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Abstract

Random feature methods have been successful in various machine learning tasks, are
easy to compute, and come with theoretical accuracy bounds. They serve as an alternative
approach to standard neural networks since they can represent similar function spaces
without a costly training phase. However, for accuracy, random feature methods require
more measurements than trainable parameters, limiting their use for data-scarce applications
or problems in scientific machine learning. This paper introduces the sparse random feature
expansion to obtain parsimonious random feature models. Specifically, we leverage ideas from
compressive sensing to generate random feature expansions with theoretical guarantees even
in the data-scarce setting. In particular, we provide uniform bounds on the approximation
error and generalization bounds for functions in a certain class (that is dense in a reproducing
kernel Hilbert space) depending on the number of samples and the distribution of features.
The error bounds improve with additional structural conditions, such as coordinate sparsity,
compact clusters of the spectrum, or rapid spectral decay. In particular, by introducing
sparse features, i.e. features with random sparse weights, we provide improved bounds for
low order functions. We show that the sparse random feature expansions outperforms shallow
networks in several scientific machine learning tasks.

1 Introduction

The sparsity-of-effects or Pareto principle states that most real-world systems are dominated
by a small number of low-complexity interactions. This idea is at the heart of compressive
sensing and sparse optimization, which computes a sparse representation for a given dataset
using a large set of features. The feature spaces are often constructed using a random matrix,
e.g., each element is independent and identically distributed from the normal distribution, or
constructed using a bounded orthonormal system, e.g., Fourier or orthonormal polynomials.
While completely random matrices are useful for compression, their lack of structure can limit
applications to problems that require physical or meaningful constraints. On the other hand,
while bounded orthonormal systems provide meaningful structure to the feature space, they often
require knowledge of the sampling measure and the target functions themselves, e.g., that the
target function is well-represented by polynomials.

In the high-dimensional setting, neural networks can achieve high test accuracy when there
are reasonable models for the local interactions between variables. For example, a convolutional
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neural network imposes local spatial dependencies between pixels or nodes. In addition, neural
networks can construct data-driven feature spaces that far exceed the limitations of pre-specified
bases such as polynomials. However, standard neural networks often rely on back-propagation
or greedy algorithms to train the weights, which is a computationally intensive procedure.
Furthermore, the trained models do not provide interpretable results, i.e., they remain black-boxes.
Randomized networks are a class of neural networks that randomize and fix the weights within the
architecture [6, 31, 34, 37,39]. When only the final layer is trained, the training problem becomes
linear and can have a much lower cost than the non-convex optimization-based approaches. This
method has motivated new algorithms and theory, for example, see [10, 30, 37–39, 46, 47, 49].
Recently, generalization bounds for over-parameterized random features ridge regression were
provided in [33], when the Tikhonov regularization parameter tends to zero. The analysis is
asymptotic and is restricted to the ReLU activation function, with data and features drawn on
the sphere.

In this work, we introduce a new framework for approximating high-dimensional functions in
the case where measurements are expensive and scarce. We propose the sparse random feature
expansion (SRFE), which enhances the compressive sensing approach by allowing for more flexible
functional relationships between inputs, as well as a more complex feature space. The choice
of basis is inspired by the random Fourier feature (RFF) method [37, 39], which uses a basis
comprised of simple (often trigonometric) functions with randomized parameters. In the RFF
method, the model is learned using ridge regression, which leads to dense (or full) representations.
By using sparsity, our approach could be viewed as a way to leverage structure in the data-scarce
setting while retaining the accuracy and representation capabilities of the randomized feature
methods. In addition, the use of sparsity allows for reasonable error bounds even in the very
overcomplete setting, which is proving to be a powerful modern tool related to over-parameterized
neural networks [3, 18, 25,29].

In terms of the approximation error, the randomized methods can achieve similar results to
those associated with shallow networks. In [4, 26], it was shown that if the Fourier transform of
the target function f , denoted by f̂ , has finite integral

∫
Rd |ω||f̂(ω)|dω then there is a two-layer

neural network with N terms that can approximate f up to an L2 error of O(N−
1
2 ). These results

(and their generalizations) often require specific (greedy) algorithms to achieve. In addition,
neural networks often only achieve good performance in the data-rich and over-parameterized
regimes. On the other hand, the RFF method achieves uniform errors on the order of O(N−

1
2 )

for functions in a certain class (associated with the choice of the basis functions) without the
need for a particular algorithm or construction [37].

One of the most popular techniques in the area of uncertainty quantification is the Polynomial
Chaos Expansion (PCE). PCE models are built up from univariate orthonormal polynomial
regression; in particular, each basis term is the product of univariate orthonormal polynomials
and is characterized by the multi-index of polynomial degrees in each direction. The standard
PCE approach solves for the coefficients of the polynomials using the ordinary least squares
method. The sparse PCE has recently gained traction, where the coefficient vector is determined
through sparse regression. Many sparse regression methods used in PCE were originally developed
for compressive sensing [8, 16, 17,40]. The success of sparse PCE is due in part to the method’s
ability to incorporate higher degree terms without overfitting. However, the polynomial basis
must be orthogonalized with respect to the sampling measure. Moreover, good performance is
limited to functions which are well-represented by moderate degree polynomials. This serves as
another motivation for the use of randomized features, which may increase the richness of the
approximation.
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1.1 Contribution

We propose a sparse feature model (the SRFE) which improves on compressive sensing and PCE
approaches by utilizing random features from the RFF model. Also, the SRFE outperforms
a standard shallow neural network in the limited data regime. We incorporate sparsity in the
proposed model in two ways. The first is in our approximation of the target function by using a
small number of terms from a large feature space to represent the dominate behavior (this is the
sparse expansion component). The second level of sparsity can be considered as side information
on the variables and is incorporated by sampling random low-order interactions between variables
(the sparse features). Building upon these ideas, as part of our theoretical contributions we
derive sample and feature complexity bounds such that the error between the SRFE and the
target function is controlled by the richness of the random features, the compressibility of the
representation, and the noise on the samples (formalized in Section 3). This also shows the
tractability of sparse expansions in the context of randomized feature models.

The SRFE offers additional freedom through redundancy of the basis and does not restrict
the model class to low-order interactions in the form of polynomials. While our analysis is mainly
for trigonometric functions, extensions and applications with ReLU and other standard activation
functions are discussed. In addition, our method and analysis could be extended to include
different sampling strategies such as those used in the recovery of dynamical systems [43,44].

In order to provide generalization bounds, we first characterize the approximation power of
the best fit approximator; then, we bound the error between the best fit and the sparse random
feature expansion. The best fit results are extensions of [37, 39], but we provide the proof for
completeness. The generalization bounds and the sparse approximation results are both novel.
While we utilize standard coherence-based results for sparse recovery, we prove new bounds for
the coherence and the sample complexity based on the randomized features (for both dense and
sparse features). In [50], a sparse random feature algorithm is proposed which iteratively adds
random features by using a combination of LASSO and hard thresholding. In our work, we
provide sample complexity, sparsity guarantees, and generalization bounds which did not appear
in previous works. In addition, we introduce sparse feature weights within our model, which can
help with the curse-of-dimensionality for recovering low order functions. It is worth noting that
our method extends to any algorithm that uses coherence-based sparsity guarantees, for example,
greedy methods such as orthogonal matching pursuit.

2 Approximation via Sparse Random Feature Expansion (SRFE)

Notation. Throughout this paper, we use bold letters and bold capital letters to denote column
vectors and matrices, respectively (e.g., x and A). Let [N ] = {1, . . . , N} for any positive integer
N and ‖c‖ denote the Euclidean norm of a vector c. Throughout the paper, f denotes functions
of d variables while g denotes functions of q � d variables. Furthermore, Bd(M) denotes the
Euclidean ball in Rd of radius M . A vector c ∈ CN is said to be s-sparse if the number of
nonzero components of c is at most s. For a vector c ∈ CN , let κs,p(c) denote the error of best
s-term approximation to c in the `p sense, κs,p(c) := min{‖c− z‖`p : z is s-sparse} [21]. Note in
particular that κs,p(c) = 0 if c is s-sparse, and κs,p(c) ≤ ‖c‖`p always.

We are interested in identifying an unknown function f : Rd → C, belonging to a certain
class (defined in Section 3), from a set of samples. We assume that the m sampling points xk’s
are drawn with a probability measure µ(x) with the corresponding output values

yk = f(xk) + ek, |ek| ≤ E, ∀k ∈ [m], (1)

where ek is the noise.
A fundamental approach in approximation theory relies on the assumption that f has an

approximate linear representation with respect to a suitable collection of N functions φj(x),
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Algorithm 1 Sparse Random Feature Expansion (SRFE)

1: Input: parametric basis function φ( ;ω) = φ(〈x,ω〉), stability parameter η.
2: Draw m data points xk ∼ Dx and observe outputs yk = f(xk) + ek with |ek| ≤ E.
3: Draw N random weights ωj ∼ Dω.
4: Construct the random feature matrix A ∈ Cm×N such that akj = φ(xk;ωj).
5: Solve c] = arg min

c
‖c‖1 s.t. ‖Ac− y‖ ≤ η

√
m.

6: Output: Form the approximation

f ](x) =

N∑
j=1

c]jφ(x;ωj).

j ∈ [N ]:

f(x) ≈
N∑
j=1

cjφj(x). (2)

Important examples of such families of functions include real and complex trigonometric polyno-
mials as well as Legendre polynomials [1, 2, 11,40,41].

Let A ∈ Cm×N be the random feature matrix with entries ak,j = φj(xk), then approximating
f in Equation (2) is equivalent to

find c ∈ CN such that y ≈ Ac, (3)

where c = [c1, . . . , cN ]T and y = [y1, . . . , ym]T . In many applications, it is often the case that f
is well-approximated by a small subset of the N functions, which implies that c is sparse. By
exploiting the sparsity, the number of samples m required to obtain an accurate approximation
of f may be significantly reduced. One effective approach to learn a sparse vector c is to solve
the basis pursuit (BP) problem:

c] = arg min
c

‖c‖1 s.t. ‖Ac− y‖ ≤ η
√
m, (4)

where η is a parameter typically related to the measurement noise. The conditions for stable
recovery of any sparse vector c? satisfying y ≈ Ac? is extensively studied in compressed sensing
and statistics [7, 9, 21].

In order to construct a sufficiently rich family of functions, we use a randomized approach.
Specifically, consider a collection of functions φ(x;ω) = φ(〈x,ω〉) parameterized by a weight
vector ω drawn randomly from a probability distribution ρ(ω). Some popular choices for φ are

1. Random Fourier features: φ(x;ω) = exp(i〈x,ω〉).

2. Random trigonometric features:
φ(x;ω) = cos(〈x,ω〉) and φ(x;ω) = sin(〈x,ω〉).

3. Random ReLU features: φ(x;ω) = max(〈x,ω〉, 0).

Based on [37,39], we call such φ(· ;ω) the random features. Altogether, we propose the Sparse
Random Feature Expansion (SRFE) to approximate f , which is summarized in Algorithm 1.

3 Low Order Functions

Often, high dimensional functions that arise from important physical systems are of low order,
meaning the function is dominated by a few terms each depending on only a subset of the input
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variables, say q out of the d variables where q � d [15,27]. Low order functions also appear in
other applications as a way to reduce modeling complexity. For example, in dimension reduction
and surrogate modeling, sensitivity analysis is employed to determine the most influential input
variables and thus to reduce the approximation onto a subset of the input space [42]. The
notion of low order functions are also connected to low-dimensional structures [35, 36] and active
subspaces [12, 13, 20]. Low order additive functions and sparsely connected networks are also
well-motivated in computational neuroscience for simple brain architectures [22].

With this side information, we can further reduce the number of samples needed (see Theorem
2). We modify Algorithm 1 to incorporate the potential coordinate sparsity into the weights ω.
Since we do not know the set of active variables, we draw a number of sparse random feature
weights on every subset S ⊂ [d] of size |S| = q. That is, for each such S, we draw the on-support
feature components randomly from the given distribution, and we set the remaining components
to be zero. In particular, we have the following definition for our random features.

