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ABSTRACT

Inspired by the fruit-fly olfactory circuit, the Fly Bloom Filter [4] is
able to efficiently summarize the data with a single pass and has
been used for novelty detection. We propose a new classifier that
effectively encodes the different local neighborhoods for each class
with a per-class Fly Bloom Filter. The inference on test data requires
an efficient FlyHash [6] operation followed by a high-dimensional,
but very sparse, dot product with the per-class Bloom Filters. On
the theoretical side, we establish conditions under which the pre-
dictions of our proposed classifier agrees with the predictions of
the nearest neighbor classifier. We extensively evaluate our pro-
posed scheme with 71 data sets of varied data dimensionality to
demonstrate that the predictive performance of our proposed neu-
roscience inspired classifier is competitive to the nearest-neighbor
classifiers and other single-pass classifiers.

CCS CONCEPTS

« Computing methodologies — Bio-inspired approaches; Su-
pervised learning by classification; Online learning settings.
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1 INTRODUCTION

Neural circuits in the fruit-fly appear to assess the novelty of an
odor in a two step process. An odor is first assigned a “tag” that
corresponds to a small set of Kenyon Cells (KC) that get activated
by the odor. Dasgupta et al. [6] interpret this tag generation process
as a hash scheme, termed FlyHash, where the tag/hash is a very
sparse point in a high dimensional space (2000 dimensions with
95% sparsity). The tag serves as input to a specific mushroom body
output neuron (MBON), the MBON-a’3, where the response of this
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neuron to the odor hash encodes the odor novelty. Dasgupta et al.
[4] “interpret the KC—MBON-a’3 synapses as a Bloom Filter” that
effectively “stores” all odors exposed to the fruit-fly. This Fly Bloom
Filter (FBF) generates continuous valued, distance and time sensi-
tive novelty scores that have been empirically shown to be highly
correlated to the ground-truth relative to other Bloom Filter-based
novelty scores for neural activity and vision data sets. Theoretically,
expected novelty scores of similar and dissimilar points have been
analyzed for binary and exponentially distributed data.

This “learning” of the data distribution (for the purposes of nov-
elty detection) has some interesting dynamics. First, the FBF en-
codes the data distribution in a single-pass manner without requir-
ing to visit the same example twice — the relevant information for
an example has been “stored” in the FBF - surfacing two advantages:
(i) once processed, there is no need to retain an example in memory,
allowing the encoding without much memory overhead, (ii) this
mechanism allows the FBF encoding to happen in an online manner
as more examples are seen. Second, this learning does not involve
any explicit “loss minimization” or related gradient based optimiza-
tion - the learning dynamic mimics a natural gradient-free process.
Finally, the FBF learning can be accomplished solely with additions,
ORs and sort — no complex mathematical operations are required.

Driven by immense empirical advantage, the current trend is of
generating huge (deep learning) models with sophisticated learning
procedures using complex novel compute hardware, mathematical
operators and multiple epochs over the training examples. Inspired
by the simplistic natural learning procedure, we pursue an opposite
direction — we explore the extent to which a simplistic learning
procedure is successful in supervised classification. Moreover, we
believe the single-pass, online learning is critical in many situations
such as (a) the learning happens in low-memory “edge” devices
where we cannot retain a training set to repeatedly revisit, or (b)
the examples have to be discarded after a short amount of time due
to privacy concerns. There are situations where both reasons are
valid — models need to be regularly updated with new data, but the
retraining cannot access old data due to privacy regulations. This
brings us to the questions we wish to address in this paper:

» Can we devise a supervised classification scheme based on the
simple learning dynamics of the FBF ?

» Will such a supervised classification scheme be useful and compet-
itive when learning needs to happen with a single pass?

» What generalization guarantees would such a learner have?

To this end, we propose a simple algorithm using the FBF for

classification, where we summarize each class with its own FBF and

utilize the per-class novelty scores for inference. We theoretically

study why this simple idea works, and empirically demonstrate

that simplicity does not preclude utility. Specifically, we present:

» A novel FBF based classifier, FBFC, that is learned with an additions-
only, single-pass of the training set without any loss-minimizing
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Table 1: Properties of FBFC contrasted against standard machine learning models, namely, k-nearest-neigbor classifier (kNNC),
prototype-based classifiers (CC, CC1), locality sensitive hashing based bloom filters (SBFC), linear models (LR), multi-layer per-
ceptrons (MLPC), decision tree models (DT) and kernel machines (KM).

@A single pass generates a model that can be used.

CLASSIFIERS kNNC - cC cc SBFC LR MLPC DT KM FBFC bFor RBF & Polynomial kernels, randomized embeddings allow
for approximate kernel learning to generate a model with a single
SINGLE PAss X o /e s X Ve v —;p”, . & 1%‘F RBF & Polvnomial k gl
pass. But it is not possible in general. “For olynomial kernels,
INFER W/O TRAINING DATA X v o/ v v v v Ve v imate kernel learning with randomized embeddi
d b approximate kernel learning with randomized embeddings remove
ONLINE/STREAMING X 4 4 v/ v v X 4 v/ the need for the training data at inference. But it is not possible in
PARALLEL TRAIN v v v Ve Ve Ve v € 4 general. dApprcximate clustering with more than a single cluster is
GRADIENT FREE LEARNING v v v v X X Ve X v possible with streaming data. Data-parallel training is possible but
ADDITION ONLY TRAINING X X X X X X X v/ the optimization is either approximated or the objective is modified.
BIOLOGICALLY INSPIRED X X X X X v/ X X v/ S Decision trees perform a gradient-free combinatorial optimization;

optimization, and can be inferred from with an efficient FlyHash [6]
followed by a sparse binary additions-only dot-product.

