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STREAMING 9-PCA: EFFICIENT GUARANTEES FOR OJA’S ALGORITHM, BEYOND RANK-ONE

UPDATES

DE HUANG, JONATHAN NILES-WEED, AND RACHEL WARD

Abstract. We analyze Oja’s algorithm for streaming 9-PCA, and prove that it achieves performance

nearly matching that of an optimal offline algorithm. Given access to a sequence of i.i.d. 3 × 3 symmetric

matrices, we show that Oja’s algorithm can obtain an accurate approximation to the subspace of the

top 9 eigenvectors of their expectation using a number of samples that scales polylogarithmically with 3.

Previously, such a result was only known in the case where the updates have rank one.

Our analysis is based on recently developed matrix concentration tools, which allow us to prove strong

bounds on the tails of the random matrices which arise in the course of the algorithm’s execution.

1. Introduction

Principal component analysis is one of the foundational algorithms of statistics and machine learn-

ing. From a practical perspective, perhaps no optimization problem is more widely used in data

analysis [18]. From a theoretical perspective, it is one of the simplest examples of a non-convex

optimization problem that can nevertheless be solved in polynomial time; as such, it has been an

important proving ground for understanding the fundamental limits of efficient optimization [30].

In the basic setting, the practitioner has access to a sequence of independent symmetric random

matrices G1, G2, . . . with expectation S ∈ R3×3 . The goal is to approximate the leading eigenspace

of S or, more generally, to approximate the subspace spanned by its leading 9 eigenvectors. While

it is natural to attempt to solve this problem by performing an eigen-decomposition of the empirical

average Ḡ =
1
)

∑)
7=1 G7, the amount of space required by this approach can be prohibitive when 3 is

large. In particular, if the matrices G7 are sparse or low-rank, performing incremental updates with the

matrices G7 may be significantly cheaper than storing all the iterates or their average. A tremendous

amount of attention has therefore been paid to designing algorithms which can cheaply and provably

estimate the subspace spanned by the top 9 eigenvectors of S using limited memory and a single pass

over the data, a problem known as streaming PCA [17].

The simplest and most natural approach to this problem was proposed nearly 40 years ago by

Oja [25, 26]:

(1) Randomly choose an initial guess `0 ∈ R3×9, and set W0 ← QR[`0]
(2) For B ≥ 1, set WB ← QR[(I + [BGB)WB−1].

Here, QR[WB] returns an orthogonal R3×9 matrix obtained by performing the Gram–Schmidt process

to the columns of WB. It is easy to see [1, Lemma 2.2] that the Gram–Schmidt step commutes with the

multiplicative update, so that we can equivalently consider a version of the algorithm which performs

a single orthonormalization at the end, and outputs

WB = QR[`B] , `B = _ B . . ._1`0 ,
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where _ 7 := (I + [7G7).
Oja’s algorithm can be viewed as a noisy version of the classic orthogonal iteration algorithm for

computing invariant subspaces of a symmetricmatrix [12, Section 7.3.2]; alternatively, it corresponds to

projected stochastic gradient descent on the Stiefelmanifold ofmatrices with orthonormal columns [9].

Despite its simplicity and practical effectiveness, Oja’s algorithm has proven challenging to analyze

because of its inherent non-convexity.

As a benchmark against which to compare Oja’s algorithm, we may consider the performance of the

simple offline algorithm which computes the leading 9 eigenvectors of Ḡ. We write \ ∈ R3×9 for the
orthogonal matrix whose columns are the leading 9 eigenvectors of S and \̂ ∈ R3×9 for the matrix

containing the leading 9 eigenvectors of Ḡ, and measure the quality of \̂ by the following standard

measure of distance between subspaces:

dist(\̂ ,\) := ‖\\∗ − \̂\̂
∗‖

If ‖G7 − S‖ ≤ " almost surely and the gap between the 9th and (9 + 1)th eigenvalues is d9, then

the Matrix Bernstein inequality [31, Theorem 1.4] combined with Wedin’s Theorem [33] implies that

there exists a positive constant � such that

dist(\̂ ,\) ≤ � "
d9

√
log(3/X)

)
. (1.1)

with probability at least 1 − X.
The key question is whether Oja’s algorithm is able to achieve similar performance. However, except

in the special rank-one case where either 9 = 1 or rank(G7) = 1 almost surely, no such bound is known.

1.1. Our contribution. We give the first results for Oja’s algorithm nearly matching (1.1), for any 9 ≥ 1

and updates of any rank. Our main result (Theorem 2.3) establishes that, after a burn-in period of

)0 = $̃
(
9"2

X2d2
9

)
steps, the output of Oja’s algorithm satisfies

dist(W) ,\) ≤ � ′
"

d9

√
log(9"/Xd9)

) − )0
with probability at least 1 − X for a universal positive constant � ′. Ours is the first work to show that

Oja’s algorithm can achieve a guarantee similar to (1.1) beyond the rank-one case.

The assumption that 9 = 1 or rank(G7) = 1 is fundamental to the proof strategies used in prior works.

To show that the error decays sufficiently quickly, prior work focuses on the quantity ‖[∗`B (\∗`B)−1‖2,
where the columns of [ are the last 3 − 9 eigenvectors of S, which is an upper bound on dist(WB,\).
(See Lemma 2.6, below.) The key challenge is to control the inverse (\∗`B)−1. When 9 = 1, as in

[17], this quantity is a scalar, so it can be pulled out of the norm and bounded separately. This is

no longer possible when 9 > 1, but if rank(G7) = 1, as in [1], then \∗`B can be written as a rank-

one perturbation of \∗`B−1. The Sherman–Morrison formula then implies that [∗`B (\∗`B)−1 can be

written as [∗`B−1(\∗`B−1)−1 plus the sum of explicit, rank-one correction terms. However, if neither

9 = 1 nor rank(G7) = 1, this approach quickly becomes infeasible, since the correction terms now

involve a product of rank-9 matrices whose norm is difficult to bound.

A more subtle difficulty implicit in prior work is that proofs must be carried out entirely in expected

(squared) Frobenius norm. This requirement is necessitated by the fact that the Frobenius norm is

Hilbertian, so it is possible to employ the crucial Pythagorean identity

E‖_ ‖22 = ‖E_ ‖22 + ‖_ −E_ ‖22 (1.2)
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for any random matrix _ . It is this identity that makes it possible to control the evolution of

E‖[∗`B (\∗`B)−1‖22. However, as our proofs reveal, it is of significant utility to be able to recur-

sively control the operator norm ‖[∗`B (\∗`B)−1‖ with high probability instead. Unfortunately, (1.2)

is of no help in proving statements of this kind.

Our argument handles both challenges and represents a significant conceptual simplification over

earlier proofs. Our crucial insight is that, rather than using the squared Frobenius norm, it is possible

to prove a stronger recursion in a different norm, which implies high-probability bounds. Using

techniques recently developed by [16] to prove concentration inequalities for products of random

matrices, we show that conditioned on ‖[∗`B−1(\∗`B−1)−1‖ being well behaved, the probability that

‖[∗`B (\∗`B)−1‖ deviates significantly from its expectation is exponentially small.

In other words, good concentration properties for ‖[∗`B−1(\∗`B−1)−1‖ imply good concentration

properties for the next iterate, ‖[∗`B (\∗`B)−1‖. These high-probability bounds significantly simplify

the calculations, since they allow us to guarantee that the problematic error terms appearing in prior

work are small.

If we knew that ‖[∗`0 (\∗`0)−1‖ = $(1) with high probability, then the above induction argument

would allow us to conclude that ‖[∗`B (\∗`B)−1‖ = $(1) for all B. Unfortunately, this is not the case:

if `0 is randomly initialized with i.i.d. Gaussian entries, then typically

‖[∗`0(\∗`0)−1‖ ≍
√
39 .

We therefore adopt a two-phase approach: in the first, short phase, of length approximately log 3, we

show that the operator norm decays from $(
√
39) to $(1), and in the second phase we use the above

recursive argument to establish that the operator norm decays to zero at a $(1/
√
)) rate. To simplify

the analysis of the first phase, we develop a coupling argument that allows us reduce without loss of

generality to the case where the law PG of the random matrices G1, G2, . . . has finite support and

obtain almost-sure guarantees by a simple union bound. This weak control is enough to guarantee

that ‖[∗`B (\∗`B)−1‖ decays exponentially fast, so that it is of constant order after approximately log 3

iterations.

1.2. Prior work. Obtaining non-asymptotic rates of convergence for Oja’s algorithm and its variants

has been an area of active recent interest [28, 29, 27, 21, 20, 2, 4, 13, 17, 23]. Apart from the results

of [1] and [17], none of these works proves bounds matching (1.1).

A breakthrough in the project of obtaining optimal guarantees was due to [28], who gave an analysis

of Oja’s algorithm that works when provided with a warm start: he showed that, when 9 = 1 and

rank(G7) = 1 almost surely, Oja’s algorithm converges in a number of steps logarithmic in 3 if it is

initialized in a neighborhood of the optimum, but his result does not extend to random initialization

and it is unclear how to find a warm start in practice. This restriction was lifted by [17], who were

the first to show a global, efficient guarantee for Oja’s algorithm when 9 = 1. Subsequently, [1]

gave a global, efficient guarantee for Oja’s algorithm in the 9 > 1 case, but under the restriction that

rank(G7) = 1 almost surely.

