥∥∥R(Q̄−> −Q−>)Σ1/2

?

∥∥∥
op

∥∥∥RQ−>((RQ−>)>RQ−>)−1
Σ

1/2
?

∥∥∥
op

≤ ‖R(Q̄−> −Q−>)Σ1/2
? ‖op

1− ‖(RQ−> −R?)Σ
−1/2
? ‖op

,

where the last line uses Lemma 25.

Similarly, insert L>L(L>L)−1, and use the relation ‖AB‖op ≤ ‖A‖op‖B‖op to obtain

∥∥∥Σ1/2
? Q̄>Q−>

Σ
1/2
? −Σ?

∥∥∥
op

=
∥∥∥Σ1/2

? (Q̄> −Q>)L>L(L>L)−1Q−>
Σ

1/2
?

∥∥∥
op

≤
∥∥∥L(Q̄−Q)Σ

1/2
?

∥∥∥
op

∥∥∥L(L>L)−1Q−>
Σ

1/2
?

∥∥∥
op

=
∥∥∥L(Q̄−Q)Σ

1/2
?

∥∥∥
op

∥∥∥LQ((LQ)>LQ)−1
Σ

1/2
?

∥∥∥
op

≤ ‖L(Q̄−Q)Σ
1/2
? ‖op

1− ‖(LQ−L?)Σ
−1/2
? ‖op

,

where the last line uses Lemma 25.

A.3 Partial Frobenius norm

We introduce the partial Frobenius norm

‖X‖F,r :=

√√√√
r∑

i=1

σ2
i (X) = ‖Pr(X)‖F (41)

as the `2 norm of the vector composed of the top-r singular values of the matrix X, or equivalently
as the Frobenius norm of the rank-r approximation Pr(X) defined in (5). It is straightforward
to verify that ‖ · ‖F,r is a norm; see also Mazeika (2016). The following lemma provides several
equivalent and useful characterizations of this partial Frobenius norm.

Lemma 28 For any X ∈ R
n1×n2 , one has

‖X‖F,r = max
Ṽ ∈Rn2×r:Ṽ >Ṽ =Ir

‖XṼ ‖F (42a)

= max
X̃∈Rn1×n2 :‖X̃‖F≤1,rank(X̃)≤r

|〈X, X̃〉| (42b)

= max
R̃∈Rn2×r:‖R̃‖op≤1

‖XR̃‖F. (42c)

Proof The first representation (42a) follows immediately from the extremal partial trace identity;
see (Mazeika, 2016, Proposition 4.4), by noticing the following relation

r∑

i=1

σ2
i (X) = max

V⊆Rn2 :dim(V)=r
tr
(
X>X | V

)
= max

Ṽ ∈Rn2×r:Ṽ >Ṽ =Ir

‖XṼ ‖2F.
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Here the partial trace over a vector space V is defined as

tr(X>X | V) :=
r∑

i=1

ṽ>
i X

>Xṽi,

where {ṽi}1≤i≤r is any orthonormal basis of V. The partial trace is invariant to the choice of
orthonormal basis and therefore well-defined.

To prove the second representation (42b), for any X̃ ∈ R
n1×n2 obeying rank(X̃) ≤ r and

‖X̃‖F ≤ 1, denoting X̃ = ŨΣ̃Ṽ > as its compact SVD, one has

|〈X, X̃〉| = |〈X, ŨΣ̃Ṽ >〉| = |〈XṼ , ŨΣ̃〉| ≤ ‖XṼ ‖F‖ŨΣ̃‖F ≤ ‖X‖F,r,
where the last inequality follows from (42a). In addition, the maximum in (42b) is attained at

X̃ = Pr(X)/‖Pr(X)‖F.
To prove the third representation (42c), for any R̃ ∈ R

n2×r obeying ‖R̃‖op ≤ 1, combine the
variational representation of the Frobenius norm and (42b) to obtain

‖XR̃‖F = max
L̃∈Rn1×n2 :‖L̃‖F≤1

|〈XR̃, L̃〉|

= max
L̃∈Rn1×n2 :‖L̃‖F≤1

|〈X, L̃R̃>〉| ≤ ‖X‖F,r,

where the last inequality follows from (42b). In addition, the maximum in (42c) is attained at
R̃ = V , where V denotes the top-r right singular vectors of X.

Remark 29 For self-completeness, we also provide a detailed proof of the first representation (42a).
This proof is inductive on r. When r = 1, we have

σ1(X) = ‖Xv1‖2 = max
ṽ∈Rn2 :‖ṽ‖2=1

‖Xṽ‖2,

where v1 denotes the top right singular vector of X. Assume that the statement holds for ‖ · ‖F,r−1.

Now consider ‖ · ‖F,r. For any Ṽ ∈ R
n2×r such that Ṽ >Ṽ = Ir, we can first pick ṽ2, . . . , ṽr as a

set of orthonormal vectors in the column space of Ṽ that are orthogonal to v1, and then pick ṽ1 via
the Gram-Schmidt process, so that {ṽi}ri=1 provides an orthonormal basis of the column space of Ṽ .

Further, by the orthogonality of Ṽ , there exists an orthonormal matrix O such that

Ṽ = [ṽ1, . . . , ṽr]O.

Combining this formula with the induction hypothesis yields

‖XṼ ‖2F = ‖X[ṽ1, . . . , ṽr]‖2F
= ‖Xṽ1‖22 + ‖X[ṽ2, . . . , ṽr]‖2F
= ‖Xṽ1‖22 + ‖(X − P1(X))[ṽ2, . . . , ṽr]‖2F
≤ σ2

1(X) + ‖X − P1(X)‖2F,r−1

=
r∑

i=1

σ2
i (X) = ‖X‖2F,r,

where the first line holds since O is orthonormal, the third line holds since P1(X)[ṽ2, . . . , ṽr] = 0,
the fourth line follows from the induction hypothesis, and the last line follows from the definition
(41). In addition, the maximum in (42a) is attained at Ṽ = V , where V denotes the top-r right
singular vectors of X. This finishes the proof.
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Recall that Pr(X) denotes the best rank-r approximation of X under the Frobenius norm. It
turns out that Pr(X) is also the best rank-r approximation of X under the partial Frobenius norm
‖ · ‖F,r. This claim is formally stated below; see also (Mazeika, 2016, Theorem 4.21).

Lemma 30 Fix any X ∈ R
n1×n2 and recall the definition of Pr(X) in (5). One has

Pr(X) = argmin
X̃∈Rn1×n2 :rank(X̃)≤r

‖X − X̃‖F,r.

Proof For any X̃ of rank at most r, invoke Weyl’s inequality to obtain σr+i(X) ≤ σi(X − X̃) +

σr+1(X̃) = σi(X − X̃), for i = 1, . . . , r. Thus one has

‖X − Pr(X)‖2F,r =
r∑

i=1

σ2
r+i(X) ≤

r∑

i=1

σ2
i (X − X̃) = ‖X − X̃‖2F,r.

The proof is finished by observing that the rank of Pr(X) is at most r.

Appendix B. Proof for Low-Rank Matrix Factorization

B.1 Proof of Proposition 12

The gradients of L(F ) in (29) with respect to L and R are given as

∇LL(F ) = (LR> −X?)R, ∇RL(F ) = (LR> −X?)
>L,

which can be used to compute the Hessian with respect to L and R. Writing for the vectorized
variables, the Hessians are given as

∇2
L,LL(F ) = (R>R)⊗ In1 , ∇2

R,RL(F ) = (L>L)⊗ In2 .

Viewed in the vectorized form, the ScaledGD update in (3) can be rewritten as

vec(Lt+1) = vec(Lt)− η((R>
t Rt)

−1 ⊗ In1) vec((LtR
>
t −X?)Rt)

= vec(Lt)− η(∇2
L,LL(Ft))

−1 vec(∇LL(Ft)),

vec(Rt+1) = vec(Rt)− η((L>
t Lt)

−1 ⊗ In2) vec((LtR
>
t −X?)

>Lt)

= vec(Rt)− η(∇2
R,RL(Ft))

−1 vec(∇RL(Ft)).

B.2 Proof of Theorem 13

The proof is inductive in nature. More specifically, we intend to show that for all t ≥ 0,

1. dist(Ft,F?) ≤ (1− 0.7η)t dist(F0,F?) ≤ 0.1(1− 0.7η)tσr(X?), and

2. the optimal alignment matrix Qt between Ft and F? exists.

For the base case, i.e. t = 0, the first induction hypothesis trivially holds, while the second also
holds true in view of Lemma 22 and the assumption that dist(F0,F?) ≤ 0.1σr(X?). We therefore
concentrate on the induction step. Suppose that the t-th iterate Ft obeys the aforementioned
induction hypotheses. Our goal is to show that Ft+1 continues to satisfy those.
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For notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L − L?, ∆R := R −R?,

and ε := 0.1. By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
, (43)

where we recall that Qt is the optimal alignment matrix between Ft and F?. Utilize the ScaledGD

update rule (30) and the decomposition LR> −X? = ∆LR
> +L?∆

>
R to obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(∆LR

> +L?∆
>
R)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
? .

As a result, one can expand the first square in (43) as
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
= (1− η)2 tr

(
∆LΣ?∆

>
L

)
− 2η(1− η) tr

(
L?∆

>
RR(R>R)−1

Σ?∆
>
L

)

︸ ︷︷ ︸
M1

+ η2
∥∥∥L?∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
M2

. (44)

The first term tr(∆LΣ?∆
>
L ) is closely related to dist(Ft,F?), and hence our focus will be on relating

M1 and M2 to dist(Ft,F?). We start with the term M1. Since L and R are aligned with L? and
R?, Lemma 23 tells that Σ?∆

>
LL = R>

∆RΣ?. This together with L? = L − ∆L allows us to
rewrite M1 as

M1 = tr
(
R(R>R)−1

Σ?∆
>
LL?∆

>
R

)

= tr
(
R(R>R)−1

Σ?∆
>
LL∆

>
R

)
− tr

(
R(R>R)−1

Σ?∆
>
L∆L∆

>
R

)

= tr
(
R(R>R)−1R>

∆RΣ?∆
>
R

)
− tr

(
R(R>R)−1

Σ?∆
>
L∆L∆

>
R

)
.

Moving on to M2, we can utilize the fact L>
? L? = Σ? and the decomposition Σ? = R>R−(R>R−

Σ?) to obtain

M2 = tr
(
R(R>R)−1

Σ?(R
>R)−1R>

∆RΣ?∆
>
R

)

= tr
(
R(R>R)−1R>

∆RΣ?∆
>
R

)
− tr

(
R(R>R)−1(R>R−Σ?)(R

>R)−1R>
∆RΣ?∆

>
R

)
.

Putting M1 and M2 back to (44) yields
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
= (1− η)2 tr

(
∆LΣ?∆

>
L

)
− η(2− 3η) tr

(
R(R>R)−1R>

∆RΣ?∆
>
R

)

︸ ︷︷ ︸
F1

+ 2η(1− η) tr
(
R(R>R)−1

Σ?∆
>
L∆L∆

>
R

)

︸ ︷︷ ︸
F2

− η2 tr
(
R(R>R)−1(R>R−Σ?)(R

>R)−1R>
∆RΣ?∆

>
R

)

︸ ︷︷ ︸
F3

.

In what follows, we will control the three terms F1,F2 and F3 separately.
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1. Notice that F1 is the inner product of two positive semi-definite matrices R(R>R)−1R> and
∆RΣ?∆

>
R. Consequently we have F1 ≥ 0.

2. To control F2, we need certain control on ‖∆LΣ
−1/2
? ‖op and ‖∆RΣ

−1/2
? ‖op. The first induction

hypothesis

dist(Ft,F?) =

√
‖∆LΣ

−1/2
? Σ?‖2F + ‖∆RΣ

−1/2
? Σ?‖2F ≤ εσr(X?)

together with the relation ‖AB‖F ≥ ‖A‖Fσr(B) tells that

√
‖∆LΣ

−1/2
? ‖2F + ‖∆RΣ

−1/2
? ‖2F σr(X?) ≤ εσr(X?).