Definition 1 (q-Sparse Feature Weights). Let d, q, n ∈ N with q ≤ d and a multivariate
probability density ζ : Rq → R. A collection of N = n

(
d
q

)
weight vectors ω1, . . . ,ωN is said to

be a complete set of q-sparse feature weights (drawn from density ζ) if they are generated as
follows: For each subset S ⊂ [d] of size |S| = q, draw n random vectors z1, . . . , zn ∈ Rq from
ζ, independent of each other and of all previous draws. Then, use z1, . . . , zn to form q-sparse
feature weights ω1, . . . ,ωn ∈ Rd by setting supp(ωk) = S and ωk

∣∣
S = zk.

This leads to Sparse Random Feature Expansion with Sparse Features (SRFE-S ) by modifying
Step (3) of Algorithm 1 to “Draw a complete set of N q-sparse feature weights ωj ∈ Rd sampled
with density ζ”. We summarize the algorithm below.

Algorithm 2 Sparse Random Feature Expansion with Sparse Feature Weights (SRFE-S)

1: Input: parametric basis function φ(x;ω) = φ(〈x,ω〉), feature sparsity level q, probability
density ζ : Rq → R, stability parameter η.

2: Draw m data points xk ∼ Dx and observe outputs yk = f(xk) + ek with |ek| ≤ E.
3: Draw a complete set of N q-sparse feature weights ωj ∈ Rd sampled from density ζ : Rq → R

as defined in Definition 1.
4: Construct a random feature matrix A ∈ Cm×N such that akj = φ(xk;ωj).
5: Solve c] = arg min

c
‖c‖1 s.t. ‖Ac− y‖ ≤ η

√
m.

6: Output: Form the approximation

f ](x) =
N∑
j=1

c]jφ(x;ωj).

Remark 1. Drawing a complete set of q-sparse feature weights can be slow and cumbersome. In

the case where ζ(x1, . . . , xq) =
q∏
j=1

ζ(xj) is a tensor product of univariate densities, a significantly

more practical method for drawing sparse features is as follows: we randomly generate a size q
subset of [d] and then define the on-support values using ζ. Alternatively, one can draw sparse
feature weights by the procedure: for each coordinate j ∈ [d], with probability q/d set wj = 0, and
with probability 1− q/d draw ωj ∼ ζ. We further note that any side-information on the feasibility
of the low-order support subsets can be incorporated in the procedure outlined in Algorithm 2 to
further reduce the required number of sparse features.
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4 Theoretical Analysis

In this section, we provide theoretical performance guarantees on the function approximation
given in Algorithm 1. In particular, we derive an explicit bound on the required number of data
samples for a stable approximation within a target region. Given the connections to Fourier
analysis and its desired characteristics, we mainly focus on the case where φ(x;ω) = exp(i〈x,ω〉).
Nonetheless, we discuss extensions in Section 5.

Before stating the main results, we recall some useful definitions. The first definition is a
complex-valued extension of the class introduced in [37].

Definition 2 (Bounded ρ-norm functions). Fix a probability density function ρ : Rd → R
and a function φ : Rd×Rd → C. A function f : Rd → C has finite ρ-norm with respect to φ(x;ω)
if it belongs to the class

F(φ, ρ) :=

{
f(x) =

∫
ω∈Rd

α(ω)φ(x;ω) dω : ‖f‖ρ := sup
ω

∣∣∣∣α(ω)

ρ(ω)

∣∣∣∣ < ∞

}
. (5)

Note that in the above definition, if φ(x;ω) = φ(〈x,ω〉) = exp(i〈x,ω〉), α : Rd → C is the
inverse Fourier transform of f . Next, we formalize the notion of low order functions by extending
the definition from [27].

Definition 3 (Order-q functions). Fix d, q,K ∈ N and q ≤ d. A function f : Rd → C is an
order-q function of at most K terms if there exist K functions g1, . . . , gK : Rq → C such that

f(x1, . . . , xd) =
1

K

K∑
j=1

gj(xj1 , . . . , xjq) =
1

K

K∑
j=1

gj(x|Sj ), (6)

where Sj = {j1, . . . , jq} is a subset of the index set [d] and x|Sj is the restriction of x onto Sj.
For an order-q function f of at most K terms where every term in the summation belongs to
F(φ, ρ), we define the complexity measure

|||f ||| :=
(
d

q

) 1
2

 1

K

K∑
j=1

‖gj‖ρ

 . (7)

Note that in general, such a decomposition is not unique and the value |||f ||| depends on the
chosen decomposition of f . Furthermore, we are interested in the smallest q to refer to the order
of a function; trivially, any order-q function f : Rd → C is also order-d.

4.1 Uniform Error

Our first main result establishes the required number of features N as well as the number of data
samples m for stable recovery of a bounded ρ-norm function. For this class, we consider q = d.

Theorem 1 (Function Approximation: Bounded ρ-norm Functions). Let f ∈ F(φ, ρ),
where φ(x;ω) = φ(〈x,ω〉) = exp(i〈x,ω〉) and ρ(ω) is the density corresponding to a spherical
Gaussian with variance σ2, N (0, σ2Id). For a fixed γ, consider a set of data samples x1, . . . ,xm ∼
N (0, γ2Id) and frequencies ω1, . . . ,ωN ∼ N (0, σ2Id). Let A ∈ Cm×N denote the associated
random feature matrix where ak,j = φ(xk;ωj) and f ] be defined from Algorithm 1 and Equation (4)
with η =

√
2(ε2‖f‖2ρ + E2).

For a given s, suppose the feature parameters σ and N , the confidence δ, the accuracy ε, and
the target radius R are chosen so that the following conditions hold:
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1. γ-σ uncertainty principle

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
d

− 1

 , (8)

2. Number of features

N ≥ 4

ε2

(
1 + 4Rσ

√
d+

√
1

2
log

(
1

δ

))2

, (9)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)d log
N2

δ
, (10)

4. Target radius

R ≥ γ

√
d+

√
12d log

(m
δ

)
. (11)

Then, with probability at least 1− 4δ the following error bound holds

sup
‖x‖2≤R

|f(x)− f ](x)| ≤ ε‖f‖ρ + C ′κs,1(c?) + Cη
√
s, (12)

where C,C ′ > 0 are constants, and c? is the vector

c? =

[
α(ω1)

N ρ(ω1)
, . . . ,

α(ωN )

N ρ(ωN )

]T
.

Note that κs,1(c?) ≤ ‖c?‖1 ≤ ‖f‖ρ.

Remark 2. Note that, in general, the solution to the BP formulation is not unique. Nonetheless,
given that the stability guarantees of the BP problem hold for any solution c], the established
uniform approximation result holds for any solution found by Algorithm 1.

Remark 3. Consider a function f ∈ F(φ, ρ) whose Fourier transform is supported within a
compact set Ω ⊂ Rd such that that

∫
Ω ρ(ω) dω =: β < 1. Then the vector c? will be sparse with

high probability, as its expected sparsity scales like s = β N . Thus, functions with compactly
clustered spectral energy are well-approximated by the SRFE method.

Remark 4. An interesting aspect of Theorem 1 is the appearance of a Heisenberg-type uncertainty
principle between “frequency-domain” and “space-domain” variances, σ2 and γ2 [23]. In Theorem 1,
the product of the variances are bounded below by an O(s

1
d ) term.

Theorem 1 shows that the error bound consists of three terms. The first term depends on
the strength of the random features in representing f . By decreasing ε, thereby increasing N , we
can increase the power of our representation and thus reduce this error term. The second term
depends on the quality of the best s-term approximation of f with respect to the random feature
basis. Since κs,1(c?) is bounded by ‖f‖ρ, the second error term is related to the complexity of
the function class. Lastly, the third term is proportional to the level of noise on the samples and,
in general, cannot be reduced arbitrarily.

Next, we adapt the result of Theorem 1 to the case where f is low order. In particular,
Theorem 2 shows that one can improve the error bound when using q-sparse feature weights for
small q.
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Theorem 2 (Function Approximation: Order-q Functions). Let f be an order-q function
of at most K terms as defined in Definition 3, such that each term g`, ` = 1, 2, . . . ,K belongs
to F(φ, ρ) with φ(x;ω) = φ(〈x,ω〉) = exp(i〈x,ω〉), and ρ : Rq → R the density for a spherical
Gaussian with variance σ2, N (0, σ2Iq). Let ω1, . . . ,ωN be a complete set of q-sparse feature
weights drawn from density ρ. Fix γ, and draw i.i.d. sampling points x1, . . . ,xm ∼ N (0, γ2Id).
Let A ∈ Cm×N denote the associated random feature matrix where ak,j = φ(〈xk,ωj〉) and f ] be

defined from Algorithm 2 and Equation (4) with η =
√

2(ε2|||f |||2 + E2).
Fix a target sparsity s ∈ N, and suppose the feature parameters σ and N , the confidence δ,

the accuracy ε, and the target radius R are chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 , (13)

2. Number of features

N ≥ 4

ε2

(
1 + 4Rσ

√
q +

√
q

2
log

(
d

δ

))2

, (14)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ
, (15)

4. Target radius

R ≥ γ

√
d+

√
12d log

(m
δ

)
. (16)

Then, with probability at least 1− 4δ it holds that

sup
x∈Rd: ‖x|Sj

‖2≤R, ∀j∈[K]

|f(x)− f ](x)| ≤ ε|||f |||+ C ′κs,1(c̃?) + Cη
√
s, (17)

where C,C ′ > 0 are constants and the vector c̃ = [c̃1, . . . , c̃N ]T ∈ CN is defined as follows

c̃?j :=
1

K

K∑
`=1

c̃?`,j , with c̃?`,j =

{
α`(ωj)
N ρ(ωj) , if supp(ωj) = S`
0, otherwise.

The function α`(ω) is the transform of g` using Definition 2 and Definition 3.

Note that {x ∈ Rd : ‖x‖2 ≤ R} ⊂ {x ∈ Rd : ‖x|Sj‖2 ≤ R, ∀j ∈ [K]}, so we immediately get
the bound

sup
x∈Rd: ‖x‖2≤R

|f(x)− f ](x)| ≤ ε|||f |||+ C ′κs,1(c̃?) + Cη
√
s. (18)

We further note that, κs,1(c̃?) ≤ ‖c̃?‖1 ≤ |||f |||, in the worst case. We highlight the following
remarks.

Remark 5. From the proof, the bound for N is

N ≥ 4

ε2

(
1 + 4Rσ

√
q +

√
1

2
log

(
K

δ

))2

and we obtain Equation (14) by noting that K ≤
(
d
q

)
≤
(
ed
q

)q
.
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Remark 6. Note that in the bound for the number of measurements, the term (γ2σ2 + 1)2 is in
the range

2γ2σ2 + 1 ≤ (γ2σ2 + 1)2 ≤ (2γ2σ2 + 1)2

and thus, if we choose the variances so that uncertainty principle holds with equality, then we see
that m scales between s4 for q ≤ d

2 and s2 for q = d.

We have established that Algorithm 1 uniformly approximates any function with bounded
ρ-norm terms up to an error term that is proportional to the quantity |||f |||. In addition, the
results of Theorem 1 and Theorem 2 suggest that the radius of approximation R depends more
on the confidence δ (coming from the bounds on m) than it does on the accuracy parameter ε of
the best φ-based approximation to f .

4.2 Generalization Error

The uniform bounds found in Theorem 1 and Theorem 2 can be extended to generalization error
bounds. Recall that µ(x) denotes the probability measure for sampling x.

Theorem 3 (Generalization Bound for Bounded ρ-norm Functions). Instate the as-
sumptions from Theorem 1. Extend the assumptions by allowing the measurement noise ek to
either be bounded by E =

√
2ν or to be drawn i.i.d. from N (0, ν2). Let A ∈ Cm×N denote the

associated random feature matrix where ak,j = φ(xk;ωj) and f ] be defined from Algorithm 1 and
Equation (4) with η =

√
2(ε2‖f‖2ρ + 2ν2).