The idea of analyzing Oja’s algorithm by developing concentration bounds for products of random

matrices was suggested by [15], who also proved such non-asymptotic concentration bounds in a

simplified setting. Those bounds were later improved by [16] who developed a different technique

based on martingale inequalities for Schatten norms, following a strategy pursued by [19] and [24]

for other Banach space norms. The concentration inequalities of [16] are not sharp enough to recover

optimal rates for Oja’s algorithm on their own; in this work, we use a similar proof techniques to

establish tailor-made concentration results for the Oja setting.
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1.3. Organization of the remainder of the paper. In Section 2, we give our main results and an

overview of our techniques. Our main tool is a recursive inequality which proves a concentration

result for the iterates of Oja’s algorithm, which we state and prove in Section 3.

Our analysis of Oja’s algorithm involves two distinct phases, which we analyze separately. Since the

argument for the second phase is simpler, we present it first in Section 4, and present the slightly more

complicated argument for the first phase in Section 5. We conclude in Section 6 with open questions

and directions for future work. The appendices contain omitted proofs and supplementary results for

each section.

1.4. Notation. We write _1 ≥ · · · ≥ _3 for the eigenvalues of the symmetric matrix S, and we write

d9 := _9 − _9+1 for the gap between the 9th and (9 + 1)th eigenvalue. We write \ ∈ R3×9 for

the orthogonal matrix whose columns are the 9 leading eigenvectors of S, and [ ∈ R3×(3−9) for
the orthogonal matrix whose columns are the remaining eigenvectors. Given an orthogonal matrix

] ∈ R3×9, we write [7]

dist(],\) = ‖\\∗ −]]
∗‖ = ‖[∗]‖ ,

The symbol ‖·‖ denotes the spectral norm (i.e., ℓ2 operator norm) of a matrix, which is equal to its

maximum singular value. For > ≥ 1, the symbol ‖·‖ > denotes the Schatten >-norm, which is the ℓ>
norm of the singular values of its argument. We also define the !> norm of a random matrix ^ as

‖^‖ >,> :=
(
E ‖^ ‖>>

)1/>
.

We employ standard asymptotic notation 0 = $(1) to indicate that 0 ≤ �1 for a universal positive

constant �, and write 0 = Θ(1) if 0 = $(1) and 1 = $(0). The notations $̃(·) and Θ̃(·) suppress
polylogarithmic factors in the problem parameters. When B is a positive integer, we write [B] :=

{1, . . . , B}.

2. Techniques and main results

We focus throughout on the following setup:

Assumption 2.1. The matrices G7 are symmetric, independent, identically distributed samples from a

distribution PG, with expectation S.

Note that while we require that each G7 is symmetric, we do not require that G7 � 0.

The requirement that G7 is symmetric is not as restrictive as it may seem, since we can replace G7

by its Hermitian dilation:

D(G7) :=
(
0 G7

G∗
7

0

)
∈ R23×23 .

Estimating the leading eigenvectors of D(S) is equivalent to estimating the leading singular vectors

of S. Our results therefore extend to the non-symmetric streaming SVD problem as well. We refer

the reader to [32] for more details about this standard reduction.

The second requirement establishes that the random errors are bounded in a suitable norm. We

write S3,9 for the Stiefel manifold of 3 × 9 matrices with orthonormal columns.

Assumption 2.2. If G ∼ PG, then supV∈S3,9 ‖V
∗(G − S)‖2 ≤ " almost surely.

Note that for any matrix ^ ∈ ℝ3×3 ,

sup
%∈S3,9

‖V∗^ ‖2 =
(∑9

7=1
f7 (^)2

)1/2
, 1 ≤ 9 ≤ 3,
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where f1 (^) ≥ f2 (^) ≥ · · · ≥ f3 (^) are the singular values of ^ . This norm, sometimes known as

the (2, 9) norm [22] or the Ky Fan 2-9 norm [8], satisfies

‖^‖ ≤ sup
%∈S3,9

‖V∗^‖2 ≤
√
9‖^ ‖ ≤ ‖^‖2 .

This choice of norm generalizes the error assumptions in the literature. In the 9 = 1 case, it agrees

with the operator norm, which is the condition used by [17]; and it weakens the requirement of [1]

that ‖G7‖2 ≤ 1 almost surely.

The following theorem summarizes our main results for Oja’s algorithm.

Theorem 2.3 (Main, informal). Adopt Assumptions 2.1 and 2.2. Let _1 ≥ . . . _3 be the eigenvalues of

S, and let d9 = _9 − _9+1.
For every X ∈ (0, 1), define learning rates

)0 = Θ̃

(
9"2

X2d2
9

)
, V = Θ̃

(
"2

d2
9

)
, [B =




Θ̃

(
1

d9)0

)
, B ≤ )0

Θ

(
1

d9 (V+B−)0)

)
, B > )0.

Let \ ∈ R3×9 be the orthogonal matrix whose columns are the 9 leading eigenvectors of S. Then for

any ) > )0, the output W) of Oja’s algorithm satisfies

dist(W) ,\) ≤ � ′
"

d9

√
log("9/d9X)

) − )0
with probability at least 1 − X, where � ′ is a universal positive constant.

To prove Theorem 2.3, we adopt a two-phase analysis. Our first result shows that after )0 iterations,

the output of Oja’s algorithm satisfies ‖[∗W)0 (\∗W)0)−1‖ ≤ 1 with high probability.

Theorem 2.4 (Phase I, informal). Adopt the same setting as Theorem 2.3, and let `0 ∈ R3×9 have

i.i.d. Gaussian entries. Let

)0 = Θ

(
9"2

X2d2
9

(
log(3"/Xd9)

)4
)
.

Then after )0 iterations of Oja’s algorithm with constant step size [ = Θ

(
log(3/X)
d9)0

)
and initialization `0,

the output W)0 satisfies

‖[∗W)0 (\∗W)0)−1‖ ≤ 1

with probability at least 1 − X.
Our analysis of the second phase shows that, if Oja’s algorithm is initialized with any matrix

satisfying ‖[∗W0(\∗W0)−1‖ ≤ 1, then the output of Oja’s algorithm decays at the rate $(1/
√
)).

Theorem 2.5 (Phase II, informal). Adopt the same setting as Theorem 2.3, and suppose that `0 ∈ R3×9

satisfies ‖[∗`0(\∗`0)−1‖ ≤ 1. Then after ) iterations of Oja’s algorithm with step size [7 =
8

(V+7)d9 with

V = Θ

(
"2

d2
9

log

(
"9
d9X

))
and initialization W0, the output W) satisfies

dist(W) ,\) ≤ 2e

√
V + 1
V + )

with probability at least 1 − X.
This error guarantee is completely dimension free, and depends only logarithmically on 9 and the

failure probability X.
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Theorem 2.3 follows directly from Theorems 2.4 and 2.5. Theorem 2.4 guarantees that with proba-

bility 1− X, the output of Phase I is a suitable initialization for Phase II, and, conditioned on this good

event, Theorem 2.5 guarantees that the output of the second phase has error$(
√
V/)) with probability

1− X. By concatenating the analysis of the two phases and using the union bound, we obtain that the

resulting two-phase algorithm succeeds with probability at least 1 − 2X, yielding Theorem 2.3.

In the remainder of this section, we describe the main technical tools we employ in our argument.

2.1. A recursive expression. To simplify the argument, we recall the following result of [1, Lemma

2.2]:

Lemma 2.6. For all B ≥ 0,

dist(WB,\) = ‖[∗WB ‖ ≤ ‖[∗WB (\∗WB)−1‖ = ‖[∗`B (\∗`B)−1‖ .

We therefore focus on bounding the norm of the matrix

] B := [
∗
`B (\∗`B)−1 . (2.1)

Under the assumption that [B is small, we might expect that we can write ]B as a sum of the

dominant term

NB := [
∗(I + [BS)`B−1(\∗(I + [BS)`B−1)−1

plus lower order terms.

To argue that ]B is close to NB, we need to argue that the inverse (\∗`B)−1 does not blow up,

which will be the case so long as the fluctuation term [B\
∗(GB −S)`B−1 is smaller than the main term

\∗(I + [BS)`B−1. In order to make this requirement precise, we write

�B := [\∗(GB − S)`B−1(\∗(I + [BS)`B−1)−1 . (2.2)

So long as this matrix has small norm, the inverse term will be well behaved. As we discuss in the

following section, we will be able to guarantee that this is the case by conditioning on an appropriate

good event.

The following lemma shows that, modulo a term involving �B, we can indeed express]B as NB plus

a small correction.

Lemma 2.7. Let ]B, NB, and �B be defined as in (2.1)–(2.2). Then we can write

]B (I − �
2
B ) = NB + PB,1 + PB,2 , (2.3)

for matrices PB,1 and PB,2 of norm $([B) and $([2B ), respectively.

Below, in Propositions A.1 and A.2, we use Lemma 2.7 to develop an explicit recursive bound on the

norm of]B.

2.2. Matrix concentration via smoothness. In order to exploit the expression (2.3), we need concen-

tration inequalities that allow us to conclude that ]B is near NB with high probability. [16] recently

developed new tools to control the norms of products of independent random matrices, in an attempt

to extend the mature toolset for bounding sums of random matrices to the product setting. Their tech-

niques are based on a simple but deep property of the Schatten >-norms known as uniform smoothness.

The most elementary expression of this fact is the following inequality, which is the analogue of (1.2)

for the !> norm.

Proposition 2.8 ([16, Proposition 4.3]). Let ^ and _ be random matrices of the same size, with

E[_ : ^] = 0. Then for any > ≥ 2,

‖^ + _ + `‖2>,> ≤ ‖^‖2>,> + (> − 1)‖_ ‖2>,> .
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We will employ the following corollary of Proposition 2.8, which extends the inequality to non-

centered random matrices.