» A thorough empirical comparison of FBFC to standard classifiers
on over 71 data sets in the single-pass learning setup, demon-
strating significant gains over other single-pass schemes.

» A theoretical examination of the proposed scheme, establishing
conditions under which FBFC agrees with the nearest-neighbor
classifier, thereby inheriting its generalization guarantees.

» How the FBFC can provide insights into the problem structure in
terms of a class hierarchy in classification problem.

The paper is organized as follows: We discuss related work in §2. We

detail our proposed scheme and analyze its theoretical properties

in §3. We empirically evaluate FBFC against baselines in §4 and

conclude with a discussion in §5.

2 RELATED WORK

Neuroscience inspired techniques are now widely accepted in artifi-
cial intelligence to great success [14], especially in the field of deep
learning with convolutional neural networks [18, 21], dropout [15]
and attention mechanisms [22, 23] to name a few. Much like most
machine learning methods, deep learning relies on loss-gradient
based training in most cases. In contrast, our proposed FBFC learn-
ing does not explicitly minimize any “loss” function. Moreover,
rather than learning a representation for the points that facilitates
classification, the FBFC learns a representation for entire classes,
allowing test points to be compared to classes for inference.

Given the correlation between a point x’s FBF novelty score to
its minimum distance from the set that the FBF summarizes [4], our
proposed FBFC is perhaps closest to the nonparametric k-nearest-
neighbor classifier (kNNC). Vanilla kNNC does not have an explicit
loss or a training phase given a measure of similarity; all the com-
putation is shifted to inference. FBFC does have an explicit training
phase, but requires only a single pass of the training data — once a
point is processed into the FBF, it can be discarded, making FBFC
suitable for online learning with streaming data.

On a very high level, this is similar to cluster-based kNNC where
class specific training data (data with same labels) is summarized
as (multiple) cluster centers and used as a reduced training set
on which kNNC is applied - this is also known as prototype-based
classification (CC), with the simplest form where there is a single
cluster/prototype per class (CC1). A variety of methods exists in
literature that adopt this simple idea of data reduction [9, 11, 24, 25,

gradients are needed for gradient boosted decision trees.

27, 35]. These algorithms are designed with the goal of reducing
the high computational & storage requirements of kNNC. Orthogo-
nally, various data structures have been utilized to accelerate the
nearest-neighbor search in kNNC inference representing the data
as an index such as space-partitioning trees [2, 5, 26, 31] and hash
tables generated by locality-sensitive hashes [1, 10].

The closely related locality-sensitive Bloom filter (LSBF) [16, 20]
also summarizes the data similar to FBF, relying on distance pre-
serving random projection [34] to lower dimensions followed by
quantizing the projected vector to an integer. Under this scheme,
two inputs reset the same bit in the filter if they are assigned the
exact same projected vector. Performance of LSBF heavily depends
on the choice of hyper-parameters that control the projection di-
mensionality and the data-independent quantization scheme. FBF
has been shown to empirically outperform LSBF for novelty detec-
tion [4]. LSBF can also be used for supervised classification in the
same way we extend the use of FBF which we call SBFC.

Multinomial regression with linear models (LR) and multi-layered
perceptrons (MLPC) can also be viewed as learning a set of weight
vectors corresponding to each class, with the inner product of the
test point with these vectors driving the class assignment. Kernel
machines (KM) are generalizations of linear models to a (implicit)
higher dimensional space where the inner product is defined by a
pairwise kernel function. These learn weight vectors in this implicit
kernel space. In general, these are not suited for single-pass learning,
and require the training set (or a subset of it known as the support
vectors) for inference. However, the seminal work of Rahimi and
Recht [30] made KM more scalable with randomized explicit em-
beddings that allow for approximate kernel learning, making KM
suitable for single-pass online settings and removing the need for
the training set at inference. These approximations exist for radial
basis function (RBF) kernels and polynomial kernels [13, 17, 29]
but are not generally available for all kernel functions. Moreover,
low levels of approximations often have a high memory overhead.

A comparison of our proposed method with the (related) existing
methods across a wide variety of desirable properties is summa-
rized in Table 1. We emphasize that in comparison to the existing
methods, our biologically inspired proposed FBFC is simple to im-
plement as it is gradient & optimization free and requires addition
only operations while being single pass, and adaptive to streaming
data all at the same time. Additionally, as we show in §3.2, the
theoretical predictive performance of FBFC agrees with that of a
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(a) FBFC training. (b) FBFC inference.

Figure 1: Visual depiction of FBFC training and inference (Al-
gorithm 1). Colored circles are the labeled training set. In
Figure 1a, the high dimensional sparse FlyHashes for the
points (stacked m & O0) in each class are used to generate the
per-class FBF (NOT () of the ORs Vv of the hashes as per (2)).
The O in Figure 1b is the unlabeled point we infer on based
on the dot-product of its FlyHash with each of the per-class
FBFs (3). Please view in color.

non-parametric classifier, INNC. But like parametric methods, it
does not require access to training data during inference.