In light of the relation ‖A‖op ≤ ‖A‖F, this further implies

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (45)

Invoke Lemma 25 to see
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
op

≤ 1

1− ε
.

With these consequences, one can bound |F2| by

|F2| =
∣∣∣ tr
(
Σ

−1/2
? ∆

>
RR(R>R)−1

Σ?∆
>
L∆LΣ

1/2
?

) ∣∣∣

≤
∥∥∥Σ−1/2

? ∆
>
RR(R>R)−1

Σ
1/2
?

∥∥∥
op

tr
(
Σ

1/2
? ∆

>
L∆LΣ

1/2
?

)

≤ ‖∆RΣ
−1/2
? ‖op

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

tr
(
∆LΣ?∆

>
L

)

≤ ε

1− ε
tr
(
∆LΣ?∆

>
L

)
.

3. Similarly, one can bound |F3| by

|F3| ≤
∥∥∥R(R>R)−1(R>R−Σ?)(R

>R)−1R>
∥∥∥
op

tr
(
∆RΣ?∆

>
R

)

≤
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
2

op

∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥
op

tr
(
∆RΣ?∆

>
R

)

≤ 1

(1− ε)2

∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥
op

tr
(
∆RΣ?∆

>
R

)
.

Further notice that
∥∥∥Σ−1/2

? (R>R−Σ?)Σ
−1/2
?

∥∥∥
op

=
∥∥∥Σ−1/2

? (R>
? ∆R +∆

>
RR? +∆

>
R∆R)Σ

−1/2
?

∥∥∥
op

≤ 2‖∆RΣ
−1/2
? ‖op + ‖∆RΣ

−1/2
? ‖2op

≤ 2ε+ ε2.

Take the preceding two bounds together to arrive at

|F3| ≤
2ε+ ε2

(1− ε)2
tr
(
∆RΣ?∆

>
R

)
.

33



Tong, Ma, Chi

Combining the bounds for F1,F2,F3, one has

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2

F

≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
tr
(
∆LΣ?∆

>
L

)
+

2ε+ ε2

(1− ε)2
η2 tr

(
∆RΣ?∆

>
R

)
. (46)

A similarly bound holds for the second square ‖(Rt+1Qt −R?)Σ
1/2
? ‖2F in (43). Therefore we obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
≤ ρ2(η; ε) dist2(Ft,F?),

where we identify

dist2(Ft,F?) = tr(∆LΣ?∆
>
L ) + tr(∆RΣ?∆

>
R) (47)

and the contraction rate ρ2(η; ε) is given by

ρ2(η; ε) := (1− η)2 +
2ε

1− ε
η(1− η) +

2ε+ ε2

(1− ε)2
η2.

With ε = 0.1 and 0 < η ≤ 2/3, one has ρ(η; ε) ≤ 1− 0.7η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F

≤ (1− 0.7η) dist(Ft,F?)

≤ (1− 0.7η)t+1 dist(F0,F?) ≤ (1− 0.7η)t+10.1σr(X?).

This proves the first induction hypothesis. The existence of the optimal alignment matrix Qt+1

between Ft+1 and F? is assured by Lemma 22, which finishes the proof for the second hypothesis.
So far, we have demonstrated the first conclusion in the theorem. The second conclusion is an

easy consequence of Lemma 26 as
∥∥∥LtR

>
t −X?

∥∥∥
F
≤
(
1 +

ε

2

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

≤
(
1 +

ε

2

)√
2 dist(Ft,F?)

≤ 1.5 dist(Ft,F?).

(48)

Here, the second line follows from the elementary inequality a+b ≤
√

2(a2 + b2) and the expression
of dist(Ft,F?) in (47). The proof is now completed.

Appendix C. Proof for Low-Rank Matrix Sensing

We start by recording a useful lemma.

Lemma 31 (Candès and Plan (2011)) Suppose that A(·) obeys the 2r-RIP with a constant δ2r.
Then for any X1,X2 ∈ R

n1×n2 of rank at most r, one has

|〈A(X1),A(X2)〉 − 〈X1,X2〉| ≤ δ2r‖X1‖F‖X2‖F,

which can be stated equivalently as
∣∣∣tr
(
(A∗A− I)(X1)X

>
2

)∣∣∣ ≤ δ2r‖X1‖F‖X2‖F. (49)
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As a simple corollary, one has that for any matrix R ∈ R
n2×r:

‖(A∗A− I)(X1)R‖F ≤ δ2r‖X1‖F‖R‖op. (50)

This is due to the fact that

‖(A∗A− I)(X1)R‖F = max
L̃:‖L̃‖F≤1

tr
(
(A∗A− I)(X1)RL̃>

)

≤ max
L̃:‖L̃‖F≤1

δ2r‖X1‖F‖L̃R>‖F

≤ δ2r‖X1‖F‖R‖op.

Here, the first line follows from the variational representation of the Frobenius norm, the second
line follows from (49), and the last line follows from the relation ‖AB‖F ≤ ‖A‖F‖B‖op.

C.1 Proof of Lemma 14

The proof mostly mirrors that in Section B.2. First, in view of the condition dist(Ft,F?) ≤
0.1σr(X?) and Lemma 22, one knows that Qt, the optimal alignment matrix between Ft and
F? exists. Therefore, for notational convenience, denote L := LtQt, R := RtQ

−>
t , ∆L := L− L?,

∆R := R−R?, and ε := 0.1. Similar to the derivation in (45), we have

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (51)

The conclusion ‖LtR
>
t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 26; see (48) for

a detailed argument. From now on, we focus on proving the distance contraction.
With these notations in place, we have by the definition of dist(Ft+1,F?) that

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
. (52)

Apply the update rule (15) and the decomposition LR> −X? = ∆LR
> +L?∆

>
R to obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− ηA∗A(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(LR> −X?)R(R>R)−1 − η(A∗A− I)(LR> −X?)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
? − η(A∗A− I)(LR> −X?)R(R>R)−1

Σ
1/2
? .

This allows us to expand the first square in (52) as

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
S1

− 2η(1− η) tr
(
(A∗A− I)(LR> −X?)R(R>R)−1

Σ?∆
>
L

)

︸ ︷︷ ︸
S2

+ 2η2 tr
(
(A∗A− I)(LR> −X?)R(R>R)−1

Σ?(R
>R)−1R>

∆RL
>
?

)

︸ ︷︷ ︸
S3

+ η2
∥∥∥(A∗A− I)(LR> −X?)R(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
S4

.
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In what follows, we shall control the four terms separately, of which S1 is the main term, and S2,S3

and S4 are perturbation terms.

1. Notice that the main term S1 has already been controlled in (46) under the condition (51). It
obeys

S1 ≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term S2, decompose LR> − X? = ∆LR
>
? + L?∆

>
R + ∆L∆

>
R and apply the

triangle inequality to obtain

|S2| =
∣∣∣ tr
(
(A∗A− I)(∆LR

>
? +L?∆

>
R +∆L∆

>
R)R(R>R)−1

Σ?∆
>
L

) ∣∣∣

≤
∣∣∣ tr
(
(A∗A− I)(∆LR

>
? )R(R>R)−1

Σ?∆
>
L

) ∣∣∣

+
∣∣∣ tr
(
(A∗A− I)(L?∆

>
R)R(R>R)−1

Σ?∆
>
L

) ∣∣∣

+
∣∣∣ tr
(
(A∗A− I)(∆L∆

>
R)R(R>R)−1

Σ?∆
>
L

) ∣∣∣.

Invoke Lemma 31 to further obtain

|S2| ≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

)∥∥∥R(R>R)−1
Σ?∆

>
L

∥∥∥
F

≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

)∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

‖∆LΣ
1/2
? ‖F,

where the second line follows from the relation ‖AB‖F ≤ ‖A‖op‖B‖F. Take the condition (51)
and Lemmas 25 and 26 together to obtain

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ε
;

‖∆LR
>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F ≤ (1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

These consequences further imply that

|S2| ≤
δ2r(2 + ε)

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

=
δ2r(2 + ε)

2(1− ε)

(
‖∆LΣ

1/2
? ‖2F + ‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

)
.

For the term ‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F, we can apply the elementary inequality 2ab ≤ a2 + b2 to

see

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F ≤ 1

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F.

The preceding two bounds taken collectively yield

|S2| ≤
δ2r(2 + ε)

2 (1− ε)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆LΣ

1/2
? ‖2F

)
.
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3. The third term S3 can be similarly bounded as

|S3| ≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

)∥∥∥R(R>R)−1
Σ?(R

>R)−1R>
∆RL

>
?

∥∥∥
F

≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

)∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
2

op
‖∆RL

>
? ‖F

≤ δ2r(2 + ε)

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

≤ δ2r(2 + ε)

2(1− ε)2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
.

4. We are then left with the last term S4, for which we have

√
S4 =

∥∥∥(A∗A− I)(LR> −X?)R(R>R)−1
Σ

1/2
?

∥∥∥
F

≤
∥∥∥(A∗A− I)(∆LR

>
? )R(R>R)−1

Σ
1/2
?

∥∥∥
F

+
∥∥∥(A∗A− I)(L?∆

>
R)R(R>R)−1

Σ
1/2
?

∥∥∥
F

+
∥∥∥(A∗A− I)(∆L∆

>
R)R(R>R)−1

Σ
1/2
?

∥∥∥
F
,

where once again we use the decomposition LR> −X? = ∆LR
>
? + L?∆

>
R +∆L∆

>
R. Use (50)

to see that
√
S4 ≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆

>
R‖F + ‖∆L∆

>
R‖F

)∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

.

Repeating the same argument in bounding S2 yields

√
S4 ≤

δ2r (2 + ε)

2 (1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

We can then take the squares of both sides and use (a+ b)2 ≤ 2a2 + 2b2 to reach

S4 ≤
δ22r(2 + ε)2

2(1− ε)2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Taking the bounds for S1,S2,S3,S4 collectively yields

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+
δ2r(2 + ε)

1− ε
η(1− η)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)

+
δ2r(2 + ε)

(1− ε)2
η2
(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)

+
δ22r(2 + ε)2

2(1− ε)2
η2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Similarly, we can expand the second square in (52) and obtain a similar bound. Combine both to
obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
≤ ρ2(η; ε, δ2r) dist

2(Ft,F?),
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where the contraction rate is given by

ρ2(η; ε, δ2r) := (1− η)2 +
2ε+ δ2r(4 + 2ε)

1− ε
η(1− η) +

2ε+ ε2 + δ2r(4 + 2ε) + δ22r(2 + ε)2

(1− ε)2
η2.

With ε = 0.1, δ2r ≤ 0.02, and 0 < η ≤ 2/3, one has ρ(η; ε, δ2r) ≤ 1− 0.6η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F

≤ (1− 0.6η) dist(Ft,F?).

C.2 Proof of Lemma 15

With the knowledge of partial Frobenius norm ‖ · ‖F,r, we are ready to establish the claimed result.
Invoke Lemma 24 to relate dist(F0,F?) to ‖L0R

>
0 −X?‖F, and use that L0R

>
0 −X? has rank at

most 2r to obtain

dist(F0,F?) ≤
√√

2 + 1
∥∥∥L0R

>
0 −X?

∥∥∥
F
≤
√
2(
√
2 + 1)

∥∥∥L0R
>
0 −X?

∥∥∥
F,r

.

Note that L0R
>
0 is the best rank-r approximation of A∗A(X?), and apply the triangle inequality

combined with Lemma 30 to obtain
∥∥∥L0R

>
0 −X?

∥∥∥
F,r

≤
∥∥∥A∗A(X?)−L0R

>
0

∥∥∥
F,r

+ ‖A∗A(X?)−X?‖F,r
≤ 2 ‖(A∗A− I)(X?)‖F,r ≤ 2δ2r‖X?‖F.