Proposition 2.9. Let ^ , _ , and ` be random matrices of the same size, with E[_ : ^] = 0. Then for

any > ≥ 2 and _ > 0,

‖^ + _ + `‖2>,> ≤ (1 + _)(‖^ ‖2>,> + (> − 1)‖_ ‖2>,> + _−1‖`‖2>,?)
The benefit of working in the !> norm is that bounding this norm for > large yields good tail

bounds on the operator norm, which are not available if the argument is carried out solely in expected

Frobenius norm. We will rely heavily on this fact heavily in our argument.

2.3. Conditioning on good events. Obtaining control on ]B via (2.3) requires ensuring that the

matrix I − �
2
B is invertible, with inverse of bounded norm. To accomplish this, we define a sequence

of good events G0 ⊃ G1 ⊃ . . . , where each G7 is measurable with respect to the f-algebra F7 :=

f(`0,_1, . . . ,_ 7). We write 17 for the indicator of the event G7, and we will define G7 in such a way

that (I − �
2
B 1B−1) is invertible almost surely.

During Phase II, the good events are defined by

G0 := {‖]0‖ ≤ 1}
G7 := {‖] 7‖ ≤ W} ∩ G7−1 , ∀7 ≥ 1

for some W ≥ 1 to be specified. Since Assumption 2.2 implies that ‖G7 − S‖ ≤ " almost surely, this

definition guarantees that for all 7 ≥ 1,

‖\∗(G7 − S)[] 7−117−1‖ ≤ "W almost surely. (2.4)

As we show in Proposition A.1 below, if the step size is sufficiently small, then (2.4) implies that

I−�2
B is almost surely invertible on GB−1, which allows us to employ (2.3) to bound the norm of]B1B−1.

During Phase I, we condition on a slightly more complicated set of events, which we describe

explicitly in Section 5. However, these events are constructed so that (2.4) still holds for all 7 ≥ 1.

Our matrix concentration results described in Section 2.2 allow us to show that, during both Phase

I and Phase II, ‖]B1B−1‖ is small with high probability, for all B ≥ 1. Using this fact, we show that,

conditioned on GB−1, the probability that GB holds is also large. Bounding the failure probability at

each step, we are able to conclude that, conditioned on the initialization event G0, the good events GB

hold for all B ≥ 1 with high probability.

3. Main recursive bound

In this section, we state our main recursive bound, which we use in both Phase I and Phase II. A

proof appears in Section B.

Theorem 3.1. Let B be a positive integer, and for all 7 ∈ [B], let Y7 = 2[7" (1 + W). Let 11, . . . , 1B be the
indicator functions of a sequence of good events satisfying (2.4) for all 7 ∈ [B].

Assume that for all 7 ∈ [B],

Y7 ≤
1

2
, [7‖S‖ ≤

1

2
, e−[7d9/4 ≤ Y7

Y7−1
, (3.1)

with the convention that the last requirement is vacuous when 7 = 1. Then for any > ≥ 2,

‖]B1B‖2>,> ≤ ‖]B1B−1‖2>,> ≤ e−ABd9 ‖]010‖2>,> + �1>Y
2
B

∑B−1
7=0
‖] 717‖2>,> + �2>9

2/>Y2B B , (3.2)

where AB =
∑B
7=1 [7, �1 = 21, and �2 = 5. Moreover, if in addition for all 7 ∈ [B],

>Y27 ≤
[7d9

50
, (3.3)
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then

‖]B1B‖2>,> ≤ ‖]B1B−1‖2>,> ≤ e−ABd9/2‖]010‖2>,> + �2>9
2/>Y2B B .

Theorem 3.1 shows that, up to small error, ‖]B1B−1‖2>,> decays exponentially fast. We will use this

fact to prove high probability bounds on ‖]B1B−1‖, which then imply bounds on ‖]B‖.

4. Phase II

In this section, we use Theorem 3.1 to prove a formal version of Theorem 2.5.

For this phase, recall that we define the good events G7 by

G0 = {‖]0‖ ≤ 1} , G7 = {‖] 7‖ ≤ W} ∩ G7−1 , ∀7 ≥ 1 . (4.1)

For Phase II, we set W =

√
2e.

We first show that, with a specific step-size schedule, we obtain good bounds on the norm of the

last iterate.

Proposition 4.1. Define the good events as in (4.1). Set [7 =
U

(V+7)d9 , for positive quantities U and V, and

define the normalized gap

d̄9 = min

{
d9

"
,
d9

‖S‖ , 1
}
. (4.2)

If

U ≥ 8 , V ≥ 4(1 +
√
2e)U

d̄9
, (4.3)

then for any B ≥ 1,

‖]B1B‖2>,> ≤ 92/>
(
V + 1
V + B

)U
+ >92/> ·

(
�3U

d̄9

)2
· B

(V + B)2 , (4.4)

where �3 is a numerical constant less than 175.

Proof. Since the good events defined in (4.1) satisfy (2.4), we can apply Theorem 3.1. In the appendix,

we show (Lemma C.1) that (4.3) implies that the assumptions in (3.1) hold. Theorem 3.1 then yields

‖]B1B‖2>,> ≤ e−ABd9 ‖]010‖2>,> + �1>Y
2
B

∑B−1
7=1
‖] 717‖2>,> + �2>9

2/>Y2B B

≤ e−ABd992/> + (�1W
2 + �2)>92/>Y2B B ,

since (4.1) implies ‖]010‖2>,> ≤ 92/> and ‖] 717‖2>,> ≤ W292/> for all 7 ≥ 1.

The definition of [7 implies

d9AB = U
∑B

7=1

1

V + 7 ≥ U log

(
V + B
V + 1

)
.

We obtain

‖]B1B‖2>,> ≤ 92/>
(
V + 1
V + B

)U
+ >92/> ·

(
�3U

d̄9

)2
· B

(V + B)2 ,

where

�3 = (�1W
2 + �2)1/2�Y < 175 ,

as desired. �

Finally, we remove the conditioning and prove the full version of Theorem 2.5.
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Theorem 4.2. Assume ‖]0‖ ≤ 1, and adopt the step size [7 =
U

(V+7)d9 , with

U ≥ 8 , V ≥ 2

(
�3U

d̄9

)2
log

(
�3U

d̄9
· 29/X

)
,

where d̄9 is as in (4.2) and �3 is as in (4.4). Then

‖]) ‖ ≤ 2e

√
V + 1
V + )

with probability at least 1 − X.

Proof. For any A ≥ 0, it holds P {‖]) ‖ ≥ A} ≤ P {‖])1) ‖ ≥ A} + P
{
G
�
)

}
. First, we have

P

{
G
�
)

}
≤ P

{
G
�
0

}
+

∑)

8=1
P

{
G
�
8 ∩ G8−1

}
.

Since we have assumed that the initialization satisfies ‖]0‖ ≤ 1, the event G0 holds with probability

1, so it suffices to bound the second term. By Markov’s inequality, we have

P

{
G
�
8 ∩ G8−1

}
= P

{
‖] 81 8−1‖ ≥ W

}
≤ inf

>≥2
W−>‖] 81 8−1‖ >>,> .

For fixed 8 ≥ 1, we choose > = (V + 8) · d̄2
9

�2
3
U2
. It follows from (4.4) that,

W−>‖] 81 8−1‖ >>,> ≤
(
1

W2
92/>

(
V + 1
V + 8

)U
+ 1

W2
>92/> ·

�2
3U

2

d̄2
9

· 8

(V + 8)2

) >/2

≤ 9
(

1

2e2
+ 1

2e2
8

V + 8

) >/2

≤ 9e−> = 9 exp

(
−(V + 8) ·

d̄2
9

�2
3
U2

)
.

Therefore, for any ) ≥ 1,

∑)

8=1
P

{
G
�
8 |G8−1

}
≤ 9

∑)

8=1
exp

(
−(V + 8) ·

d̄2
9

�2
3
U2

)
≤ 9

�2
3U

2

d̄2
9

e
−V ·

d̄2
9

�2
3
U2 .

This quantity is smaller than X/2 if

V ≥ 2
�2
3U

2

d̄2
9

log

(
�3U"

d̄9
· 29/X

)
.

It remains to bound P {‖])1) ‖ ≥ A}. A simple argument (Lemma C.2) based on (4.4) shows that

this probability is at least X/2 for

A = 2e

√
V + 1
V + ) .

The claim follows. �

5. Phase I

In this section, we describe the slightly more delicate proof of the formal version of Theorem 2.4.

As in Section 4, we will employ Theorem 3.1. However, we will also need to develop an auxiliary

recurrence to bound the growth of an additional matrix sequence.
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Before we analyze Phase I, we first show that we can reduce to the case that that PG has finite

support. We prove the following result in Appendix E.

Proposition 5.1. Fix d > 0. Suppose that there exists a choice of constant step size [ and )0 ≥
9"
dX

log(3/X) such that for any finitely-supported distribution with support size at most )3
0
satisfying

Assumptions 2.1 and 2.2 and with d9 ≥ d/2, we have

‖[∗W)0 (\∗W)0)−1‖ ≤
1

6
(5.1)

with probability at least 1 − X/3.
Then for this same [ and )0 it in fact holds that for any distribution satisfying Assumptions 2.1 and 2.2

and with d9 ≥ d, we have

‖[∗W)0 (\∗W)0)−1‖ ≤ 1

with probability at least 1 − X.

Proposition 5.1 implies that it suffices to prove the error guarantee (5.1) in the special case when

PG has finite support of cardinality at most )3
0 .