3 FlyHash BLOOM FILTER CLASSIFIER (FBFC)

The basic building block of our proposed algorithm is a fruit-fly
olfactory circuit inspired FlyHash function, first introduced by
Dasgupta et al. [6]. Here we consider the binarized FlyHash [4].
For x € RY, the FlyHash function h: R? — {0, 1} is defined as,

h(x) = Ty (Mp,x), 1)

where M3, € {0,1}*¢ is the randomized sparse lifting binary ma-
trix with s < d nonzero entries in each row, and I : R™ — {0,1}™
is the winner-take-all function converting a vector in R™ to binary
one in {0, 1}’ by setting the highest p < m elements to 1 and
the rest to zero. Unlike random projection [34] which decreases
data dimensionality after projection, FlyHash is an upward pro-
jection or a lifting which increases data dimensionality (m > d).
The hyper-parameters for FlyHash are (i) the lifted dimensionality
m € N, (ii) lifting matrix nonzero count per row s € N, and (iii) the
number of nonzeros (NNZ) p € N in the FlyHash. The FlyHash
has been shown to be locality sensitive — similar points x, x” € R4
will have matching nonzero elements in their hashes h(x), h(x’).
Using FlyHash as an algorithmic building block, Dasgupta et al.
[4] construct a “Fly bloom filter” (FBF) w € {0, 1}™ to succinctly
summarize the data, and use it to effectively solve the unsupervised
learning task of novelty detection, with the novelty score set as
wTh(x). Starting with w = 1,, (the vector of all ones), for an
“inlier” point xj,, the FBF encoding w is updated by zeroing the

Algorithm 1: FBFC training with labeled set S ¢ R¢ x [L],
lifted dimensionality m € N, NNZ per row in the lifting
matrix s < d, NNZ in FlyHash p < m, and test point x.

1 TrainFBFC: (S, m, p,s) — (MS,, {w;, 1 € [L]})

2 Sample M3, € {0, 1}"¢ with s NNZ/row
3 Initialize wy, .. ., wp «— 1,, € {0,1}™

4 for (x,y) € Sdo

5 h(x) « T, (M;,x) // T, top-p WTA
6 Wy — wy /\W

7 end

8 return (M;,, {w;,l € [L]})

9 end
10 InferFBFC: (x, M;,, p, {wi,l € [L]}) = ¢

11 h(x) « T, (M3,x)

12 § « argmin;e ;1 (1/p) W] h(x)

13 return g

14 end

elements in w corresponding to the indices of the nonzero elements
in h(xj,) (the FlyHash of x). This ensures that some x = xj, or
similar to x;, receives a low novelty score w'h(x). For a novel
point xpoy With F1yHash A(xnoy), which is not similar to any of the
inliers, the indices of the nonzero elements of h(xpoy) Will, with
high probability, not be set to zero in w (so the element in w will
be one), implying a high novelty score w T h(xpoy).

Given the high dimensionality m > d of the FlyHash h(x) and
its potentially high sparsity (only p < m nonzero elements in
h(x)), the FBF w in {0, 1}'" can be a sparse encoding of the data
distribution and motivates potential use in supervised classification
- we can encode each individual class [ € [L] ={1,...,L} with its
own FBF w; — we posit that the FBF encodings would provide large
inter-class separation on account of their very high dimensional
and sparse representation. In this section, we will detail how we
extend the use of FBF to supervised classification, discussing the
learning and inference mechanisms in §3.1, and the theoretical
guarantees for the presented algorithms to §3.2.

3.1 Learning & inference mechanics

Here we extend the use of FBF to classification, an instance of su-
pervised learning. Specifically, we use FBF to summarize each class
separately — the per-class FBF encodes the local neighborhoods of
each class, and the high dimensional sparse nature of FlyHash (and
consequently FBF) summarizes classes with multi-modal distribu-
tions while mitigating overlap between the FBFs of other classes.

3.1.1 FBFC training. Given a training set S C R? x [L], the learn-
ing of the per-class FBFs w; € {0,1}™,] € [L] is detailed in the
TrainFBFC subroutine in Algorithm 1. The FlyHash is a fundamental
building block. We initialize the FlyHash by randomly generating
the sparse binary (m X d) lifting matrix M;, with only s nonzero
entries in each row of the matrix (line 2). The per-class FBF w; are
initialized to 1,, € {0, 1}, the all one vector (line 3).

For a training example (x,y) € S with point x € R and label
y € [L], we first generate the FlyHash h(x) (line 5). Then, the FBF
wy (corresponding to x’s class y) is updated with h(x) as follows ~
the bit positions of wy corresponding to the nonzero bit positions
of h(x) are set to zero, and the remaining entries of wy are left as



is (line 6); the remaining FBFs wy, [ # y € [L] are not updated at all.
This ensures that x (and points similar to x) are considered to be an
“inlier” with respect to wy. The precise mathematical update can
be written as wy < (wy ® h(x)) A wy = wy A (h(x)), where ®, A
and (-) are the element-wise vector XOR, AND and NOT respectively.
Starting with wy = 1,,, using De Morgan’s law, we can condense
the FBF learning for a class I € [L] to

(h(x)) @

(x,y)€S: y=I

wp=1p

At the conclusion of the learning, the L per-class FBFs and the lifting
matrix M;;, constitute our proposed FlyHash bloom filter classifier
(FBFC). Figure 1a visualizes the process for a toy example. Algo-
rithm 1, equation (2), and the commutative nature of ‘A’ highlight
couple of interesting aspects of this learning process:

» The learning scheme is online where an example can be used in
isolation to update the model without any approximation. This
is common with ML models trained via some form of stochastic
gradient descent, but are not possible with decision tree methods.

