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ABSTRACT
Inspired by the fruit-fly olfactory circuit, the Fly Bloom Filter [4] is

able to efficiently summarize the data with a single pass and has

been used for novelty detection. We propose a new classifier that

effectively encodes the different local neighborhoods for each class

with a per-class Fly Bloom Filter. The inference on test data requires

an efficient FlyHash [6] operation followed by a high-dimensional,

but very sparse, dot product with the per-class Bloom Filters. On

the theoretical side, we establish conditions under which the pre-

dictions of our proposed classifier agrees with the predictions of

the nearest neighbor classifier. We extensively evaluate our pro-

posed scheme with 71 data sets of varied data dimensionality to

demonstrate that the predictive performance of our proposed neu-

roscience inspired classifier is competitive to the nearest-neighbor

classifiers and other single-pass classifiers.
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• Computing methodologies→ Bio-inspired approaches; Su-
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1 INTRODUCTION
Neural circuits in the fruit-fly appear to assess the novelty of an

odor in a two step process. An odor is first assigned a “tag” that

corresponds to a small set of Kenyon Cells (KC) that get activated

by the odor. Dasgupta et al. [6] interpret this tag generation process

as a hash scheme, termed FlyHash, where the tag/hash is a very

sparse point in a high dimensional space (2000 dimensions with

95% sparsity). The tag serves as input to a specific mushroom body

output neuron (MBON), the MBON-𝛼 ′3, where the response of this
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neuron to the odor hash encodes the odor novelty. Dasgupta et al.

[4] “interpret the KC→MBON-𝛼 ′3 synapses as a Bloom Filter” that

effectively “stores” all odors exposed to the fruit-fly. This Fly Bloom
Filter (FBF) generates continuous valued, distance and time sensi-

tive novelty scores that have been empirically shown to be highly

correlated to the ground-truth relative to other Bloom Filter-based

novelty scores for neural activity and vision data sets. Theoretically,

expected novelty scores of similar and dissimilar points have been

analyzed for binary and exponentially distributed data.

This “learning” of the data distribution (for the purposes of nov-

elty detection) has some interesting dynamics. First, the FBF en-

codes the data distribution in a single-pass manner without requir-

ing to visit the same example twice – the relevant information for

an example has been “stored” in the FBF– surfacing two advantages:

(i) once processed, there is no need to retain an example in memory,

allowing the encoding without much memory overhead, (ii) this

mechanism allows the FBF encoding to happen in an onlinemanner

as more examples are seen. Second, this learning does not involve

any explicit “loss minimization” or related gradient based optimiza-

tion – the learning dynamic mimics a natural gradient-free process.

Finally, the FBF learning can be accomplished solely with additions,
ORs and sort – no complex mathematical operations are required.

Driven by immense empirical advantage, the current trend is of

generating huge (deep learning) models with sophisticated learning

procedures using complex novel compute hardware, mathematical

operators and multiple epochs over the training examples. Inspired

by the simplistic natural learning procedure, we pursue an opposite

direction – we explore the extent to which a simplistic learning
procedure is successful in supervised classification. Moreover, we

believe the single-pass, online learning is critical in many situations

such as (a) the learning happens in low-memory “edge” devices
where we cannot retain a training set to repeatedly revisit, or (b)

the examples have to be discarded after a short amount of time due
to privacy concerns. There are situations where both reasons are

valid – models need to be regularly updated with new data, but the

retraining cannot access old data due to privacy regulations. This

brings us to the questions we wish to address in this paper:

▶ Can we devise a supervised classification scheme based on the
simple learning dynamics of the FBF?

▶ Will such a supervised classification scheme be useful and compet-
itive when learning needs to happen with a single pass?

▶ What generalization guarantees would such a learner have?
To this end, we propose a simple algorithm using the FBF for

classification, where we summarize each class with its own FBF and
utilize the per-class novelty scores for inference. We theoretically

study why this simple idea works, and empirically demonstrate

that simplicity does not preclude utility. Specifically, we present:
▶ Anovel FBF based classifier, FBFC, that is learnedwith an additions-

only, single-pass of the training set without any loss-minimizing
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Table 1: Properties of FBFC contrasted against standard machine learning models, namely, 𝑘-nearest-neigbor classifier (𝑘NNC),
prototype-based classifiers (CC, CC1), locality sensitive hashing based bloom filters (SBFC), linear models (LR), multi-layer per-
ceptrons (MLPC), decision tree models (DT) and kernel machines (KM).

Classifiers 𝑘NNC CC1 CC SBFC LR MLPC DT KM FBFC

Single Pass ✓ ✗ ✓ ✓ 𝑎 ✓ 𝑎 ✗ ✓ 𝑏 ✓

Infer w/o training data ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 𝑐 ✓

Online/streaming ✗ ✓ ✓ 𝑑 ✓ ✓ ✓ ✗ ✓ 𝑏 ✓

Parallel train ✓ ✓ ✓ ✓ 𝑒 ✓ 𝑒 ✓ 𝑒 ✓ 𝑒 ✓

Gradient free learning ✓ ✓ ✓ ✓ ✗ ✗ ✓ 𝑓 ✗ ✓

Addition only training ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Biologically inspired ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

𝑎
A single pass generates a model that can be used.

𝑏
For RBF & Polynomial kernels, randomized embeddings allow

for approximate kernel learning to generate a model with a single

pass. But it is not possible in general.
𝑐
For RBF & Polynomial kernels,

approximate kernel learning with randomized embeddings remove

the need for the training data at inference. But it is not possible in

general.
𝑑
Approximate clustering with more than a single cluster is

possible with streaming data.
𝑒
Data-parallel training is possible but

the optimization is either approximated or the objective is modified.

𝑓
Decision trees perform a gradient-free combinatorial optimization;

gradients are needed for gradient boosted decision trees.

optimization, and can be inferred fromwith an efficient FlyHash [6]
followed by a sparse binary additions-only dot-product.

▶ A thorough empirical comparison of FBFC to standard classifiers
on over 71 data sets in the single-pass learning setup, demon-

strating significant gains over other single-pass schemes.

▶ A theoretical examination of the proposed scheme, establishing

conditions under which FBFC agrees with the nearest-neighbor

classifier, thereby inheriting its generalization guarantees.

▶ How the FBFC can provide insights into the problem structure in

terms of a class hierarchy in classification problem.

The paper is organized as follows:We discuss related work in §2.We

detail our proposed scheme and analyze its theoretical properties

in §3. We empirically evaluate FBFC against baselines in §4 and

conclude with a discussion in §5.

2 RELATEDWORK
Neuroscience inspired techniques are now widely accepted in artifi-

cial intelligence to great success [14], especially in the field of deep

learning with convolutional neural networks [18, 21], dropout [15]

and attention mechanisms [22, 23] to name a few. Much like most

machine learning methods, deep learning relies on loss-gradient

based training in most cases. In contrast, our proposed FBFC learn-

ing does not explicitly minimize any “loss” function. Moreover,

rather than learning a representation for the points that facilitates

classification, the FBFC learns a representation for entire classes,

allowing test points to be compared to classes for inference.

Given the correlation between a point 𝑥 ’s FBF novelty score to

its minimum distance from the set that the FBF summarizes [4], our

proposed FBFC is perhaps closest to the nonparametric 𝑘-nearest-

neighbor classifier (𝑘NNC). Vanilla 𝑘NNC does not have an explicit

loss or a training phase given a measure of similarity; all the com-

putation is shifted to inference. FBFC does have an explicit training

phase, but requires only a single pass of the training data – once a

point is processed into the FBF, it can be discarded, making FBFC
suitable for online learning with streaming data.

On a very high level, this is similar to cluster-based 𝑘NNC where

class specific training data (data with same labels) is summarized

as (multiple) cluster centers and used as a reduced training set

on which 𝑘NNC is applied – this is also known as prototype-based

classification (CC), with the simplest form where there is a single

cluster/prototype per class (CC1). A variety of methods exists in

literature that adopt this simple idea of data reduction [9, 11, 24, 25,

27, 35]. These algorithms are designed with the goal of reducing

the high computational & storage requirements of 𝑘NNC. Orthogo-
nally, various data structures have been utilized to accelerate the

nearest-neighbor search in 𝑘NNC inference representing the data

as an index such as space-partitioning trees [2, 5, 26, 31] and hash

tables generated by locality-sensitive hashes [1, 10].
The closely related locality-sensitive Bloom filter (LSBF) [16, 20]

also summarizes the data similar to FBF, relying on distance pre-

serving random projection [34] to lower dimensions followed by

quantizing the projected vector to an integer. Under this scheme,

two inputs reset the same bit in the filter if they are assigned the

exact same projected vector. Performance of LSBF heavily depends

on the choice of hyper-parameters that control the projection di-

mensionality and the data-independent quantization scheme. FBF
has been shown to empirically outperform LSBF for novelty detec-

tion [4]. LSBF can also be used for supervised classification in the

same way we extend the use of FBF which we call SBFC.
Multinomial regressionwith linearmodels (LR) andmulti-layered

perceptrons (MLPC) can also be viewed as learning a set of weight

vectors corresponding to each class, with the inner product of the

test point with these vectors driving the class assignment. Kernel

machines (KM) are generalizations of linear models to a (implicit)

higher dimensional space where the inner product is defined by a

pairwise kernel function. These learn weight vectors in this implicit

kernel space. In general, these are not suited for single-pass learning,

and require the training set (or a subset of it known as the support

vectors) for inference. However, the seminal work of Rahimi and

Recht [30] made KM more scalable with randomized explicit em-

beddings that allow for approximate kernel learning, making KM
suitable for single-pass online settings and removing the need for

the training set at inference. These approximations exist for radial

basis function (RBF) kernels and polynomial kernels [13, 17, 29]

but are not generally available for all kernel functions. Moreover,

low levels of approximations often have a high memory overhead.