Here, the last inequality follows from combining Lemma 28 and (50) as

‖(A∗A− I)(X?)‖F,r = max
R̃∈Rn2×r:‖R̃‖op≤1

∥∥∥(A∗A− I)(X?)R̃
∥∥∥
F
≤ δ2r‖X?‖F.

As a result, one has

dist(F0,F?) ≤ 2

√
2(
√
2 + 1)δ2r‖X?‖F ≤ 5δ2r

√
rκσr(X?).

Appendix D. Proof for Robust PCA

We first establish a useful property regarding the truncation operator T2α[·].

Lemma 32 Given S? ∈ Sα and S = T2α[X? + S? −LR>], one has

‖S − S?‖∞ ≤ 2‖LR> −X?‖∞. (53)

In addition, for any low-rank matrix M = LMR>
M ∈ R

n1×n2 with LM ∈ R
n1×r,RM ∈ R

n2×r, one
has

|〈S − S?,M〉| ≤
√
3αν

(
‖(L−L?)Σ

1/2
? ‖F + ‖(R−R?)Σ

1/2
? ‖F

)
‖M‖F

+ 2
√
α (

√
n1‖LM‖2,∞‖RM‖F ∧

√
n2‖LM‖F‖RM‖2,∞) ‖LR> −X?‖F,

(54)

where ν obeys

ν ≥
√
n1

2

(
‖LΣ

−1/2
? ‖2,∞ + ‖L?Σ

−1/2
? ‖2,∞

)
∨
√
n2

2

(
‖RΣ

−1/2
? ‖2,∞ + ‖R?Σ

−1/2
? ‖2,∞

)
.
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Proof Denote ∆L := L− L?, ∆R := R −R?, and ∆X := LR> −X?. Let Ω,Ω? be the support
of S and S?, respectively. As a result, S − S? is supported on Ω ∪ Ω?.

We start with proving the first claim, i.e. (53). For (i, j) ∈ Ω, by the definition of T2α[·], we have
(S−S?)i,j = (−∆X)i,j . For (i, j) ∈ Ω? \Ω, one necessarily has Si,j = 0 and therefore (S−S?)i,j =
(−S?)i,j . Again by the definition of the operator T2α[·], we know |S?−∆X |i,j is either smaller than
|S? −∆X |i,(2αn2) or |S? −∆X |(2αn1),j . Furthermore, we know that S? contains at most α-fraction
nonzero entries per row and column. Consequently, one has |S?−∆X |i,j ≤ |∆X |i,(αn2)∨|∆X |(αn1),j .
Combining the two cases above, we conclude that

|S − S?|i,j ≤
{
|∆X |i,j , (i, j) ∈ Ω

|∆X |i,j +
(
|∆X |i,(αn2) ∨ |∆X |(αn1),j

)
, (i, j) ∈ Ω? \ Ω

. (55)

This immediately implies the `∞ norm bound (53).

Next, we prove the second claim (54). Recall that S−S? is supported on Ω∪Ω?. We then have

|〈S − S?,M〉| ≤
∑

(i,j)∈Ω
|S − S?|i,j |M |i,j +

∑

(i,j)∈Ω?\Ω
|S − S?|i,j |M |i,j

≤
∑

(i,j)∈Ω∪Ω?

|∆X |i,j |M |i,j +
∑

(i,j)∈Ω?\Ω

(
|∆X |i,(αn2) + |∆X |(αn1),j

)
|M |i,j ,

where the second line follows from (55). Let β > 0 be some positive number, whose value will be
determined later. Use 2ab ≤ β−1a2 + βb2 to further obtain

|〈S − S?,M〉| ≤
∑

(i,j)∈Ω∪Ω?

|∆X |i,j |M |i,j
︸ ︷︷ ︸

A1

+
1

2β

∑

(i,j)∈Ω?\Ω

(
|∆X |2i,(αn2)

+ |∆X |2(αn1),j

)

︸ ︷︷ ︸
A2

+β
∑

(i,j)∈Ω?\Ω
|M |2i,j

︸ ︷︷ ︸
A3

.

In regard to the three terms A1,A2 and A3, we have the following claims, whose proofs are deferred
to the end.

Claim 1 The first term A1 satisfies

A1 ≤
√
3αν

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F.

Claim 2 The second term A2 satisfies

A2 ≤ 2‖∆X‖2F.

Claim 3 The third term A3 satisfies

A3 ≤ α
(
n1‖LM‖22,∞‖RM‖2F ∧ n2‖LM‖2F‖RM‖22,∞

)
.

Combine the pieces to reach

|〈S − S?,M〉| ≤
√
3αν

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F

+
‖∆X‖2F

β
+ βα

(
n1‖LM‖22,∞‖RM‖2F ∧ n2‖LM‖2F‖RM‖22,∞

)
.
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One can then choose β optimally to yield

|〈S − S?,M〉| ≤
√
3αν

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F

+ 2
√
α (

√
n1‖LM‖2,∞‖RM‖F ∧

√
n2‖LM‖F‖RM‖2,∞) ‖∆X‖F.

This finishes the proof.

Proof [Proof of Claim 1] Use the decomposition ∆X = ∆LR
>+L?∆

>
R = ∆LR

>
? +L∆

>
R to obtain

|∆X |i,j ≤ ‖(∆LΣ
1/2
? )i,·‖2‖RΣ

−1/2
? ‖2,∞ + ‖L?Σ

−1/2
? ‖2,∞‖(∆RΣ

1/2
? )j,·‖2, and

|∆X |i,j ≤ ‖(∆LΣ
1/2
? )i,·‖2‖R?Σ

−1/2
? ‖2,∞ + ‖LΣ

−1/2
? ‖2,∞‖(∆RΣ

1/2
? )j,·‖2.

Take the average to yield

|∆X |i,j ≤
ν√
n2

‖(∆LΣ
1/2
? )i,·‖2 +

ν√
n1

‖(∆RΣ
1/2
? )j,·‖2,

where we have used the assumption on ν. With this upper bound on |∆X |i,j in place, we can further
control A1 as

A1 ≤
∑

(i,j)∈Ω∪Ω?

ν√
n2

‖(∆LΣ
1/2
? )i,·‖2|M |i,j +

∑

(i,j)∈Ω∪Ω?

ν√
n1

‖(∆RΣ
1/2
? )j,·‖2|M |i,j

≤



√ ∑

(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22/n2 +

√ ∑

(i,j)∈Ω∪Ω?

‖(∆RΣ
1/2
? )j,·‖22/n1


 ν‖M‖F.

Regarding the first term, one has

∑

(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22 =

n1∑

i=1

∑

j:(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22

≤ 3αn2

n1∑

i=1

‖(∆LΣ
1/2
? )i,·‖22

= 3αn2‖∆LΣ
1/2
? ‖2F,

where the second line follows from the fact that Ω ∪ Ω? contains at most 3αn2 non-zero entries in
each row. Similarly, we can show that

∑

(i,j)∈Ω∪Ω?

‖(∆RΣ
1/2
? )j,·‖22 ≤ 3αn1‖∆RΣ

1/2
? ‖2F.

In all, we arrive at

A1 ≤
√
3αν

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F,

which is the desired claim.
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Proof [Proof of Claim 2] Recall that (∆X)i,(αn2) denotes the (αn2)-th largest entry in the i-th row
of ∆X . One necessarily has

αn2|∆X |2i,(αn2)
≤ ‖(∆X)i,·‖22.

As a result, we obtain

∑

(i,j)∈Ω?\Ω
|∆X |2i,(αn2)

≤
∑

(i,j)∈Ω?

|∆X |2i,(αn2)

≤
n1∑

i=1

∑

j:(i,j)∈Ω?

‖(∆X)i,·‖22
αn2

≤
n1∑

i=1

‖(∆X)i,·‖22 = ‖∆X‖2F,

where the last line follows from the fact that Ω? contains at most αn2 nonzero entries in each row.
Similarly one can show that

∑

(i,j)∈Ω?\Ω
|∆X |2(αn1),j

≤ ‖∆X‖2F.

Combining the above two bounds with the definition of A2 completes the proof.

Proof [Proof of Claim 3] By definition, M = LMR>
M , and hence one has

A3 =
∑

(i,j)∈Ω?\Ω
|(LM )i,·(RM )>j,·|2 ≤

∑

(i,j)∈Ω?

|(LM )i,·(RM )>j,·|2.

We can further upper bound A3 as

A3 ≤
∑

(i,j)∈Ω?

‖(LM )i,·‖22‖(RM )j,·‖22

≤
n1∑

i=1

∑

j:(i,j)∈Ω?

‖(LM )i,·‖22‖RM‖22,∞

≤
n1∑

i=1

αn2‖(LM )i,·‖22‖RM‖22,∞ = αn2‖LM‖2F‖RM‖22,∞,

where the last line follows from the fact that Ω? contains at most αn2 non-zero entries in each row.
Similarly, one can obtain

A3 ≤ αn1‖LM‖22,∞‖RM‖2F,

which completes the proof.
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D.1 Proof of Lemma 16

We begin with introducing several useful notations and facts. In view of the condition dist(Ft,F?) ≤
0.02σr(X?) and Lemma 22, one knows that Qt, the optimal alignment matrix between Ft and F?

exists. Therefore, for notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L − L?,

∆R := R −R?, S := St = T2α[X? + S? − LR>], and ε := 0.02. Similar to the derivation in (45),
we have

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (56)

Moreover, the incoherence condition

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨√

n2‖∆RΣ
1/2
? ‖2,∞ ≤ √

µrσr(X?) (57)

implies

√
n1‖∆LΣ

−1/2
? ‖2,∞ ∨√

n2‖∆RΣ
−1/2
? ‖2,∞ ≤ √

µr, (58)

which combined with the triangle inequality further implies

√
n1‖LΣ

−1/2
? ‖2,∞ ∨√

n2‖RΣ
−1/2
? ‖2,∞ ≤ 2

√
µr. (59)

The conclusion ‖LtR
>
t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 26; see (48) for

a detailed argument. In what follows, we shall prove the distance contraction and the incoherence
condition separately.

D.1.1 Distance contraction

By the definition of dist2(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
. (60)

From now on, we focus on controlling the first square ‖(Lt+1Qt−L?)Σ
1/2
? ‖2F. In view of the update

rule (20), one has

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η(LR> + S −X? − S?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(LR> −X?)R(R>R)−1 − η(S − S?)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
? − η(S − S?)R(R>R)−1

Σ
1/2
? .
(61)

Here, we use the notation introduced above and the decomposition LR> −X? = ∆LR
> +L?∆

>
R.

Take the squared Frobenius norm of both sides of (61) to obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
R1

− 2η(1− η) tr
(
(S − S?)R(R>R)−1

Σ?∆
>
L

)

︸ ︷︷ ︸
R2
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+ 2η2 tr
(
(S − S?)R(R>R)−1

Σ?(R
>R)−1R>

∆RL
>
?

)

︸ ︷︷ ︸
R3

+ η2
∥∥∥(S − S?)R(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
R4

.

In the sequel, we shall bound the four terms separately, of which R1 is the main term, and R2,R3

and R4 are perturbation terms.

1. Notice that the main term R1 has already been controlled in (46) under the condition (56). It
obeys

R1 ≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term R2, set M := ∆LΣ?(R
>R)−1R> with LM := ∆LΣ?(R

>R)−1
Σ

1/2
? , RM :=

RΣ
−1/2
? , and then invoke Lemma 32 with ν := 3

√
µr/2 to see

|R2| ≤
3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥∆LΣ?(R
>R)−1R>

∥∥∥
F

+ 2
√
αn2

∥∥∥∆LΣ?(R
>R)−1

Σ
1/2
?

∥∥∥
F
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

+ 2
√
αn2‖∆LΣ

1/2
? ‖F

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

‖RΣ
−1/2
? ‖2,∞‖LR> −X?‖F.