For a given s, if the feature parameters σ and N , the confidence δ, and the accuracy ε are
chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
d

− 1

 , (19)

2. Number of features

N ≥ 4

ε2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
1

2
log

(
1

δ

)2

, (20)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)d log
N2

δ
. (21)

Then, with probability at least 1− 5δ the following error bound holds√∫
Rd

|f#(x)− f?(x)|2 dµ ≤ ε‖f‖ρ + C ′κs,1(c?) + Cη
√
s, (22)

where C,C ′ > 0 are constants and c? is the vector

c? =

[
α(ω1)

N ρ(ω1)
, · · · , α(ωN )

N ρ(ωN )

]T
.

The proof of Theorem 3 follows from a variation on the proof of Theorem 1 and can be found
in Appendix D. Note that Theorem 1 and Theorem 2 can both be extended to also include
normally distributed noise.
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Theorem 4 (Generalization Bounds for Lower Order Functions). Instate the assumptions
of Theorem 2, extended so as to allow the measurement noise ek to be either bounded by E =

√
2ν

or drawn i.i.d. from N (0, ν2). Let A ∈ Cm×N denote the associated random feature matrix where

ak,j = φ(xk;ωj) and f ] be defined from Algorithm 2 and Equation (4) with η =
√

2ε2|||f |||2 + 4ν2.
For a given s, suppose the feature parameters σ and N , the confidence δ, the accuracy ε, and the
target radius R are chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 , (23)

2. Number of features

N ≥ 4

ε2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
q

2
log

(
d

δ

)2

, (24)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ
. (25)

Then, with probability at least 1− 4δ it holds that√∫
Rd

|f(x)− f?(x)|2 dµ ≤ ε|||f |||+ C ′κs,1(c̃?) + Cη
√
s, (26)

where C,C ′ > 0 are constants and the vector c̃? = [c̃1, . . . , c̃N ]T ∈ CN is defined as follows:

c̃?j :=
1

K

K∑
`=1

c̃?`,j , with c̃?`,j =

{
α`(ωj)
N ρ(ωj) , if supp(ωj) = S`
0, otherwise.

The function α`(ω) is the transform of g` using Definition 2 and Definition 3.

For Theorem 4, observe√∫
Rd

|f(x)− f?(x)|2 dµ =

∥∥∥∥∥∥ 1

K

K∑
j=1

(
gj(x|Sj )− g?j (x|Sj )

)∥∥∥∥∥∥
L2(dµ)

≤ 1

K

K∑
j=1

∥∥gj(x|Sj )− g?j (x|Sj )
∥∥
L2(dµ)

=
1

K

K∑
j=1

∥∥gj(x|Sj )− g?j (x|Sj )
∥∥
L2(dµ̃)

(27)

where µ(x) is the probability measure associated with the d-dimensional spherical Gaussian
N (0, γ2Id) and µ̃(x) is the probability measure associated with the q-dimensional spherical
Gaussian N (0, γ2Iq). The proof of Theorem 4 follows by applying the lemmata from Appendix D
to each error term

∥∥∥gj(x|Sj )− g?j (x|Sj )
∥∥∥
L2(dµ̃)

.
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4.3 Proof of Theorem 1

In this section, we discuss our main technical arguments, which lead to Theorem 1. Note that
the approximation error can be written as

sup
x:‖x‖≤R

|f(x)− f ](x)| ≤ sup
x:‖x‖≤R

|f(x)− f?(x)|+ sup
x:‖x‖≤R

|f ](x)− f?(x)|, (28)

where

f?(x) =

N∑
j=1

c?j exp(i〈x,ωj〉), c?j :=
α(ωj)

Nρ(ωj)
. (29)

We then aim to study these two sources of error in the following lemmata.

4.3.1 Bounding the first error term

We first extend an argument from [37] to derive a bound on how well a function in F(φ, ρ) can
be approximated by SRFE. That is, we characterize the approximation power of f?, the best
φ-based approximation to f .

Lemma 1. Fix the confidence parameter δ > 0 and the accuracy parameter ε > 0. Recall the
setting of Algorithm 1 and suppose f ∈ F(φ, ρ) where φ(x;ω) = exp(i〈x,ω〉) and ρ(ω) is the
probability density function (with finite second moment) used for sampling the random weights ω.
Consider a set X ⊂ Rd with diameter R = sup

x∈X
‖x‖. Suppose

N ≥ 4

ε2

(
1 + 4R

√
E‖ω‖2 +

√
1

2
log

(
1

δ

))2

. (30)

Consider the approximation f? defined in Equation (29). Then, with probability at least 1− δ
with respect to the draw of the ω’s the following holds

sup
x∈X
|f(x)− f?(x)| ≤ ε‖f‖ρ. (31)

The proof of Lemma 1, similar to the result of [37], uses McDiarmid’s inequality [45] and
bounds on the Rademacher complexity for complex valued functions to establish the lower bound
on N . We modified the proof to allow for general φ (see Appendix B). The result in Lemma 1 is
not constructive given that c? depends on the unknown function α(ω). Nonetheless, Lemma 1
establishes a useful bound on the first source of error in (28).

4.3.2 Bounding the second error term

The next lemma controls the second source of error.

Lemma 2. Let f ∈ F(φ, ρ), where φ(x;ω) = exp(i〈x,ω〉) and ρ(ω) is the density corresponding
to a spherical Gaussian with variance σ2, N (0, σ2Id). For a fixed γ and q with q ≤ d, consider
a set of data samples x1, . . . ,xm ∼ N (0, γ2Id) and a complete set of q-sparse feature weights
in Rd, ω1, . . . ,ωN drawn from N (0, σ2Iq). Let A ∈ Cm×N denote the associated random
feature matrix where ak,j = φ(xk;ωj) and f ] be define from Algorithm 1 and Equation (4) with
η =

√
2(ε2‖f‖2ρ + E2). Let f? be defined as

f?(x) :=
N∑
j=1

c?j exp(i〈x,ωj〉), where c?j :=
α(ωj)

Nρ(ωj)
. (32)
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For a given s, if the feature parameters σ and N , the confidence δ, the accuracy ε, and the target
radius R are chosen so that the following conditions hold:

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 ,

N ≥ 4

ε2

(
1 + 4Rσ

√
q +

√
1

2
log

(
1

δ

))2

,

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ

R ≥ γ

√
d+

√
12d log

(m
δ

)
.

Then, with probability at least 1− 3δ the following error bound holds:

sup
x:‖x‖≤R

|f ](x)− f?(x)| ≤ C ′ κs,1(c?) + Cη
√
s, (33)

where C,C ′ > 0 are constants.

The proof of this lemma (see Appendix C) relies on demonstrating that given the assumptions
on the data samples xk and random weights ωj , the corresponding random feature matrix A
(see Step 4 in Algorithm 1) has a small mutual coherence µA, which we recall below.

Definition 4 (Mutual Coherence [21]). Let A ∈ Cm×N be a matrix with columns a1, . . . ,aN .
The mutual coherence of A is defined as

µA = sup
` 6=j

{
|µj`|, µj` :=

〈aj ,a`〉
‖aj‖2‖a`‖2

}
. (34)

To establish Lemma 2, we argue that a small mutual coherence µA is itself a consequence of
the bounded separation of the randomly drawn weights. That is, consider a collection of random
weights {ωj}Nj=1 in Rd. For γ > 0 and a function ψ : Rd → R, we define the quantities

Γj` := ψ (γ(ωj − ω`)) , Γmin := min
j 6=`

Γj`, Γmax := max
j 6=`

Γj`. (35)

We can quantify its separation with respect to ψ by bounding Γmax and Γmin by values depending
on N and other dimensional constants. In the setting of Theorem 1 where the sampling points xi’s
are i.i.d. Gaussian, the bounded separations hold for ψ (γ(ωj − ω`)) = exp

(
−2γ2π2‖ωj − ω`‖22

)
.

Consequently, by utilizing the fact that the weights ω’s are normally distributed, we show that
the collection {ωj}Nj=1 has bounded separation by establishing suitable bounds on Γmax and
Γmin depending on N .

Given the bounds on Γmax and Γmin, by employing the Bernstein’s inequality, we then
establish that µA ≤ 2Γmax with high probability, as long as

m ≥ 4

Γ2
min

log
N2

δ
. (36)

Upon establishing this upper bound on µA, we then utilize a result from compressive sensing
regarding the stability of the BP formulation (see, e.g., [21]) to complete the proof of Lemma 2.
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4.4 Proof of Theorem 2

To establish Theorem 2, we apply variations of Lemma 1 and Lemma 2 to each function gj
involved in the decomposition of f . Since f is an order-q function of at most K terms, it can be
written as:

f(x1, . . . , xd) =
1

K

K∑
j=1

gj(xj1 , . . . , xjq), (37)

for a fixed q and K. For each term, define g?j as

g?j (x|Sj ) =

N∑
`=1

c̃?j,` exp(i〈x|Sj ,ω`|Sj 〉), where c̃?j,` =

{
αj(ω`)
N ρ(ω`)

, if supp(ω`) = Sj
0, otherwise.

(38)

We define f? as

f?(x) :=
1

K

K∑
j=1

g?j (x|Sj ) =
1

K

K∑
j=1

N∑
`=1

c̃?j,` exp(i〈x|Sj ,ω`|Sj 〉)

=
1

K

K∑
j=1

N∑
`=1

c̃?j,` exp(i〈x,ω`〉),

=
N∑
`=1

 1

K

K∑
j=1

c̃?j,`

 exp(i〈x,ω`〉)

=
N∑
`=1

c̃?` exp(i〈x,ω`〉),

(39)

where in the second line we use Equation (38) and we define c̃?` := 1
K

K∑
j=1

c̃?j,`. For each term gj ,

only n out of the N features are active, so c? is nK-sparse. Since there are K such terms, by
applying the union bound, if

n ≥ 4

ε2

(
1 + 4Rσ

√
q +

√
1

2
log

(
K

δ

))2

, (40)

then
sup

‖x|Sj ‖≤R
|gj(x|Sj )− g?j (x|Sj )| ≤ ε‖gj‖ρ, (41)

holds for each j ∈ [K]. By the triangle inequality, we have

sup
x∈Rd:‖x|Sj ‖2≤R, ∀j∈[K]

|f(x)− f?(x)| ≤ 1

K
sup

x∈Rd:‖x|Sj ‖2≤R, ∀j∈[K]

K∑
j=1

|gj(x|Sj )− g?j (x|Sj )|

≤ 1

K

K∑
j=1

 sup
x∈Rd:‖x|Sj ‖2≤R

|gj(x|Sj )− g?j (x|Sj )|


≤ ε

K

K∑
j=1

‖gj‖ρ.

(42)

Following the proof of Lemma 2 with η =

√√√√√2

ε2( 1

K

K∑
j=1
‖gj‖ρ

)2

+ E2

, letting g?j and f? be

defined as above, and N = n
(
d
q

)
, then, with probability at least 1− 3δ the following error bound
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holds:
sup

x∈Rd:‖x|Sj ‖2≤R, ∀j∈[K]

|f ](x)− f?(x)| ≤ C ′ κs,1(c?) + Cη
√
s, (43)

where C,C ′ > 0 are constants. By rescaling the term ε to ε
(
d
q

) 1
2 and assuming ε is sufficiently

small, we conclude the proof.

5 Extensions

In this section, we discuss how some of the requirements in Theorem 1 and Theorem 2 can be
relaxed to further strengthen our results. For simplicity we state the formal results of this section
within the scope of Theorem 1, i.e., without assuming the low order property. However, we note
that similar results hold for the case of low order functions by following the steps outlined in the
proof of Theorem 2.