A comparison of our proposed method with the (related) existing

methods across a wide variety of desirable properties is summa-

rized in Table 1. We emphasize that in comparison to the existing

methods, our biologically inspired proposed FBFC is simple to im-

plement as it is gradient & optimization free and requires addition

only operations while being single pass, and adaptive to streaming

data all at the same time. Additionally, as we show in §3.2, the

theoretical predictive performance of FBFC agrees with that of a



(a) FBFC training. (b) FBFC inference.

Figure 1: Visual depiction of FBFC training and inference (Al-
gorithm 1). Colored circles are the labeled training set. In
Figure 1a, the high dimensional sparse FlyHashes for the
points (stacked ■ & □) in each class are used to generate the
per-class FBF (NOT (·) of the ORs ∨ of the hashes as per (2)).
The ⃝ in Figure 1b is the unlabeled point we infer on based
on the dot-product of its FlyHash with each of the per-class
FBFs (3). Please view in color.

non-parametric classifier, 1NNC. But like parametric methods, it

does not require access to training data during inference.

3 FlyHash BLOOM FILTER CLASSIFIER (FBFC)
The basic building block of our proposed algorithm is a fruit-fly

olfactory circuit inspired FlyHash function, first introduced by

Dasgupta et al. [6]. Here we consider the binarized FlyHash [4].

For 𝑥 ∈ R𝑑 , the FlyHash function ℎ : R𝑑 → {0, 1}𝑚 is defined as,

ℎ(𝑥) = Γ𝜌 (𝑀𝑠
𝑚𝑥), (1)

where𝑀𝑠
𝑚 ∈ {0, 1}𝑚×𝑑 is the randomized sparse lifting binary ma-

trix with 𝑠 ≪ 𝑑 nonzero entries in each row, and Γ𝜌 : R
𝑚 → {0, 1}𝑚

is the winner-take-all function converting a vector in R𝑚 to binary

one in {0, 1}𝑚 by setting the highest 𝜌 ≪ 𝑚 elements to 1 and

the rest to zero. Unlike random projection [34] which decreases

data dimensionality after projection, FlyHash is an upward pro-

jection or a lifting which increases data dimensionality (𝑚 ≫ 𝑑).

The hyper-parameters for FlyHash are (i) the lifted dimensionality

𝑚 ∈ N, (ii) lifting matrix nonzero count per row 𝑠 ∈ N, and (iii) the

number of nonzeros (NNZ) 𝜌 ∈ N in the FlyHash. The FlyHash

has been shown to be locality sensitive – similar points 𝑥, 𝑥 ′ ∈ R𝑑
will have matching nonzero elements in their hashes ℎ(𝑥), ℎ(𝑥 ′).

Using FlyHash as an algorithmic building block, Dasgupta et al.

[4] construct a “Fly bloom filter” (FBF) 𝑤 ∈ {0, 1}𝑚 to succinctly

summarize the data, and use it to effectively solve the unsupervised

learning task of novelty detection, with the novelty score set as

𝑤⊤ℎ(𝑥). Starting with 𝑤 = 1𝑚 (the vector of all ones), for an

“inlier” point 𝑥in, the FBF encoding 𝑤 is updated by zeroing the

Algorithm 1: FBFC training with labeled set 𝑆 ⊂ R𝑑 × [𝐿],
lifted dimensionality 𝑚 ∈ N, NNZ per row in the lifting

matrix 𝑠 ≪ 𝑑 , NNZ in FlyHash 𝜌 ≪𝑚, and test point 𝑥 .

1 TrainFBFC: (𝑆,𝑚, 𝜌, 𝑠) → (𝑀𝑠
𝑚, {𝑤𝑙 , 𝑙 ∈ [𝐿] })

2 Sample𝑀𝑠
𝑚 ∈ {0, 1}𝑚×𝑑 with 𝑠 NNZ/row

3 Initialize 𝑤1, . . . , 𝑤𝐿 ← 1𝑚 ∈ {0, 1}𝑚
4 for (𝑥, 𝑦) ∈ 𝑆 do
5 ℎ (𝑥) ← Γ𝜌 (𝑀𝑠

𝑚𝑥) // Γ𝜌 top-𝜌 WTA

6 𝑤𝑦 ← 𝑤𝑦

∧
ℎ (𝑥)

7 end
8 return (𝑀𝑠

𝑚, {𝑤𝑙 , 𝑙 ∈ [𝐿] })
9 end

10 InferFBFC: (𝑥,𝑀𝑠
𝑚, 𝜌, {𝑤𝑙 , 𝑙 ∈ [𝐿] }) → 𝑦̂

11 ℎ (𝑥) ← Γ𝜌
(
𝑀𝑠

𝑚𝑥
)

12 𝑦̂ ← argmin𝑙∈[𝐿] (1/𝜌)𝑤⊤𝑙 ℎ (𝑥)
13 return 𝑦̂

14 end

elements in𝑤 corresponding to the indices of the nonzero elements

in ℎ(𝑥in) (the FlyHash of 𝑥). This ensures that some 𝑥 = 𝑥in or

similar to 𝑥in receives a low novelty score 𝑤⊤ℎ(𝑥). For a novel

point 𝑥nov with FlyHash ℎ(𝑥nov), which is not similar to any of the

inliers, the indices of the nonzero elements of ℎ(𝑥nov) will, with
high probability, not be set to zero in𝑤 (so the element in𝑤 will

be one), implying a high novelty score𝑤⊤ℎ(𝑥nov).
Given the high dimensionality𝑚 ≫ 𝑑 of the FlyHash ℎ(𝑥) and

its potentially high sparsity (only 𝜌 ≪ 𝑚 nonzero elements in

ℎ(𝑥)), the FBF 𝑤 in {0, 1}𝑚 can be a sparse encoding of the data

distribution and motivates potential use in supervised classification

– we can encode each individual class 𝑙 ∈ [𝐿] = {1, . . . , 𝐿} with its

own FBF𝑤𝑙 – we posit that the FBF encodings would provide large

inter-class separation on account of their very high dimensional

and sparse representation. In this section, we will detail how we

extend the use of FBF to supervised classification, discussing the

learning and inference mechanisms in §3.1, and the theoretical

guarantees for the presented algorithms to §3.2.

3.1 Learning & inference mechanics
Here we extend the use of FBF to classification, an instance of su-

pervised learning. Specifically, we use FBF to summarize each class

separately – the per-class FBF encodes the local neighborhoods of

each class, and the high dimensional sparse nature of FlyHash (and
consequently FBF) summarizes classes with multi-modal distribu-

tions while mitigating overlap between the FBFs of other classes.

3.1.1 FBFC training. Given a training set 𝑆 ⊂ R𝑑 × [𝐿], the learn-
ing of the per-class FBFs 𝑤𝑙 ∈ {0, 1}𝑚, 𝑙 ∈ [𝐿] is detailed in the

TrainFBFC subroutine inAlgorithm 1. The FlyHash is a fundamental

building block. We initialize the FlyHash by randomly generating

the sparse binary (𝑚 × 𝑑) lifting matrix 𝑀𝑠
𝑚 with only 𝑠 nonzero

entries in each row of the matrix (line 2). The per-class FBF𝑤𝑙 are

initialized to 1𝑚 ∈ {0, 1}𝑚 , the all one vector (line 3).

For a training example (𝑥,𝑦) ∈ 𝑆 with point 𝑥 ∈ R𝑑 and label

𝑦 ∈ [𝐿], we first generate the FlyHash ℎ(𝑥) (line 5). Then, the FBF
𝑤𝑦 (corresponding to 𝑥 ’s class 𝑦) is updated with ℎ(𝑥) as follows –
the bit positions of𝑤𝑦 corresponding to the nonzero bit positions

of ℎ(𝑥) are set to zero, and the remaining entries of𝑤𝑦 are left as



is (line 6); the remaining FBFs𝑤𝑙 , 𝑙 ≠ 𝑦 ∈ [𝐿] are not updated at all.

This ensures that 𝑥 (and points similar to 𝑥 ) are considered to be an

“inlier” with respect to𝑤𝑦 . The precise mathematical update can

be written as𝑤𝑦 ← (𝑤𝑦 ⊕ ℎ(𝑥)) ∧𝑤𝑦 = 𝑤𝑦 ∧ (ℎ(𝑥)), where ⊕, ∧
and (·) are the element-wise vector XOR, AND and NOT respectively.
Starting with𝑤𝑦 = 1𝑚 , using De Morgan’s law, we can condense

the FBF learning for a class 𝑙 ∈ [𝐿] to

𝑤𝑙 = 1𝑚
∧

(𝑥,𝑦) ∈𝑆 : 𝑦=𝑙
(ℎ(𝑥)) (2)

At the conclusion of the learning, the 𝐿 per-class FBFs and the lifting
matrix𝑀𝑠

𝑚 constitute our proposed FlyHash bloom filter classifier

(FBFC). Figure 1a visualizes the process for a toy example. Algo-

rithm 1, equation (2), and the commutative nature of ‘∧’ highlight
couple of interesting aspects of this learning process:

▶ The learning scheme is online where an example can be used in

isolation to update the model without any approximation. This

is common with ML models trained via some form of stochastic

gradient descent, but are not possible with decision tree methods.

▶ The learning process does not need to see an example (𝑥,𝑦)
more than once – once the appropriate FBF𝑤𝑦 has been updated

using ℎ(𝑥), any subsequent update with (𝑥,𝑦) is redundant –
the bit positions in𝑤𝑦 corresponding to the nonzero bits in ℎ(𝑥)
are already zero. This implies that, a single FBFC model can be

learned with a single pass of the training set 𝑆 .