Take the condition (56) and Lemmas 25 and 26 together to obtain

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ε
;

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

=
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
2

op
≤ 1

(1− ε)2
;

‖LR> −X?‖F ≤ (1 +
ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

(62)

These consequences combined with the condition (59) yield

|R2| ≤
3
√
3αµr

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

+
4
√
αµr

(1− ε)2
‖∆LΣ

1/2
? ‖F(1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

≤ √
αµr

3
√
3 + 4(2+ε)

1−ε

2(1− ε)

(
‖∆LΣ

1/2
? ‖2F + ‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

)

≤ √
αµr

3
√
3 + 4(2+ε)

1−ε

2(1− ε)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
,

where the last inequality holds since 2ab ≤ a2 + b2.
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3. The third term R3 can be controlled similarly. Set M := L?∆
>
RR(R>R)−1

Σ?(R
>R)−1R> with

LM := L?Σ
−1/2
? and RM := R(R>R)−1

Σ?(R
>R)−1R>

∆RΣ
1/2
? , and invoke Lemma 32 with

ν := 3
√
µr/2 to arrive at

|R3| ≤
3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥L?∆
>
RR(R>R)−1

Σ?(R
>R)−1R>

∥∥∥
F

+ 2
√
αn1‖L?Σ

−1/2
? ‖2,∞

∥∥∥R(R>R)−1
Σ?(R

>R)−1R>
∆RΣ

1/2
?

∥∥∥
F
‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
2

op

+ 2
√
αn1‖L?Σ

−1/2
? ‖2,∞

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
2

op
‖∆RΣ

1/2
? ‖F‖LR> −X?‖F.

Use the consequences (62) again to obtain

|R3| ≤
3
√
3αµr

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

+
2
√
αµr

(1− ε)2
‖∆RΣ

1/2
? ‖F(1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

≤ √
αµr

3
√
3 + 2(2 + ε)

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖2F

)

≤ √
αµr

3
√
3 + 2(2 + ε)

2(1− ε)2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
.

4. For the last term R4, utilize the variational representation of the Frobenius norm to see

√
R4 = tr

(
(S − S?)R(R>R)−1

Σ
1/2
? L̃>

)

for some L̃ ∈ R
n1×r obeying ‖L̃‖F = 1. Setting M := L̃Σ

1/2
? (R>R)−1R> = LMR>

M with

LM := L̃Σ
1/2
? (R>R)−1

Σ
1/2
? and RM := RΣ

−1/2
? , we are ready to apply Lemma 32 again with

ν := 3
√
µr/2 to see

√
R4 ≤

3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥L̃Σ
1/2
? (R>R)−1R>

∥∥∥
F

+ 2
√
αn2

∥∥∥L̃Σ
1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
F
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

+ 2
√
αn2

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

‖RΣ
−1/2
? ‖2,∞‖LR> −X?‖F.

This combined with the consequences (62) and condition (59) yields

√
R4 ≤

√
αµr

3
√
3 + 4(2+ε)

1−ε

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Take the square, and use the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 to reach

R4 ≤ αµr
(3
√
3 + 4(2+ε)

1−ε )2

2(1− ε)2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.
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Taking collectively the bounds for R1,R2,R3 and R4 yields the control of ‖(Lt+1Qt − L?)Σ
1/2
? ‖2F

as
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+
√
αµr

3
√
3 + 4(2+ε)

1−ε

1− ε
η(1− η)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)

+
√
αµr

3
√
3 + 2(2 + ε)

(1− ε)2
η2
(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)

+ αµr
(3
√
3 + 4(2+ε)

1−ε )2

2(1− ε)2
η2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t − R?)Σ

1/2
? ‖2F. Combine them together and

identify dist2(Ft,F?) = ‖∆LΣ
1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F to reach

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
≤ ρ2(η; ε, αµr) dist2(Ft,F?),

where the contraction rate ρ2(η; ε, αµr) is given by

ρ2(η; ε, αµr) := (1− η)2 +
2ε+

√
αµr(6

√
3 + 8(2+ε)

1−ε )

1− ε
η(1− η)

+
2ε+ ε2 +

√
αµr(6

√
3 + 4(2 + ε)) + αµr(3

√
3 + 4(2+ε)

1−ε )2

(1− ε)2
η2.

With ε = 0.02, αµr ≤ 10−4, and 0 < η ≤ 2/3, one has ρ(η; ε, αµr) ≤ 1 − 0.6η. Thus we conclude
that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F

≤ (1− 0.6η) dist(Ft,F?). (63)

D.1.2 Incoherence condition

We start by controlling the term ‖(Lt+1Qt −L?)Σ
1/2
? ‖2,∞. We know from (61) that

(Lt+1Qt −L?)Σ
1/2
? = (1− η)∆LΣ

1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
? − η(S − S?)R(R>R)−1

Σ
1/2
? .

Apply the triangle inequality to obtain
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

≤ (1− η)‖∆LΣ
1/2
? ‖2,∞ + η

∥∥∥L?∆
>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

T1

+ η
∥∥∥(S − S?)R(R>R)−1

Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

T2

.

The first term ‖∆LΣ
1/2
? ‖2,∞ follows from the incoherence condition (57) as

‖∆LΣ
1/2
? ‖2,∞ ≤

√
µr

n1
σr(X?).

In the sequel, we shall bound the terms T1 and T2.
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1. For the term T1, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op, and combine the condition (56)
with the consequences (62) to obtain

T1 ≤ ‖L?Σ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? ∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
op

≤ ‖L?Σ
−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖op

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ ε

1− ε

√
µr

n1
σr(X?),

2. For the term T2, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op to obtain

T2 ≤ ‖S − S?‖2,∞
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
op

.

We know from Lemma 32 that S − S? has at most 3αn2 non-zero entries in each row, and
‖S − S?‖∞ ≤ 2‖LR> −X?‖∞. Upper bound the `2,∞ norm by the `∞ norm as

‖S − S?‖2,∞ ≤
√
3αn2‖S − S?‖∞ ≤ 2

√
3αn2‖LR> −X?‖∞.

Split LR> −X? = ∆LR
> +L?∆

>
R, and take the conditions (57) and (59) to obtain

‖LR> −X?‖∞ ≤ ‖∆LR
>‖∞ + ‖L?∆

>
R‖∞

≤ ‖∆LΣ
1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞ + ‖L?Σ

−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖2,∞

≤
√

µr

n1
σr(X?)2

√
µr

n2
+

√
µr

n1

√
µr

n2
σr(X?)

=
3µr√
n1n2

σr(X?).

This combined with the consequences (62) yields

T2 ≤
6
√
3αµr

1− ε

√
µr

n1
σr(X?).

Taking collectively the bounds for T1,T2 yields the control

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2,∞

≤
(
1− η +

ε+ 6
√
3αµr

1− ε
η

)√
µr

n1
σr(X?). (64)

The last step is to switch the alignment matrix from Qt to Qt+1. (63) together with Lemma 22
demonstrates the existence of Qt+1. Apply the triangle inequality to obtain

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞

≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

+
∥∥∥Lt+1(Qt+1 −Qt)Σ

1/2
?

∥∥∥
2,∞

≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

+ ‖Lt+1QtΣ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? Q−1

t Qt+1Σ
1/2
? −Σ?

∥∥∥
op

.

We deduct from (64) that

‖Lt+1QtΣ
−1/2
? ‖2,∞ ≤ ‖L?Σ

−1/2
? ‖2,∞ +

∥∥∥(Lt+1Qt −L?)Σ
−1/2
?

∥∥∥
2,∞

≤
(
2− η +

ε+ 6
√
3αµr

1− ε
η

)√
µr

n1
.
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Regarding the alignment matrix term, invoke Lemma 27 to obtain

∥∥∥Σ1/2
? Q−1

t Qt+1Σ
1/2
? −Σ?

∥∥∥
op

≤ ‖(Rt+1(Q
−>
t −Q−>

t+1)Σ
1/2
? ‖op

1− ‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖op

≤ ‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖op + ‖(Rt+1Q

−>
t+1 −R?)Σ

1/2
? ‖op

1− ‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖op

≤ 2ε

1− ε
σr(X?),

where we deduct from (63) that the distances using either Qt or Qt+1 are bounded by

‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖op ≤ εσr(X?);

‖(Rt+1Q
−>
t+1 −R?)Σ

1/2
? ‖op ≤ εσr(X?);

‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖op ≤ ε.

Combine all pieces to reach

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞

≤
(
1 + ε

1− ε

(
1− η +

ε+ 6
√
3αµr

1− ε
η

)
+

2ε

1− ε

)√
µr

n1
σr(X?).

With ε = 0.02, αµr ≤ 10−4, and 0.1 ≤ η ≤ 2/3, we get the desired incoherence condition

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞

≤
√

µr

n1
σr(X?).

Similarly, we can prove the other part

∥∥∥(Rt+1Q
−>
t+1 −R?)Σ

1/2
?

∥∥∥
2,∞

≤
√

µr

n2
σr(X?).

D.2 Proof of Lemma 17

We first record two lemmas from Yi et al. (2016), which are useful for studying the properties of
the initialization.

Lemma 33 ((Yi et al., 2016, Section 6.1)) Given S? ∈ Sα, one has ‖S? − Tα[X? + S?]‖∞ ≤
2‖X?‖∞.

Lemma 34 ((Yi et al., 2016, Lemma 1)) For any matrix M ∈ Sα, one has ‖M‖op ≤ α
√
n1n2‖M‖∞.

With these two lemmas in place, we are ready to establish the claimed result. Invoke Lemma 24
to obtain

dist(F0,F?) ≤
√√

2 + 1
∥∥∥L0R

>
0 −X?

∥∥∥
F
≤
√

(
√
2 + 1)2r

∥∥∥L0R
>
0 −X?

∥∥∥
op

,

where the last relation uses the fact that L0R
>
0 −X? has rank at most 2r. We can further apply

the triangle inequality to see
∥∥∥L0R

>
0 −X?

∥∥∥
op

≤
∥∥∥Y − Tα[Y ]−L0R

>
0

∥∥∥
op

+ ‖Y − Tα[Y ]−X?‖op

47



Tong, Ma, Chi

≤ 2 ‖Y − Tα[Y ]−X?‖op = 2 ‖S? − Tα[X? + S?]‖op .

Here the second inequality hinges on the fact that L0R
>
0 is the best rank-r approximation of

Y −Tα[Y ], and the last identity arises from Y = X?+S?. Follow the same argument as (Yi et al.,
2016, Section 6.1), combining Lemmas 33 and 34 to reach

‖S? − Tα[X? + S?]‖op ≤ 2α
√
n1n2 ‖S? − Tα[X? + S?]‖∞

≤ 4α
√
n1n2‖X?‖∞ ≤ 4αµrκσr(X?),

where the last inequality follows from the incoherence assumption

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖op‖V?‖2,∞ ≤ µr√
n1n2

κσr(X?). (65)

Take the above inequalities together to arrive at

dist(F0,F?) ≤ 8

√
2(
√
2 + 1)αµr3/2κσr(X?) ≤ 20αµr3/2κσr(X?).

D.3 Proof of Lemma 18

In view of the condition dist(F0,F?) ≤ 0.02σr(X?) and Lemma 22, one knows that Q0, the optimal
alignment matrix between F0 and F? exists. Therefore, for notational convenience, denote L :=
L0Q0, R := R0Q

−>
0 , ∆L := L−L?, ∆R := R−R?, and ε := 0.02. Our objective is then translated

to demonstrate

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨√

n2‖∆RΣ
1/2
? ‖2,∞ ≤ √

µrσr(X?).

From now on, we focus on bounding ‖∆LΣ
1/2
? ‖2,∞. Since U0Σ0V

>
0 is the top-r SVD of Y −Tα[Y ],

and recall that Y = X? + S?, we have the relation

(X? + S? − Tα[X? + S?])V0 = U0Σ0,

which further implies the following decomposition of ∆LΣ
1/2
? .