Also, we can easily extend the results to the case of xk ∼ N (x̄, γ2Id) with the random Fourier
features, thus the zero-mean assumption can be relaxed. In practice, we may further consider
features involving a random bias term, e.g. exp(i(〈x,ω〉+ p)), where p ∼ U [0, 2π]. Due to the
intrinsic symmetry of the Fourier features, the bias term can be readily accounted for as well
without a significant modification to the statements. Note that these extensions do not affect the
result of Lemma 1 that bounded the first source of error.

5.1 Real-Valued Functions

If the unknown function is real-valued, we prefer to work with real-valued SRFE such as
φ(x;ω) = cos(〈x,ω〉), φ(x;ω) = sin(〈x,ω〉) or a combination of the two. Our theoretical results
readily extend to this case up to some constants by using a variation of the Euler’s formula.

Theorem 5. Let f ∈ F(φ, ρ), where φcos(x;ω) = cos(〈x,ω〉), φsin(x;ω) = sin(〈x,ω〉), and
ρ(ω) is the density corresponding to a spherical Gaussian with variance σ2, N (0, σ2Id), with
the additional condition that f is real valued. For a fixed γ, consider a set of data samples
x1, . . . ,xm ∼ N (0, γ2Id) and a complete set of q-sparse feature weights in Rd, ω1, . . . ,ωN
drawn from N (0, σ2Iq). Let A ∈ Rm×2N denote the associated random feature matrix where
ak,j = φcos(xk;ωj) for k ≤ N , ak,j = φsin(xk;ωj) for N < k ≤ 2N , and f ] be defined from
Algorithm 1 and Equation (4) with η =

√
2(ε2‖f‖2ρ + E2).

For a given s, if the feature parameters σ and N , the confidence δ, the accuracy ε, and the
target radius R are chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γ2σ2 ≥ 1

2

((√
41(2s− 1)

) 2
d − 1

)
, (44)

2. Number of features

N ≥ 4

ε2

(
1 + 4Rσ

√
d+

√
1

2
log

(
1

δ

))2

(45)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)d log
N2

δ
(46)

4. Target radius

R ≥ γ

√
d+

√
12d log

(m
δ

)
. (47)
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Then, with probability at least 1− 5δ the following error bound holds:

sup
x:‖x‖≤R

|f(x)− f ](x)| ≤ ε‖f‖ρ + C ′κs,1(c?) + Cη
√
s, (48)

where C,C ′ > 0 are constants and the vector c? is defined by

c? =

[
α(ω1)

2N ρ(ω1)
, . . . ,

α(ω2N )

2N ρ(ω2N )

]T
.

5.2 Uniformly Distributed Data

We can extend our results uniformly distributed data and establish comparable conditions for
the uniform approximation of low order functions. Note that this extension does not affect our
study of the first source of error in Lemma 1.

Theorem 6. Let f ∈ F(φ, ρ), where φ(x;ω) = exp(i〈x,ω〉) and ρ(ω) is the density corresponding
to a spherical Gaussian with variance σ2, N (0, σ2Id). For a fixed γ, consider a set of data samples
x1, . . . ,xm ∼ U [−γ, γ]d and frequencies ω1, . . . ,ωN ∼ N (0, σ2Id). Let A ∈ Cm×N denote the
associated random feature matrix where ak,j = φ(xk;ωj) and f ] be defined from Algorithm 1 and
Equation (4) with η =

√
2(ε2‖f‖2ρ + E2).

For a given s, if the feature parameters σ and N , the confidence δ, and the accuracy ε are
chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γσ ≥ min


√
π

4

(√
41(2s− 1)

2

) 1
d

, 2

 , (49)

2. Number of features

N ≥ 4

ε2

(
1 + 4γσd+

√
1

2
log

(
1

δ

))2

, (50)

3. Number of measurements

m ≥ 4

(
2
√

2γσ√
π

)2d

log
N2

δ
. (51)

Then, with probability at least 1− 4δ the following error bound holds:

sup
x∈[−γ,γ]d

|f(x)− f ](x)| ≤ ε‖f‖ρ + C ′κs,1(c?) + Cη
√
s, (52)

where C,C ′ > 0 are constants and the vector c? is defined by

c? =

[
α(ω1)

N ρ(ω1)
, . . . ,

α(ωN )

N ρ(ωN )

]T
.

The proof of a more general version of Theorem 6 is detailed in Appendix E.3. As a direct
result of Theorem 6, the following generalization bound holds.
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Corollary 6.1. Let f ∈ F(φ, ρ), where φ(x;ω) = exp(i〈x,ω〉) and ρ is the probability distribution
associated with sampling ω. For a fixed γ, consider a set of data samples x1, . . . ,xm ∼ U [−γ, γ]d

and frequencies ω1, . . . ,ωN ∼ N (0, σ2Id). Let A ∈ Cm×N denote the associated random feature
matrix where ak,j = φ(xk;ωj) and f ] be defined from Algorithm 1 and Equation (4) with
η =

√
2(ε2‖f‖2ρ + E2).

For a given s, if the feature parameters σ and N , the confidence δ, and the accuracy ε are
chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γσ ≥ min


√
π

4

(√
41(2s− 1)

2

) 1
d

, 2

 , (53)

2. Number of features

N ≥ 4

ε2

(
1 + 4γσd+

√
1

2
log

(
1

δ

))2

, (54)

3. Number of measurements

m ≥ 4

(
2
√

2γσ√
π

)2d

log
N2

δ
. (55)

Then, with probability at least 1− 4δ the following error bound holds:√∫
Rd

|f(x)− f?(x)|2 dµ ≤ ε‖f‖ρ + C ′κs,1(c?) + Cη
√
s, (56)

where C,C ′ > 0 are constants, and

c? =

[
α(ω1)

N ρ(ω1)
, . . . ,

α(ωN )

N ρ(ωN )

]T
.

5.3 Beyond Gaussian Features

We can extend our main theorems to the case where the nonzero entries of the parameters ω’s
are drawn from a subgaussian distribution [48]. Although we can directly apply the result of
Lemma 1 to bound the first source of error, this extension requires certain modifications to the
requirements on the variance parameters σ2 and γ2, which stem from the fact that we need to
resort to (in some sense) weaker concentration inequalities.

Theorem 7. Let f ∈ F(φ, ρ), where φ(x;ω) = exp(i〈x,ω〉) and ρ(ω) is the density corresponding
to a spherical Gaussian with variance σ2, N (0, σ2Id). For a fixed γ, consider a set of data
samples x1, . . . ,xm ∼ N (0, γ2Id) and frequencies ω1, . . . ,ωN which are i.i.d. centered σ2-
subgaussian random vectors. Let A ∈ Cm×N denote the associated random feature matrix where
ak,j = φ(xk;ωj) and f ] be defined from Algorithm 1 and Equation (4) with η =

√
2(ε2‖f‖2ρ + E2).

For a given s, if the feature parameters σ and N , the confidence δ, the accuracy ε, and the
target radius R are chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γ2E[‖ω1 − ω2‖2] ≥ 2

(1− t)
log

(√
41(2s− 1)

2

)
,

t :=
29/4σ

√
q

E[‖ω1 − ω2‖2]

√
log

N2

δ

(57)
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where {ωj}Nj=1 are chosen so that t < 1 holds,

2. Number of features

N ≥ 4

ε2

(
1 + 4Rσ

√
d+

√
1

2
log

(
1

δ

))2

, (58)

3. Number of measurements

m ≥ 4 exp
(
2γ2E[‖ω1 − ω2‖2]

)
log

N2

δ
, (59)

4. Target radius

R ≥ γ

√
d+

√
12d log

(m
δ

)
. (60)

Then, with probability at least 1− 5δ the following error bound holds:

sup
x:‖x‖≤R

|f(x)− f ](x)| ≤ ε‖f‖ρ + C ′κs,1(c?) + Cη
√
s, (61)

where C,C ′ > 0 are constants and

c? =

[
α(ω1)

N ρ(ω1)
, . . . ,

α(ωN )

N ρ(ωN )

]T
.

6 Experimental Results

In the first example, we show that the SRFE in Algorithm 1 outperforms a shallow neural network
on the approximation of an order-2 function:

f(x1, . . . , x10) =
1

10

9∑
`=1

exp(−x2
` )

1 + x2
`+1

in the data-scarce regime. For Algorithm 1, we set η = 0.01, q = 2 or q = 10, σ = 1, and the
bias p ∼ U [0, 2π]. In all of the examples we set φ(x;ω) = sin(〈x,ω〉), unless otherwise specified.
We define the relative testing error to be:

Error =

√∑
k∈Test |f(xk)− f ](xk)|2∑

k∈Test |f(xk)|2
,

where f ] denotes the approximation found by Algorithm 1 or the benchmarking schemes.
In Figure 1, we compare the SRFE (with N = 5000) to a two-layer ReLU network with 500

and 5000 trainable parameters. The ReLU network with 500 trainable parameters is included
so as to match the number of active parameters in the SRFE. The SRFE with q = d = 10 is
more accurate than the shallow network in this data regime. When q = 2, the error associated
with the SRFE-S is smaller than that of the SRFE results with q = d and is about one order of
magnitude smaller than the neural network.
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Figure 1: Function Approximation: Comparison of relative testing error versus the size of
the training set for the sparse random feature model with q = 2 and q = 10 and for the two-layer
ReLU network using 500 and 5000 trainable parameters.

Figure 2: Comparison, Overfitting: The first figure is the target function, the second and
third figures are the approximations via the SRFE and the OLS methods respectively with the
same 200 randomly sampled points.

6.1 Overfitting and Noise

In this example, we provide a visual comparison of the recovery of one-dimensional functions
using the SRFE algorithm and the ordinary least squares (OLS) approach. The first plot of
Figure 2 is the target function (a sine packet), the second and third plots are the approximations
using the SRFE and the OLS methods respectively with the same 200 randomly sampled points.
The features are sampled using σ = 2π. Note the appearance of high-frequency aliasing with the
OLS approximation.

In Figure 3, noisy one dimensional data is considered. The first column includes the Runge
function (top) and a triangle function (bottom) each with 5% relative noise. The second and
third columns are the approximations using the SRFE and the OLS methods respectively with
the same 200 randomly sampled points. The first row uses σ = π and the second row uses σ = 2π.
The results using the SRFE are more accurate and contain less noise artifacts. Note that since
the basis is trigonometric, the approximations are smooth. The OLS results have overfit the
data, even when the feature parameter N is varied.

6.2 Low Order Approximations

In Table 1, we test the effect of varying q for different functions using Algorithm 2 and recording
the relative errors. The highlighted (purple) values represent the explicit order of the function.
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Figure 3: Comparison, Noise: The first column includes the Runge function (top) and a
triangle function (bottom) each with 5% relative noise. The second and third columns are the
approximations via the SRFE and the OLS methods respectively with the same 200 randomly
sampled points.

f(x) σ d q = 1 q = 2 q = 3 q = 5(∑d
i=1 xj

)2
0.1 1 0.82 5.71× 10−6 6.92× 10−5 8.3× 10−4

(1 + ‖x‖22)−1/2 1 5 3.27 1.60 1.95 1.72√
1 + ‖x‖22 1 5 1.02 0.73 0.80 1.10

sinc(x1)sinc(x3)3 + sinc(x2) π 5 12.90 1.19 1.13 3.51
x1x2
1+x63

1 5 100.30 21.53 4.95 5.06∑d
i=1 exp(−|xi|) 1 100 0.91 1.43 1.57 1.96

Table 1: Low Order Examples The table contains the relative test error (as a percentage)
for approximating various functions using different q values. The purple values represent the
order of the function. We fix m = 1000 and N = 10000 with random sine features. We draw
x ∼ U [−1, 1]d and the nonzero values of ω are drawn from N (0, σ2).

We fixed m = 1000, N = 10000 and used the random sine features. The data is sampled from
U [−1, 1]d and the nonzero values of ω are drawn from N (0, σ2), where σ and d are included in
the table for each example.