Inter-class similarities. Given the per-class FBFs𝑤𝑙 , 𝑙 ∈ [𝐿], we
can use the cosine similarity 𝑠 (𝑙1, 𝑙2) =

⟨𝑤𝑙
1
,𝑤𝑙

2
⟩

∥𝑤𝑙
1
∥ ∥𝑤𝑙

2
∥ between the FBF

pair (𝑤𝑙1 ,𝑤𝑙2 ) as an inter-class similarity score between classes 𝑙1
and 𝑙2 to quantify the hardness of differentiating these classes, and

generate insights into the structure of the classification problem. For

example, the per-class encodings𝑤𝑙 , 𝑙 ∈ [𝐿] of the class conditional
data-distributions can be used to generate a class hierarchy by

performing hierarchical clustering of the per-class encodings.

3.1.2 FBFC inference. As discussed previously, the FBF 𝑤𝑙 for a

particular class 𝑙 ∈ [𝐿] are learned in a way that any point 𝑥 with

a label 𝑙 is treated as an inlier with respect to class 𝑙 ; the example 𝑥

with label 𝑙 does not affect the class encodings𝑤𝑙 ′, 𝑙
′ ≠ 𝑙, 𝑙 ′ ∈ [𝐿].

This implies that any point 𝑥 ′ ∈ R𝑑 similar to 𝑥 will have a low

novelty score 𝑤⊤
𝑙
ℎ(𝑥 ′). This motivates our inference rule – for

a test point 𝑥 , we compute the per-class novelty scores 𝑓𝑙 (𝑥) ∈
[0, 1], 𝑙 ∈ [𝐿] and the predicted label as:

𝑓𝑙 (𝑥) = (1/𝜌)𝑤⊤𝑙 ℎ(𝑥), 𝑦 = arg min

𝑙 ∈[𝐿]
𝑓𝑙 (𝑥) (3)

A high 𝑓𝑙 (𝑥) indicates that training examples with label 𝑙 are very

different from 𝑥 . A small value of 𝑓𝑙 (𝑥) indicates the existence of at
least one training example with label 𝑙 similar to 𝑥 . The predicted la-

bel for 𝑥 is simply the class with the smallest 𝑓𝑙 (𝑥) (breaking ties ran-
domly). This is visualized in Figure 1b and detailed in the InferFBFC
subroutine in Algorithm 1. The per-class novelty 𝑓𝑙 (𝑥), 𝑙 ∈ [𝐿] can
be converted into class probabilities with a soft-max operation.

3.1.3 Robust FBFC against labeling noise with non-binary FBF . The
proposed FBFC generates a binary encoding𝑤𝑙 ∈ {0, 1}𝑚 for each

class 𝑙 ∈ [𝐿] with a single pass of the data by zeroing all bits in

𝑤𝑙 corresponding to the nonzero positions in the FlyHash ℎ(𝑥) for

every example (𝑥,𝑦) ∈ 𝑆,𝑦 = 𝑙 . Given this encoding, the inference

for a test point 𝑥 generates the novelty score for a class 𝑙 by counting

the number of nonzero elements in ℎ(𝑥) that are also nonzero in

𝑤𝑙 – higher number of matches imply larger novelty scores and

hence less chance of predicting label 𝑙 for 𝑥 . As we will see in our

empirical evaluations, this process is quite effective even with a

single pass. However, a single mislabeled example (𝑥mis, 𝑦mis) can
modify the FBF𝑤𝑙 , 𝑦mis = 𝑙 , in a way that all test points 𝑥 similar

to the mislabeled point 𝑥mis may get misclassified since they would

get a low novelty score with respect to the FBF 𝑤𝑙 ; we cannot

correct this given the single pass nature of the FBFC learning. In the

following, we will mathematically motivate this lack of robustness

and provide a remedy utilizing a non-binary FBF.
In our binary FBF design, for any test point 𝑥 and any 𝑙 ∈ [𝐿],

let 𝐴𝑥 = { 𝑗 ∈ [𝑚] : ℎ(𝑥) 𝑗 = 1} be the nonzero coordinates in ℎ(𝑥).
Each coordinate of𝐴𝑥 contributes in deciding the value of 𝑓𝑙 (𝑥). For
any 𝑗 ∈ 𝐴𝑥 , it is possible that a single (possibly mislabeled) training

example 𝑥 ′ from class 𝑙 sets the contribution of the 𝑗 th coordinate to

zero in the computation of 𝑓𝑙 (𝑥) – it is only required thatℎ(𝑥 ′) 𝑗 = 1.

Even in the absence of labeling noise, the FlyHashℎ : R𝑑 → {0, 1}𝑚
is randomized, and there is always a nonzero probability of this

event. Also, for any 𝑗, 𝑘 ∈ 𝐴𝑥 , 𝑗 ≠ 𝑘 , if 𝑤𝑙 𝑗 = 𝑤𝑙𝑘 = 0 (the 𝑗 th

and 𝑘th element in the FBF 𝑤𝑙 for class 𝑙), coordinates 𝑗 and 𝑘

are indistinguishable in terms of their contribution to 𝑓𝑙 (𝑥). To
address these limitations, we present a modified FBF design which

aims to capture neighborhoods and distribution more effectively,

by allowing coordinates of𝑤𝑙 to take value in [0, 1]. In this design,

for any fixed 𝑐 ∈ (0, 1], the 𝑗 th coordinate𝑤𝑙 𝑗 of FBF𝑤𝑙 is set as:

𝑤𝑙 𝑗 = (1 − 𝑐) |{ (𝑥,𝑦) ∈𝑆 : 𝑦=𝑙 and (ℎ (𝑥)) 𝑗=1}|, 𝑙 ∈ [𝐿], 𝑗 ∈ [𝑚], (4)

with 𝑐 = 1 corresponding to the original binary FBF. At infer-

ence, the label for a test point 𝑥 ∈ R𝑑 is still computed as 𝑦 =

argmin𝑙 ∈[𝐿] 𝑤
⊤
𝑙
ℎ(𝑥). We term this form of the Fly Bloom Filter as

FBF★ and the corresponding classifier as FBFC★. While the entries

𝑤𝑙 𝑗 in this non-binary FBF𝑤𝑙 can take values in [0, 1], it does not
completely lose the simplicity and interpretability of the binary FBF
since the definition in equation (4) implies that the entries𝑤𝑙 𝑗 are

either 1 or go to zero exponentially fast. The value of 𝑐 is a decay
rate controlling the rate at which entries 𝑤𝑙 𝑗 in the FBF 𝑤𝑙 go to

zero. FBFC★ training is detailed in Algorithm 2, with differences

from Algorithm 1 highlighted in Maroon. Inference with FBFC★ is

exactly the same as with FBFC (Algorithm 1, InferFBFC).
To compute 𝑤𝑙 , 𝑙 ∈ 𝐿, the TrainNBFBFC subroutine in Algo-

rithm 2 initializes the per-class count vectors 𝑧𝑙 ∈ R𝑚 to 0𝑚 , the

vector of all zeros (line 3). Every example (𝑥,𝑦) ∈ 𝑆 is processed

sequentially (line 4) by first generating the FlyHash ℎ(𝑥) for 𝑥 (line

5) and the updating the count vector 𝑧𝑦 corresponding to the class

𝑦 by incrementing the counts of the indices 𝑗 ∈ [𝑚] corresponding
to the nonzero entries in ℎ(𝑥) – this is equivalent to adding the

sparse binary FlyHash ℎ(𝑥) to the count vector 𝑧𝑦 (line 6). After all

the training examples are processed, the per-class final non-binary

FBF𝑤𝑙 , 𝑙 ∈ [𝐿] is generated by raising (1 − 𝑐) to the power of 𝑧𝑙 el-
ementwise (line 8). Given the per-class FBFs {𝑤𝑙 ∈ [0, 1]𝑚, 𝑙 ∈ [𝐿]},
the inference procedure is exactly the same as Algorithm 1. The

exponential decay in equation (4) allows𝑤𝑙 𝑗 , 𝑙 ∈ [𝐿], 𝑗 ∈ [𝑚] to be

determined by a local neighborhood of size dependent on 𝑐 .



Algorithm 2: Non-binary FBFC training with training set

𝑆 ⊂ R𝑑 × [𝐿], lifted dimensionality𝑚 ∈ N, NNZ for each

row in the liftingmatrix 𝑠 ≪ 𝑑 , NNZ in the FlyHash 𝜌 ≪𝑚,

decay rate 𝑐 ∈ (0, 1] and test point 𝑥 ∈ R𝑑 .
1 TrainNBFBFC: (𝑆,𝑚, 𝜌, 𝑠, 𝑐) → (𝑀𝑠

𝑚, {𝑤𝑙 , 𝑙 ∈ [𝐿] })
2 Sample𝑀𝑠

𝑚 ∈ {0, 1}𝑚×𝑑 with 𝑠 NNZ/row

3 Initialize 𝑧1, . . . , 𝑧𝐿 ← 0𝑚 ∈ R𝑚 // all 𝑧𝑙 initialized to zero

4 for (𝑥, 𝑦) ∈ 𝑆 do
5 ℎ (𝑥) ← Γ𝜌 (𝑀𝑠

𝑚𝑥) // Γ𝜌 top-𝜌 WTA

6 𝑧𝑦 ← 𝑧𝑦 + ℎ (𝑥) // Sparse op ∵ |ℎ (𝑥) |0 = 𝜌 ≪𝑚

7 end
8 𝑤𝑙 ← (1 − 𝑐)⊙𝑧𝑙 , 𝑙 ∈ [𝐿] // elementwise exponentiation

9 return (𝑀𝑠
𝑚, {𝑤𝑙 , 𝑙 ∈ [𝐿] })

10 end

3.2 Theoretical analysis
In this section we present theoretical analysis of FBFC, focusing
on (i) the computaional complexities of the FBFC/FBFC★ learning

and inference mechanics presented in §3.1, and (ii) the learning

theoretic properties of the proposed FBFC. All proofs are deferred
to Supplement S1 and S2.