Let us fix a time horizon )0 and assume in what follows that ; := |supp(PG) | ≤ )3
0
.We begin by

defining the good events for Phase I. We adopt a constant step size [, to be specified. Denote

E := {"−1 (G − S)[[∗ : G ∈ supp(PG)}.
For 7 ≥ 1, we will set

G7 = {max
K∈E
‖\∗K[] 7‖ ≤ W} ∩ G7−1 .

Note that this choice satisfies (2.4) for all 7 > 1.

To define the initial good event G0, we need to define a larger set of matrices to condition on. For

all @, ℓ ≥ 1, set

E@,ℓ := {\∗L1 · · · L@[ :L 7 ∈ E for at most ℓ distinct indices 7 ∈ [@],
and L 7 = (1 + [_9+1)−1 (I + [S)[[∗ otherwise}

The set E@,ℓ has cardinality less than (@(; + 1))ℓ, and ‖K‖2 ≤ 1 for any K ∈ E@,ℓ, and any @, ℓ ≥ 1.

We have defined E@,ℓ so that control over maxK∈E@+1,ℓ+1 ‖K] B−1‖ gives control over maxK∈E@,ℓ ‖K]B ‖.
Finally, we define

G0 :=
⋂)0+1

@,ℓ=1

{
max
K∈E@,ℓ

‖K]0‖2 ≤
√
ℓW
√
2e

}
∩ {‖]0‖2 ≤

√
3W} . (5.2)

Since \∗(G1 − S)[ ∈ E1,1 almost surely, this choice satisfies (2.4) for 7 = 1.

Our strategy will be similar to the one used in Section 4. However, in order to show that the good

events G7 hold with high probability, we will also need a second recurrence that allows us to control

the norm of matrices of the form K]B, for K ∈ E@,ℓ. The details appear in Section D.

6. Conclusion

This work gives the first nearly optimal analysis of Oja’s algorithm for streaming PCA beyond the

rank one case. Our analysis is conceptually simple: we show that the spectral norm of the matrix ]B

concentrates well around its expectation, once we condition on ] B−1 having the same behavior. And

our concentration results are strong enough that we can pay to union bound over the entire course of

the algorithm, to show that]B is well behaved for all B ≥ 1.

The matrix concentration techniques we have applied here could be useful in analyzing other PCA-

like algorithms, or, more generally, other stochastic algorithms for simple non-convex optimization
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problems. An interesting question is whether these techniques can prove gap-free rates for Oja’s

algorithm outside the rank-one setting. This would extend the results of [1] to the general case.

Finally, we stress that the algorithm we have described here requires a priori knowledge of the

problem parameters (including the gap d9) to set the step sizes, which is a serious limitation in

practice. Recently, [14] developed a data-driven procedure to adaptively select the optimal step sizes.

Obtaining theoretical guarantees for this or similar algorithms is an important open problem.
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Appendix A. Additional results for Section 3

The following proposition develops the expansion described in Lemma 2.7 and gives explicit bounds

on the norms of the error matrices PB,1 and PB,2.

We recall the following definitions

]B = [
∗
`B (\∗`B)−1

NB = [
∗(I + [S)`B−1(\∗(I + [S)`B−1)−1

�B = [B\
∗(GB − S)`B−1(\∗(I + [BS)`B−1)−1

Proposition A.1. Let B ≥ 1. Assume that [B is small enough that S � − 1
2[B

I, and assume that (2.4)

holds for 7 = B. Let

�B = (91/> + 2‖]B−11B−1‖ >,>)
YB = 2[B" (1 + W) .

Then ‖�B1B−1‖ ≤ YB almost surely, and

] B (I − �
2
B ) = NB + PB,1 + PB,2

for PB,1 and PB,2 satisfying

‖PB,11B−1‖ >,> ≤ �BYB

‖PB,21B−1‖ >,> ≤ �BY
2
B ,

and E[PB,1 : FB−1] = 0.

Proof. We employ the notation of the proof of Lemma 2.7. (See Appendix G.) First, we show the bound

on �B. Since [BS � −1
2
I, we have ‖\∗(I+[BS)−1\ ‖ ≤ 2. Moreover, since ‖\∗(GB −S)[,B−1‖ ≤ "W

almost surely, we have that

‖�B1B−1‖ ≤ 2‖[B\∗(GB − S)([[∗ + \\∗)`B−1(\∗`B−1)−11B−1‖
≤ 2[B‖\∗(GB − S)[[∗`B−1(\∗`B−1)−11B−1‖ + 2[B‖\∗(GB − S)\ ‖
= 2[B‖\∗(GB − S)[]B−11B−1‖ + 2[B ‖\∗(GB − S)\ ‖
≤ 2[B" (1 + W) =: YB .

We can bound ‖�̂B1B−1‖ >,> by a similar argument. First, note that Assumption 2.2 implies that

‖GB − S‖ ≤ " almost surely. Hence

‖�̂B1B−1‖ >,> ≤ 2[B‖[∗(GB − S)[[∗/B−1(\∗`B−1)−11B−1‖ >,> + 2[B‖[∗(GB − S)\1B−1‖ >,>
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= 2[B‖[∗(GB − S)[‖ ‖]B−11B−1‖ >,> + 2[B‖[∗(GB − S)\1B−1‖ >,>
≤ (‖]B−11B−1‖ >,> + 91/>)2[B"
≤ (‖]B−11B−1‖ >,> + 91/>)YB ,

Finally, we have

‖NB1B−1‖ >,> ≤
1 + [B_9+1
1 + [B_9

‖]B−11B−1‖ >,> ≤ ‖]B−11B−1‖ >,> .

We now employ Lemma 2.7. The term PB,1 satisfies

E[PB,11B−1 |FB−1] = 0 ,

and we have

‖PB,11B−1‖ >,> ≤ ‖�̂B1B−1‖ >,> + ‖NB1B−1‖ >,>‖�B1B−1‖
≤ (‖]B−11B−1‖ >,> + 91/>)YB + ‖]B−11B−1‖ >,>YB
≤ �BYB .

Finally,

‖PB,2‖ >,> ≤ ‖�̂B1B−1‖ >,>‖�B1B−1‖ ≤ (‖]B−11B−1‖ >,> + 91/>)Y2B ≤ �BY
2
B .

�

Combining Proposition A.1 with Proposition 2.9 immediately yields a recursive bound.

Proposition A.2. Adopt the setting of Proposition A.1. If YB ≤ 1/2, then
‖]B1B‖2>,> ≤ ‖]B1B−1‖2>,> ≤  1,B‖]B−11B−1‖2>,> +  2,B , (A.1)

where

 1,B = (1 + 5Y2B )
{(

1 + [B_9
1 + [B_9+1

)2
+ 8>Y2B

}

 2,B = 5>92/>Y2B .

Proof. Reusing the notation of Proposition A.1, we have

] B1B−1(I − �
2
B ) = NB1B−1 + PB,11B−1 + PB,21B−1 ,

where E[PB,11B−1 : FB−1] = 0. Since NB1B−1 is FB−1-measurable, Proposition 2.9 therefore yields for

any _ > 0

‖]B1B−1(I − �
2
B )‖2>,> ≤ (1 + _)(‖NB1B−1‖2>,> + (> − 1)�2B Y2B + _−1�2B Y4B ) .

Choosing _ = Y2B , we obtain

‖]B1B−1(I − �
2
B )‖2>,> ≤ (1 + Y2B )(‖NB1B−1‖2>,> + >�2B Y2B ) .

Finally, under the assumption that ‖�B1B−1‖ ≤ YB ≤ 1
2
almost surely, on the event GB−1 the matrix

I − �
2
B is invertible and satisfies

‖(I − �
2
B )−11B−1‖ ≤ (1 − ‖�B1B−1‖2)−1 ≤ (1 − Y2B )−1

Hence

‖]B1B−1‖2>,> ≤ ‖]B1B−1(I − �
2
B )‖2>,>‖(I − �B)−11B−1‖ ≤

1 + Y2B
(1 − Y2B )2

(‖NB1B−1‖2>,> + >�2B Y2B ) .
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Since
1+Y2B
(1−Y2B )2

≤ 1 + 5Y2B for all YB ≤ 1
2
and

(1 + 5Y2B )�2B ≤ (1 + 5Y2B )(292/> + 8‖]B−11B−1‖2>,>)
and 2(1 + 5Y2B ) ≤ 5 for all YB ≤ 1

2
, this proves the claim. �

Appendix B. Proof of Theorem 3.1

We will unroll the one-step recurrence of Proposition A.2. We first bound  1,7. We have

 1,7 ≤
(
1 + [7_9
1 + [7_9+1

)2
+ (5 + 8>)Y27 + 40>Y47 ≤

(
1 + [7_9
1 + [7_9+1

)2
+ (5 + 18>)Y27 ,

where the second inequality follows from the first assumption in (3.1). The second assumption in (3.1)

implies that 0 ≤ 1 + [7_9 ≤ 2, so
(
1 + [7_9+1
1 + [7_9

)2
=

(
1 − [7d9

1 + [7_9

)2
≤

(
1 − 1

2
[7d9

)2
≤ e−[7d9 .

Since 5 + 18> ≤ 21> for all > ≥ 2, we obtain

 1,7 ≤ e−[7d9 + �1>Y
2
7 .

We now proceed to prove the first claim by induction. When B = 1, we use (A.1) to obtain

‖]111‖2>,> ≤ ‖]110‖2>,> ≤  1,1‖]010‖2>,> +  2,1

≤ e−[1d9 ‖]010‖2>,> + �1>Y
2
1 ‖]010‖2>,> + �2>9

2/>Y21 ,

which is the desired bound.