» The learning process does not need to see an example (x,y)
more than once - once the appropriate FBF wy, has been updated
using h(x), any subsequent update with (x,y) is redundant —
the bit positions in wy, corresponding to the nonzero bits in h(x)
are already zero. This implies that, a single FBFC model can be
learned with a single pass of the training set S.

Inter-class similarities. Given the per-class FBFs wy, [ € [L], we

can use the cosine similarity s(ly, lz) = % between the FBF
1 2

pair (wy,, wy,) as an inter-class similarity score between classes Iy
and I, to quantify the hardness of differentiating these classes, and
generate insights into the structure of the classification problem. For
example, the per-class encodings wy, I € [L] of the class conditional
data-distributions can be used to generate a class hierarchy by
performing hierarchical clustering of the per-class encodings.

3.1.2  FBFC inference. As discussed previously, the FBF w; for a
particular class I € [L] are learned in a way that any point x with
a label [ is treated as an inlier with respect to class [; the example x
with label I does not affect the class encodings wp, 1" # LI’ € [L].
This implies that any point x” € R4 similar to x will have a low
novelty score wlTh(x’ ). This motivates our inference rule — for
a test point x, we compute the per-class novelty scores fj(x) €
[0,1],1 € [L] and the predicted label as:

fitx) = (1/p)w] h(x), §=arg min fi(x) ®3)
le[L]

A high f;(x) indicates that training examples with label [ are very
different from x. A small value of f(x) indicates the existence of at
least one training example with label / similar to x. The predicted la-
bel for x is simply the class with the smallest f;(x) (breaking ties ran-
domly). This is visualized in Figure 1b and detailed in the InferFBFC
subroutine in Algorithm 1. The per-class novelty f;(x),! € [L] can
be converted into class probabilities with a soft-max operation.

3.1.3  Robust FBFC against labeling noise with non-binary FBF . The
proposed FBFC generates a binary encoding w; € {0, 1} for each
class I € [L] with a single pass of the data by zeroing all bits in
w; corresponding to the nonzero positions in the FlyHash h(x) for

every example (x,y) € S,y = I. Given this encoding, the inference
for a test point x generates the novelty score for a class / by counting
the number of nonzero elements in h(x) that are also nonzero in
wj — higher number of matches imply larger novelty scores and
hence less chance of predicting label I for x. As we will see in our
empirical evaluations, this process is quite effective even with a
single pass. However, a single mislabeled example (xpjs, Ymis) can
modify the FBF wy, ynmis = [, in a way that all test points x similar
to the mislabeled point x,js may get misclassified since they would
get a low novelty score with respect to the FBF wj; we cannot
correct this given the single pass nature of the FBFC learning. In the
following, we will mathematically motivate this lack of robustness
and provide a remedy utilizing a non-binary FBF.

In our binary FBF design, for any test point x and any [ € [L],
let Ax = {j € [m]: h(x)j = 1} be the nonzero coordinates in h(x).
Each coordinate of A, contributes in deciding the value of f;(x). For
any j € Ay, it is possible that a single (possibly mislabeled) training
example x’ from class [ sets the contribution of the j™ coordinate to
zero in the computation of fj(x) — it is only required that h(x"); = 1.
Even in the absence of labeling noise, the FlyHash h : RY — {0,1}™
is randomized, and there is always a nonzero probability of this
event. Also, for any j,k € Ay, j # k, if wij = wi =0 (the jth
and k™" element in the FBF w; for class ), coordinates j and k
are indistinguishable in terms of their contribution to fj(x). To
address these limitations, we present a modified FBF design which
aims to capture neighborhoods and distribution more effectively,
by allowing coordinates of w; to take value in [0, 1]. In this design,
for any fixed c € (0, 1], the j™ coordinate wy; of FBF wy is set as:

le — (1 _C)H(x,y)ES: y:l and (h(x))j:1}|,l € [L],_] € [m]’ (4)

with ¢ = 1 corresponding to the original binary FBF. At infer-
ence, the label for a test point x € R is still computed as § =
argmine(r) wlTh(x), We term this form of the Fly Bloom Filter as
FBF* and the corresponding classifier as FBFC*. While the entries
wy; in this non-binary FBF w; can take values in [0, 1], it does not
completely lose the simplicity and interpretability of the binary FBF
since the definition in equation (4) implies that the entries wy; are
either 1 or go to zero exponentially fast. The value of ¢ is a decay
rate controlling the rate at which entries wy; in the FBF w; go to
zero. FBFC* training is detailed in Algorithm 2, with differences
from Algorithm 1 highlighted in Maroon. Inference with FBFC* is
exactly the same as with FBFC (Algorithm 1, InferFBFC).