3.2.1 Computational Complexities. We provide the computational

complexities of all the algorithms presented in §3.1 in terms of the

runtime and memory requirement. We present the computational

complexities for a specific hyper-parameter configuration of FBFC–
(i) the lifted FlyHash dimensionality𝑚, (ii) the number of nonzeros

𝑠 in each row of𝑀𝑠
𝑚 , (iii) the number of nonzeros 𝜌 in a FlyHash

after the winner-take-all operation, and (iv) (only for FBFC★) the
decay rate 𝑐 ∈ (0, 1]. We begin by presenting results for the FBFC
training and inference in Algorithm 1.

Claim 1 (FBFC training). Given a training set 𝑆 ⊂ R𝑑 × [𝐿] with
𝑛 examples, the single pass TrainFBFC subroutine in Algorithm 1 with
the lifted FlyHash dimensionality𝑚, number of nonzeros 𝑠 in each
row of the lifting matrix𝑀𝑠

𝑚 ∈ {0, 1}𝑚×𝑑 , and number of nonzeros 𝜌
in FlyHash ℎ(𝑥) for any 𝑥 ∈ R𝑑 , takes time 𝑂 (𝑛𝑚 · max{𝑠, log 𝜌})
and has a memory overhead of 𝑂 (𝑚 ·max{𝑠, 𝐿}).

Claim 2 (FBFC inference). Given a trained FBFC, the inference
for any test point𝑥 ∈ R𝑑 with the InferFBFC subroutine in Algorithm 1
takes time 𝑂 (𝑚 ·max {𝑠, log 𝜌, (𝜌𝐿/𝑚)}) with a memory overhead
of 𝑂 (max{𝑚, 𝐿}).

Remark 1. For any test point 𝑥 ∈ R𝑑 and corresponding FlyHash
ℎ(𝑥), with a large number of labels (large𝐿), if the argmin𝑙 ∈[𝐿] 𝑤

⊤
𝑙
ℎ(𝑥)

can be solved via fast MIPS (maximum inner product search) algo-
rithm in time 𝑓 (𝐿) sublinear in 𝐿, then the overall inference time for
𝑥 would be given by𝑂 (𝑚 ·max {𝑠, log 𝜌, (𝜌 𝑓 (𝐿)/𝑚)}) which would
be sublinear in 𝐿.

The computational complexities of FBFC★ training are as follows:

Claim 3 (FBFC★ training). Given a training set 𝑆 ⊂ R𝑑 × [𝐿]
with 𝑛 examples, the single pass TrainNBFBFC subroutine in Algo-
rithm 2with the lifted FlyHash dimensionality𝑚, number of nonzeros
𝑠 in each row of the lifting matrix𝑀𝑠

𝑚 ∈ {0, 1}𝑚×𝑑 , number of nonze-
ros 𝜌 in FlyHash ℎ(𝑥) for any 𝑥 ∈ R𝑑 , and decay rate 𝑐 ∈ (0, 1],
takes time 𝑂 (𝑛𝑚 ·max {𝑠, log 𝜌}) and has a memory overhead of
𝑂 (𝑚 ·max{𝑠, 𝐿}).

Comparing this result to the computational complexities of bi-

nary FBFC (Claim 1), we see that the computational complexities

are of the same order across the board. Since the inference with

FBFC★ is exactly the same as that of vanilla FBFC, the computational

complexities of the inference is given by Claim 2.

3.2.2 Learning theoretic properties. Since FBFC is a completely

novel classifier, we now establish theoretical guarantees of FBFC’s
predictive performance by relating it to a known classifier with

well-studied theoretical guarantees. The FlyHash has been shown

to be locality sensitive, and the Fly bloom filter (FBF)𝑤 creates an

encoding of the data distribution (or in our case, the encoding𝑤𝑙

for the distribution of a class 𝑙). The novelty score𝑤⊤ℎ(𝑥) of any
(test) point 𝑥 ∈ R𝑑 corresponds to how “far” the point is from the

distribution encoded by𝑤 . In our FBFC, using the minimum nov-

elty score argmin𝑙 ∈[𝐿] 𝑤
⊤
𝑙
ℎ(𝑥) to label 𝑥 is equivalent to labeling

𝑥 with the class whose distribution/encoding is “closest” to 𝑥 . This

motivates us to study how the FBFC is related to the well-studied
nearest-neighbor classifier. Specifically, we identify precise condi-

tions under which FBFC agrees with the nearest-neighbor classifier

1NNC. The general setup, notations and proof sketches are described
in Supplement S2.

We begin by analyzing the binary classification performance

of FBFC trained on a training set 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛0+𝑛1

𝑖=1
⊂ X × {0, 1},

where 𝑆 = 𝑆1 ∪ 𝑆0, 𝑆0 is a subset of 𝑆 having label 0, and 𝑆1 is

a subset of 𝑆 having label 1, satisfying |𝑆0 | = 𝑛0, |𝑆1 | = 𝑛1 and

𝑛 = max{𝑛0, 𝑛1}. For appropriate choice of𝑚, let𝑤0,𝑤1 ∈ {0, 1}𝑚
be the FBFs constructed using 𝑆0 and 𝑆1 respectively.

Connection to 1NNC. For any test point 𝑥 , without loss of general-
ity, assume that its nearest neighbor from 𝑆 has class label 1. Then

1NNC will predict 𝑥 ’s class label to be 1. Therefore, if we are able

to show that E𝑀 (𝑤⊤1 ℎ(𝑥)) < E𝑀 (𝑤
⊤
0
ℎ(𝑥)) then FBFC will predict,

in expectation, 𝑥 ’s label to be 1. While estimating expected nov-

elty score is difficult, an upper and lower bound of class specific

novelty scores can easily be estimated in terms of 𝜏𝑥 (𝑓 ) – the top

𝑓 -fractile value of the distribution 𝜃⊤𝑥 , where 𝜃 represents uniform
sampling of the rows of 𝑀𝑠

𝑚 (see Lemma S1). This immediately

provides us a sufficient condition for FBFC to agree with 1NNC on
any test point 𝑥 in expectation – the upper bound of E𝑀 (𝑤⊤1 ℎ(𝑥))
should be strictly smaller than lower bound of E𝑀 (𝑤⊤0 ℎ(𝑥)) (a high
probability statement then follows using standard concentration

bounds). Under mild structural and/or distributional assumptions

on X, we can readily establish a the following result. The assump-

tions mentioned above give rise to two special cases which are

discussed in Supplement S2.2.

Theorem 4. Fix any 𝛿 ∈ (0, 1), 𝑠 ≪ 𝑑 , and 𝜌 ≪ 𝑚. Given a
training set 𝑆 as described above and a test example 𝑥 ∈ X, let 𝑥NN be
its closest point from 𝑆 measured using ℓ𝑝 metric for an appropriate
choice of 𝑝 . If (i) 𝜌 = Ω(log(1/𝛿)), (ii) ∥𝑥 − 𝑥NN∥𝑝 = 𝑂 (1/𝑠), and
(iii)𝑚 = Ω(𝑛𝜌), then under mild conditions, with probability at least
1−𝛿 (over the random choice of lifting matrix𝑀), prediction of FBFC
on 𝑥 agrees with the prediction of 1NNC on 𝑥 .

Proof (sketch). If the structure ofX allows us to choose a threshold 𝜏𝑥
that is identical for any 𝑥 ∈ X, resulting in a closed form solution for

the quantity 𝑞(𝑥, 𝑥 ′) (defined in Supplement S2.1) for any 𝑥, 𝑥 ′ ∈ X,
or the distributional assumption on X sets the quantity E𝑥𝑞(𝑥, 𝑥 ′)



to be identical for all 𝑥 ′ ∈ 𝑆 , then all the three conditions mentioned

in theorem are satisfied. This, in conjunction with Lemma S1, yields

the desired result in expectation under mild conditions. The high

probability result then follows from standard concentration bounds.

Remark 2. We established conditions under which predictions of
FBFC agrees with that of 1NNC with high probability. 1NNC is a non-
parametric classification method with strong theoretical guarantee
– as |𝑆 | = 𝑛 → ∞, the 1NNC almost surely approaches the error
rate which is at most twice the Bayes optimal error. Therefore, by
establishing the connection between FBFC and 1NNC, FBFC has the
same statistical guarantee under the conditions of Theorem 4.

Multi-class classification. The above results can be extended to

multi-class classification problem involving 𝐿 > 2 classes in a

straight forward manner (see Supplement S2.4).

Note that the FBF guarantees for novelty detection are limited

to two special cases: (i) examples with binary feature vectors con-

taining fixed number of ones, and (ii) examples sampled from a

permutation invariant distribution [4]. We extend this analysis with

these two cases to provide guarantees for FBFC in multi-class clas-

sification (see Supplement S2), which is a distinct learning problem

from novelty detection.

4 EMPIRICAL EVALUATIONS
In this section, we evaluate the empirical performance of FBFC. First,
we demonstrate the dependence of FBFC on its hyper-parameters.

Then, we compare FBFC to other classifiers that can be trained

in a single pass on various data sets. Finally, we present some

problem insights generated by a trained FBFC. The details on the

implementation and compute resources are in Supplement S3.