Proceeding by induction, for B > 1 we have

‖]B1B‖2>,> ≤ ‖]B1B−1‖2>,>
≤  1,B ‖]B−11B−1‖2>,> +  2,B

≤ e−[Bd9 ‖]B−11B−1‖2>,> + �1>Y
2
B ‖]B−11B−1‖2>,> +  2,B

≤ e−[Bd9
(
e−AB−1d9 ‖]010‖2>,> + �1>Y

2
B−1

∑B−2
7=0
‖] 717‖2>,> + �2>9

2/>Y2B−1(B − 1)
)

+ �1>Y
2
B ‖]B−11B−1‖2>,> + �2>9

2/>Y2B

≤ e−ABd9 ‖]010‖2>,> + �1>Y
2
B

∑B−1
7=0
‖] 717‖2>,> + �2>9

2/>Y2B B ,

where in the final inequality we have used that e−[Bd9Y2B−1 ≤ Y2B by the third assumption of (3.1). This

proves the first bound.

For the second bound, we proceed in a similar way, but with a sharper bound on  1,7. The second

assumption of (3.1) again implies
(
1 + [7_9+1
1 + [7_9

)2
=

(
1 − [7d9

1 + [7_9

)2
≤ 1 − [7d9 +

1

4
([7d9)2 ≤ 1 − 3

4
[7d9 ,

and therefore

 1,7 ≤ (1 + 5Y27 )
(
1 − 3

4
[7d9 + 8>Y27

)

≤ exp

(
−3
4
[7d9 + (5 + 8>)Y27

)



14 HUANG ET AL.

≤ e−[7d9/2,

where the final step uses Assumption (3.3) and the fact that 5 + 8> ≤ 25
2
> for all > ≥ 2.

When B = 1, we therefore have

‖]111‖2>,> ≤ ‖]110‖2>,> ≤  1,1‖]010‖2>,> +  2,1

≤ e−[1d9/2‖]010‖2>,> + �2>9
2/>Y21 ,

as desired, and for B > 1 the induction hypothesis yields

‖]B1B‖2>,> ≤ ‖]B1B−1‖2>,>
≤  1,B ‖]B−11B−1‖2>,> +  2,B

≤ e−[Bd9/2
(
e−AB−1d9/2‖]010‖2>,> + �2>9

2/>Y2B−1(B − 1)
)

≤ e−ABd9/2‖]010‖2>,> + �2>9
2/>Y2B B ,

where the final inequality again uses the third assumption in (3.1). This proves the second bound. �

Appendix C. Additional results for Section 4

Lemma C.1. Under the conditions of Proposition 4.1, the assumptions of (3.1) hold.

Proof. First assumption. We have

Y7 = 2[7" (1 + W) = 2(1 +
√
2e) U"

(V + 7)d9
≤ �Y

U

Vd̄9
,

where �Y = 2(1 +
√
2e). So the first assumption is fulfilled as long as

V/U ≥ 2�Y/d̄9 . (C.1a)

Second assumption. As above, we have

[7‖S‖ ≤
U‖S‖
Vd9

≤ U

Vd̄9
,

so the assumption is fulfilled if (C.1a) holds.

Third assumption. It suffices to show that

Y7−1
Y7
≤ 1 + [7d9

4
∀7 ≥ 2 ,

which is equivalent to
1

V + 7 − 1
≤ U/4
V + 7 ∀7 ≥ 2 .

This holds as long as

U ≥ 8 . (C.1b)

We obtain that all three assumptions hold under (C.1a) and (C.1b), as claimed.

�

Lemma C.2. In the setting of Theorem D.5, if A = 2e

√
V+1
V+) , then

P {‖]) ‖ ≥ A} ≤ X/2 .
Proof. We have

P {‖])1) ‖ ≥ A} ≤ inf
>≥2

A−>‖])1) ‖ >>,> .
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In particular, we choose

A2 = e2
(
V + 1
V + )

)U
+ e2

�2
3U

2

d̄2
9

)

(V + ))2 log(29/X), and > = log(29/X) .

It then follows from (4.4) that

P {‖])1) ‖ ≥ A} ≤ A−>‖])1) ‖ >> ≤ 9
(
1

A2

(
V + 1
V + )

)U
+ 1

A2
>
�2
3U

2

d̄2
9

)

(V + ))2

) >/2
= 9e−> = X/2.

Combining the above bounds, we obtain that

‖]) ‖ ≤ A ≤ e

(
V + 1
V + )

)U/2
+ e�3U"

d9

√
log(29/X)

)
,

with probability at least 1 − X. Since both terms are smaller than e

√
V+1
V+) , the claim follows. �

Appendix D. Additional results for Section 5

Our main tool will be the following slight variation on Proposition A.1.

Proposition D.1. Let B ≥ 1. Assume that [B is small enough that S � − 1
2[B

I, and assume that (2.4)

holds for 7 = B. Consider an arbitrary deterministic matrix K ∈ E@,ℓ.

Let

�̄B = 1 + 2 max
K′′∈E@+1,ℓ+1

‖K′′]B−11B−1‖ >,>

Y = 2[" (1 + W) .
Then ‖�B1B−1‖ ≤ Y almost surely, and

K] B (I − �
2
B ) = KNB + KPB,1 + KPB,2

for KPB,1 and KPB,2 satisfying

‖KPB,11B−1‖ >,> ≤ �̄BY

‖KPB,21B−1‖ >,> ≤ �̄BY
2 ,

and E[KPB,1 : FB−1] = 0.

Proof. The proof is a slight modification on the proof of Proposition A.1. By construction,

‖KNB1B−1‖2>,> ≤
(
1 + [_9
1 + [_9+1

)2
‖K′]B−11B−1‖2>,> ,

where K′ = 1
1+[_9+1K[

∗(I + [�)[ ∈ E@+1,ℓ ⊆ E@+1,ℓ+1.
Similarly, we have

‖K�̂B1B−1‖ >,> ≤ 2[‖K[∗(GB − S)[]B−11B−1‖ >,> + 2[‖K[∗(GB − S)\ ‖ >,>
≤ 2[" (‖K′′]B−11B−1‖ >,> + ‖K‖ >,>)
≤ Y(‖K′′] B−11B−1‖ >,> + 1)

where K′′ = 1
"
K[∗(GB − S)[ ∈ E@+1,ℓ+1, and we have used ‖K‖ > ≤ ‖K‖2 ≤ 1.

We therefore obtain

‖KPB,11B−1‖ >,> ≤ ‖K�̂B1B−1‖ >,> + ‖KNB1B−1‖ >,>‖�B1B−1‖
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≤
(
‖K′′]B−11B−1‖ >,> + ‖K′]B−11B−1‖ >,> + 1

)
Y

≤ �̄BY ,

and

‖KPB,21B−1‖ >,> ≤ ‖K�̂B1B−1‖ >,>‖�B1B−1‖ ≤ (‖K′′]B−11B−1‖ >,> + 1)Y2 ≤ �̄BY
2 .

�

The following two results are the appropriate analogues of Proposition A.2 and Theorem 3.1.

Proposition D.2. Adopt the setting of Proposition D.1. If Y ≤ 1/2, then
max
K∈E@,ℓ

‖K]B1B−1‖2>,> ≤  ̄1 max
K′∈E@+1,ℓ

‖K′]B−11B−1‖2>,> +  ̄2 max
K′′∈E@+1,ℓ+1

‖K′′]B−11B−1‖2>,> +  ̄2 , (D.1)

where

 ̄1 = (1 + 5Y2)
(
1 + [_9
1 + [_9+1

)2

 ̄2 = (1 + 5Y2)8>Y2

Proof. As in the proof of Proposition A.2, we have for any K ∈ E@,ℓ,

‖K‖2>,> ≤ (1 + 5Y2)(‖KNB1B−1‖2>,> + >�̄BY2) .
As in the proof of Proposition D.1, we can write

‖KNB1B−1‖2>,> ≤
(
1 + [_9
1 + [_9+1

)2
‖K′]B−11B−1‖2>,>

where K′ = 1
1+[_9+1K[

∗(I + [�)[ ∈ E@+1,ℓ. Since

�̄2B ≤ 8 max
K′′∈E@+1,ℓ+1

‖K′′]B−11B−1‖2>,> + 8 ,

taking the maximum over all K ∈ E@,ℓ and K′ ∈ E@+1,ℓ yields the claim. �

Theorem D.3. Let B ≤ )0 be a positive integer, and assume the following requirements hold for some

> ≥ 2:

Y ≤ 1

2
, (D.2a)

[‖S‖ ≤ 1

2
, (D.2b)

>Y2 ≤ [d9

50
(D.2c)

W ≥ 2 . (D.2d)

Then for any @, ℓ ∈ [)0 − B + 1] and > ≥ 2,

max
K∈E@,ℓ

‖K]B1B‖2>,> ≤ max
K∈E@,ℓ

‖K]B1B−1‖2>,> ≤
ℓW2

2e2
e−B[d9/2 + �4>W

2Y2B .

where �4 = 6.

Proof. First, as in the proof of Theorem 3.1, Assumptions (D.2b) and (D.2c) imply

 ̄1 +  ̄2 = (1 + 5Y2)
{(

1 + [_9
1 + [_9+1

)2
+ 8>Y2

}

≤ e−[d9/2 .
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In particular,  ̄1 +  ̄2 ≤ 1. Assumption (D.2a) likewise implies that  ̄2 ≤ 18.