To compute wy,l € L, the TrainNBFBFC subroutine in Algo-
rithm 2 initializes the per-class count vectors z; € R™ to 0y, the
vector of all zeros (line 3). Every example (x,y) € S is processed
sequentially (line 4) by first generating the F1yHash h(x) for x (line
5) and the updating the count vector z corresponding to the class
y by incrementing the counts of the indices j € [m] corresponding
to the nonzero entries in h(x) — this is equivalent to adding the
sparse binary F1lyHash h(x) to the count vector z; (line 6). After all
the training examples are processed, the per-class final non-binary
FBF wy, I € [L] is generated by raising (1 — ¢) to the power of z; el-
ementwise (line 8). Given the per-class FBFs {w; € [0,1]™,1 € [L]},
the inference procedure is exactly the same as Algorithm 1. The
exponential decay in equation (4) allows wy;, 1 € [L], j € [m] to be
determined by a local neighborhood of size dependent on c.



Algorithm 2: Non-binary FBFC training with training set
S c RY x [L], lifted dimensionality m € N, NNZ for each
row in the lifting matrix s < d, NNZ in the FlyHash p < m,
decay rate ¢ € (0, 1] and test point x € RZ.

1 TrainNBFBFC: (S,m, p,s,c) — (M;,, {w;, 1 € [L]})

2 Sample M3, € {0, 1}*¢ with s NNZ/row

3 Initialize z1, . . ., zp < 0,, € R™ // all z; initialized to zero
4 for (x,y) € Sdo

5 h(x) « T, (My,x) // T, top-p WTA
6 zy — zy +h(x) // Sparse op " |h(x)[p=p <m
7 end

8 wy — (1-¢)9%,1 € [L] // elementwise exponentiation

9 return (M;,, {w, 1 € [L]})
10 end

3.2 Theoretical analysis

In this section we present theoretical analysis of FBFC, focusing
on (i) the computaional complexities of the FBFC/FBFC* learning
and inference mechanics presented in §3.1, and (ii) the learning
theoretic properties of the proposed FBFC. All proofs are deferred
to Supplement S1 and S2.

3.2.1 Computational Complexities. We provide the computational
complexities of all the algorithms presented in §3.1 in terms of the
runtime and memory requirement. We present the computational
complexities for a specific hyper-parameter configuration of FBFC—
(i) the lifted F1yHash dimensionality m, (ii) the number of nonzeros
s in each row of M, (iii) the number of nonzeros p in a FlyHash
after the winner-take-all operation, and (iv) (only for FBFC*) the
decay rate c € (0,1]. We begin by presenting results for the FBFC
training and inference in Algorithm 1.

Cram 1 (FBFC TRAINING). Given a training setS C R x [L] with
n examples, the single pass TrainFBFC subroutine in Algorithm 1 with
the lifted FlyHash dimensionality m, number of nonzeros s in each
row of the lifting matrix M3, € {0,1}™*?, and number of nonzeros p
in FlyHash h(x) for any x € R9, takes time O(nm - max{s, log p})
and has a memory overhead of O(m - max{s, L}).

Cram 2 (FBFC INFERENCE). Given a trained FBFC, the inference
for any test pointx € R4 with the InferFBFC subroutine in Algorithm 1
takes time O (m - max {s,log p, (pL/m)}) with a memory overhead
of O(max{m,L}).

REMARK 1. For any test point x € R? and corresponding FlyHash
h(x), with a large number of labels (large L), if thearg min; [ wlTh(x)
can be solved via fast MIPS (maximum inner product search) algo-
rithm in time f(L) sublinear in L, then the overall inference time for
x would be given by O (m - max {s,log p, (pf(L)/m)}) which would
be sublinear in L.

The computational complexities of FBFC* training are as follows:

Cram 3 (FBFC* TRAINING). Given a training setS C R x [L]
with n examples, the single pass TrainNBFBFC subroutine in Algo-
rithm 2 with the lifted F1yHash dimensionality m, number of nonzeros
s in each row of the lifting matrix M, € {0, 134 number of nonze-
ros p in FlyHash h(x) for any x € R4, and decay rate ¢ € (0,1],
takes time O (nm - max {s,log p}) and has a memory overhead of
O(m - max{s,L}).

Comparing this result to the computational complexities of bi-
nary FBFC (Claim 1), we see that the computational complexities
are of the same order across the board. Since the inference with
FBFC* is exactly the same as that of vanilla FBFC, the computational
complexities of the inference is given by Claim 2.

3.2.2  Learning theoretic properties. Since FBFC is a completely
novel classifier, we now establish theoretical guarantees of FBFC’s
predictive performance by relating it to a known classifier with
well-studied theoretical guarantees. The FlyHash has been shown
to be locality sensitive, and the Fly bloom filter (FBF) w creates an
encoding of the data distribution (or in our case, the encoding w;
for the distribution of a class [). The novelty score w ' h(x) of any
(test) point x € R¥ corresponds to how “far” the point is from the
distribution encoded by w. In our FBFC, using the minimum nov-
elty score arg minje[p wlTh(x) to label x is equivalent to labeling
x with the class whose distribution/encoding is “closest” to x. This
motivates us to study how the FBFC is related to the well-studied
nearest-neighbor classifier. Specifically, we identify precise condi-
tions under which FBFC agrees with the nearest-neighbor classifier
INNC. The general setup, notations and proof sketches are described
in Supplement S2.