4.1 Data sets and baselines
For the empirical evaluation of FBFC and FBFC★, we consider two
groups of data sets:

▶ We consider synthetic data of varying sizes and properties

in §4.3. These synthetic data are designed to favor local classi-

fiers such as the 𝑘NNC– each class conditional data distribution

consists of multiple separated modes, with enough inter-class

separation [12]. We consider these synthetic data to see if our

proposed FBFC is able to capture multiple separated local class

neighborhoods in a single per-class FBF encoding while provid-

ing enough separation between FBFs of different classes.
▶ We consider 71 binary &multi-class classification data sets

fromOpenML [33] in §4.4 to evaluate the performance of FBFC
(and variants) on real data sets. We deliberately choose a large

set of data sets, containing many where 𝑘NNC/1NNC have strong

performance, and many where they are not as strong relative to

other standard ML classifiers.

We compare our proposed FBFC and FBFC★ to various baselines

relative to 𝑘NNC. We consider a variety of baselines, including single-

pass ones similar to FBFC. Further details on the baselines and their

hyper-parameters are in Supplement S3:

▶ 𝑘NNC: This is the primary baseline. We tune over the neighbor-

hood size 𝑘 ∈ [1, 64]. We also specifically consider 1NNC (𝑘 = 1).
▶ CC1: Classification based on a single prototype per class – the

geometric class center, computed with a single training set pass.

▶ CC: This generalizes CC1 with multiple prototypes per class –

a test point is classified using its closest prototype. Per-class

prototypes are obtained by 𝐾-means clustering, tuning over

𝐾 ∈ [1, 64]. This is not single pass.
▶ SBFC: To ablate the effect of the high level of sparsity in FlyHash,

we utilize SimHash [3] based LSBF for each class to get the

SimHash Bloom Filter classifier (SBFC). We use this to demon-

strate the utility of the high sparsity in FlyHash; SimHash is

binary like FlyHash but not inherently sparse. We tune over

the SimHash projected dimension𝑚, considering𝑚 < 𝑑 (tradi-

tional regime where SimHash is usually employed) and𝑚 > 𝑑

(as in FlyHash). For the same𝑚, SimHash is more costly (𝑂 (𝑚𝑑)
per point) than FlyHash (𝑂 (𝑚𝑠 +𝑚 log 𝜌)), involving a dense

matrix-vector product instead of a sparse matrix-vector one.

▶ LR. Logistic regression trained for a single epoch with an online

algorithm, tuned over 960 hyper-parameter settings per data set.

▶ MLPC.Multi-layer perceptron trained for one epochwithAdam [19],

tuned over 288 hyper-parameter settings per data set.

▶ FBFC/FBFC★. For a data set with 𝑑 dimensions, we tune across 60

FBFC/FBFC★ hyper-parameter settings in the following ranges:

𝑚 ∈ [2𝑑, 2048𝑑], 𝑠 ∈ (0.0, 0.5𝑑], 𝜌 ∈ [8, 256], and 𝑐 ∈ [0.2, 1).
To normalize performance across data sets, we compute the relative

performance of all methods on each data set as (1 − 𝐴𝑀/𝐴𝑘NNC)
where 𝐴𝑘NNC is the best 10-fold cross-validated classification accu-

racy – accuracy aggregated over 10 train-test splits of any given data

set – achieved by 𝑘NNC across all hyper-parameters and 𝐴𝑀 is the

best 10-fold cross-validated accuracy obtained by method𝑀 . This

means that 𝑘NNC has a relative performance of 0. We perform this

“normalization” to be able to compare the aggregate performance

of different classifiers across multiple data sets (which themselves

probably have different ranges for best achievable accuracies).

4.2 Dependence on hyper-parameters
We study the effect of the different FBFC hyper-parameters: (i) the

FlyHash dimension𝑚, (ii) the NNZ per-row 𝑠 ≪ 𝑑 in𝑀𝑠
𝑚 , (iii) the

NNZ 𝜌 in the FlyHash, and (iv) the FBF decay rate 𝑐 . We consider 2

OpenML data sets (see Table S1 in Supplement S3 for data details).

For every hyper-parameter setting, we compute the 10-fold cross-

validated accuracy. We vary each hyper-parameter while fixing the

others. The results for each of the hyper-parameters and data sets

are presented in Figure 2.

The results indicate that increasing𝑚 usually improves perfor-

mance up to a point. FBFC performance is mostly not affected by

𝑠 , allowing us to use small values for 𝑠 (∼ 𝑂 (10)). Increase in 𝜌

improves performance up to point. The performance is not affected

much by the value of the decay rate when 𝑐 < 1, but there is

a significant drop in performance as we move from 𝑐 < 1 (non-

binary FBFC★) to 𝑐 = 1 (binary FBFC), indicating the advantage of
our novel non-binary FBF; this behavior is pretty consistent and

obvious across all data sets.

4.3 Synthetic Data
We first consider synthetic data designed for strong 𝑘NNC perfor-
mance. We generate data for 5 classes with 3 clusters per class and

points in the same cluster belong to the same class implying that

a neighborhood based classifier will perform well. However, the



(a) FlyHash dimension𝑚 (b) Projection density 𝑠/𝑑

(c) FlyHash NNZ 𝜌 (d) FBF decay rate 𝑐

Figure 2: Effect of the different FBFC/FBFC★ hyper-
parameters on performance for 2 data sets – the horizontal
axes correspond to the hyper-parameter being varied while
fixing the remaining hyper-parameters. The vertical axes
correspond to the 10-fold cross-validated accuracy for the
given configuration (higher is better). Note the log scale
on the horizontal axes. For the hyper-parameter 𝑐, 𝑐 = 1

corresponds to the binary FBFC. Please view in color.

classes are not necessarily linearly separable. We select such a set to

demonstrate that the proposed FBFC is able to encode multiple sep-

arate neighborhoods of a class within a single FBF while providing

enough separation between the per-class FBFs for high predictive

performance. We begin with binary data of the form considered

in our theoretical results (Supplement S2.2.1) – points 𝑥 ∈ {0, 1}𝑑
with |𝑥 | = 𝑏 < 𝑑 . We then consider data in general R𝑑 . For each

(a) Synthetic {0, 1}100, 𝑏 = 20 (b) Synthetic R100

Figure 3: Performance of FBFC/FBFC★ and baselines relative
to the 𝑘NNC performance on synthetic binary (Figure 3a) and
real (Figure 3b) data. The 10-fold cross-validated accuracy
is considered for each of the data sets. The box-plots corre-
spond to performance relative to 𝑘NNC (lower is better) aggre-
gated over 30 synthetic data sets (see text for details). The
red dashed line denotes 𝑘NNC performance.

Table 2: FBFC vs FBFC★ accuracy on synthetic data with label
noise aggregated over 10 train/test splits. Note that the noise
is only added to the train set in every split.

Label noise level 1.0% 5.0% 10% 25%

FBFC accuracy (%) 56.6±0.8 54.5±0.9 52.0±1.3 44.0±1.0
FBFC★ accuracy (%) 60.1±0.7 58.9±0.9 57.1±1.2 50.3±1.2

Rel. improvement (%) 6.1±0.7 8.1±0.9 9.8±1.2 14.2±1.8

setting, we randomly generate 30 data sets with 1000 points each.

The performance of all baselines, aggregated across all 30 sets, is

presented in Figures 3a and 3b for 𝑑 = 100, 𝑏 = 20.

The results indicate that FBFC and FBFC★ are able to match 𝑘NNC
performance significantly better than all other single pass baselines.

The binary FBFC matches the performance of FBFC★. As expected,
CC performs significantly better than the other baselines on account

of being able to properly compress multi-modal classes, albeit re-

quiring multiple passes. CC1 performs significantly worse than CC
since one cluster is not able to appropriately compress multi-modal

classes while maintaining the separation between the classes. LR
and MLPC perform similarly to CC1. The proposed FBFC and FBFC★

significantly outperform SBFC, highlighting the need for sparse

high dimensional hashes to summarize multi-modal neighborhoods

while avoiding overlap between per-class FBFs. Moreover, note that

in the absence of any labeling noise (which we have complete con-

trol over given we are generating these synthetic sets), FBFC and
FBFC★ perform very similarly as discussed in §3.1.3.

Effect of labeling noise. We consider an additional experiment

with synthetic 5-class classification problem in R𝑑 where we add in-

creasing levels of noise to the labels. We compare FBFC with FBFC★

for a single hyper-parameter configuration where the only differ-

ence between the two is that FBFC★ uses 𝑐 = 0.9. FBFC implicitly

uses 𝑐 = 1. The results presented in Table 2 indicate that as the

label noise level goes up from 1% to 25%, the performance of both

schemes drop as expected. However, the relative improvement of

FBFC★ over FBFC increases from around 6% to 14%, indicating that

FBFC★ is more robust to labeling noise in the training set.



Table 3: Fraction of data sets where FBFC★ outperforms base-
lines with median difference in relative performance be-
tween FBFC★ and baselines across data sets in brackets. The
underlinedmethods are not single-pass. ▲ denotes FBFC★ im-
provement against baseline; ▼ denotes FBFC★ decline; • de-
notes we can reject the null hypothesis (FBFC★ and baseline
have similar performance) of the paired 𝑡-test at significance
level 0.01; ◦ denotes we cannot reject the null hypothesis.

Method All (71 sets) Group A (37/71) Group B (34/71)

𝑘NNC 0.51 (▲0.05%) ◦ 0.24 (▼1.08%) ◦ 0.79 (▲3.98%) •
1NNC 0.62 (▲2.21%) • 0.38 (▼0.24%) ◦ 0.88 (▲12.1%) •
CC1 0.87 (▲7.64%) • 0.95 (▲11.8%) • 0.79 (▲4.96%) •
CC 0.38 (▼0.48%) ◦ 0.38 (▼0.31%) ◦ 0.38 (▼0.50%) ◦
SBFC 0.99 (▲24.9%) • 0.97 (▲24.7%) • 1.00 (▲25.2%) •
LR 0.58 (▲1.34%) ◦ 0.78 (▲3.39%) • 0.35 (▼0.68%) ◦
MLPC 0.73 (▲4.36%) • 0.81 (▲6.57%) • 0.65 (▲3.80%) •

FBFC 0.82 (▲5.87%) • 0.68 (▲0.73%) • 0.97 (▲9.13%) •

4.4 OpenML Data
We consider 71 classification (binary and multi-class) data sets from

OpenMLwith𝑑 numerical columns and𝑛 samples;𝑑 ∈ [10, 1024], 𝑛 ≤
50000. Unlike the synthetic sets, these data sets do not guarantee

strong 𝑘NNC performance. Hence we separate these data sets into 2

groups: (i) Group A: 37 data sets where the nonparametric 𝑘NNC
performs the best among the baselines, (ii)Group B: the remaining

34 sets where parametric LR performs the best among the baselines.