Claim 4 One has

∆LΣ
1/2
? = (S? − Tα[X? + S?])R(R>R)−1

Σ
1/2
? −L?∆

>
RR(R>R)−1

Σ
1/2
? .

Combining Claim 4 with the triangle inequality yields

‖∆LΣ
1/2
? ‖2,∞ ≤

∥∥∥L?∆
>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

I1

+
∥∥∥(S? − Tα[X? + S?])R(R>R)−1

Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

I2

.

In what follows, we shall control I1 and I2 in turn.

1. For the term I1, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op to obtain

I1 ≤ ‖L?Σ
−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖op

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

.

48



Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent

The incoherence assumption tells ‖L?Σ
−1/2
? ‖2,∞ = ‖U?‖2,∞ ≤

√
µr/n1. In addition, the assump-

tion dist(F0,F?) ≤ εσr(X?) entails the bound ‖∆RΣ
1/2
? ‖op ≤ εσr(X?). Finally, repeating the

argument for obtaining (56) yields ‖∆RΣ
−1/2
? ‖op ≤ ε, which together with Lemma 25 reveals

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ε
.

In all, we arrive at

I1 ≤
ε

1− ε

√
µr

n1
σr(X?).

2. Proceeding to the term I2, use the relations ‖AB‖2,∞ ≤ ‖A‖1,∞‖B‖2,∞ and ‖AB‖2,∞ ≤
‖A‖2,∞‖B‖op to obtain

I2 ≤ ‖S? − Tα[X? + S?]‖1,∞
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
2,∞

≤ ‖S? − Tα[X? + S?]‖1,∞ ‖RΣ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

.

Regarding S? − Tα[X? + S?], Lemma 33 tells that S? − Tα[X? + S?] has at most 2αn2 non-zero
entries in each row, and ‖S? − Tα[X? + S?]‖∞ ≤ 2‖X?‖∞. Consequently, we can upper bound
the `1,∞ norm by the `∞ norm as

‖S? − Tα[X? + S?]‖1,∞ ≤ 2αn2 ‖S? − Tα[X? + S?]‖∞
≤ 4αn2‖X?‖∞
≤ 4αn2

µr√
n1n2

κσr(X?).

Here the last inequality follows from the incoherence assumption (65). For the term ‖RΣ
−1/2
? ‖2,∞,

one can apply the triangle inequality to see

‖RΣ
−1/2
? ‖2,∞ ≤ ‖R?Σ

−1/2
? ‖2,∞ + ‖∆RΣ

−1/2
? ‖2,∞ ≤

√
µr

n2
+

‖∆RΣ
1/2
? ‖2,∞

σr(X?)
.

Last but not least, repeat the argument for (62) to obtain

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

=
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
2

op
≤ 1

(1− ε)2
.

Taking together the above bounds yields

I2 ≤
4αµrκ

(1− ε)2

√
µr

n1
σr(X?) +

4αµrκ

(1− ε)2

√
n2

n1
‖∆RΣ

1/2
? ‖2,∞.

Combine the bounds on I1 and I2 to reach

√
n1‖∆LΣ

1/2
? ‖2,∞ ≤

(
ε

1− ε
+

4αµrκ

(1− ε)2

)√
µrσr(X?) +

4αµrκ

(1− ε)2
√
n2‖∆RΣ

1/2
? ‖2,∞.

Similarly, we have

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

(
ε

1− ε
+

4αµrκ

(1− ε)2

)√
µrσr(X?) +

4αµrκ

(1− ε)2
√
n1‖∆LΣ

1/2
? ‖2,∞.
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Taking the maximum and solving for
√
n1‖∆LΣ

1/2
? ‖2,∞ ∨√

n2‖∆LΣ
1/2
? ‖2,∞ yield the relation

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨√

n2‖∆LΣ
1/2
? ‖2,∞ ≤ ε(1− ε) + 4αµrκ

(1− ε)2 − 4αµrκ

√
µrσr(X?).

With ε = 0.02 and αµrκ ≤ 0.1, we get the desired conclusion

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨√

n2‖∆LΣ
1/2
? ‖2,∞ ≤ √

µrσr(X?).

Proof [Proof of Claim 4] Identify U0 (resp. V0) with L0Σ
−1/2
0 (resp. R0Σ

−1/2
0 ) to yield

(X? + S? − Tα[X? + S?])R0Σ
−1
0 = L0,

which is equivalent to (X? + S? − Tα[X? + S?])R0(R
>
0 R0)

−1 = L0 since Σ0 = R>
0 R0. Multiply

both sides by Q0Σ
1/2
? to obtain

(X? + S? − Tα[X? + S?])R(R>R)−1
Σ

1/2
? = LΣ

1/2
? ,

where we recall that L = L0Q0 and R = R0Q
−>
0 . In the end, subtract X?R(R>R)−1

Σ
1/2
? from

both sides to reach

(S? − Tα[X? + S?])R(R>R)−1
Σ

1/2
? = LΣ

1/2
? −L?R

>
? R(R>R)−1

Σ
1/2
?

= (L−L?)Σ
1/2
? +L?(R−R?)

>R(R>R)−1
Σ

1/2
?

= ∆LΣ
1/2
? +L?∆

>
RR(R>R)−1

Σ
1/2
? .

This finishes the proof.

Appendix E. Proof for Matrix Completion

E.1 New projection operator

E.1.1 Proof of Proposition 7

First, notice that the optimization of L and R in (23) can be decomposed and done in parallel,
hence we focus on the optimization of L below:

L = argmin
L∈Rn1×r

∥∥∥(L− L̃)(R̃>R̃)1/2
∥∥∥
2

F
s.t.

√
n1

∥∥∥L(R̃>R̃)1/2
∥∥∥
2,∞

≤ B.

By a change of variables as G := L(R̃>R̃)1/2 and G̃ := L̃(R̃>R̃)1/2, we rewrite the above problem
equivalently as

G = argmin
G∈Rn1×r

‖G− G̃‖2F s.t.
√
n1 ‖G‖2,∞ ≤ B,

whose solution is given as Chen and Wainwright (2015)

Gi,· =

(
1 ∧ B

√
n1‖G̃i,·‖2

)
G̃i,·, 1 ≤ i ≤ n1.

By applying again the change of variable L = G(R̃>R̃)−1/2 and L̃ = G̃(R̃>R̃)−1/2, we obtain the
claimed solution.
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E.1.2 Proof of Lemma 19

We begin with proving the non-expansiveness property. Denote the optimal alignment matrix be-
tween F̃ and F? as Q̃, whose existence is guaranteed by Lemma 22. Denoting PB(F̃ ) = [L>,R>]>,
by the definition of dist(PB(F̃ ),F?), we know that

dist2(PB(F̃ ),F?) ≤
n1∑

i=1

∥∥∥Li,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥
2

2
+

n2∑

j=1

∥∥∥Rj,·Q̃
−>

Σ
1/2
? − (R?Σ

1/2
? )j,·

∥∥∥
2

2
. (66)

Recall that the condition dist(F̃ ,F?) ≤ εσr(X?) implies

∥∥∥(L̃Q̃−L?)Σ
−1/2
?

∥∥∥
op

∨
∥∥∥(R̃Q̃−> −R?)Σ

−1/2
?

∥∥∥
op

≤ ε,

which, together with R?Σ
−1/2
? = V?, further implies that

∥∥∥L̃i,·R̃
>
∥∥∥
2
≤
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

∥∥∥R̃Q̃−>
Σ

−1/2
?

∥∥∥
op

≤
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

(
‖V?‖op +

∥∥∥(R̃Q̃−> −R?)Σ
−1/2
?

∥∥∥
op

)
≤ (1 + ε)

∥∥∥L̃i,·Q̃Σ
1/2
?

∥∥∥
2
.

In addition, the µ-incoherence of X? yields

√
n1

∥∥∥(L?Σ
1/2
? )i,·

∥∥∥
2
≤ √

n1‖U?‖2,∞‖Σ?‖op ≤ √
µrσ1(X?) ≤

B

1 + ε
,

where the last inequality follows from the choice of B. Take the above two relations collectively to
reach

B
√
n1‖L̃i,·R̃>‖2

≥

∥∥∥(L?Σ
1/2
? )i,·

∥∥∥
2∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

.

We claim that performing the following projection yields a contraction on each row; see also (Zheng
and Lafferty, 2016, Lemma 11).

Claim 5 For vectors u,u? ∈ R
n and λ ≥ ‖u?‖2/‖u‖2, it holds that

‖(1 ∧ λ)u− u?‖2 ≤ ‖u− u?‖2.

Apply Claim 5 with u := L̃i,·Q̃Σ
1/2
? , u? := (L?Σ

1/2
? )i,·, and λ := B/(

√
n1‖L̃i,·R̃>‖2) to obtain

∥∥∥Li,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥
2

2
=

∥∥∥∥∥

(
1 ∧ B

√
n1‖L̃i,·R̃>‖2

)
L̃i,·Q̃Σ

1/2
? − (L?Σ

1/2
? )i,·

∥∥∥∥∥

2

2

≤
∥∥∥L̃i,·Q̃Σ

1/2
? − (L?Σ

1/2
? )i,·

∥∥∥
2

2
.

Following a similar argument for R, and plugging them back to (66), we conclude that

dist2(PB(F̃ ),F?) ≤
n1∑

i=1

∥∥∥L̃i,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥
2

2
+

n2∑

j=1

∥∥∥R̃j,·Q̃
−>

Σ
1/2
? − (R?Σ

1/2
? )j,·

∥∥∥
2

2
= dist2(F̃ ,F?).
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We move on to the incoherence condition. For any 1 ≤ i ≤ n1, one has

‖Li,·R
>‖22 =

n2∑

j=1

〈Li,·,Rj,·〉2 =
n2∑

j=1

(
1 ∧ B

√
n1‖L̃i,·R̃>‖2

)2

〈L̃i,·, R̃j,·〉2
(
1 ∧ B

√
n2‖R̃j,·L̃>‖2

)2

(i)

≤
(
1 ∧ B

√
n1‖L̃i,·R̃>‖2

)2 n2∑

j=1

〈L̃i,·, R̃j,·〉2 =
(
1 ∧ B

√
n1‖L̃i,·R̃>‖2

)2

‖L̃i,·R̃
>‖22

(ii)

≤ B2

n1
.

where (i) follows from 1 ∧ B√
n2‖R̃j,·L̃>‖2

≤ 1, and (ii) follows from 1 ∧ B√
n1‖L̃i,·R̃>‖2

≤ B√
n1‖L̃i,·R̃>‖2

.

Similarly, one has ‖Rj,·L>‖22 ≤ B2/n2. Combining these two bounds completes the proof.

Proof [Proof of Claim 5] When λ > 1, the claim holds as an identity. Otherwise λ ≤ 1. Denote
h(λ̄) := ‖λ̄u−u?‖22. Calculate its derivative to conclude that h(λ̄) is monotonically increasing when
λ̄ ≥ λ? := 〈u,u?〉/‖u‖22. Note that λ ≥ ‖u?‖2/‖u‖2 ≥ λ?, thus h(λ) ≤ h(1), i.e. the claim holds.

E.2 Proof of Lemma 20

We first record two useful lemmas regarding the projector PΩ(·).

Lemma 35 ((Zheng and Lafferty, 2016, Lemma 10)) Suppose that X? is µ-incoherent, and
p & µr log(n1 ∨ n2)/(n1 ∧ n2). With overwhelming probability, one has

∣∣∣
〈
(p−1PΩ − I)(L?R

>
A +LAR

>
? ),L?R

>
B +LBR

>
?

〉∣∣∣

≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖L?R

>
A +LAR

>
? ‖F‖L?R

>
B +LBR

>
? ‖F,

simultaneously for all LA,LB ∈ R
n1×r and RA,RB ∈ R

n2×r, where C1 > 0 is some universal
constant.