We begin by analyzing the binary classification performance
of FBFC trained on a training set S = {(x;, yi)}?z"z'n1 c X x{0,1},
where S = §1 U S°, S0 is a subset of S having label 0, and Slis
a subset of S having label 1, satisfying |S°| = no, |S!| = n; and
n = max{no, n1 }. For appropriate choice of m, let wo, w; € {0, 1}'"
be the FBFs constructed using S° and S respectively.

Connection to INNC. For any test point x, without loss of general-
ity, assume that its nearest neighbor from S has class label 1. Then
INNC will predict x’s class label to be 1. Therefore, if we are able
to show that EM(wirh(x)) < ]EM(W(-)'—h(x)) then FBFC will predict,
in expectation, x’s label to be 1. While estimating expected nov-
elty score is difficult, an upper and lower bound of class specific
novelty scores can easily be estimated in terms of 7 (f) - the top
f-fractile value of the distribution 07 x, where 0 represents uniform
sampling of the rows of M;, (see Lemma S1). This immediately
provides us a sufficient condition for FBFC to agree with INNC on
any test point x in expectation - the upper bound of EM(wirh(x))
should be strictly smaller than lower bound of ]E,M(woT h(x)) (a high
probability statement then follows using standard concentration
bounds). Under mild structural and/or distributional assumptions
on X, we can readily establish a the following result. The assump-
tions mentioned above give rise to two special cases which are
discussed in Supplement S2.2.

THEOREM 4. Fix any § € (0,1), s < d, and p < m. Given a
training set S as described above and a test example x € X, let xnn be
its closest point from S measured using £, metric for an appropriate
choice of p. If (i) p = Q(log(1/9)), (ii) llx — xanllp = O(1/s), and
(iii) m = Q(np), then under mild conditions, with probability at least
1— & (over the random choice of lifting matrix M), prediction of FBFC
on x agrees with the prediction of INNC on x.

Proof (sketch). If the structure of X allows us to choose a threshold 7y
that is identical for any x € X, resulting in a closed form solution for
the quantity g(x, x”) (defined in Supplement S2.1) for any x, x” € X,
or the distributional assumption on X sets the quantity Exq(x, x")



to be identical for all x” € S, then all the three conditions mentioned
in theorem are satisfied. This, in conjunction with Lemma S1, yields
the desired result in expectation under mild conditions. The high
probability result then follows from standard concentration bounds.

REMARK 2. We established conditions under which predictions of
FBFC agrees with that of INNC with high probability. INNC is a non-
parametric classification method with strong theoretical guarantee
—as |S| = n — oo, the INNC almost surely approaches the error
rate which is at most twice the Bayes optimal error. Therefore, by
establishing the connection between FBFC and INNC, FBFC has the
same statistical guarantee under the conditions of Theorem 4.

Multi-class classification. The above results can be extended to
multi-class classification problem involving L > 2 classes in a
straight forward manner (see Supplement S2.4).

Note that the FBF guarantees for novelty detection are limited
to two special cases: (i) examples with binary feature vectors con-
taining fixed number of ones, and (ii) examples sampled from a
permutation invariant distribution [4]. We extend this analysis with
these two cases to provide guarantees for FBFC in multi-class clas-
sification (see Supplement S2), which is a distinct learning problem
from novelty detection.

4 EMPIRICAL EVALUATIONS

In this section, we evaluate the empirical performance of FBFC. First,
we demonstrate the dependence of FBFC on its hyper-parameters.
Then, we compare FBFC to other classifiers that can be trained
in a single pass on various data sets. Finally, we present some
problem insights generated by a trained FBFC. The details on the
implementation and compute resources are in Supplement S3.

4.1 Data sets and baselines

For the empirical evaluation of FBFC and FBFC*, we consider two

groups of data sets:

» We consider synthetic data of varying sizes and properties
in §4.3. These synthetic data are designed to favor local classi-
fiers such as the kNNC— each class conditional data distribution
consists of multiple separated modes, with enough inter-class
separation [12]. We consider these synthetic data to see if our
proposed FBFC is able to capture multiple separated local class
neighborhoods in a single per-class FBF encoding while provid-
ing enough separation between FBFs of different classes.

» We consider 71 binary & multi-class classification data sets
from OpenML [33] in §4.4 to evaluate the performance of FBFC
(and variants) on real data sets. We deliberately choose a large
set of data sets, containing many where kNNC/INNC have strong
performance, and many where they are not as strong relative to
other standard ML classifiers.

We compare our proposed FBFC and FBFC* to various baselines

relative to kNNC. We consider a variety of baselines, including single-

pass ones similar to FBFC. Further details on the baselines and their
hyper-parameters are in Supplement S3:

» kNNC: This is the primary baseline. We tune over the neighbor-
hood size k € [1, 64]. We also specifically consider INNC (k = 1).

» CC1: Classification based on a single prototype per class — the
geometric class center, computed with a single training set pass.

» CC: This generalizes CC1 with multiple prototypes per class —
a test point is classified using its closest prototype. Per-class
prototypes are obtained by K-means clustering, tuning over
K € [1,64]. This is not single pass.