In the second and third examples, while the functions are order q = d functions, they enjoy
better accuracy for q = 2. This could be due to several phenomena. The first is that, with fixed
m and N , the error may increase as q increase (see Theorem 2). However, this should partially
be mitigated since we chose N = 10000 large enough. Another reason is that, with respect to
some expansion (i.e. Fourier or Taylor), the functions can be written as an order q < d function
within some level of accuracy. This motivates further investigations in future work. The other
examples show a clear transition when the correct range for q is obtained.

6.3 HyShot 30 Data

In Table 2, we apply the SRFE on the HyShot dataset (Hypersonics Flow Data [14]) and measure
the relative testing error as a function of N (the number of random features). The input space is
d = 7 dimensional and the dataset includes 52 total samples (which we split into 26-26). We set
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η = 0.01, σ = 2π, p ∼ U [0, 1], and q = 7 (no coordinate sparsity is assumed). In this setting, we
have N � m, which causes the RFF model and the two-layer ReLU network to overfit on the
data (the training loss is small). When using φ(x;ω) = sin(〈x,ω〉), the SRFE produces consistent
testing error which decreases as N increases. On the other hand, when φ(x;ω) = ReLU(〈x,ω〉),
the results using SRFE achieve a smaller overall testing error but do not improve with N . Table 2
shows that unlike the SRFE, there are no gains made from increasing the number of trainable
parameters in the shallow NN model.

6.4 NACA Sound Dataset

We comparing the SRFE and the RFF models without coordinate sparsity on the National
Advisory Committee for Aeronautics (NACA) sound dataset [19] and measure the relative training
and testing error as a function of N . The input space is d = 5 dimensional, the total number of
samples is 1503, the train-test split 80− 20, η = 100, σ = 1, and p ∼ U [0, 1]. The relative testing
errors in Table 2 indicate an overall consistent result, in terms of the coefficient sparsity and the
errors, when using the SRFE approach. The RFF model overfits as N increases beyond the size
of the training set.

6.5 Comparison with Sparse PCE

In Figure 4, we compare the SRFE-S approach with the Sparse PCE approach [32] using various
random sampling methods on the Ishigami example:

f(x1, x2, x3) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1)

which is of order 2. The first row of Figure 4 uses i.i.d. samples xk ∼ U [−π, π]d, the third row
uses i.i.d. samples xk ∼ N

(
0, 1

4Id
)
, and the second row uses a mixed distribution xk = xk,1 +xk,2

where xk,1 ∼ N
(
0, 1

100Id
)
and xk,1 ∼ U [−π, π]d. Each model uses N = 3276 features (which is

equivalent to a degree-25 polynomial system in the case of the Sparse PCE approach) and (the
same) 200 random samples. The hyper-parameters for the SRFE are set to q = 2, σ = 3π

2 , and
p ∼ U [0, 2π]. When using uniformly random samples, the Sparse PCE approach produces lower
testing error (0.24% versus 1.43%), which continues to perform well as N increases. This is due
in part to the fact that the orthogonal polynomial basis (in this case, the Legendre basis) has
knowledge of the input distribution. When the samples are Gaussian, the SRFE produces a more
accurate solution than the Sparse PCE method (0.44% versus 6.24%). For the mixture case, the
SRFE outperforms the Sparse PCE method (2.11% versus 15.05%). Note that the Sparse PCE

HyShot 30 N = 100 N = 200 N = 400 N = 800

SRFE with Sine 6.95 6.23 5.76 5.64

SRFE with ReLU 1.40 1.45 1.51 1.59

Random Fourier Features 84.23 89.99 95.17 97.84

Two-layer ReLU Network 7.29 11.50 11.19 11.33

NACA Sound N = 250 N = 1500 N = 5000 N = 10000

SRFE (Train) 3.22 2.30 2.30 2.31

SRFE (Test) 3.22 3.04 2.77 2.78

SRFE (Average Sparsity) 250 364.4 185.7 185.7

Random Fourier Features (Train) 3.22 0.25 0.20 0.19

Random Fourier Features (Test) 7.45 2.13× 108 1.69× 108 1.48× 108

Table 2: HyShot 30 and NACA Sound Datasets: Average relative train and test errors
over 10 random trials (as a percentage). For the shallow NN, we choose the hidden layer so that
the total number of parameters match N .
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Figure 4: Comparison with Sparse PCE. Each scatter plot is the model response versus the
data. The first column is the SRFE and the second column is the Sparse PCE model. The first
row uses i.i.d. samples from U [−π, π]d, the third row uses i.i.d. samples from N

(
0, 1

4Id
)
, and the

second row uses the sum of samples from N
(
0, 1

100Id
)
and U [−π, π]d. Each model uses N = 3276

features (which is equivalent to a degree-25 polynomial system in the case of the Sparse PCE
approach) and (the same) m = 200 random samples. While the Sparse PCE performs well on
the uniform distribution (first row), the SRFE produces accurate approximations in all cases.

must derive the orthogonal basis from the data (or use the Legendre basis as its default), where
as, at least experimentally, our approach is applicable to a larger class of input distributions.

7 Conclusion

We proposed the sparse random features method as a new approach in function approximation.
For low order functions, i.e. functions that admit a decomposition to terms depending on only a
few of the independent variables, we introduce low order random features. By utilizing techniques
from compressive sensing and probability, we provided uniform bounds on the approximation
error of the proposed scheme and established sample and feature complexities. On several
examples, we should improved accuracy over other popular approximation schemes. As part of
the future work, we intend to explore the avenues to incorporate additional functional structures
into the proposed framework with the hope of further improving the approximation properties of
the proposed scheme.
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A Useful Tools and Definitions

Definition 5 (Normal Distribution). The real random vector ω = (w1, . . . , wd) ∈ Rd is called
a centered normal random vector with mean zero and variance σ2 if it has density function1

ρ(ω) = (2πσ2)−d/2 exp

(
−‖ω‖

2

2σ2

)
. (62)

Furthermore, it holds that E‖ω‖2 = dσ2, and by a standard concentration argument for any
0 < t < 1

P((1− t)dσ2 ≤ ‖ω‖2 ≤ (1 + t)dσ2) ≥ 1− 2 exp

(
− t

2d

12

)
(63)

Definition 6 (Subgaussian Distribution). A random variable X is a centered σ2-subgaussian
(denoted by X ∼ SG(σ2)) if E[X] = 0 and

E[exp(sX)] ≤ exp

(
σ2s2

2

)
, ∀s ∈ R. (64)

Let X ∼ SG(σ2). Then, for any t > 0,

P(|X| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
. (65)

Definition 7 (Subexponential Distribution). A random variable X is a centered sub-
exponential with parameters ν, α > 0 (X ∼ SE(ν2, α)) if E[X] = 0 and

E[exp(sX)] ≤ exp

(
s2ν2

2

)
, ∀|s| < 1

α
. (66)

Next, we overview the basic facts and relationship between subgaussian and subexponential
random variables.

Lemma 3 ( [24, 48]). The following statements hold

1. If X ∼ SG(σ2), then X2 ∼ SE(4
√

2σ2, 4σ2).

2. Let X ∼ SE(ν2, α). Then, for any 0 < t < ν2

α , it holds that

P(|X| ≥ t) ≤ 2 exp

(
− t2

2ν2

)
. (67)

Lemma 4 (Khintchine Inequality [21]). If {ξj}Nj=1 is a collection of i.i.d. Rademacher
random variables, the Khintchine inequality states that for any q1, . . . , qN ∈ C, and 0 < p ≤ 2,Eξ

∣∣∣∣∣∣
N∑
j=1

ξjqj

∣∣∣∣∣∣
p

1
p

≤

√√√√ N∑
j=1

|qj |2. (68)

Lemma 5 (Rademacher Complexity [21]). Assume that {vj}Mj=1 is a sequence of independent
random vectors in a finite-dimensional vector space V with norm ‖ · ‖. Let F : V → R be a
convex function. Then

EvF

 M∑
j=1

vj − E[vj ]

 ≤ Eξ,vF

2
M∑
j=1

ξjvj

 , (69)

where {ξj} is a Rademacher sequence independent of v.
1Note that we only consider the homoscedastic case.
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Lemma 6 (Contraction of Rademacher Complexity [5, 28]). Let {φj}Ni=1 be a collection
of real-valued functions defined on R that are L-Lipschitz and satisfy φj(0) = 0. Then,

Eξ sup
x∈X

∣∣∣∣∣∣
N∑
j=1

ξjφj(xj)

∣∣∣∣∣∣ ≤ 2LEξ sup
x∈X

∣∣∣∣∣∣
N∑
j=1

ξjxj

∣∣∣∣∣∣ (70)

for any bounded subset X in RN . Here, {ξj} is a Rademacher sequence independent of {xj}.

Lemma 7 (Stability of BP-based Sparse Reconstruction [21]). Let A ∈ Cm×N be a
matrix with coherence µA. If the coherence of A satisfies

µA ≤
4√

41(2s− 1)
, (71)

then, for any vector c? ∈ CN satisfying y = Ac? + e with ‖e‖ ≤ η
√
m, a minimizer c] of the BP

method (4) approximates the vector c? with the error bounds

‖c? − c]‖1 ≤ C ′κs,1(c?) + C
√
sη, (72)

where C,C ′ > 0 are constants.

B Proof of Lemma 1

Lemma 1. Fix confidence parameter δ > 0 and accuracy parameter ε > 0. Recall the setting
of Algorithm 1 and suppose f ∈ F(φ, ρ) where φ(x;ω) = exp(i〈x,ω〉) and ρ is the probability
density function (with finite second moment) used for sampling the random weights ω. Consider
a set X ⊂ Rd with diameter R = sup

x∈X
‖x‖. Suppose

N ≥ 4

ε2

(
1 + 4R

√
E‖ω‖2 +

√
1

2
log

(
1

δ

))2

. (73)

Consider the random feature approximation

f?(x) :=

N∑
j=1

c?j exp(i〈x,ωj〉), where c?j :=
α(ωj)

Nρ(ωj)
. (74)

Then, with probability at least 1− δ with respect to the draw of the ω’s, the following holds

sup
x∈X
|f(x)− f?(x)| ≤ ε‖f‖ρ. (75)

Proof. First, by construction we have |c?j | ≤
‖f‖ρ
N

and, for fixed x, Eω[f?(x)] = f(x). Define
the random variable

v(ω1, . . . ,ωN ) := ‖f − f?‖L∞(X ) = sup
x∈X
|f(x)− f?(x)| = sup

x∈X
|Eω [f?(x)]− f?(x)| .

Following [37], we prove the lemma using McDiarmid’s inequality.
First, observe that v is stable under perturbation of any one of its coordinates. Specifically,

we have that

|v(ω1, . . . ,ωk, . . . ,ωN )− v(ω1, . . . , ω̃k, . . . ,ωN )| ≤ 1

N
sup
x∈X

∣∣∣∣α(ωk)

ρ(ωk)
φ(x;ωk)−

α(ω̃k)

ρ(ω̃k)
φ(x; ω̃k)

∣∣∣∣
≤ 2‖f‖ρ

N
=: ∆v,

(76)
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where we used the triangle inequality for the ‖ · ‖L∞ norm, and uniform bounded on φ.
We would like to apply McDiarmid’s concentration inequality: P(v ≥ E[v] + t) ≤ exp(− 2t2

N∆2
v
),

which requires us to estimate the expectation of v. To do this, following [37, 38] we exploit
properties of Rademacher random variables [5]. Using the triangle inequality and Lemma 5 yields

Eω[v] ≤ 2Eω,ξ sup
x∈X

∣∣∣∣∣∣
N∑
j=1

ξjc
?
jφ(x;ωj)

∣∣∣∣∣∣
= 2Eω,ξ sup

x∈X

∣∣∣∣∣∣
N∑
j=1

ξjc
?
j (φ(x;ωj)− φ(0) + 1)

∣∣∣∣∣∣
≤ 2Eω,ξ sup

x∈X

∣∣∣∣∣∣
N∑
j=1

ξjc
?
j (φ(x;ωj)− φ(0))

∣∣∣∣∣∣+ 2Eξ

∣∣∣∣∣∣
N∑
j=1

ξjc
?
j

∣∣∣∣∣∣ ,
(77)

noting that φ(0) = 1. The second term above can be bounded using Lemma 4 and recalling that
|c?j | ≤ ‖f‖ρ/N :

2Eξ

∣∣∣∣∣∣
N∑
j=1

ξjc
?
j

∣∣∣∣∣∣ ≤ 2

√√√√ N∑
j=1

|c?j |2 ≤
2‖f‖ρ√
N

. (78)

We now bound the first term. Let c?j := |c?j | exp(iθj) and note that by Euler’s formula

c?jφ(x;ωj) = |c?j | cos(〈x,ωj〉+ θj) + i|c?j | sin(〈x,ωj〉+ θj).