Lemma 36 ((Chen and Li, 2019, Lemma 8),(Chen et al., 2020a, Lemma 12)) Suppose that
p & log(n1 ∨ n2)/(n1 ∧ n2). With overwhelming probability, one has

∣∣∣
〈
(p−1PΩ − I)(LAR

>
A),LBR

>
B

〉∣∣∣

≤ C2

√
n1 ∨ n2

p
(‖LA‖F‖LB‖2,∞ ∧ ‖LA‖2,∞‖LB‖F) (‖RA‖F‖RB‖2,∞ ∧ ‖RA‖2,∞‖RB‖F) ,

simultaneously for all LA,LB ∈ R
n1×r and RA,RB ∈ R

n2×r, where C2 > 0 is some universal
constant.

In view of the above two lemmas, define the event E as the intersection of the events that the
bounds in Lemmas 35 and 36 hold, which happens with overwhelming probability. The rest of the
proof is then performed under the event that E holds.

By the condition dist(Ft,F?) ≤ 0.02σr(X?) and Lemma 22, one knows that Qt, the optimal
alignment matrix between Ft and F? exists. Therefore, for notational convenience, we denote
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L := LtQt, R := RtQ
−>
t , ∆L := L− L?, ∆R := R −R?, and ε := 0.02. In addition, denote F̃t+1

as the update before projection as

F̃t+1 :=

[
L̃t+1

R̃t+1

]
=

[
Lt − ηp−1PΩ(LtR

>
t −X?)Rt(R

>
t Rt)

−1

Rt − ηp−1PΩ(LtR
>
t −X?)

>Lt(L
>
t Lt)

−1

]
,

and therefore Ft+1 = PB(F̃t+1). Note that in view of Lemma 19, it suffices to prove the following
relation

dist(F̃t+1,F?) ≤ (1− 0.6η) dist(Ft,F?). (67)

The conclusion ‖LtR
>
t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 26; see (48) for

a detailed argument. In what follows, we concentrate on proving (67).
To begin with, we list a few easy consequences under the assumed conditions.

Claim 6 Under conditions dist(Ft,F?) ≤ εσr(X?) and
√
n1‖LR>‖2,∞∨√n2‖RL>‖2,∞ ≤ CB

√
µrσ1(X?),

one has

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε; (68a)

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ε
; (68b)

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

≤ 1

(1− ε)2
; (68c)

√
n1‖LΣ

1/2
? ‖2,∞ ∨√

n2‖RΣ
1/2
? ‖2,∞ ≤ CB

1− ε

√
µrσ1(X?); (68d)

√
n1‖LΣ

−1/2
? ‖2,∞ ∨√

n2‖RΣ
−1/2
? ‖2,∞ ≤ CBκ

1− ε

√
µr; (68e)

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨√

n2‖∆RΣ
1/2
? ‖2,∞ ≤

(
1 +

CB

1− ε

)√
µrσ1(X?). (68f)

Now we are ready to embark on the proof of (67). By the definition of dist(F̃t+1,F?), one has

dist2(F̃t+1,F?) ≤
∥∥∥(L̃t+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
, (69)

where we recall that Qt is the optimal alignment matrix between Ft and F?. Plug in the update
rule (26) and the decomposition LR> −X? = ∆LR

> +L?∆
>
R to obtain

(L̃t+1Qt −L?)Σ
1/2
? =

(
L− ηp−1PΩ(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

= ∆LΣ
1/2
? − η(LR> −X?)R(R>R)−1

Σ
1/2
? − η(p−1PΩ − I)(LR> −X?)R(R>R)−1

Σ
1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
? − η(p−1PΩ − I)(LR> −X?)R(R>R)−1

Σ
1/2
? .

This allows us to expand the first square in (69) as

∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
P1

− 2η(1− η) tr
(
(p−1PΩ − I)(LR> −X?)R(R>R)−1

Σ?∆
>
L

)

︸ ︷︷ ︸
P2
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+ 2η2 tr
(
(p−1PΩ − I)(LR> −X?)R(R>R)−1

Σ?(R
>R)−1R>

∆RL
>
?

)

︸ ︷︷ ︸
P3

+ η2
∥∥∥(p−1PΩ − I)(LR> −X?)R(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
P4

.

In the sequel, we shall control the four terms separately, of which P1 is the main term, and P2,P3

and P4 are perturbation terms.

1. Notice that the main term P1 has already been controlled in (46) under the condition (68a). It
obeys

P1 ≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term P2, decompose LR>−X? = ∆LR
>
? +L∆

>
R and apply the triangle inequality

to obtain

|P2| =
∣∣∣ tr
(
(p−1PΩ − I)(∆LR

>
? +L∆

>
R)R(R>R)−1

Σ?∆
>
L

) ∣∣∣

≤
∣∣∣ tr
(
(p−1PΩ − I)(∆LR

>
? )R?(R

>R)−1
Σ?∆

>
L

) ∣∣∣
︸ ︷︷ ︸

P2,1

+
∣∣∣ tr
(
(p−1PΩ − I)(∆LR

>
? )∆R(R

>R)−1
Σ?∆

>
L

) ∣∣∣
︸ ︷︷ ︸

P2,2

+
∣∣∣ tr
(
(p−1PΩ − I)(L∆

>
R)R(R>R)−1

Σ?∆
>
L

) ∣∣∣
︸ ︷︷ ︸

P2,3

.

For the first term P2,1, under the event E , we can invoke Lemma 35 to obtain

P2,1 ≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LR

>
? ‖F

∥∥∥∆LΣ?(R
>R)−1R>

?

∥∥∥
F

≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖2F

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

,

where the second line follows from the relation ‖AB‖F ≤ ‖A‖op‖B‖F. Use the condition (68c)
to obtain

P2,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖2F.

Regarding the remaining terms P2,2 and P2,3, our main hammer is Lemma 36. Invoking Lemma 36

under the event E with LA := ∆LΣ
1/2
? , RA := R?Σ

−1/2
? , LB := ∆LΣ

1/2
? , and RB := ∆R(R

>R)−1
Σ

1/2
? ,

we arrive at

P2,2 ≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖R?Σ

−1/2
? ‖2,∞

∥∥∥∆R(R
>R)−1

Σ
1/2
?

∥∥∥
F
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≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖R?Σ

−1/2
? ‖2,∞‖∆RΣ

−1/2
? ‖F

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

.

Similarly, with the help of Lemma 36, one has

P2,3 ≤ C2

√
n1 ∨ n2

p
‖LΣ

−1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F‖RΣ

−1/2
? ‖2,∞

∥∥∥Σ1/2
? (R>R)−1

Σ
1/2
?

∥∥∥
op

.

Utilizing the consequences in Claim 6, we arrive at

P2,2 ≤
C2κ

(1− ε)2

(
1 +

CB

1− ε

)
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F;

P2,3 ≤
C2C

2
Bκ

2

(1− ε)4
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F.

We then combine the bounds for P2,1,P2,2 and P2,3 to see

P2 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖2F

+
C2κ

(1− ε)2

(
1 +

CB

1− ε
+

C2
Bκ

(1− ε)2

)
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

= δ1‖∆LΣ
1/2
? ‖2F + δ2‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ (δ1 +
δ2
2
)‖∆LΣ

1/2
? ‖2F +

δ2
2
‖∆RΣ

1/2
? ‖2F,

where we denote

δ1 :=
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
, and δ2 :=

C2κ

(1− ε)2

(
1 +

CB

1− ε
+

C2
Bκ

(1− ε)2

)
µr√

p(n1 ∧ n2)
.

3. Following a similar argument for controlling P2 (i.e. repeatedly using Lemmas 35 and 36), we can
obtain the following bounds for P3 and P4, whose proof are deferred to the end of this section.

Claim 7 Under the event E, one has

P3 ≤
δ2
2
‖∆LΣ

1/2
? ‖2F + (δ1 +

δ2
2
)‖∆RΣ

1/2
? ‖2F;

P4 ≤ δ1(δ1 + δ2)‖∆LΣ
1/2
? ‖2F + δ2(δ1 + δ2)‖∆RΣ

1/2
? ‖2F.

Taking the bounds for P1,P2,P3 and P4 collectively yields

∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
≤
(
(1− η)2 +

2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+ η(1− η)
(
(2δ1 + δ2)‖∆LΣ

1/2
? ‖2F + δ2‖∆RΣ

1/2
? ‖2F

)

+ η2
(
δ2‖∆LΣ

1/2
? ‖2F + (2δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)

+ η2
(
δ1(δ1 + δ2)‖∆LΣ

1/2
? ‖2F + δ2(δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)
.
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A similar upper bound holds for the second square in (69). As a result, we reach the conclusion
that

∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
≤ ρ2(η; ε, δ1, δ2) dist

2(Ft,F?),

where the contraction rate ρ2(η; ε, δ1, δ2) is given by

ρ2(η; ε, δ1, δ2) := (1− η)2 +

(
2ε

1− ε
+ 2(δ1 + δ2)

)
η(1− η) +

(
2ε+ ε2

(1− ε)2
+ 2(δ1 + δ2) + (δ1 + δ2)

2

)
η2.

As long as p ≥ C(µrκ4 ∨ log(n1 ∨ n2))µr/(n1 ∧ n2) for some sufficiently large constant C, one has
δ1+δ2 ≤ 0.1 under the setting ε = 0.02. When 0 < η ≤ 2/3, one further has ρ(η; ε, δ1, δ2) ≤ 1−0.6η.
Thus we conclude that

dist(F̃t+1,F?) ≤
√∥∥∥(L̃t+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F

≤ (1− 0.6η) dist(Ft,F?),

which is exactly the upper bound we are after; see (67). This finishes the proof.
Proof [Proof of Claim 6] First, repeating the derivation for (45) obtains (68a). Second, take the
condition (68a) and Lemma 25 together to obtain (68b) and (68c). Third, take the incoherence
condition

√
n1‖LR>‖2,∞ ∨√

n2‖RL>‖2,∞ ≤ CB
√
µrσ1(X?) together with the relations

‖LR>‖2,∞ ≥ σr(RΣ
−1/2
? )‖LΣ

1/2
? ‖2,∞

≥
(
σr(R?Σ

−1/2
? )− ‖∆RΣ

−1/2
? ‖op

)
‖LΣ

1/2
? ‖2,∞

≥ (1− ε)‖LΣ
1/2
? ‖2,∞;

‖RL>‖2,∞ ≥ σr(LΣ
−1/2
? )‖RΣ

1/2
? ‖2,∞

≥
(
σr(L?Σ

−1/2
? )− ‖∆LΣ

−1/2
? ‖op

)
‖RΣ

1/2
? ‖2,∞

≥ (1− ε)‖RΣ
1/2
? ‖2,∞

to obtain (68d) and (68e). Finally, apply the triangle inequality together with incoherence assump-
tion to obtain (68f).

Proof [Proof of Claim 7] We start with the term P3, for which we have

|P3| ≤
∣∣∣ tr
(
(p−1PΩ − I)(L?∆

>
R)R(R>R)−1

Σ?(R
>R)−1R>

∆RL
>
?

) ∣∣∣
︸ ︷︷ ︸

P3,1

+
∣∣∣ tr
(
(p−1PΩ − I)(∆LR

>)R(R>R)−1
Σ?(R

>R)−1R>
∆RL

>
?

) ∣∣∣
︸ ︷︷ ︸

P3,2

.

Invoke Lemma 35 to bound P3,1 as

P3,1 ≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖L?∆

>
R‖F

∥∥∥L?∆
>
RR(R>R)−1

Σ?(R
>R)−1R>

∥∥∥
F
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≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖2F

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
2

op
.

The condition (68b) allows us to obtain a simplified bound

P3,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖2F.

In regard to P3,2, we apply Lemma 36 with LA := ∆LΣ
1/2
? , RA := RΣ

−1/2
? , LB := L?Σ

−1/2
? , and

RB := R(R>R)−1
Σ?(R

>R)−1R>
∆RΣ

1/2
? to see

P3,2 ≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖F‖L?Σ

−1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞

∥∥∥R(R>R)−1
Σ?(R

>R)−1R>
∆RΣ

1/2
?