We now turn to the proof of the main claim, which we prove by induction on B. For convenience,

we introduce the notation We = W/
√
2e. When B = 1 and @, ℓ ≤ )0, (D.1) implies

max
K∈E@,ℓ

‖K]111‖2>,> ≤ max
K∈E@,ℓ

‖K]110‖2>,>

≤  ̄1 max
K′∈E@+1,ℓ

‖K′]010‖2>,> +  ̄2 max
K′′∈E@+1,ℓ+1

‖K′′]010‖2>,>Y2 +  ̄2

≤  ̄1ℓW
2
e +  ̄2(ℓ + 1)W2e +  ̄2

≤ ℓW2e (  ̄1 +  ̄2) + (1 + W2e )  ̄2

≤ ℓW2ee−[d9/2 +
W2

3
 ̄2

where we have used the definition of G0 and where the last step uses (D.2d). Proceeding by induction,

we have

max
K∈E@,ℓ

‖K]B1B‖2>,> ≤ max
K∈E@,ℓ

‖K]B1B−1‖2>,>

≤  ̄1 max
K′∈E@+1,ℓ

‖K′]B−11B−1‖2>,> +  ̄2 max
K′′∈E@+1,ℓ+1

‖K′′]B−11B−1‖2>,> +  ̄2

≤  ̄1(ℓW2ee−(B−1)[d9/2 + (B − 1)W2  ̄2)
+  ̄2((ℓ + 1)W2ee−(B−1)[d9/2 + (B − 1)W2  ̄2) +  ̄2

≤ ℓW2e (  ̄1 +  ̄2)e−(B−1)[d9/2 + (B − 1)(  ̄1 +  ̄2)W2  ̄2 + (1 + W2e )  ̄2

= ℓW2ee
−B[d9/2 + W

2

3
 ̄2B ,

as claimed. �

Proposition D.4. Fix A ∈ (0, 1), 2 ≤ W ≤ �W
3
X2
, and > ≥ 2, where �W = 144W is the constant in

Lemma H.4. Given d > 0, define the normalized gap

d̄ = min

{
"

d
,
‖S‖
d

, 1

}
,

and adopt the step size

[ =

�[ log(e3/AX)
d)0

.

If d9 ≥ d/2 and

)0 ≥ > · �)W
2 log(e3/AX)2
A2 d̄2

where

�[ ≥ 8 + 4 log 2�W , �) ≥ 600e2�2
[ ,

then

‖])01)0−1‖2>,> ≤
A2

2e2

(
1 + 92/>

)

and

max
K∈E1,1

‖K] B1B−1‖ >,> ≤
W

e

for all 1 ≤ B ≤ )0.
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Proof. We will apply Theorems 3.1 and D.3. First, note that (D.2d) holds by assumption. We now turn

to the other conditions.

Assumption (D.2a): Since W ≥ 2, we have

Y = 2[" (1 + W) ≤
3�[W log(e3/AX)"

d)0
.

The assumption therefore holds as long as

�) ≥ 3�[ . (D.3)

Assumption (D.2b): As above, we have

[‖S‖ ≤
2�[ log(e3/AX)‖S‖

d)0
,

and the requirement (D.3) implies that this quantity is also smaller than 1/2.
Assumption (D.2c): Since [d9 =

�[ log(e3/AW)
)0

≥ 1
)0

and 36e2 > 50, it suffices to prove the stronger

claim

>Y2 ≤ A2

36e2)0
. (D.4)

This is satisfied so long as

> ·
16�2

[W
2 log2(e3/AX)"2

d2)2
0

≤ A2

36e2)0
.

which will hold if

�) ≥ 600e2�2
[ . (D.5)

This requirement is stronger than (D.3), so Assumptions (D.2a)–(D.2c) hold under the sole condi-

tion (D.5).

We now turn to the two claimed bounds. First, we instantiate Theorem 3.1 with the choice [7 = [

for 1 ≤ 7 ≤ )0. The third assumption of (3.1) is trivially satisfied when when [7 is constant, since

in that case Y7 = Y7−1 for all 7 ≥ 1. The remaining assumptions correspond directly to Assump-

tions (D.2a), (D.2b), and (D.2c). The assumptions of Theorem 3.1 are therefore satisfied, so we obtain,

‖])01)0−1‖2>,> ≤ e−)0[d9/2‖]010‖2>,> + 5>92/>Y2)0 .
The definition of G0 in (5.2) and the fact that d9 ≥ d/2 implies that the first term is at most

e−)0[d9/23W2 = (e3/AX)−�[/43W2 ,
and this will be less than A2

2e2
if

�[ ≥ 8 + 4 log(2�W) .
Since (D.4) holds, the second term satisfies

5>92/>Y2)0 ≤
5A2

36e2
92/> <

A2

2e2
92/> .

We obtain

‖])01)0−1‖2>,> ≤
A2

2e2

(
1 + 92/>

)
,

as claimed.

For the second claim, we rely on Theorem D.3. Assumptions (D.2a)–(D.2d) having already been

verified, we obtain for all 1 ≤ B ≤ )0,

max
K∈E1,1

‖K]B1B−1‖2>,> ≤
W2

2e2
e−B[d9/2 + 18>W2Y2B .
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Since d9 ≥ 0, the first term is at most
W2

2e2
, and the second term is also at most

W2

2e2
by (D.4). We obtain

that

max
K∈E1,1

‖K]B1B−1‖2>,> ≤
W2

e2
,

as claimed.

�

With Proposition D.4 in hand, we can prove a full version of Theorem 2.4.

Theorem D.5. Fix a d > 0 and assume |supp(PG) | = ;. Let

d̄ = max

{
d

"
,

d

‖S‖ , 1
}
,

and set A = 1/6.
Adopt the step size

[ =

�[ log(e3/XA)
d)0

where

)0 ≥
�)9(log 12e3/Xd̄A)4

A2X2 d̄2
.

and

�[ ≥ 8 + 2 log 144�W , �) ≥ (12000e2�2
[�

2
W)5/4 .

If ; ≤ )3
0
and d9 ≥ d/2, then

‖])0 ‖ ≤ 1/6
with probability at least 1 − X/3.

Proof. We first show that we can assume that log)0 ≤ 5 log(�)3/Xd̄A). Indeed, if )0 >

(
�) 3
Xd̄A

)5
, a

crude argument similar to the one employed in the analysis of Phase II yields the claim. We give the

full details in Appendix F. In what follows, we therefore assume

log)0 ≤ 5 log(�)3/Xd̄A) . (D.6)

Set

W = 144�Wmin

{√
219 log(�)3/Xd̄A)

X
,
3

X2

}
,

where �W is as in Lemma H.4.

Recall that our goal is to show ‖])0 ‖ ≤ A with probability at least 1 − X/3. The failure probability

can be bounded as

P

{
‖])0 ‖ ≥ A

}
≤ P

{
‖])01)0 ‖ ≥ A

}
+ P

{
G
�
)0

}
≤ inf

>≥2
A−>‖])01)0 ‖

>
>,> +P

{
G
�
)0

}
.

If we choose > = log(69/X), then since log(�) ) ≤ �1/5
)

log(12) for any value of �) , we have

)0 ≥
�)9(log(12e3/Xd̄A))4

A2X2 d̄2

≥ log(69/X) · �4/5
)

9 log(�)3/Xd̄A)
X2

· log(e3/AX)
2

A2 d̄2

≥ >
600e2�2

[W
2 log(e3/AX)2

A2 d̄2
,
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as long as

�) ≥ (12000e2�2
[ (144�W)2)5/4 ,

which verifies the assumption of Proposition D.4.

We obtain

‖])01)0 ‖2>,> ≤
A2

2e2
(1 + 92/>) ≤ 92/> A

2

e2
.

We therefore have

A−>‖])01)0 ‖
>
>,> ≤ e− log(69/X) ≤ X/6 .

It remains to bound P

{
G
�
)0

}
. Clearly

P

{
G
�
)0

}
≤ P

{
G
�
0

}
+

∑)0

8=1
P

{
G
�
8 ∩ G8−1

}
.

Since ; ≤ )3
0 and we have assumed log)0 ≤ 5 log(�)3/Xd̄A), we have

log(e;)0/X) ≤ 4 log()0) + log(e/X) ≤ 20 log(�)3/Xd̄A) + log(e/X) ≤ 21 log(�)3/Xd̄A) ,
so Lemma H.4 guarantees that G0 holds with probability at least 1 − X/12.

For the second term, we have

P

{
G
�
8 ∩ G8−1

}
= P

{
max
K∈E1,1

‖K] 81 8−1‖ ≥ W
}
≤

∑
K∈E1,1

P

{
‖K] 81 8−1‖ ≥ W

}
.

Choose > = 21 log(�)3/Xd̄A). The same argument as above yields

)0 ≥ > · �3/5
)

9 log(�)3/Xd̄A)
X2

· log
2 (e3/AX)
A2 d̄2

,

and this will be larger than the lower bound required on )0 that was assumed in Proposition D.4 as

long as

�) ≥ (12000e3�2
[ (144�W)2)5/3

Proposition D.4 therefore yields

P

{
‖K] 81 8−1‖ ≥ W

}
≤ W−>‖K] 81 8−1‖ >>,> ≤ e−> = e−21 log(�)3/Xd̄A) for all K ∈ E,

and thus

P

{
G
�
8 |G8−1

}
≤

∑
K∈E1,1

P

{
‖K] 81 8−1‖ ≥ W

}
≤ ;e−21 log(�) 3/Xd̄A) .