» SBFC: To ablate the effect of the high level of sparsity in F1yHash,
we utilize SimHash [3] based LSBF for each class to get the
SimHash Bloom Filter classifier (SBFC). We use this to demon-
strate the utility of the high sparsity in FlyHash; SimHash is
binary like FlyHash but not inherently sparse. We tune over
the SimHash projected dimension m, considering m < d (tradi-
tional regime where SimHash is usually employed) and m > d
(as in FlyHash). For the same m, SimHash is more costly (O(md)
per point) than FlyHash (O(ms + mlog p)), involving a dense
matrix-vector product instead of a sparse matrix-vector one.

» LR. Logistic regression trained for a single epoch with an online
algorithm, tuned over 960 hyper-parameter settings per data set.

» MLPC. Multi-layer perceptron trained for one epoch with Adam [19],
tuned over 288 hyper-parameter settings per data set.

» FBFC/FBFC*. For a data set with d dimensions, we tune across 60
FBFC/FBFC* hyper-parameter settings in the following ranges:
m € [2d,2048d], s € (0.0,0.5d], p € [8,256], and ¢ € [0.2,1).

To normalize performance across data sets, we compute the relative

performance of all methods on each data set as (1 — Apr/Agnne)

where Agyyc is the best 10-fold cross-validated classification accu-
racy — accuracy aggregated over 10 train-test splits of any given data
set — achieved by kNNC across all hyper-parameters and Ay is the
best 10-fold cross-validated accuracy obtained by method M. This
means that kNNC has a relative performance of 0. We perform this

“normalization” to be able to compare the aggregate performance

of different classifiers across multiple data sets (which themselves

probably have different ranges for best achievable accuracies).

4.2 Dependence on hyper-parameters

We study the effect of the different FBFC hyper-parameters: (i) the
FlyHash dimension m, (ii) the NNZ per-row s < d in M}, (iii) the
NNZ p in the FlyHash, and (iv) the FBF decay rate c. We consider 2
OpenML data sets (see Table S1 in Supplement S3 for data details).
For every hyper-parameter setting, we compute the 10-fold cross-
validated accuracy. We vary each hyper-parameter while fixing the
others. The results for each of the hyper-parameters and data sets
are presented in Figure 2.

The results indicate that increasing m usually improves perfor-
mance up to a point. FBFC performance is mostly not affected by
s, allowing us to use small values for s (~ 0O(10)). Increase in p
improves performance up to point. The performance is not affected
much by the value of the decay rate when ¢ < 1, but there is
a significant drop in performance as we move from ¢ < 1 (non-
binary FBFC*) to ¢ = 1 (binary FBFC), indicating the advantage of
our novel non-binary FBF; this behavior is pretty consistent and
obvious across all data sets.

4.3 Synthetic Data

We first consider synthetic data designed for strong kNNC perfor-
mance. We generate data for 5 classes with 3 clusters per class and
points in the same cluster belong to the same class implying that
a neighborhood based classifier will perform well. However, the
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Figure 2: Effect of the different FBFC/FBFC* hyper-
parameters on performance for 2 data sets — the horizontal
axes correspond to the hyper-parameter being varied while
fixing the remaining hyper-parameters. The vertical axes
correspond to the 10-fold cross-validated accuracy for the
given configuration (higher is better). Note the log scale
on the horizontal axes. For the hyper-parameter ¢, ¢ = 1
corresponds to the binary FBFC. Please view in color.

classes are not necessarily linearly separable. We select such a set to
demonstrate that the proposed FBFC is able to encode multiple sep-
arate neighborhoods of a class within a single FBF while providing
enough separation between the per-class FBFs for high predictive
performance. We begin with binary data of the form considered
in our theoretical results (Supplement S2.2.1) - points x € {0, 1}4
with |x| = b < d. We then consider data in general R9. For each
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Figure 3: Performance of FBFC/FBFC* and baselines relative
to the kNNC performance on synthetic binary (Figure 3a) and
real (Figure 3b) data. The 10-fold cross-validated accuracy
is considered for each of the data sets. The box-plots corre-
spond to performance relative to kNNC (lower is better) aggre-
gated over 30 synthetic data sets (see text for details). The
red dashed line denotes kNNC performance.

Table 2: FBFC vs FBFC* accuracy on synthetic data with label
noise aggregated over 10 train/test splits. Note that the noise
is only added to the train set in every split.

LABEL NOISE LEVEL 1.0% 5.0% 10% 25%

56.6+£0.8 54.5+0.9 52.0%x1.3 44.0+1.0
60.1+0.7 58.9+0.9 57.1+1.2 50.3%1.2

FBFC ACCURACY (%)
FBFC* ACCURACY (%)

REL. IMPROVEMENT (%)  6.1+0.7  8.1+0.9  9.8+1.2 14.2+1.8

setting, we randomly generate 30 data sets with 1000 points each.
The performance of all baselines, aggregated across all 30 sets, is
presented in Figures 3a and 3b for d = 100, b = 20.