∥∥∥
F

≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖F‖L?Σ

−1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
2

op
‖∆RΣ

1/2
? ‖F.

Again, use the consequences in Claim 6 to reach

P3,2 ≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖F

√
µr

n1

CBκ

1− ε

√
µr

n2

1

(1− ε)2
‖∆RΣ

1/2
? ‖F

=
C2CBκ

(1− ε)3
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F.

Combine the bounds of P3,1 and P3,2 to reach

P3 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖2F

+
C2CBκ

(1− ε)3
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ δ1‖∆RΣ
1/2
? ‖2F + δ2‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ δ2
2
‖∆LΣ

1/2
? ‖2F + (δ1 +

δ2
2
)‖∆RΣ

1/2
? ‖2F.

Moving on to the term P4, we have

√
P4 =

∥∥∥(p−1PΩ − I)(LR> −X?)R(R>R)−1
Σ

1/2
?

∥∥∥
F

≤
∣∣∣ tr
(
(p−1PΩ − I)(∆LR

>
? )R?(R

>R)−1
Σ

1/2
? L̃>

) ∣∣∣
︸ ︷︷ ︸

P4,1

+
∣∣∣ tr
(
(p−1PΩ − I)(∆LR

>
? )∆R(R

>R)−1
Σ

1/2
? L̃>

) ∣∣∣
︸ ︷︷ ︸

P4,2

+
∣∣∣ tr
(
(p−1PΩ − I)(L∆

>
R)R(R>R)−1

Σ
1/2
? L̃>

) ∣∣∣
︸ ︷︷ ︸

P4,3

,
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where we have used the variational representation of the Frobenius norm for some L̃ ∈ R
n1×r obeying

‖L̃‖F = 1. Note that the decomposition of
√
P4 is extremely similar to that of P2. Therefore we

can follow a similar argument (i.e. applying Lemmas 35 and 36) to control these terms as

P4,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F;

P4,2 ≤
C2κ

(1− ε)2

(
1 +

CB

1− ε

)
µr√

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖F;

P4,3 ≤
C2C

2
Bκ

2

(1− ε)4
µr√

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖F.

For conciseness, we omit the details for bounding each term. Combine them to reach

√
P4 ≤ δ1‖∆LΣ

1/2
? ‖F + δ2‖∆RΣ

1/2
? ‖F.

Finally take the square on both sides and use 2ab ≤ a2 + b2 to obtain the upper bound

P4 ≤ δ1(δ1 + δ2)‖∆LΣ
1/2
? ‖2F + δ2(δ1 + δ2)‖∆RΣ

1/2
? ‖2F.

E.3 Proof of Lemma 21

We start by recording a useful lemma below.

Lemma 37 ((Chen, 2015, Lemma 2), (Chen et al., 2020a, Lemma 4)) For any fixed X ∈
R
n1×n2 , with overwhelming probability, one has

∥∥(p−1PΩ − I)(X)
∥∥
op

≤ C0
log(n1 ∨ n2)

p
‖X‖∞ + C0

√
log(n1 ∨ n2)

p
(‖X‖2,∞ ∨ ‖X>‖2,∞),

where C0 > 0 is some universal constant that does not depend on X.

In view of Lemma 24, one has

dist(F̃0,F?) ≤
√√

2 + 1
∥∥∥U0Σ0V

>
0 −X?

∥∥∥
F
≤
√

(
√
2 + 1)2r

∥∥∥U0Σ0V
>
0 −X?

∥∥∥
op

, (70)

where the last relation uses the fact that U0Σ0V
>
0 −X? has rank at most 2r. Applying the triangle

inequality, we obtain
∥∥∥U0Σ0V

>
0 −X?

∥∥∥
op

≤
∥∥∥p−1PΩ(X?)−U0Σ0V

>
0

∥∥∥
op

+
∥∥p−1PΩ(X?)−X?

∥∥
op

≤ 2
∥∥(p−1PΩ − I)(X?)

∥∥
op

. (71)

Here the second inequality hinges on the fact that U0Σ0V
>
0 is the best rank-r approximation to

p−1PΩ(X?), i.e.

∥∥∥p−1PΩ(X?)−U0Σ0V
>
0

∥∥∥
op

≤
∥∥p−1PΩ(X?)−X?

∥∥
op

.
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Combining (70) and (71) yields

dist(F̃0,F?) ≤ 2

√
(
√
2 + 1)2r

∥∥(p−1PΩ − I)(X?)
∥∥
op

≤ 5
√
r
∥∥(p−1PΩ − I)(X?)

∥∥
op

.

It then boils down to controlling
∥∥p−1PΩ(X?)−X?

∥∥
op

, which is readily supplied by Lemma 37 as

∥∥(p−1PΩ − I)(X?)
∥∥
op

≤ C0
log(n1 ∨ n2)

p
‖X?‖∞ + C0

√
log(n1 ∨ n2)

p
(‖X?‖2,∞ ∨ ‖X>

? ‖2,∞),

which holds with overwhelming probability. The proof is finished by plugging the following bounds
from incoherence assumption of X?:

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖op‖V?‖2,∞ ≤ µr√
n1n2

κσr(X?);

‖X?‖2,∞ ≤ ‖U?‖2,∞‖Σ?‖op‖V?‖op ≤
√

µr

n1
κσr(X?);

‖X>
? ‖2,∞ ≤ ‖U?‖op‖Σ?‖op‖V?‖2,∞ ≤

√
µr

n2
κσr(X?).

Appendix F. Proof for General Loss Functions

We first present a useful property of restricted smooth and convex functions.

Lemma 38 Suppose that f : Rn1×n2 7→ R is rank-2r restricted L-smooth and rank-2r restricted
convex. Then for any X1,X2 ∈ R

n1×n2 of rank at most r, one has

〈∇f(X1)−∇f(X2),X1 −X2〉 ≥
1

L
‖∇f(X1)−∇f(X2)‖2F,r.

Proof Since f(·) is rank-2r restricted L-smooth and convex, it holds for any X̄ ∈ R
n1×n2 with

rank at most 2r that

f(X1) + 〈∇f(X1), X̄ −X1〉 ≤ f(X̄) ≤ f(X2) + 〈∇f(X2), X̄ −X2〉+
L

2
‖X̄ −X2‖2F.

Reorganize the terms to yield

f(X1) + 〈∇f(X1),X2 −X1〉 ≤ f(X2) + 〈∇f(X2)−∇f(X1), X̄ −X2〉+
L

2
‖X̄ −X2‖2F.

Take X̄ = X2 − 1
LPr(∇f(X2)−∇f(X1)), whose rank is at most 2r, to see

f(X1) + 〈∇f(X1),X2 −X1〉+
1

2L
‖∇f(X2)−∇f(X1)‖2F,r ≤ f(X2).

We can further switch the roles of X1 and X2 to obtain

f(X2) + 〈∇f(X2),X1 −X2〉+
1

2L
‖∇f(X2)−∇f(X1)‖2F,r ≤ f(X1).

Adding the above two inequalities yields the desired bound.
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F.1 Proof of Theorem 11

Suppose that the t-th iterate Ft obeys the condition dist(Ft,F?) ≤ 0.1σr(X?)/
√
κf . In view of

Lemma 22, one knows that Qt, the optimal alignment matrix between Ft and F? exists. Therefore,
for notational convenience, denote L := LtQt, R := RtQ

−>
t , ∆L := L − L?, ∆R := R −R?, and

ε := 0.1/
√
κf . Similar to the derivation in (45), we have

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (72)

The conclusion ‖LtR
>
t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 26; see (48) for

a detailed argument. From now on, we focus on proving the distance contraction.
By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
. (73)

Introduce an auxiliary function

fµ(X) = f(X)− µ

2
‖X −X?‖2F,

which is rank-2r restricted (L − µ)-smooth and rank-2r restricted convex. Using the ScaledGD

update rule (27) and the decomposition LR> −X? = ∆LR
> +L?∆

>
R, we obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η∇f(LR>)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
L− ηµ(LR> −X?)R(R>R)−1 − η∇fµ(LR>)R(R>R)−1 −L?

)
Σ

1/2
?

= (1− ηµ)∆LΣ
1/2
? − ηµL?∆

>
RR(R>R)−1

Σ
1/2
? − η∇fµ(LR>)R(R>R)−1

Σ
1/2
? .

As a result, one can expand the first square in (73) as
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
=
∥∥∥(1− ηµ)∆LΣ

1/2
? − ηµL?∆

>
RR(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
G1

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LΣ?(R

>R)−1R> −∆LR
>
? − 1

2
∆L∆

>
R

〉

︸ ︷︷ ︸
G2

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? +

1

2
∆L∆

>
R

〉

+ 2η2µ
〈
∇fµ(LR>),L?∆

>
RR(R>R)−1

Σ?(R
>R)−1R>

〉

︸ ︷︷ ︸
G3

+ η2
∥∥∥∇fµ(LR>)R(R>R)−1

Σ
1/2
?

∥∥∥
2

F︸ ︷︷ ︸
G4

.

In the sequel, we shall bound the four terms separately.

1. Notice that the main term G1 has already been controlled in (46) under the condition (72). It
obeys

G1 ≤
(
(1− ηµ)2 +

2ε

1− ε
ηµ(1− ηµ)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2µ2‖∆RΣ

1/2
? ‖2F,

as long as ηµ ≤ 2/3.
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2. For the second term G2, note that ∆LΣ?(R
>R)−1R> −∆LR

>
? − 1

2∆L∆
>
R has rank at most r.

Hence we can invoke Lemma 28 to obtain

|G2| ≤ ‖∇fµ(LR>)‖F,r
∥∥∥∥∆LΣ?(R

>R)−1R> −∆LR
>
? − 1

2
∆L∆

>
R

∥∥∥∥
F

≤ ‖∇fµ(LR>)‖F,r‖∆LΣ
1/2
? ‖F

(∥∥∥R(R>R)−1
Σ

1/2
? − V?

∥∥∥
op

+
1

2
‖∆RΣ

−1/2
? ‖op

)
,

where the second line uses R? = V?Σ
1/2
? . Take the condition (72) and Lemma 25 together to

obtain

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
op

≤ 1

1− ε
;

∥∥∥R(R>R)−1
Σ

1/2
? − V?

∥∥∥
op

≤
√
2ε

1− ε
.

These consequences further imply that

|G2| ≤ (

√
2ε

1− ε
+

ε

2
)‖∇fµ(LR>)‖F,r‖∆LΣ

1/2
? ‖F.

3. As above, the third term G3 can be similarly bounded as

|G3| ≤ ‖∇fµ(LR>)‖F,r
∥∥∥L?∆

>
RR(R>R)−1

Σ?(R
>R)−1R>

∥∥∥
F

≤ ‖∇fµ(LR>)‖F,r‖∆RΣ
1/2
? ‖F

∥∥∥R(R>R)−1
Σ

1/2
?

∥∥∥
2

op

≤ 1

(1− ε)2
‖∇fµ(LR>)‖F,r‖∆RΣ

1/2
? ‖F.

4. For the last term G4, invoke Lemma 28 to obtain

G4 ≤ ‖∇fµ(LR>)‖2F,r
∥∥∥R(R>R)−1

Σ
1/2
?

∥∥∥
2

op
≤ 1

(1− ε)2
‖∇fµ(LR>)‖2F,r.