We study the performance of the proposed schemes in both these

groups of data sets. The results are summarized in Table 3, where

the relative performances of all baselines and FBFC are compared to

FBFC★, aggregated over all the data sets, with paired 𝑡-tests for the

null hypothesis that FBFC★ and the method under consideration

have similar performance at a significance level of 0.01.

Overall, FBFC★ consistently outperforms FBFC across both groups
on 58/71 or 82% of the data sets, with a median improvement of

5.87%, highlighting the value of the non-binary FBF★. As seen in Ta-

ble 3, both FBFC and FBFC★ significantly outperform SBFC, similar

to the synthetic data sets, highlighting the need for sparsity with

bloom filter based classifiers on real world data sets. In fact, SBFC
performs the worst among all baselines across almost all data sets,

indicating that vanilla locality sensitive bloom filters are not useful

for multi-dimensional classification; both the high dimensionality

and high sparsity are also necessary for real-world data.

Compared to the nearest-neighbor classifiers, 𝑘NNC and 1NNC,
FBFC★ performs comparably to the 𝑘NNC (null hypothesis cannot
be rejected), while improving upon 1NNC by a median of around 2%

across all 71 sets. Looking at the results on Group A (where 𝑘NNC
performs best among baselines), FBFC★ shows a median drop of

around 1% over 𝑘NNC but the null hypothesis still cannot be rejected
at a significance level of 0.01; FBFC★ performs comparably to 1NNC.
FBFC★ is able to still outperform 𝑘NNC and 1NNC on 24% and 38% of

the sets respectively in Group A. The results are more favorable

with Group B, where 𝑘NNC is outperformed by LR. FBFC★ signifi-

cantly improves upon 𝑘NNC and 1NNC with a median difference of

(a) MNIST – 10 classes (b) Letters – 26 classes

Figure 4: Class hierarchy as a dendogram generated with
the per-class FBF based inter-class similarities for data sets
with interpretable labels, highlighting that FBFs can encode
classes in a way that the resulting inter-class similarities are
semantically meaningful. See text for further discussion.

around 4% and 12% respectively while outperforming them on 79%

and 88% of the sets respectively in Group B.
Comparing to the prototype-based classifiers, CC1 and CC, FBFC★

outperforms the single-pass CC1 consistently and significantly across
all groups of data sets, while slightly underperforming the multi-

pass CC. Across all groups, FBFC★ shows a median drop of at most

0.5% compared to CC, but the null hypothesis cannot be rejected at

a significance level of 0.01, implying that the single-pass FBFC★ per-

forms comparably to the multi-pass CC. FBFC★ is able to outperform

CC on 38% of the data sets across all groups.

Among models, LR and MLPC, trained with (stochastic) gradient

descent, Table 3 indicate that LR generally outperforms MLPC across
all groups since a single pass is usually not sufficient to train MLPC
to high accuracy without any pre-training or meta-learning. Over

all data sets, FBFC★ performs comparably to LR, showing an median

improvement of around 1.3%, while outperforming LR on 58% of the

data sets. However, we are unable to reject the null hypothesis here.

WithGroupA data sets, FBFC★ significantly outperforms LR on 78%
of the data sets, showing a median improvement of around 3.4%. In

Group B, where LR is the strongest baseline, FBFC★ underperforms

LR, showing a median drop of around 0.68%, but the difference is

not significant as we are unable to reject the null hypothesis.

These results demonstrate that the proposed FBFC/FBFC★ allow

us to enjoy strong performance on (i) data sets where nonparametric

𝑘NNC perform well, as well as on (ii) data sets where parametric

models are more favorable, enjoying best of both worlds with a

single pass training. This behaviour is verified with a large number

of data sets, implying the wide practical utility of FBFC/FBFC★.

4.5 Problem insights through class similarities
We wish to highlight the ability to generate problem insights in

terms of class hierarchies utilizing the class encodings𝑤𝑙 , 𝑙 ∈ [𝐿]
generated during FBFC training.We consider FBFC generated on two
data sets with already interpretable labels: MNIST data set for digits

classification, and Letters data set for English letter classification.

Wewish to explore whether the FBFC is able to obtain a semantically

meaningful hierarchy without any additional supervision. For the

best FBFC★ model, we generate dendograms for the classes using

𝑠 (𝑙1, 𝑙2) =
⟨𝑤𝑙

1
,𝑤𝑙

2
⟩

∥𝑤𝑙
1
∥ ∥𝑤𝑙

2
∥ as the similarity in Figure 4.

With MNIST (Figure 4a), we see three main clusters of digits

(7,4,9), (5,3,8) and (0,1,6). The first two clusters are semantically



meaningful because of the structure of the digits. (0,6) in the (0,1,6)

also have similar structure.With Letters (Figure 4b), of the 26 classes,

(m,n,v,w), (a,u), (y,f,p), (i,j), (x,s,z), (t,l), (c,e), (q,g,o), (h,k) are some

of the semantically meaningful groups discovered by FBFC without

any extra supervision beyond just the training set. These results in-

dicate that, for classification problems where we do not possess any

semantically meaningful classes, we can utilize the class encodings

generated by FBFC to find any underlying hierarchy if available.

5 CONCLUSIONS AND FUTUREWORK
In this paper we proposed a novel neuroscience inspired Fly Bloom

Filter based classifier (FBFC) that can be trained in a single pass of

the training set – a point never needs to be revisited, and the whole

training data does not need to be in memory. The inference requires

an efficient FlyHash followed by a very sparse dot product. On the

theoretical side, we established conditions under which FBFC agrees
with the 1NNC. We empirically validated our proposed scheme with

71 data sets of varied data dimensionality and demonstrated that

the predictive performance of our proposed classifier is competitive

with the 𝑘NNC and other single-pass classifiers.

We plan to pursue theoretical guarantees for FBFC and FBFC★

in general R𝑑 by exploring data dependent assumptions such as

doubling measure. While our theoretical results connects FBFC to
1NNC, thereby inheriting its generalization guarantees, in our em-

pirical evaluations, we also compared our proposed schemes to the

more general 𝑘NNC (which has better generalization guarantees).

Our empirical evaluations indicate that FBFC★ significantly out-

performs 1NNC, while matching 𝑘NNC in most cases and at times

outperforming it. This motivates us to study the conditions un-

der which FBFC/FBFC★ matches 𝑘NNC in future work. Additionally,

utilizing the sparse and randomized nature of FBFC, we will inves-
tigate differential privacy preserving properties of FBFC as well

as robustness of FBFC to benign and adversarial perturbations. Fi-

nally, we believe that FBFC can be adapted to handle concept drifts

and distribution shifts when learning with data streams (online

learning) by being able to forget past examples.
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S1 SUPPLEMENTARY MATERIAL FROM §3.2.1
Proof for Claim 1 [FBFC training]. In TrainFBFC (Algorithm 1),

line 2 takes 𝑂 (𝑚𝑠) time and memory, line 3 takes 𝑂 (𝑚𝐿) time and

memory. Each FlyHash in line 5 takes 𝑂 (𝑚𝑠) time for computing

𝑀𝑠
𝑚𝑥 , 𝑂 (𝑚 log 𝜌) time for performing the WTA operation Γ𝜌 (·),

and 𝑂 (𝑚) memory. FBF𝑤𝑦 update in line 6 takes 𝑂 (𝜌) time since

it is only updating 𝜌 entries in𝑤𝑦 . Hence the loop 4-7 takes time

𝑂 (𝑛(𝑚𝑠 +𝑚 log 𝜌 +𝜌)) and maximum𝑂 (𝑚) memory. Given 𝜌 ≪𝑚

and 𝐿 ≪ 𝑛, the total runtime is given by𝑂 (𝑛𝑚 ·max{𝑠, log 𝜌}) time

and𝑂 (𝑚 ·max{𝑠, 𝐿}) memory, proofing the claim of the statement.

Proof of Claim 2 [FBFC inference]. In InferFBFC (Algorithm 1), the

FlyHash operation in line 11 takes time𝑂 (𝑚(𝑠 + log 𝜌)) and𝑂 (𝑚)
memory, while the operation in line 12 takes time 𝑂 (𝐿𝜌 + 𝐿) since
each𝑤⊤

𝑙
ℎ(𝑥) takes time 𝑂 (𝜌) since ℎ(𝑥) only have 𝜌 nonzero en-

tries. This leads to an overall runtime of𝑂 (𝑚·max{𝑠, log 𝜌, (𝜌𝐿/𝑚)})
and memory overhead of 𝑂 (max{𝑚, 𝐿}), as per the claim.