Therefore,

Eω,ξ sup
x∈X

∣∣∣∣∣∣
N∑
j=1

ξjc
?
j (φ(x;ωj)− φ(0))

∣∣∣∣∣∣
≤ Eω,ξ sup

x∈X

∣∣∣∣ N∑
j=1

ξj |c?j |(cos(〈x,ωj〉+ θj)− cos(θj) + i sin(〈x,ωj〉+ θj)− i sin(θj))

∣∣∣∣
≤ Eω,ξ sup

x∈X

∣∣∣∣∣∣
N∑
j=1

ξj |c?j | (cos(〈x,ωj〉+ θj)− cos(θj))

∣∣∣∣∣∣
+ Eω,ξ sup

x∈X

∣∣∣∣∣∣
N∑
j=1

ξj |c?j | (sin(〈x,ωj〉+ θj)− sin(θj))

∣∣∣∣∣∣

(79)

The functions |c?j | (cos(·+ θj)− cos(θj)) and |c?j | (sin(·+ θj)− sin(θj)) are ‖f‖ρ/N -Lipschitz and
are zero at zero. Thus, using Lemma 6 we may write,

2Eω,ξ sup
x∈X

∣∣∣∣∣∣
N∑
j=1

ξjc
?
j (φ(x;ωj)− φ(0))

∣∣∣∣∣∣ ≤ 8‖f‖ρ
N

Eω,ξ sup
x∈X

∣∣∣∣∣∣
N∑
j=1

ξj〈x,ωj〉

∣∣∣∣∣∣
≤ 8‖f‖ρ

N
sup
x∈X
‖x‖ Eω,ξ

∥∥∥∥∥∥
N∑
j=1

ξjωj

∥∥∥∥∥∥
≤ 8‖f‖ρR

N
Eω,ξ

∥∥∥∥∥∥
N∑
j=1

ξjωj

∥∥∥∥∥∥

(80)
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where we used the Cauchy-Schwartz inequality to establish the second inequality. Next, note
that by Jensen’s inequality and Lemma 4

Eω,ξ

∥∥∥∥∥∥
N∑
j=1

ξjωj

∥∥∥∥∥∥ ≤
√√√√√Eω,ξ

∥∥∥∥∥∥
N∑
j=1

ξjωj

∥∥∥∥∥∥
2

≤
√
NEω‖ω‖2. (81)

Altogether, we have the bound

E[v] ≤
2‖f‖ρ(1 + 4R

√
E‖ω‖2)√

N
=: Mv. (82)

We are now in a position to apply McDiarmid’s concentration inequality to obtain

P(v ≥Mv + t) ≤ P(v ≥ E[v] + t) ≤ exp

(
− 2t2

N∆2
v

)
. (83)

By setting Mv + t ≤ ε‖f‖ρ and the probability bound on the right hand side of the equation
above to δ, we solve for N and t to obtain

t = ‖f‖ρ

√
2

N
log

(
1

δ

)
, (84)

and

N ≥ 4

ε2

(
1 + 4R

√
E‖ω‖2 +

√
1

2
log(1/δ)

)2

(85)

which completes the proof. �

C Proof of Lemma 2

Lemma 2. Let f ∈ F(φ, ρ), where φ(x;ω) = exp(i〈x,ω〉) and ρ(ω) is the density corresponding
to a spherical Gaussian with variance σ2, N (0, σ2Id). For a fixed γ and q with q ≤ d, consider a set
of data samples x1, . . . ,xm ∼ N (0, γ2Id) and a complete set of q-sparse feature weights ω1, . . . ,ωN
drawn from N (0, σ2Iq). Let A ∈ Cm×N denote the associated random feature matrix where
ak,j = φ(xk;ωj) and f ] be define from Algorithm 1 and Equation (4) with η =

√
2(ε2‖f‖2ρ + E2).

Let f? be defined as

f?(x) :=
N∑
j=1

c?j exp(i〈x,ωj〉), where c?j :=
α(ωj)

Nρ(ωj)
. (86)

For a given s, if the feature parameters σ and N , the confidence δ, the accuracy ε, and the target
radius R are chosen so that the following conditions hold:

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 ,

N ≥ 4

ε2

(
1 + 4Rσ

√
q +

√
1

2
log

(
1

δ

))2

,

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ

R ≥ γ

√
d+

√
12d log

(m
δ

)
.
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Then, with probability at least 1− 3δ the following error bound holds:

sup
x:‖x‖≤R

|f ](x)− f?(x)| ≤ C ′ κs,1(c?) + Cη
√
s, (87)

where C,C ′ > 0 are constants.

The proof of this lemma relies on two intermediate results which we outline next.

Lemma 8 (Samples Lie in the Domain). Suppose that x1, . . . ,xm ∼ N (0, γ2Id) are i.i.d.
Gaussian points and thus E‖x‖2 = dγ2. Let R > 0 be a fixed radius. Then, for any 0 < δ < 1,
the probability of all m samples x1, . . . ,xm ∈ Bd(R) is at least 1− δ provided that:

R ≥ γ

√
d+

√
12d log

(m
δ

)
. (88)

Proof. Straightforward using the concentration result in Definition 5 and the union bound. �

Lemma 9 (Coherence Analysis). Consider a complete set of q-sparse feature weights in Rd,
ω1, . . . ,ωN drawn from N (0, σ2Iq) and a set of data samples x1, . . . ,xm ∼ N (0, γ2Id). Define
the random features φ(x;ω) = exp(i〈x,ω〉) and let A ∈ Cm×N denote the associated random
feature matrix where ak,j = φ(xk;ωj). For a fixed 0 < δ < 1 and for some integer s ≥ 1, suppose

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ
(89)

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 , (90)

then we have with probability at least 1− δ, that the coherence of A is bounded by

µA ≤
4√

41(2s− 1)
. (91)

Proof. Let aj ,a` denote two columns of A. Let Sj ,S` denote the support sets of ωj ,ω`, respec-
tively, and let G = Sj ∩ S`. Then using the characteristic function of the Gaussian distribution

E[〈aj ,a`〉 | Sj ,S`] = Eωj ,ω`

Exk

 m∑
j=1

exp(i〈ωj − ω`,xk〉) | ωj ,ω`

 | Sj ,S`


= Eωj ,ω`

[
m exp

(
−γ

2

2
‖ωj − ω`‖2

)
| Sj ,S`

]
= mEωj ,ω`

[
exp

(
−γ

2

2
(ωj − ω`)

2
1

)
. . . exp

(
−γ

2

2
(ωj − ω`)

2
d

)
| Sj ,S`

]

= m

(
1√

2γ2σ2 + 1

)|G|(
1√

γ2σ2 + 1

)2q−2|G|

=: mΓj`,

(92)

where 0 ≤ max{2q − d, 0} ≤ |G| ≤ q ≤ d. Assuming that q < d
2 we have the following bound(

1√
γ2σ2 + 1

)2q

=: Γmin ≤ Γj,` ≤

(
1√

2γ2σ2 + 1

)q
, (93)
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using the inequality 2γ2σ2 + 1 ≤
(
γ2σ2 + 1

)2. Given that xk’s are i.i.d., applying the Bernstein’s
inequality and recalling that µj` =

〈aj ,a`〉
m , yields

P(|µj` − Γj`| ≥ Γj` | Sj ,S`) ≤ 2 exp

(
−

1
2m

2Γj`
2

m+ 2
3mΓj`

)
. (94)

Since Γj` ≤ 3
2 , the last result simplifies to

P(|µj` − Γj`| ≥ Γj` | Sj ,S`) ≤ 2 exp

(
−1

4
mΓj`

2

)
≤ 2 exp

(
−1

4
mΓ2

min

)
. (95)

Taking a union bound over all
(
N
2

)
≤ N2

2 pairs of columns implies that

P(∃ k, ` s.t. |µj` − Γj`| ≥ Γj`) ≤ N2 exp

(
−1

4
mΓ2

min

)
≤ δ. (96)

Therefore, if

m ≥ 4

Γ2
min

log
N2

δ
(97)

then with probability at least 1− δ,

µA ≤ 2 max
k,`

Γj`.

For stable recovery, we enforce that

µA ≤ 2 max
k,`

Γj` ≤ 2

(
1√

2γ2σ2 + 1

)q
≤ 4√

41(2s− 1)
. (98)

This implies the following uncertainty principle

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 . (99)

To establish a suitable lower bound for m, we impose

4

Γ2
min

log
N2

δ
= 4(γ2σ2 + 1)2q log

N2

δ
≤ m. (100)

When q ≥ d/2, we have that |G| ranges between 2q − d and q. Then analogously(
1√

2γ2σ2 + 1

)2q−d(
1√

γ2σ2 + 1

)2d−2q

=: Γmin ≤ Γj,` ≤

(
1√

2γ2σ2 + 1

)q
which implies the uncertainty principle

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 , (101)

and the lower bound for the number of samples

m ≥ 4(2γ2σ2 + 1)2q−d(γ2σ2 + 1)2d−2q log
N2

δ
. (102)

This concludes the proof of Lemma 9. �
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Proof of Lemma 2. Fix a radius R. Then, by Hölder’s inequality and the fact that ‖φ(·;ω)‖∞ ≤ 1,
we have

sup
‖x‖2≤R

|f ](x)− f?(x)| ≤ ‖c] − c?‖1. (103)

The error between y and Ac? is bounded by

‖y −Ac?‖2 =
m∑
k=1

(f(xk)− f?(xk) + ek)
2

≤ 2

(
m∑
k=1

(f(xk)− f?(xk))2 +
m∑
k=1

e2
k

)

≤ 2m

(
sup
‖x‖2≤R

|f(x)− f?(x)|2 + E2

)
≤ 2m(ε2‖f‖2ρ + E2) =: mη2

(104)

where by Lemma 8 the second to last inequality holds with probability exceeding 1− δ provided
that

R ≥ γ

√
d+

√
12d log

(m
δ

)
,

and the final inequality holds with probability exceeding 1− δ if

N ≥ 4

ε2

(
1 + 4R

√
E‖ω‖2 +

√
1

2
log

(
1

δ

))2

.

The final inequality above holds with probability at least 1− 2δ. Therefore, if the number of
measurements m is between

δ exp

(
d

12

(
R2

γ2d
− 1

)2
)
≥ m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log

N2

δ
(105)

and the other stated conditions hold, then with probability at least 1− 3δ, the coherence of A is
bounded by

µA ≤
4√

41(2s− 1)
. (106)

Thus by Lemma 7,

sup
‖x‖2≤R

|f ](x)− f?(x)| ≤ ‖c] − c?‖1 ≤ C ′κs,1(c?) + C
√
sη, (107)

which concludes the proof of Lemma 2. �

D Proofs for the Generalization Bounds

To bound the generalization error, we extend Lemma 1 and Lemma 2. We cannot directly bound
the generalization error with the sup-norm results when the probability measure µ does not
have compact support. This is circumvented by introducing a log1/2

(
m
δ

)
term to the complexity

bound for N .