This yields
∑)0

8=1
P

{
G
�
8 |G8−1

}
≤ ;)0e−21 log(�) 3/Xd̄A) ≤ e−21 log(�)3/Xd̄A)+4 log)0 ≤ X/12 ,

where the last step uses (D.6). Finally, choosing A = 1/6, we obtain

P

{
‖])0 ‖ ≥ 1/6

}
≤ X/3 ,

as claimed. �

Appendix E. A reduction to finite support

Let Ω be the space of 3 × 3 symmetric matrices. We argue that it suffices to assume that %� has

finite support of cardinality at most )3
0 in Phase I. We prove this by comparing the product measure

%
⊗)0
�

with another distribution %; on Ω
⊗)0 . We specify this distribution by the following procedure:

drawing a )0-tuple (�1, . . . , �)0) from the distribution %; is accomplished by

(1) Drawing ; independent samples Ĝ1, . . . , Ĝ; from %�.
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(2) Drawing G1, . . . , G)0 independently from the discrete distribution

% �̂ =
1

;

∑;

7=1
XĜ7

.

That is, drawing G1, . . . , G)0 independently and uniformly from the set { Ĝ7};7=1 with replace-

ment.

We will rely on the fact that the two distributions, %
⊗)0
�

and %;, are close in total variation distance

when ; is large. To see this, we first recognize that drawing (�1, . . . , �)0) from %
⊗)0
�

is equivalent to

the following:

(1) Draw ; independent samples Ĝ1, . . . , Ĝ; from %�.

(2) Draw G1, . . . , G)0 sequentially and uniformly from the set { Ĝ7};7=1 without replacement. De-

note by %
()0)
�̂

the distribution of this sampling.

It is a standard result [11] that, given any { �̂7};7=1,

3TV

(
%
⊗)0
�̂

, %
()0)
�̂

)
≤ 1

2

)2
0

;
.

We thus have the following:

Proposition E.1. For any X ∈ (0, 1), it holds that

3TV

(
%;, %

⊗)0
�

)
≤ X

for all ; ≥ )2
0 /2X.

Proof. For any set ( ⊂ Ω
⊗)0 , we have���%;(() − %⊗)0�

(()
��� =

���E�̂7∼%�,1≤7≤;

[
%
⊗)0
�̂
(() − % ()0)

�̂
(()

] ���

≤ E�̂7∼%� ,1≤7≤;

���%⊗)0
�̂
(() − % ()0)

�̂
(()

���

≤ E�̂7∼%� ,1≤7≤;3TV
(
%
⊗)0
�̂

, %
()0)
�̂

)

≤ 1

2

)2
0

;
≤ X.

The claim follows from taking the maximum of |%;(() − %⊗)0�
(() | over all subsets of Ω⊗)0 . �

Given any Ĝ1, . . . , Ĝ;, define the empirical average

Ŝ; := E�∼% �̂G =

1

;

∑;

7=1
Ĝ7.

Denote by _̂1 ≥ _̂2 ≥ · · · ≥ _̂3 the eigenvalues of Ŝ;, and write d̂9 = _̂9 − _̂9+1. Let +̂ ∈ ℝ3×9 be the
orthogonal matrix whose columns are the leading 9 eigenvectors of Ŝ;, and let [̂ ∈ ℝ3×(3−9) be the

orthogonal matrix consisting of the remaining eigenvectors. Standard results of matrix concentration

implies that Ŝ; is close to S. In particular, we have the following:

Proposition E.2. Suppose that ; ≥ 35"2

d2
9

log(23/X). Let Ĝ1, . . . , Ĝ; be drawn independently from %�.

Then it holds with probability at least 1 − X that

‖Ŝ; − S‖ ≤ d9/4,
and, in particular,

d̂9 ≥ d9/2 and ‖[∗\̂ ‖ ≤ 1/3.
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Proof. By assumption 2, we have that ‖Ŝ; − S‖ ≤ " almost surely. Then the matrix Bernstein

inequality [31, Theorem 1.4] implies that, for any B ≥ 0,

P

{
‖Ŝ; − S‖ ≥ B

}
≤ 23 exp

(
−;B2/2

"2 + "B/3

)
.

Substituting B = d9/4 yields the first claim. Using the perturbation theory of eigenvalues of symmetric

matrices, we have

_̂9 ≥ _9 − ‖Ŝ; − S‖ and _̂9+1 ≤ _9+1 − ‖Ŝ; − S‖.
Therefore, conditioned on the first claim, it holds that

d̂9 ≥ d9 − 2‖Ŝ; − S‖ ≥ d9

2
.

Furthermore, it follows from Wedin’s inequality [33] that

‖[∗\̂ ‖ ≤ ‖Ŝ; − S‖
_̂9 − _9+1

≤ 1

3
.

�

Proposition E.3. Let[ and\ be orthogonalmatrices such that[[∗+\\∗ = I, and let [̂ and \̂ bematrices

of the same size satisfying the same requirement. Suppose ‖[∗\̂ ‖ ≤ 1/2 and ‖[̂∗Y(\̂∗Y)−1‖ ≤ W ≤ 1.

Then

‖[∗Y(\∗Y)−1‖ ≤ 2 + 4W
3 − 2W

.

Proof. A direct calculation yields

‖[∗Y(\∗Y)−1‖ = ‖[∗([̂[̂∗ + \̂\̂∗)Y(\∗Y)−1‖
≤ ‖[̂∗Y(\∗Y)−1‖ + ‖[∗\̂\̂∗Y(\∗Y)−1‖

≤ ‖[̂∗Y(\̂∗Y)−1\̂∗Y(\∗Y)−1‖ + 1

2
‖\̂∗Y(\∗Y)−1‖

≤ (W + 1

2
)‖\̂∗Y(\∗Y)−1‖.

We also have

‖\̂∗Y(\∗Y)−1‖ ≤ ‖\̂∗[[∗Y(\∗Y)−1‖ + ‖\̂∗\\∗Y(\∗Y)−1‖ ≤ 1

2
‖[∗Y(\∗Y)−1‖ + 1.

Sequencing the two displays above and rearrange the inequality yields the claim. �

Now let )0 be given as in Theorem D.5 and choose ; = )2
0 /2X. As long as )0 ≥ 9"

d9X
log(3/X), we

have
35"2

d2
9

log(23/X) ≤ ; ≤ )3
0 .

It then follows from Proposition E.2 that, when drawing Ĝ1, . . . , Ĝ; independently from %�, the event

G := {d̂9 ≥ d9/2 and ‖[∗\̂ ‖ ≤ 1/2} (E.1)

happens with probability at least 1 − X. Conditioned on G, we consider running )0 steps of Oja’s

algorithm, with �1, . . . , �)0 drawn i.i.d from % �̂. Note that the discrete distribution % �̂ also satisfies

Assumption 1 and Assumption 2 (with " replaced by 2"). Our main theorem thus guarantees that

with appropriately chosen step size, the output &)0 = &)0 (�1, . . . , �)0) of this algorithm after )0 steps

satisfies

‖[̂∗W)0 (\̂
∗
W)0)−1‖ ≤

1

6
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with probability 1 − X. Combining (E.1) and Proposition E.3, we obtain that with probability at least

(1 − X)2 ≥ 1 − 2X, the output of the algorithm satisfies

‖[∗W)0 (\∗W)0)−1‖ ≤ 1,

that is,

%;
(
‖[∗W)0 (\∗W)0)−1‖ ≤ 1

)
≥ 1 − 2X.

Finally, we obtain from Proposition E.1 that

%;
(
‖[∗W)0 (\∗W)0)−1‖ ≤ 1

)

≥ %
⊗)0
�

(
‖[∗W)0 (\∗W)0)−1‖ ≤ 1

)
− 3TV

(
%;, %

⊗)0
�

)

≥ 1 − 3X.

In other words, with the same choice of )0, the output of )0 steps of Oja’s algorithm with �1, . . . , �)0
drawn i.i.d from the original distribution %� satisfies

‖[∗W)0 (\∗W)0)−1‖ ≤ 1

with probability at least 1 − 3X.

Appendix F. Phase I succeeds if )0 is large

In this section, we prove Theorem D.5 when )0 >
�5
) 3

5

X5 d̄5A5
. Note that this value of )0 is far larger

than the optimal choice (which is of order Θ̃(9/X2 d̄2A2)), which makes the theorem much easier to

prove. Indeed, if )0 is this large, we can prove Theorem D.5 directly by using the same conditioning

argument as in Phase II.

Proposition F.1. Assume [ and )0 satisfy the requirements of Theorem D.5, and assume d ≥ d9/2.
If )0 ≥

�5
) 3

5

X5 d̄5A5
, then

‖])0 ‖ ≤ A
with probability at least 1 − X/3.

Proof. Set W =

144�W3

X2
where �W is defined in Lemma H.4 and define the good events

G0 := {‖]0‖ ≤ W/(
√
2e)}

G7 := {‖]0‖ ≤ W} ∩ G7−1 , ∀7 ≥ 1 .

In order to apply Theorem 3.1, we verify (3.1)

First assumption. We have

Y = 2[" (1 + W) ≤
3�[ log(e3/XA)"W

d)0
,

and this quantity is smaller than 1/2 so long as

�5
) ≥ 864�[�W . (F.1)

Second assumption. We again have

[‖S‖ =
�[ log(e3/XA)‖S‖

d)0
,

and (F.1) guarantees that this quantity is smaller than 1/2 as well.

Third assumption. Since Y7 = Y for all 7 and [d ≥ 0, this requirement trivially holds.
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Our goal is to bound

P

{
‖])0 ‖ ≥ A

}
≤ P

{
‖])01)0 ‖ ≥ A

}
+P

{
G
�
0

}
+

∑)0

8=1
P

{
G
�
8 ∩ G8−1

}
.

Having verified (3.1), we can employ (3.2), obtaining

‖])01)0 ‖2>,> ≤ e−)0[d992/>W2/2e2 + (�1W
2 + �2)>92/>Y2)0 .