Taking collectively the bounds for G1,G2,G3 and G4 yields

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
≤
(
(1− ηµ)2 +

2ε

1− ε
ηµ(1− ηµ)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2µ2‖∆RΣ

1/2
? ‖2F

+ 2η(

√
2ε

1− ε
+

ε

2
)(1− ηµ)‖∇fµ(LR>)‖F,r‖∆LΣ

1/2
? ‖F

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? +

1

2
∆L∆

>
R

〉

+
2η2µ

(1− ε)2
‖∇fµ(LR>)‖F,r‖∆RΣ

1/2
? ‖F +

η2

(1− ε)2
‖∇fµ(LR>)‖2F,r.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖2F. Combine them together to reach

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
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≤
(
(1− ηµ)2 +

2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2

)(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)

+ 2η

(
(

√
2ε

1− ε
+

ε

2
)(1− ηµ) +

ηµ

(1− ε)2

)
‖∇fµ(LR>)‖F,r

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

− 2η(1− ηµ)
〈
∇fµ(LR>),∆LR

>
? +L?∆

>
R +∆L∆

>
R

〉
+

2η2

(1− ε)2
‖∇fµ(LR>)‖2F,r

≤
(
(1− ηµ)2 +

2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2

)(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)

+ 2η

(
(

√
2ε

1− ε
+

ε

2
)(1− ηµ) +

ηµ

(1− ε)2

)

︸ ︷︷ ︸
C1

‖∇fµ(LR>)‖F,r
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

− 2η

(
1− ηµ

L− µ
− η

(1− ε)2

)

︸ ︷︷ ︸
C2

‖∇fµ(LR>)‖2F,r,

where the last line follows from Lemma 38 (notice that ∇fµ(X?) = 0) as

〈∇fµ(LR>),∆LR
>
? +L?∆

>
R +∆L∆

>
R〉 = 〈∇fµ(LR>),LR> −X?〉 ≥

1

L− µ
‖∇fµ(LR>)‖2F,r.

Notice that C2 > 0 as long as η ≤ (1−ε)2/L. Maximizing the quadratic function of ‖∇fµ(LR>)‖F,r
yields

C1‖∇fµ(LR>)‖F,r
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
− C2‖∇fµ(LR>)‖2F,r ≤

C2
1

4C2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)2

≤ C2
1

2C2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
,

where the last inequality holds since (a + b)2 ≤ 2(a2 + b2). Identify dist2(Ft,F?) = ‖∆LΣ
1/2
? ‖2F +

‖∆RΣ
1/2
? ‖2F to obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F
≤ ρ2(η; ε, µ, L) dist2(Ft,F?),

where the contraction rate is given by

ρ2(η; ε, µ, L) := (1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2 +

(
(
√
2ε

1−ε +
ε
2)(1− ηµ) + ηµ

(1−ε)2

)2

1− ηµ− η(L−µ)
(1−ε)2

η(L− µ).

With ε = 0.1/
√
κf and 0 < η ≤ 0.4/L, one has ρ(η; ε, µ, L) ≤ 1− 0.7ηµ. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥
2

F

≤ (1− 0.7ηµ) dist(Ft,F?),

which is the desired claim.

62



Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent

Remark 39 We provide numerical details for the contraction rate. For simplicity, we shall prove
ρ(η; ε, µ, L) ≤ 1 − 0.7ηµ under a stricter condition ε = 0.02/

√
κf . The stronger result under the

condition ε = 0.1/
√
κf can be verified through a subtler analysis.

With ε = 0.02/
√
κf and 0 < η ≤ 0.4/L, one can bound the terms in ρ2(η; ε, µ, L) as

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2 ≤ 1− 1.959ηµ+ 1.002η2µ2; (74)

(
(
√
2ε

1−ε +
ε
2)(1− ηµ) + ηµ

(1−ε)2

)2

1− ηµ− η(L−µ)
(1−ε)2

η(L− µ) ≤
0.0016
κf

+ 0.078ηµ+ 1.005η2µ2

1− 1.042ηL
ηL

≤
0.0016η L

κf
+ 0.4× (0.078ηµ+ 1.005η2µ2)

1− 0.4× 1.042

≤ 0.057ηµ+ 0.69η2µ2, (75)

where the last line uses the definition (28) of κf . Putting (74) and (75) together further implies

ρ2(η; ε, µ, L) ≤ 1− 1.9ηµ+ 1.7η2µ2 ≤ (1− 0.7ηµ)2,

as long as 0 < ηµ ≤ 0.4.

References

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping convexity for faster
semi-definite optimization. In Conference on Learning Theory, pages 530–582. PMLR, 2016a.

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low
rank matrix recovery. In Advances in Neural Information Processing Systems, pages 3873–3881,
2016b.

Jian-Feng Cai, Tianming Wang, and Ke Wei. Spectral compressed sensing via projected gradient
descent. SIAM Journal on Optimization, 28(3):2625–2653, 2018.

Emmanuel Candès, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via Wirtinger flow:
Theory and algorithms. Information Theory, IEEE Transactions on, 61(4):1985–2007, 2015.

Emmanuel J Candès and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery from a
minimal number of noisy random measurements. IEEE Transactions on Information Theory, 57
(4):2342–2359, 2011.

Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, 2009.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM, 58(3):11:1–11:37, 2011.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo Parrilo, and Alan Willsky. Rank-sparsity incoher-
ence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

63



Tong, Ma, Chi

Vasileios Charisopoulos, Yudong Chen, Damek Davis, Mateo Díaz, Lijun Ding, and Dmitriy Drusvy-
atskiy. Low-rank matrix recovery with composite optimization: good conditioning and rapid
convergence. Foundations of Computational Mathematics, pages 1–89, 2021.

Ji Chen and Xiaodong Li. Model-free nonconvex matrix completion: Local minima analysis and
applications in memory-efficient kernel PCA. Journal of Machine Learning Research, 20(142):
1–39, 2019.

Ji Chen, Dekai Liu, and Xiaodong Li. Nonconvex rectangular matrix completion via gradient descent
without `2,∞ regularization. IEEE Transactions on Information Theory, 66(9):5806–5841, 2020a.

Yudong Chen. Incoherence-optimal matrix completion. IEEE Transactions on Information Theory,
61(5):2909–2923, 2015.

Yudong Chen and Yuejie Chi. Harnessing structures in big data via guaranteed low-rank matrix
estimation: Recent theory and fast algorithms via convex and nonconvex optimization. IEEE
Signal Processing Magazine, 35(4):14 – 31, 2018.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

Yuxin Chen and Yuejie Chi. Robust spectral compressed sensing via structured matrix completion.
IEEE Transactions on Information Theory, 60(10):6576–6601, 2014.

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy matrix completion:
Understanding statistical guarantees for convex relaxation via nonconvex optimization. SIAM
Journal on Optimization, 30(4):3098–3121, 2020b.

Yuxin Chen, Jianqing Fan, Cong Ma, and Yuling Yan. Bridging convex and nonconvex optimization
in robust PCA: Noise, outliers, and missing data. arXiv preprint arXiv:2001.05484, 2020c.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factoriza-
tion: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

Damek Davis, Dmitriy Drusvyatskiy, and Courtney Paquette. The nonsmooth landscape of phase
retrieval. arXiv preprint arXiv:1711.03247, 2017.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. In Advances in Neural Information Processing Sys-
tems, pages 384–395, 2018.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points-online stochastic
gradient for tensor decomposition. In Conference on Learning Theory (COLT), pages 797–842,
2015.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A
unified geometric analysis. In International Conference on Machine Learning, pages 1233–1242,
2017.

64



Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent

Suriya Gunasekar, Pradeep Ravikumar, and Joydeep Ghosh. Exponential family matrix completion
under structural constraints. In International Conference on Machine Learning, pages 1917–1925,
2014.

Moritz Hardt and Mary Wootters. Fast matrix completion without the condition number. In
Proceedings of The 27th Conference on Learning Theory, pages 638–678, 2014.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. Foundations
and Trends R© in Machine Learning, 10(3-4):142–336, 2017.

Prateek Jain, Raghu Meka, and Inderjit S Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945, 2010.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using al-
ternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 665–674. ACM, 2013.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International Conference on Machine Learning, pages 1724–1732,
2017.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594, 2016.

Anastasios Kyrillidis and Volkan Cevher. Matrix ALPS: Accelerated low rank and sparse matrix
reconstruction. In 2012 IEEE Statistical Signal Processing Workshop (SSP), pages 185–188. IEEE,
2012.

Jean Lafond. Low rank matrix completion with exponential family noise. In Conference on Learning
Theory, pages 1224–1243, 2015.

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei. Rapid, robust, and reliable blind
deconvolution via nonconvex optimization. Applied and computational harmonic analysis, 47(3):
893–934, 2019.

Y. Li, C. Ma, Y. Chen, and Y. Chi. Nonconvex matrix factorization from rank-one measurements.
IEEE Transactions on Information Theory, 67(3):1928–1950, 2021.

Yuetian Luo, Wen Huang, Xudong Li, and Anru R Zhang. Recursive importance sketching
for rank constrained least squares: Algorithms and high-order convergence. arXiv preprint
arXiv:2011.08360, 2020.

Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in nonconvex
statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion,
and blind deconvolution. Foundations of Computational Mathematics, pages 1–182, 2019.

Cong Ma, Yuanxin Li, and Yuejie Chi. Beyond Procrustes: Balancing-free gradient descent for
asymmetric low-rank matrix sensing. IEEE Transactions on Signal Processing, 69:867–877, 2021.

Mantas Mazeika. The singular value decomposition and low rank approximation. Technical report,
University of Chicago, 2016.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.

65



Tong, Ma, Chi

Bamdev Mishra and Rodolphe Sepulchre. Riemannian preconditioning. SIAM Journal on Opti-
mization, 26(1):635–660, 2016.

Bamdev Mishra, K Adithya Apuroop, and Rodolphe Sepulchre. A Riemannian geometry for low-
rank matrix completion. arXiv preprint arXiv:1211.1550, 2012.

Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–205, 2006.

Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anandkumar, and Prateek Jain.
Non-convex robust PCA. In Advances in Neural Information Processing Systems, pages 1107–
1115, 2014.

Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-square
matrix sensing without spurious local minima via the Burer-Monteiro approach. In Artificial
Intelligence and Statistics, pages 65–74, 2017.

Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, and Sujay Sanghavi. Finding low-
rank solutions via nonconvex matrix factorization, efficiently and provably. SIAM Journal on
Imaging Sciences, 11(4):2165–2204, 2018.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

Sujay Sanghavi, Rachel Ward, and Chris D White. The local convexity of solving systems of
quadratic equations. Results in Mathematics, 71(3-4):569–608, 2017.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery using nonconvex optimization. In
Proceedings of the 32nd International Conference on Machine Learning, pages 2351–2360, 2015.

Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18(5):1131–1198, 2018.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. IEEE
Transactions on Information Theory, 62(11):6535–6579, 2016.

Jared Tanner and Ke Wei. Low rank matrix completion by alternating steepest descent methods.
Applied and Computational Harmonic Analysis, 40(2):417–429, 2016.

Tian Tong, Cong Ma, and Yuejie Chi. Low-rank matrix recovery with scaled subgradient meth-
ods: Fast and robust convergence without the condition number. IEEE Transactions on Signal
Processing, 2021a.

Tian Tong, Cong Ma, Ashley Prater-Bennette, Erin Tripp, and Yuejie Chi. Scaling and scalability:
Provable nonconvex low-rank tensor estimation from incomplete measurements. arXiv preprint
arXiv:2104.14526, 2021b.

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-rank
solutions of linear matrix equations via Procrustes flow. In International Conference Machine
Learning, pages 964–973, 2016.

Ke Wei, Jian-Feng Cai, Tony F Chan, and Shingyu Leung. Guarantees of Riemannian optimization
for low rank matrix recovery. SIAM Journal on Matrix Analysis and Applications, 37(3):1198–
1222, 2016.

66



Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent

Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast algorithms for robust
PCA via gradient descent. In Advances in neural information processing systems, pages 4152–
4160, 2016.

Qinqing Zheng and John Lafferty. A convergent gradient descent algorithm for rank minimiza-
tion and semidefinite programming from random linear measurements. In Advances in Neural
Information Processing Systems, pages 109–117, 2015.

Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix completion using
Burer-Monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.

Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. Global optimality in low-rank matrix
optimization. IEEE Transactions on Signal Processing, 66(13):3614–3628, 2018.

67