Lemma 10 (Generalization Error, Term 1). Fix the confidence parameter δ > 0 and
accuracy parameter ε > 0. Recall the setting of Algorithm 1 and suppose f ∈ F(φ, ρ) where
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φ(x;ω) = exp(i〈x,ω〉). The data samples xk have probability measure µ(x) and weights ωj are
sampled using the probability density ρ(ω). Consider the random feature approximation

f?(x) :=
N∑
j=1

c?j exp(i〈x,ωj〉), where c?j :=
α(ωj)

Nρ(ωj)
. (108)

If the number of features N satisfies the bound

N ≥ 1

ε2

(
1 +

√
2 log

(
1

δ

))2

, (109)

then, with probability at least 1− δ with respect to the draw of the weights ωj the following holds√∫
Rd

|f(x)− f?(x)|2 dµ ≤ ε‖f‖ρ. (110)

Proof. The proof follows similar arguments to those found in [37,38]. The coefficients are bounded

by |c?j | ≤
‖f‖ρ
N

and, for fixed x, Eω[f?(x)] = f(x). Define the random variable

v(ω1, . . . ,ωN ) := ‖f − f?‖L2(dµ) = ‖Eω [f?]− f?‖L2(dµ) =

(∫
Rd

|Eω [f?(x)]− f?(x)|2dµ
) 1

2

.

To apply McDiarmid’s inequality, we show that v is stable to perturbation. In particular, let
f? be the random feature approximation using random weights (ω1, . . . ,ωk, . . . ,ωN ) and let f̃?

be the random feature approximation using random weights (ω1, . . . , ω̃k, . . . ,ωN ), then

|v(ω1, . . . ,ωk, . . . ,ωN )− v(ω1, . . . , ω̃k, . . . ,ωN )| ≤
∥∥∥f? − f̃?∥∥∥

L2(dµ)

= ‖c?k exp(i〈·,ωk〉)− c̃?k exp(i〈·, ω̃k〉)‖L2(dµ)

=
1

N

∥∥∥∥α(ωk)

ρ(ωk)
exp(i〈·,ωk〉)−

α(ω̃k)

ρ(ω̃k)
exp(i〈·, ω̃k〉)

∥∥∥∥
L2(dµ)

≤ 1

N
sup
x

∣∣∣∣α(ωk)

ρ(ωk)
exp(i〈x,ωk〉)−

α(ω̃k)

ρ(ω̃k)
exp(i〈x, ω̃k〉)

∣∣∣∣
≤ 2‖f‖ρ

N
=: ∆v,

(111)

where we used the triangle inequality for ‖ · ‖L2(dµ) in the first line, Hölder’s inequality in the
fourth line, and the uniform bound |exp(i〈x,ω〉)| = 1 in the fifth line.

To estimate the expectation of v, we bound the expectation of the second moment [38]. By
noting that the variance of an average of i.i.d. random variables is the average of the variances of
each variable and by using the relation between the variance and the un-centered second moment,
we have that

Eω[v2] = Eω‖Eω [f?]− f?‖2L2(dµ)

=
1

N

(
Eω

∥∥∥∥α(ω)

ρ(ω)
exp(i〈·,ω〉)

∥∥∥∥2

L2(dµ)

−
∥∥∥∥Eω

[
α(ω)

ρ(ω)
exp(i〈·,ω〉)

]∥∥∥∥2

L2(dµ)

)

≤ 1

N
Eω

∣∣∣∣α(ω)

ρ(ω)

∣∣∣∣2
≤
‖f‖2ρ
N

.

(112)
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By Jensen’s inequality, the expectation of v is bounded by:

Eω[v] ≤
(
Eω[v2]

) 1
2 ≤ ‖f‖ρ√

N
. (113)

Applying McDiarmid’s concentration inequality yields

P
(
v ≥ ‖f‖ρ√

N
+ t

)
≤ P(v ≥ E[v] + t) ≤ exp

(
− 2t2

N∆2
v

)
. (114)

Setting t and N to

t = ‖f‖ρ

√
2

N
log

(
1

δ

)
, (115)

and

N ≥ 1

ε2

(
1 +

√
2 log

(
1

δ

))2

(116)

enforces that Mv + t ≤ ε‖f‖ρ and that the probability of failure is less than δ. This completes
the proof. �

Lemma 11 (Generalization Error, Term 2). Let f ∈ F(φ, ρ), where φ(x;ω) = exp(i〈x,ω〉).
For a fixed γ and q, consider a set of data samples x1, . . . ,xm ∼ N (0, γ2Id) with µ(x) denoting the
associated probability measure and a complete set of N q-sparse feature weights in Rd, ω1, . . . ,ωN
drawn from N (0, σ2Iq). Assume that the noise is bounded by E =

√
2ν or that the noise terms ej

are drawn i.i.d. from N (0, ν2). Let A ∈ Cm×N denote the associated random feature matrix where
ak,j = φ(xk;ωj) and f ] be define from Algorithm 1 and Equation (4) with η = 2

√
ε2‖f‖2ρ + 2ν2.

Let the random feature approximation f? be defined as

f?(x) :=

N∑
j=1

c?j exp(i〈x,ωj〉), where c?j :=
α(ωj)

Nρ(ωj)
. (117)

For a given s, if the feature parameters σ and N , the confidence δ, and the accuracy ε are chosen
so that the following conditions hold:

γ2σ2 ≥ 1

2

(√41(2s− 1)

2

) 2
q

− 1

 ,

N ≥ 4

ε2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
1

2
log

(
1

δ

)2

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ
.

Then, with probability at least 1− 3δ the following error bound holds:√∫
Rd

|f#(x)− f?(x)|2 dµ ≤ C ′ κs,1(c?) + Cη
√
s, (118)

where C,C ′ > 0 are constants.

Proof of Lemma 2. Using Hölder’s twice and ‖φ(·;ω)‖L∞(Rd) ≤ 1, we have√∫
Rd

|f#(x)− f?(x)|2 dµ ≤ sup
x∈Rd

|f ](x)− f?(x)| ≤ ‖c] − c?‖1. (119)
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To apply the sparse recovery results, we must bound the difference between y and Ac?, in
particular,

‖y −Ac?‖22 =
m∑
j=1

(f(xj)− f?(xj) + ej)
2

≤ 2

 m∑
j=1

(f(xj)− f?(xj))2 +

m∑
j=1

e2
j


= 2

 m∑
j=1

(f(xj)− f?(xj))2 + ‖e‖22

 .

(120)

where e := [e1, . . . , em]T ∈ Rm is the noise vector. The assumption is that either ‖e‖22 ≤ 4ν2m
or that e is a random vector with i.i.d. elements drawn from N (0, ν2). In the second case, with
probability at least 1− δ, the norm is bounded by ‖e‖22 ≤ 4ν2m, as long as m ≥ 2 log

(
1
δ

)
which

always holds by assumption.

Following the proof of Lemma 2, by setting R(d,m, δ, γ) := γ

√
d+ d

√
12
d log m

δ , we have:

1

m

m∑
j=1

(f(xj)− f?(xj))2 ≤ sup
‖x‖2≤R(d,m,δ,γ)

|f(x)− f?(x)|2 ≤ ε2‖f‖2ρ. (121)

Therefore, if the number of features satisfies

N ≥ 4

ε2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
1

2
log

(
1

δ

)2

then with probability exceeding 1 − 2δ, η2 = 2(ε2‖f‖2ρ + 2ν2) holds. Note that the bound in
Equation (121) is taken over the ball of radius R(d,m, δ, γ) since this is the domain in Rd which
(with high probability) contains the samples {xj}mj=1. It is important to note that this bound is
needed for determining the stability parameter η, which directly controls the errors through the
sparse recovery bounds.

We can apply Lemma 9, since the stated conditions hold, thus with probability at least 1−3δ,
the coherence of A is bounded by

µA ≤
4√

41(2s− 1)
. (122)

The upper bound for m that appears in Lemma 9 holds directly by the choice of R = R(d,m, δ, γ).
By Lemma 7, the sup-norm is controlled by

sup
x
|f ](x)− f?(x)| ≤ ‖c] − c?‖1 ≤ C ′κs,1(c?) + C

√
sη. (123)

It is worth noting that the supremum in Equation (123) is taken over all Rd since ‖φ(·;ω)‖L∞(Rd) ≤
1, therefore,√∫

Rd

|f#(x)− f?(x)|2 dµ ≤ sup
x
|f ](x)− f?(x)| ≤ ‖c] − c?‖1 ≤ C ′κs,1(c?) + C

√
sη, (124)

which completes the proof. �

E Extensions Outlined in Section 5

We provide the proof of the results in Section 5.
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E.1 Bias Parameter

Consider the case where we use features of the form exp(i〈x,ωj〉 + ipj), where {pj} are i.i.d.
drawn from a symmetric distribution (e.g., Gaussian or uniform) and independent of {ωj}. Note
that these features satisfy the conditions of Lemma 1, hence after redefining

c?j :=
α(ωj) exp (−i pj)

Nρ(ωj)
,

we can directly apply this lemma. However, regarding Lemma 2, we need to account for the
inclusion of the bias term pj . To this end, consider the derivation of the separation quantities in
(92). We can write

E[〈aj ,a`〉 | Sj ,S`] = Eω,p

[
Exk

[
m∑
k=1

exp(i〈ωj − ω`,xk〉+ i(pj − p`)) | ωj ,ω`

]
| Sj ,S`

]

= Epj ,p` [exp(i(pj − p`))] Eωj ,ω`

[
m exp

(
−γ

2

2
‖ωj − ω`‖2

)
| Sj ,S`

]

= mψ2(p)

(
1√

2γ2σ2 + 1

)|G|(
1√

γ2σ2 + 1

)2q−2|G|

=: mΓj`,

(125)

where ψ is the characteristic function for the probability distribution for p. Therefore, the new
separation quantities are proportional to ψ2(p). For instance, if pk ∼ N (0, 1), then ψ2(p) = 1/e.
Therefore, the conditions derived in Lemma 2 hold up to some constants depending on the
characteristic function of p.

Note that we can further consider the case where xk ∼ N (x̄, γ2Id). Specifically, x̄ can be
thought of as a deterministic bias; hence in (92) we have the additional term exp(ix̄). Since
| exp(ix̄)| = 1, we can directly apply Lemma 2 without any adjustments.

E.2 Proof of Theorem 5

Our proofs naturally extend to the case where the activation functions are real trigonometric
functions. The integral representation is now a sum of two terms, one cosine and one sine. In
this setting, when we draw N random weights ω, then the matrix A will have 2N columns.
Therefore, up to constants, we obtain the same complexity bound N as in the case of complex
exponential. To extend the proof for the mutual coherence bound on A, we have to consider four
cases for the inner products between columns

E

[
m∑
k=1

cos(〈ωj ,xk〉) cos(〈ω`,xk〉) | Sj , S`

]
= m

(
1√

2γ2σ2 + 1

)|G|(
1√

γ2σ2 + 1

)2q−2|G|

,

E

[
m∑
k=1

sin(〈ωj ,xk〉) sin(〈ω`,xk〉) | Sj , S`

]
= 0,

E

[
m∑
k=1

sin(〈ωj ,xk〉) cos(〈ω`,xk〉) | Sj , S`

]
= 0,

E

[
m∑
k=1

sin(〈ωj ,xk〉) cos(〈ωj ,xk〉) | Sj , S`

]
= 0.

(126)
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The norm of each column is given by

E

[
m∑
k=1

cos2(〈ωj ,xk〉)

]
=
m

2
+
m

2

(
1√

4γ2σ2 + 1

)q
,

E

[
m∑
k=1

sin2(〈ωj ,xk〉)

]
=
m

2
− m

2

(
1√

4γ2σ2 + 1

)q
.