For the first term, the fact that d9 ≥ d/2 implies that

e−)0[d9
W2

2e2
= (XA/e3)�[/2 W

2

2e2
,

and this is smaller than A2

2e2
as long as

�[ ≥ 8 + 2 log(144�W) .
Letting �3 be as in Proposition 4.1 and choosing > = log(69/3X), we also have

>(�1W
2 + �2)Y2)0 ≤ >

1442�2
3�

2
[ log

2(e3/XA)"2W2

d2)0
≤

1442�2
3�

2
[�

2
W log

3 (63/XA)
�5
)

· XA
3

Since log3(63/XA) ≤ 9 3
XA

for all positive 3, X, and A, this quantity will be less than A2

2e2
so long as

�5
) ≥ 2(432e�3�[�W)2 , (F.2)

and this requirement subsumes (F.1).

We therefore obtain, for > = log(69/X),
P

{
‖]01)0 ‖ ≥ A

}
≤ A−>‖]01)0 ‖

>
>,> ≤ 9e−> ≤ X/6 ,

In a similar way, (3.2) yields for all B ∈ [)0],

W−2‖]B1B−1‖2>,> ≤
92/>

2e2
+ (�1W

2 + �2)>92/>Y2)0 .

If we choose > = log(129)0/X), then we have

>(�1W
2 + �2)Y2)0 ≤ >

�2
3�

2
[ log

2(e3/XA)"2W2

d2)0
≤

21442�2
3�

2
[�

2
W log

3()0)

�4
)
)
1/5
0

,

and since log3()0) ≤ 169)
1/5
0

for all )0, we have that this quantity will be at most 1
2e2

if

�5
) ≥ (3744e�3�[�W)5/2 ,

and this requirement subsumes (F.2), and it holds under the assumptions of Theorem D.5.

By Lemma H.4, the event G0 holds with probability at least 1 − X/12.
Finally, we have for any 8 ∈ [)0],

P

{
G
�
8 ∩ G8−1

}
≤ P

{
‖] 81 8−1‖ ≥ W

}
≤ inf

>≥2
W−>‖]B1B−1‖ >>,> ,

and choosing > = log(129)0/X) we have

W−>‖]B1B−1‖ >>,> ≤ 9e−> ≤
12

X)0
,

and summing these probabilities for 8 ∈ [)0], yields that

P

{
‖])0 ‖ ≥ A

}
≤ P

{
‖])01)0 ‖ ≥ A

}
+P

{
G
�
0

}
+

∑)0

8=1
P

{
G
�
8 ∩ G8−1

}
≤ 1

6
+ 1

12
+ 1

12
=

1

3
,

as claimed. �
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Appendix G. Omitted proofs

G.1. Proof of Lemma 2.7. We will show that

]B (I − �
2
B ) = NB + PB,1 + PB,2 ,

where

NB = [
∗(I + [BS)`B−1(\∗(I + [BS)`B−1)−1, PB,1 = �̂B − NB�B, and PB,2 = −�̂B�B

and where we write

�̂B = [B[
∗(GB − S)`B−1(\∗(I + [BS)`B−1)−1 .

By the definition of `B, we have

]B = [
∗
`B (\∗`B)−1 = [

∗
_ B`B−1(\∗_ B`B−1)−1.

We have

\
∗
_ B`B−1 = \

∗(I + [BS)`B−1 + [B\∗(GB − S)`B−1
=

(
I + [B\∗(GB − S)`B−1(\∗(I + [BS)`B−1)−1

)
\
∗(I + [BS)`B−1

= (I + �B)\∗(I + [BS)`B−1,
which implies

(\∗_ B`B−1)−1 (I − �
2
B ) = (\∗(I + [BS)`B−1)−1(I + �B)−1 (I + �B)(I − �B)

= (\∗(I + [BS)`B−1)−1(I − �B) .
We also have

[
∗
_ B`B−1 = [

∗(I + [BS)`B−1 + [B[∗(GB − S)`B−1
= [

∗(I + [BS)`B−1 + �̂B (\∗(I + [BS)`B−1).
Therefore

] B (I − �
2
B ) = [

∗
_ B`B−1(\∗_ B`B−1)−1

= [
∗(I + [BS)`B−1(\∗(I + [BS)`B−1)−1

+ �̂B − [
∗(I + [BS)`B−1(\∗(I + [BS)`B−1)−1�B

− �̂B�B .

That is

]B (I − �̂
2

B ) = NB + PB,1 + PB,2 .

Since �B and �̂B are both $([B), the claim follows. �

G.2. Proof of Proposition 2.9. By the triangle inequality, we have

‖^ + _ + `‖ >,> ≤ ‖^ + _ ‖ >,> + ‖`‖ >,> ,
which implies

‖^ + _ + `‖2>,> ≤ (‖^ + _ ‖ >,> + ‖`‖ >,>)2

≤ (1 + _)(‖^ + _ ‖2>,> + _−1‖`‖2>,>) ,
where in the second step we have applied the elementary inequality

(0 + 1)2 ≤ (1 + _)(02 + _−112) ,
valid for all real numbers 0 and 1 and _ > 0. Applying Proposition 2.8 to ‖^ + _ ‖2>,> then yields the

claim. �
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Appendix H. Additional Lemmas

Lemma H.1. For any deterministic matrices G, H and any standard Gaussian matrix ` of suitable sizes,

it holds that

P {‖G`H‖2 ≥ ‖G‖2‖H‖2(1 + B)} ≤ e−B
2/2.

Proof. Let 5 (^) := ‖G^H‖2, then
| 5 (^1) − 5 (^2) | ≤ ‖G‖‖H‖ · ‖^1 − ^2‖2.

By Gaussian concentration, we have

P { 5 (`) ≥ E 5 (`) + ‖G‖‖H‖B} ≤ e−B
2/2.

Moreover, we have

E 5 (`) ≤ (E‖G`H‖22)1/2 = ‖G‖2‖H‖2.
It thus follows that

P { 5 (`) ≥ ‖G‖2‖H‖2(1 + B)} ≤ P { 5 (`) ≥ E 5 (`) + ‖G‖‖H‖B} ≤ e−B
2/2,

which is the stated result. �

Lemma H.2 ([6, Theorem II.13]). Let W ∈ ℝ3×9 be a standard Gaussian matrix. Then

P

{
‖W‖ ≥

√
3 +
√
9 + B

}
≤ 2 · e−B2/2 .

Lemma H.3 ([1, Lemma i.A.3]). LetW ∈ ℝ9×9 be a standard Gaussianmatrix. Then for every X ∈ (0, 1),

P

{
‖W−1‖2 ≥

6
√
9

X

}
≤ X.

The next lemma bounds the probability of G0 from below.

Lemma H.4. Let G0 be the event defined in (5.2). There exists a positive constant �W = 144e such that

for any X ∈ (0, 1), if W ≥ �W min{
√
9 log(e;)0/X)/X, 3/X2}, then G0 holds with probability at least

1 − X.
Proof. We have ]0 = [∗`0(\∗`0)−1, where `0 is a matrix with i.i.d. Gaussian entries. Since [ and

\ have orthonormal columns and are themselves orthogonal, the two matrices \∗`0 and [∗`0 are

independent matrices with i.i.d. Gaussian entries. Using Lemma H.1 and conditioning on \∗`0, we

have that with probability at least 1 − X/3()0 + 1)2,
max
K∈E@,ℓ

‖K[∗`0(\∗`0)−1‖2 ≤ ‖(\∗`0)−1‖2 · 2
√
8ℓ log(e;)0/X), (H.1)

where we have taken a union bound over the fewer than ((; + 1)()0 + 1))ℓ elements of E@,ℓ . Taking

a uniform bound again over all @, ℓ ∈ [)0 + 1] yields that, with probability at least 1 − X/3, the event

(H.1) holds for all @, ℓ ∈ [)0 + 1]. By Lemma H.3, we also have that that ‖(\∗`0)−1‖2 ≤ 18
√
9/X with

probability at least 1 − X/3. Furthermore, Lemma H.2 implies that ‖[∗`0‖ ≤ 2
√
23 log(3/X) with

probability at least 1 − X/3. Combining these bounds, we obtain that with probability at least 1 − X/,
max
K∈E@,ℓ

‖K[∗`0 (\∗`0)−1‖2 ≤ 36
√
8ℓ log(e;)0/X) ,

which is less than

√
ℓW√
2e

as long as �W ≥ 144e, and under this same assumption

‖]0‖2 ≤ ‖[∗`0‖‖(\∗`0)−1‖2 ≤ 36
√
23 log(3/X) ≤

√
3W

as well.
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So G0 holds with probability at least 1 − X if W ≥ �W
√
9 log(e;)0/X)/X for �W ≥ 144e.

On the other hand, We have E‖[∗`0‖ ≤ 2
√
3, so that ‖[∗`0‖ ≤ 4

√
3/X with probability at least

1 − X/2, and Lemma H.3 implies that ‖\∗`0‖2 ≤ 12
√
9/X with probability at least 1 − X/2, so with

probability at least 1 − X we have

‖]0‖2 ≤ ‖[∗`0‖‖(\∗`0)−1‖2 ≤ 48
√
39/X2 < 503/X2 .

as claimed. On this event, we also have ‖K]0‖2 ≤ ‖]0‖2 ≤ 503/X2. Therefore, if W ≥ 50
√
2e3/X2,

then G0 holds.

So G0 holds with probability at least 1 − X if W ≥ �W3/X2 for �W ≥ 50
√
2e. Therefore, taking

�W = 144e satisfies both requirements and proves the claim. �
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