Proof for Claim 3 [FBFC★ training]. In TrainNBFBFC (Algorithm 2),

line 2 takes 𝑂 (𝑚𝑠) time and memory, line 3 takes 𝑂 (𝑚𝐿) time and

memory. Each FlyHash in line 5 takes 𝑂 (𝑚(𝑠 + log 𝜌)) time and

𝑂 (𝑚) memory. FBF 𝑤𝑦 update in line 6 takes 𝑂 (𝜌) time since it

is only adding 1 to 𝜌 entries in𝑤𝑦 . Hence the loop 4-7 takes time

𝑂 (𝑛(𝑚𝑠 +𝑚 log 𝜌 + 𝜌)) and maximum 𝑂 (𝑚) memory. The elemen-

twise exponentiation in line 8 takes atmost 𝑂 (𝑚𝐿). Given 𝜌 ≪𝑚

and 𝐿 ≪ 𝑛, the total runtime is given by𝑂 (𝑛𝑚 ·max{𝑠, log 𝜌}) time

and𝑂 (𝑚 ·max{𝑠, 𝐿}) memory, proofing the claim of the statement.

S2 SUPPLEMENTARY MATERIAL FROM §3.2.2
S2.1 Preliminaries & notations
We denote a single row of a lifting matrix𝑀𝑠

𝑚 by 𝜃 ∈ {0, 1}𝑑 drawn

i.i.d. from 𝑄 , the uniform distribution over all vectors in {0, 1}𝑑
with exactly 𝑠 ones, satisfying 𝑠 ≪ 𝑑 . For ease of notation, we

use 𝑀 instead of 𝑀𝑠
𝑚 and we use an alternate formulation of the

winner-take-all strategy as suggested in Dasgupta et al. [4], where

for any 𝑥 ∈ R𝑑 , 𝜏𝑥 is a threshold that sets largest 𝜌 entries of 𝑀𝑥

to one (and the rest to zero) in expectation. Specifically, for a given

𝑥 ∈ R𝑑 and for any fraction 0 < 𝑓 < 1, we define 𝜏𝑥 (𝑓 ) to be the

top 𝑓 -fractile value of the distribution 𝜃⊤𝑥 , where 𝜃 ∼ 𝑄 :

𝜏𝑥 (𝑓 ) = sup{𝑣 : Pr𝜃∼𝑄 (𝜃⊤𝑥 ≥ 𝑣) ≥ 𝑓 } (S1)

We note that for any 0 < 𝑓 < 1, Pr𝜃∼𝑄 (𝜃⊤𝑥 ≥ 𝜏𝑥 (𝑓 )) ≈ 𝑓 , where
the approximation arises from possible discretization issues. For

convenience, henceforth we will assume that this is an equality:

Pr𝜃∼𝑄 (𝜃⊤𝑥 ≥ 𝜏𝑥 (𝑓 )) = 𝑓 (S2)

For any two 𝑥, 𝑥 ′ ∈ R𝑑 , we define

𝑞(𝑥, 𝑥 ′) = Pr𝜃∼𝑄
(
𝜃⊤𝑥 ′ ≥ 𝜏𝑥 ′ (𝜌/𝑚) | 𝜃⊤𝑥 ≥ 𝜏𝑥 (𝜌/𝑚)

)
.

This can be interpreted as follows – withℎ(𝑥), ℎ(𝑥 ′) as the FlyHash
of 𝑥 and 𝑥 ′, respectively, 𝑞(𝑥, 𝑥 ′) is the probability that ℎ(𝑥 ′) 𝑗 = 1

given that ℎ(𝑥) 𝑗 = 1, for any specific 𝑗 ∈ [𝑚] (ℎ(𝑥) 𝑗 is the 𝑗 th entry
of the FlyHash ℎ(𝑥)). Next, the following lemma establishes upper

and lower bounds of class specific novelty scores.

Lemma S1. Fix any 𝑥 ∈ R𝑑 and let ℎ(𝑥) ∈ {0, 1}𝑚 be its FlyHash
using equation 1. For class 𝑖 ∈ {0, 1}, let 𝑥𝑖

𝑁𝑁
= argmin(𝑥 ′,𝑦′) ∈𝑆𝑖 ∥𝑥−

𝑥 ′∥ with any distance metric ∥ · ∥, and 𝐴𝑆𝑖 = ∩(𝑥 ′,𝑦′) ∈𝑆𝑖 {𝜃 : 𝜃⊤𝑥 ′ <
𝜏𝑥 ′ (𝜌/𝑚)}. Then the following hold for each class 𝑖 ∈ {0, 1} separately,
where the expectation is taken over the random choice of projection
matrix𝑀 :
(i) E𝑀

(
𝑤⊤
𝑖
ℎ(𝑥)/𝜌

)
= Pr𝜃∼𝑄

(
𝐴𝑆𝑖 | 𝜃⊤𝑥 ≥ 𝜏𝑥 (𝜌/𝑚)

)
,

(ii) E𝑀
(
𝑤⊤
𝑖
ℎ(𝑥)/𝜌

)
≥ 1 −∑𝑥 ′∈𝑆𝑖 𝑞(𝑥, 𝑥 ′),

(iii) E𝑀
(
𝑤⊤
𝑖
ℎ(𝑥)/𝜌

)
≤ 1 − 𝑞(𝑥, 𝑥𝑖

𝑁𝑁
).

Proof. Part (i) follows from simple application of Lemma 2 of [4]

to class specific FBFs 𝑤𝑖 , 𝑖 ∈ {0, 1}. Part (ii) follows from simple

application of Lemma 3 of [4] to class specific FBFs. For part (iii),
simple application of Lemma 3 of [4] to FBF𝑤𝑖 ensures that for any

𝑥 ′ ∈ 𝑆𝑖 ,E𝑀
(
𝑤⊤
𝑖
ℎ(𝑥)/𝜌

)
≤ 1−𝑞(𝑥, 𝑥 ′). Clearly, E𝑀

(
𝑤⊤
𝑖
ℎ(𝑥)/𝜌

)
≤

1 − 𝑞(𝑥, 𝑥𝑖
𝑁𝑁
). □

S2.2 Two special cases
S2.2.1 Special case I: Binary data. In this section we consider a

special case where examples from each class have binary feature

vectors with fixed number of ones. In particular, let X = X𝑏 = {𝑥 ∈
{0, 1}𝑑 : |𝑥 |1 = 𝑏 < 𝑑}.

Theorem S2. Let 𝑆 be a training set as given above. Fix any 𝛿 ∈
(0, 1), and set 𝜌 ≥ 12

𝜇 ln(4/𝛿),𝑚 ≥ (𝑑/𝑏)𝑛𝜌 , and 𝑠 = log𝑑/𝑏 (𝑚/𝜌),

where 𝜇 = min

{
E𝑀

(
(𝑤⊤

0
ℎ(𝑥))/𝜌

)
,E𝑀

(
(𝑤⊤

1
ℎ(𝑥))/𝜌

)}
and ℎ(𝑥)

is the FlyHash (eq. (1)). For a test point 𝑥 ∈ X, let its closest point
from 𝑆 measured using ℓ1 metric be 𝑥𝑁𝑁 , having label 𝑦𝑁𝑁 ∈ {0, 1},
satisfies, (i) ∥𝑥 − 𝑥𝑁𝑁 ∥1 ≤ 2𝑏 (1 − 𝑏/𝑑)/3𝑠 , and (ii) ∥𝑥 − 𝑥𝑖 ∥1 ≥
2𝑏 (1−𝑏/𝑑) for all (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑆 , with 𝑦𝑖 ≠ 𝑦𝑁𝑁 . Let𝑤0,𝑤1 ∈ {0, 1}𝑚
be the FBFs constructed using 𝑆0 and 𝑆1 respectively. Then, with
probability at least 1 − 𝛿 (over the random choice of lifting matrix
𝑀), FBFC prediction on 𝑥 agrees with the 1NNC prediction on 𝑥 .

Remark 3. Note that, in the worst case, when 𝑏 = 𝑑
2
and 𝑛 takes

the maximum possible value, that is 𝑛 =
(𝑑
𝑏

)
, 𝑠
𝑑
≤ 1 − log(𝑏+1)

4𝑏
=

1 − log𝑑/2+1
2𝑑

, implying that the lifting matrix is not very sparse.

Otherwise, when either 𝑛 ≪
(𝑑
𝑏

)
or 𝑏 ≪ 𝑑 , 𝑠 ≪ 𝑑 , implying a very

sparse lifting matrix𝑀𝑠
𝑚 .

S2.2.2 Special Case II: Permutation invariant distribution inR𝑑 . The
previous result focused on binary data (that is, X ⊂ {0, 1}𝑑 ). Here
we focus on permutation invariant distributions in R𝑑 and present

a similar result forX ⊂ R𝑑 – we show FBFC agrees with 1NNC in R𝑑

with high probability. Permutation invariant distributions in the

FBF context was introduced in Dasgupta et al. [4] and defined as

a distribution 𝑃 over R𝑑 if, with any permutation 𝜎 of {1, 2, . . . , 𝑑}
and any 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈ R𝑑 , 𝑃 (𝑥1, . . . , 𝑥𝑑 ) = 𝑃 (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑑) ).
Precisely, we show the following:

Theorem S3. Let 𝑆 be a training set as given above. Fix any
𝛿 ∈ (0, 1), 𝑠 ≪ 𝑑 , and set 𝜌 ≥ 48

𝜇 ln(8/𝛿) and 𝑚 ≥ 14𝑛𝜌/𝛿 ,

where 𝜇 = min

{
E𝑀

(
(𝑤⊤

0
ℎ(𝑥))/𝜌

)
,E𝑀

(
(𝑤⊤

1
ℎ(𝑥))/𝜌

)}
,ℎ(𝑥) is the

FlyHash (1), and𝑤0,𝑤1 ∈ {0, 1}𝑚 are the FBFs constructed using 𝑆0

and 𝑆1 respectively. For a test point 𝑥 ∈ R𝑑 , sampled from a permu-
tation invariant distribution, let 𝑥𝑁𝑁 be its nearest neighbor from
𝑆 measured using ℓ∞ metric, which satisfies ∥𝑥 − 𝑥𝑁𝑁 ∥∞ ≤ Δ/𝑠 ,
where Δ = 1

2
(𝜏𝑥 (2𝜌/𝑚) − 𝜏𝑥 (𝜌/𝑚)) and has label 𝑦𝑁𝑁 ∈ {0, 1}.