(127)

The proof follows from a modification of Lemma 9. Note that we have the following bound:

0 ≤ Γj,` ≤ 2

(
1√

2γ2σ2 + 1

)q
, (128)

where the minimum is obtained when at least one column is sine and the maximum is obtained
when both columns are cosine. Consider the case when q < d

2 and define the following value

Γmin+ :=

(
1√

γ2σ2 + 1

)2q

,

which is the minimum non-zero value of Γk,`. Then by Bernstein’s inequality we have

P(|µj` − Γj`| ≥ Γmin+ | Sj ,S`) ≤ 2 exp

(
−

1
2m

2Γ2
min+

m+ 2
3mΓmin+

)
, (129)

since the sum of the second moments are bounded by m. Since Γmin+ ≤ 3
2 , we have

P(|µj` − Γj`| ≥ Γmin+ | Sj ,S`) ≤ 2 exp

(
−1

4
mΓ2

min+

)
. (130)

As before, taking the union bound leads to

P(∃ k, ` s.t. |µj` − Γj`| ≥ Γmin+) ≤ N2 exp

(
−1

4
mΓ2

min+

)
≤ δ (131)

and thus

m ≥ 4

Γ2
min+

log
N2

δ
. (132)

Therefore, with probability at least 1− δ,

µA ≤ Γmin+ + Γj` ≤ 2 max
j,`

Γj` ≤ 4

(
1√

2γ2σ2 + 1

)q
.

The rest follows from Lemma 9.

E.3 Proof of Theorem 6

Note that we can directly apply Lemma 1 to bound the first source of error in both settings
of bounded ρ-norm and low order functions. To study the second error terms, we can obtain
analogous bounds on the separation quantities and hence the coherence constant if x1, . . . ,xm ∼
U(−γ, γ)d. To this end, we first we need an analogous of Lemma 8 whose proof is a direct
consequence of the Hoeffding’s inequality and the union bound.
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Lemma 12 (Samples Lie in the Domain). Suppose that x1, . . . ,xm ∼ U(−γ, γ)d are i.i.d.
uniform points and thus E‖x‖2 = dγ2/3. Let 0 < R < γ

√
d be a fixed radius. Then, for any

0 < δ < 1, the probability of all m samples x1, . . . ,xm ∈ Bd(R) is at least 1− δ provided that:

m ≤ δ exp

(
2d

9

(
3R2

γ2d
− 1

)2
)
. (133)

If R ≥ γ
√
d, then x1, . . . ,xm ∈ Bd(R) for any m ≥ 1.

Therefore, we replace (92) by

E[〈aj ,a`〉 | Sj ,S`] = m

(√
π erf(γσ)

2γσ

)|G|√π erf
(
γσ√

2

)
√

2γσ

2q−2|G|

=: mΓj`. (134)

Since
√
π erf(γσ)

2γσ
≥

√π erf
(
γσ√

2

)
√

2γσ

2

,

we can apply the same steps as the proof for normally distributed data in Lemma 9, as long as

m ≤ δ exp

(
2d

9

(
3R2

γ2d
− 1

)2
)

only needed if R < γ
√
d,

m ≥ 4

(
2γσ√

π erf(γσ)

)2 max{2q−d,0}
 √

2γσ
√
π erf

(
γσ√

2

)
2 min{2q,2d−2q}

log
N2

δ
,

γσ

erf(γσ)
≥
√
π

4

(√
41(2s− 1)

2

) 1
q

,

(135)

with probability at least 1− δ, we have that

µA ≤
4√

41(2s− 1)
. (136)

To simplify the equations, if we consider γσ ≥ 2, then γσ ≤ γσ
erf(γσ) ≤

√
2γσ. Therefore, the

bounds can be replaced with

m ≤ δ exp

(
2d

9

(
3R2

γ2d
− 1

)2
)

only needed if R < γ
√
d,

m ≥ 4

(
2
√

2γσ√
π

)2 max{2q−d,0} (
2γσ√
π

)2 min{2q,2d−2q}
log

N2

δ
,

γσ ≥ min


√
π

4

(√
41(2s− 1)

2

) 1
q

, 2

 .

(137)

E.4 Proof of Theorem 7

We will show that we obtain similar results when the non-zero entries of ω are drawn from a
centered subgaussian distribution (see Definition 5). We restrict ourselves to the case where the
data comes from a normal distribution. Let x1, . . . ,xm ∼ N (0, γ2Id) and q-sparse ω1, . . . ,ωN be
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from a centered subgaussian distribution with variance σ2, and construct the matrix A ∈ Cm×N
so that akj = exp(i〈xk,ωj〉). Note that we can directly apply the result of Lemma 1 to bound
the first source of error. We provide bounds on the mutual coherence of A by bounding the
separation quantities.

Lemma 13. Construct the random feature matrix A as above. Fix 0 < δ < 1 and define

t :=
29/4σ

√
q

E[‖ω1 − ω2‖2]

√
log

N2

δ
. (138)

Assume that t < 1 and

γ2E[‖ω1 − ω2‖2] ≥ 2

(1− t)
log

(√
41(2s− 1)

2

)
,

m ≥ 4 exp
(
2γ2E[‖ω1 − ω2‖2]

)
log

N2

δ
,

R ≥ γ

√
d+

√
12d log

(m
δ

)
.

(139)

Then, with probability at least 1− 2δ, we have

µA ≤
4√

41(2s− 1)
. (140)

To proceed, we prove the following lemmata.

Lemma 14. Given ω1, . . . ,ωN ∈ Rd, assume that the data points x1, . . . ,xm are i.i.d. sampled
from N (0, γ2Id). Define

Γj` := exp

(
−γ

2

2
‖ωj − ω`‖2

)
and let Γmin and Γmax be a lower and upper bound respectively with Γmax ≤ 3

2 . For a given
0 < δ < 1, if

m ≥ 4

Γ2
min

log
N2

δ
(141)

then with probability at least 1− δ with respect to the draw of the x′js, the mutual coherence of A
satisfies

µA ≤ 2Γmax. (142)

Proof. Since the features are complex exponential, the norm of each is column is
√
m, thus it

suffices to only consider the inner products between pairs of columns. For a fixed pair of weights
ωj and ω`, we have

Ex[akja
?
k`] = Ex[exp(i〈xk,ωj − ω`〉)] = exp

(
−γ

2

2
‖ωj − ω`‖2

)
= Γj`, (143)

where we used the characteristic function of the Gaussian distribution. In addition, we have that
Varx[akja

?
k`] ≤ 1 almost surely. Given that xk’s are i.i.d., we can apply Bernstein inequality to

obtain

P (|µj` − Γj`| ≥ Γj`) = P

∣∣∣∣∣∣
m∑
j=1

ajka
?
j` −mΓj`

∣∣∣∣∣∣ ≥ mΓj`

 ≤ 2 exp

(
−1

2m
2Γj`

2

m+ 2
3mΓj`

)
(144)

The rest follows from the arguments in the proof of Lemma 9. �
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This analysis is similar to the Gaussian case; however, since we do not have access to
the probability distribution for ω, we use properties of subgaussian distributions to obtain
concentration results for the key quantities

∆j` := ‖ωj − ω`‖, ∆max := max
j 6=`

∆j`, ∆min := min
j 6=`

∆j`. (145)

Lemma 15. Let ω1, . . . ,ωN be a collection of q-sparse i.i.d. random vectors in Rd with arbitrary
supports where their nonzero entries are i.i.d. subgaussian. For any 0 < δ < 1 define

t :=
29/4σ

√
q

E[‖ω1 − ω2‖2]

√
log

N2

δ
. (146)

Then with probability at least 1− δ

∆max < (1 + t)E[‖ω1 − ω2‖2], ∆min > (1− t)E[‖ω1 − ω2‖2]. (147)

Proof. Define u = ‖ω1 − ω2‖2. Let S1 and S2 denote the support of ω1 and ω2, respectively,
each with cardinality q. Define

G = S1 ∩ S2, G1 = S1\G, G2 = S2\G. (148)

Then,

u = ‖ω1 − ω2‖2 =
d∑
i=1

(ω1,i − ω2,i)
2 =

∑
i∈G

(ω1,i − ω2,i)
2 +

∑
i∈G1

ω2
1,i +

∑
i∈G2

ω2
2,i. (149)

Let Y , Y1, and Y2 be the first, second, and third terms in the above expression, respectively, and
note that they are conditionally independent given S1,S2. By the first part of Lemma 3, and the
fact that Y , Y1, and Y2 are sums of squared of SG(2σ2) random variables, it holds that [24]

Y ∼ SE(8
√

2|G|σ2, 8σ2), Y1, Y2 ∼ SE(4
√

2(q − |G|)σ2, 4σ2). (150)

Thus, conditioned on S1 and S2, we conclude that u ∼ SE(8
√

2qσ2, 8σ2). Therefore, using
Lemma 3 yields

P(|u− E[u]| ≥ tE[u]) ≤ 2 exp

(
t2E[u]2

16
√

2qσ2

)
, (151)

by noting that we can remove the conditioning given that the parameters of u are uniformly
bounded irrespective of the location of the nonzero entries in ω1 and ω2.

Using the bounded separation properties for any ε, ε′ we may write

P (∆min > ε]) = P
(
∩j,`

{
‖ωj − ω`‖2 > ε

})
= 1− P

(
∪j,`

{
‖ωj − ω`‖2 < ε

})
≥ 1−

(
N

2

)
P
(
‖ω1 − ω2‖2 < ε

)
.

(152)

Similarly,

P
(
∆max < ε′

)
≥ 1−

(
N

2

)
P
(
‖ω1 − ω2‖2 > ε′

)
. (153)

Setting ε = (1− t)E[u] and ε′ = (1 + t)E[u], yields

P (∆max < (1 + t)E[u] and ∆min > (1− t)E[u]) ≥ 1−N2 exp

(
− t2E[u]2

16
√

2qσ2

)
. (154)

Setting the RHS of above to 1− δ establishes the stated result. �
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Now we prove Lemma 13.

Proof. We use the notation u = ‖ω1 − ω2‖2 throughout. We need to show that

µA ≤ 2Γmax ≤
4√

41(2s− 1)
(155)

holds with high probability. Conditioned on the event from Lemma 15, which does not occur
with probability at most δ,

∆max < (1 + t)E[u], ∆min > (1− t)E[u], (156)

we have, which again does not occur with probability at most δ,

Γmax = exp

(
−γ

2

2
∆min

)
=⇒ Γmax ≤ exp

(
−γ

2

2
(1− t)E[u]

)
≤ 2√

41(2s− 1)
, (157)

and so

γ2E[u] ≥ 2

(1− t)
log

(√
41(2s− 1)

2

)
. (158)

Similarly, we have conditioned on the above event,

Γ2
min ≥ exp(−γ2∆max) =⇒ Γ2

min ≥ exp(−γ2(1 + t)E[u]) ≥ exp(−2γ2E[u]). (159)

�

Corollary 7.1. In the case where we have E[‖ω1 − ω2‖2] = 2qσ2, which occurs for many
distributions of interest, if we set

t =
25/4

σ
√
q

√
log

N2

δ
(160)

then the bounds become

γ2σ2
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1− 25/4

σ
√
q

√
log
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δ
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≥ 1

q
log

(√
41(2s− 1)

2
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(√
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log
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(161)

40


	1 Introduction
	1.1 Contribution

	2 Approximation via Sparse Random Feature Expansion (SRFE)
	3 Low Order Functions
	4 Theoretical Analysis
	4.1 Uniform Error
	4.2 Generalization Error
	4.3 Proof of Theorem 1
	4.3.1 Bounding the first error term
	4.3.2 Bounding the second error term

	4.4 Proof of Theorem 2

	5 Extensions
	5.1 Real-Valued Functions
	5.2 Uniformly Distributed Data
	5.3 Beyond Gaussian Features

	6 Experimental Results
	6.1 Overfitting and Noise
	6.2 Low Order Approximations
	6.3 HyShot 30 Data
	6.4 NACA Sound Dataset
	6.5 Comparison with Sparse PCE

	7 Conclusion
	A Useful Tools and Definitions
	B Proof of Lemma 1
	C Proof of lem:errorterm2
	D Proofs for the Generalization Bounds
	E Extensions Outlined in Section 5
	E.1 Bias Parameter
	E.2 Proof of Theorem 5
	E.3 Proof of Theorem 6
	E.4 Proof of Theorem 7