Then, with probability at least 1−𝛿 (over the random choice of lifting
matrix𝑀), FBFC prediction on 𝑥 agrees with 1NNC prediction on 𝑥 .

S2.3 Proof sketch of Theorem S2
Proof (sketch).Without loss of generality, assume that 𝑥𝑁𝑁 satisfies

the relation ∥𝑥 − 𝑥𝑁𝑁 ∥1 = 2𝑏𝜖 for some 0 < 𝜖 < 1 and 𝑦𝑁𝑁 =

1. Clearly, 1-NN classifier will predict 𝑥 ’s class label to be 1. For

any 𝑥, 𝑥 ′ ∈ X𝑏 , the structural assumption of this lemma allows

us to write 𝑞(𝑥, 𝑥 ′) ≈
(
𝑥⊤𝑥 ′/𝑏

)𝑠
and thereby, 𝑠 ≈ log(𝑚/𝜌)

log(𝑑/𝑏) =

log𝑑/𝑏 (𝑚/𝜌). Combining this with part (iv) and (v) of lemma S1, the

restriction on𝑚 as specified in the theorem and a simple algebraic

manipulation yield, E𝑀
(
𝑤⊤
1
ℎ(𝑥)/𝜌

)
≤ 𝑠𝜖 and E𝑀

(
𝑤⊤
0
ℎ(𝑥)/𝜌

)
≥

1−𝑏/𝑑 . For appropriate choice of 𝜖 , and plugging the value of 𝑠 , we
get E𝑀

(
𝑤⊤
1
ℎ(𝑥)/𝜌

)
< E𝑀

(
𝑤⊤
0
ℎ(𝑥)/𝜌

)
. The desired result then

follows by applying lemma S4, provided 𝜌 is large.

The following concentration result is standard and a similar form

has appeared in [4]. Due to space limitations we omit its proof.

Lemma S4. Let 𝑥1, . . . , 𝑥𝑛1
∈ X𝑏 be the unlabeled examples of 𝑆1

and let 𝑥1, . . . , 𝑥𝑛0
∈ X𝑏 be the unlabeled examples of 𝑆0. Pick any

𝛿 ∈ (0, 1) and 𝑥 ∈ X𝑏 . With probability at least 1 − 𝛿 over the choice
of random projection matrix𝑀 , the following holds,
(i) 1

2
E𝑀

(
(𝑤⊤

1
ℎ(𝑥))/𝜌

)
≤ (𝑤⊤

1
ℎ(𝑥))/𝜌 ≤ 3

2
E𝑀

(
(𝑤⊤

1
ℎ(𝑥))/𝜌

)
(ii) 1

2
E𝑀

(
(𝑤⊤

0
ℎ(𝑥))/𝜌

)
≤ (𝑤⊤

0
ℎ(𝑥))/𝜌 ≤ 3

2
E𝑀

(
(𝑤⊤

0
ℎ(𝑥))/𝜌

)
provided 𝜌 ·min

{
E𝑀

(
𝑤⊤
0
ℎ (𝑥)
𝜌

)
,E𝑀

(
𝑤⊤
1
ℎ (𝑥)
𝜌

)}
≥ 12 ln(4/𝛿).

S2.4 Result for multi-class classification
Theorem S2 can be easily extended to multi-class setting involving

𝐿 classes in a straight forward manner by applying concentration

result the terms

(
𝑤⊤𝑖 ℎ (𝑥)

𝜌

)
, for 𝑖 ∈ [𝐿], and using a union bound.

Corollary S5. Given a training set 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛0+···+𝑛𝐿−1
𝑖=1

⊂
X𝑏 ×Y ⊂ {0, 1}𝑑 × {0, 1, . . . , 𝐿 − 1} of size

∑𝐿−1
𝑖=0 𝑛𝑖 , let 𝑆 = ∪𝐿−1

𝑖=0
𝑆𝑖 ,

where 𝑆𝑖 is the subset of 𝑆 with label 𝑖 satisfying |𝑆𝑖 | = 𝑛𝑖 and
𝑛 = max{𝑛0, . . . , 𝑛𝐿−1}. For any test example 𝑥 ∈ X𝑏 , let its clos-
est point from 𝑆 measured using ℓ1 metric be 𝑥𝑁𝑁 having label
𝑦𝑁𝑁 ∈ {0, . . . , 𝐿 − 1}. Fix any 𝛿 ∈ (0, 1) and set 𝜌 ≥ 12

𝜇 ln(2𝐿/𝛿),
𝑚 ≥ (𝑑/𝑏)𝑛𝜌 , and 𝑠 = log𝑑/𝑏 (𝑚/𝜌), where,
𝜇 = min

{
E𝑀

(
(𝑤⊤

0
ℎ(𝑥))/𝜌)

)
, . . . ,E𝑀

(
(𝑤⊤

𝐿−1ℎ(𝑥))/𝜌)
)}

andℎ(𝑥)
is the FlyHash function from equation 1. Assume that for all (𝑥𝑖 , 𝑦𝑖 ) ∈
𝑆 , with 𝑦𝑖 ≠ 𝑦𝑁𝑁 , ∥𝑥 − 𝑥𝑖 ∥1 ≥ 2𝑏 (1 − 𝑏/𝑑) and 𝑥𝑁𝑁 satisfies
∥𝑥 − 𝑥𝑁𝑁 ∥1 ≤ 2𝑏 (1−𝑏/𝑑)

3𝑠 . Let 𝑤0, . . . ,𝑤𝐿−1 ∈ {0, 1}𝑚 be the FBFs
constructed using 𝑆0, . . . , 𝑆𝐿−1 respectively. Then, with probability at
least 1−𝛿 (over the random choice of projection matrix𝑀), prediction
of FBFC on 𝑥 agrees with the prediction of 1NNC on 𝑥 .

S2.5 Proof sketch of Theorem S3
Proof (sketch). Without loss of generality, assume that 𝑦𝑁𝑁 = 1.

We first show that E𝑀
(
𝑤⊤
1
ℎ(𝑥)/𝜌

)
< E𝑀

(
𝑤⊤
0
ℎ(𝑥)/𝜌

)
with high

probability and then using standard concentration bound presented

in lemma S4, we achieve the desired result. Since ∥𝑥 − 𝑥𝑁𝑁 ∥∞ ≤
Δ/𝑠 , using lemma 9 of [4], we get 𝑞(𝑥, 𝑥𝑁𝑁 ) ≥ 1/2. Combining this

with part (iv) of lemma S1, we get E𝑀
(
𝑤⊤
1
ℎ(𝑥)/𝜌

)
≤ 1/2. Next

Table S1: Details of data sets used for FBFC/FBFC★ specific evalua-
tions. For MNIST, we flatten the 28 × 28 images to points in R784.

Data set 𝑛 𝑑 𝐿 Experiment

Gina Prior 2 3468 784 10 OpenML

USPS 9294 256 10 OpenML

Letters 20000 16 26 OpenML

MNIST 60000 784 10 Vision

using properties of permutation invariant distribution, linearity

of expectation, the Markov’s inequality, and part (v) of lemma S1

we show that E𝑀

(
𝑤⊤
0
ℎ(𝑥)/𝜌

)
≥ 1 − 𝛼 with probability at least

1 − 𝛿/2, if𝑚 ≥ 2𝜌𝑛0/(𝛼𝛿). Choosing 𝛼 appropriately and applying

concentration bound from lemma S4, the result follows.

The above result can similarly be extended to amulti-class setting

in a straight forward manner.

S3 SUPPLEMENTARY MATERIAL FROM §4
Implementation & Compute Resource. The proposed scheme is im-

plemented in Python 3.8 to fit the scikit-learn API [28]. We use

scikit-learn implementations of various baselines, and generate

synthetic data with the make_classification function [12] in the

data module of scikit-learn. The experiments are performed

on a 16-core 128GB machine running Ubuntu 18.04. The code is

available at https://github.com/rithram/fbfc.

Details on baselines. Here we detail all the baselines considered
in our empirical evaluations and their respective hyper-parameter

and the subsequent hyper-parameter optimization.

▶ SBFC. We tune over the SimHash dimensionality𝑚 in the range

𝑚 ∈ [1, 𝑑] (the traditional use) and projecting up𝑚 ∈ [𝑑, 2048𝑑],
where 𝑑 is the data dimensionality.

▶ LR.We consider logistic regression trained with a single epoch of

a stochastic algorithm. We utilize the scikit-learn implemen-

tation (linear_model.LogisticRegression) and tune over the
following hyper-parameters – (a) penalty type (ℓ1/ℓ2), (b) regular-

ization ∈
[
2
−10, 210

]
, (c) choice of solver (liblinear [8], SAG [32],

SAGA [7]), (d) with/without intercept, (e) one-vs-rest or multi-

nomial for multi-class, (f) with/without class balancing. We con-

sider a total of 960 hyper-parameter configurations for each

experiment.

▶ MLPC. We consider a multi-layer perceptron trained for a single

epoch with the “Adam” stochastic optimization scheme [19]. We

use sklearn.neural_network.MLPClassifier and tune over

the following hyper-parameters – (a) number of hidden layers

{1, 2}, (b) number of nodes in each hidden layer {16, 64, 128},
(b) choice of activation function (ReLU/HyperTangent), (d) reg-

ularization, (e) batch size ∈
[
2, 28

]
, (f) initial learning rate ∈[

10
−5, 0.1

]
. The remaining hyper-parameters are set to the de-

faults in scikit-learn. This results in a total of 288 hyper-

parameters configurations per experiment.

https://github.com/rithram/fbfc
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