The results indicate that FBFC and FBFC* are able to match kNNC
performance significantly better than all other single pass baselines.
The binary FBFC matches the performance of FBFC*. As expected,
CC performs significantly better than the other baselines on account
of being able to properly compress multi-modal classes, albeit re-
quiring multiple passes. CC1 performs significantly worse than CC
since one cluster is not able to appropriately compress multi-modal
classes while maintaining the separation between the classes. LR
and MLPC perform similarly to CC1. The proposed FBFC and FBFC*
significantly outperform SBFC, highlighting the need for sparse
high dimensional hashes to summarize multi-modal neighborhoods
while avoiding overlap between per-class FBFs. Moreover, note that
in the absence of any labeling noise (which we have complete con-
trol over given we are generating these synthetic sets), FBFC and
FBFC* perform very similarly as discussed in §3.1.3.

Effect of labeling noise. We consider an additional experiment
with synthetic 5-class classification problem in R? where we add in-
creasing levels of noise to the labels. We compare FBFC with FBFC*
for a single hyper-parameter configuration where the only differ-
ence between the two is that FBFC* uses ¢ = 0.9. FBFC implicitly
uses ¢ = 1. The results presented in Table 2 indicate that as the
label noise level goes up from 1% to 25%, the performance of both
schemes drop as expected. However, the relative improvement of
FBFC* over FBFC increases from around 6% to 14%, indicating that
FBFC* is more robust to labeling noise in the training set.



Table 3: Fraction of data sets where FBFC* outperforms base-
lines with median difference in relative performance be-
tween FBFC* and baselines across data sets in brackets. The
underlined methods are not single-pass. A denotes FBFC* im-
provement against baseline; v denotes FBFC* decline; e de-
notes we can reject the null hypothesis (FBFC* and baseline
have similar performance) of the paired t-test at significance
level 0.01; o denotes we cannot reject the null hypothesis.

METHOD  ALL(71SETS)  Group A (37/71)  Group B (34/71)
KNNC 051 (A0.05%)0  0.24(V1.08%)0  0.79 (A3.98%) e
INNC 0.62 (A2.21%) e  038(V0.24%)0  0.88 (A12.1%) e
CC1 0.87 (A7.64%) @  0.95(A11.8%) e  0.79 (A4.96%) ®
cc 038 (V0.48%) 0  0.38(v0.31%) o  0.38 (V0.50%) o
SBFC 0.99 (424.9%) @  0.97 (A24.7%) e  1.00 (A25.2%) ®
LR 058 (A1.34%) 0 0.78 (A3.39%) e  0.35 (V0.68%) o
MLPC 0.73 (A4.36%) @ 0.81 (A6.57%) e  0.65 (A3.80%) @
FBFC 0.82 (A5.87%) @  0.68(A0.73%) e  0.97 (A9.13%) e

4.4 OpenML Data

We consider 71 classification (binary and multi-class) data sets from
OpenML with d numerical columns and n samples; d € [10,1024],n <
50000. Unlike the synthetic sets, these data sets do not guarantee
strong kNNC performance. Hence we separate these data sets into 2
groups: (i) Group A: 37 data sets where the nonparametric kNNC
performs the best among the baselines, (ii) Group B: the remaining
34 sets where parametric LR performs the best among the baselines.
We study the performance of the proposed schemes in both these
groups of data sets. The results are summarized in Table 3, where
the relative performances of all baselines and FBFC are compared to
FBFC*, aggregated over all the data sets, with paired t-tests for the
null hypothesis that FBFC* and the method under consideration
have similar performance at a significance level of 0.01.

Overall, FBFC* consistently outperforms FBFC across both groups
on 58/71 or 82% of the data sets, with a median improvement of
5.87%, highlighting the value of the non-binary FBF*. As seen in Ta-
ble 3, both FBFC and FBFC* significantly outperform SBFC, similar
to the synthetic data sets, highlighting the need for sparsity with
bloom filter based classifiers on real world data sets. In fact, SBFC
performs the worst among all baselines across almost all data sets,
indicating that vanilla locality sensitive bloom filters are not useful
for multi-dimensional classification; both the high dimensionality
and high sparsity are also necessary for real-world data.

Compared to the nearest-neighbor classifiers, kNNC and INNC,
FBFC* performs comparably to the kNNC (null hypothesis cannot
be rejected), while improving upon INNC by a median of around 2%
across all 71 sets. Looking at the results on Group A (where kNNC
performs best among baselines), FBFC* shows a median drop of
around 1% over kNNC but the null hypothesis still cannot be rejected
at a significance level of 0.01; FBFC* performs comparably to INNC.
FBFC* is able to still outperform kNNC and INNC on 24% and 38% of
the sets respectively in Group A. The results are more favorable
with Group B, where kNNC is outperformed by LR. FBFC* signifi-
cantly improves upon kNNC and INNC with a median difference of
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Figure 4: Class hierarchy as a dendogram generated with
the per-class FBF based inter-class similarities for data sets
with interpretable labels, highlighting that FBFs can encode
classes in a way that the resulting inter-class similarities are
semantically meaningful. See text for further discussion.

around 4% and 12% respectively while outperforming them on 79%
and 88% of the sets respectively in Group B.

Comparing to the prototype-based classifiers, CC1 and CC, FBFC*
outperforms the single-pass CC1 consistently and significantly across
all groups of data sets, while slightly underperforming the multi-
pass CC. Across all groups, FBFC* shows a median drop of at most
0.5% compared to CC, but the null hypothesis cannot be rejected at
a significance level of 0.01, implying that the single-pass FBFC* per-
forms comparably to the multi-pass CC. FBFC* is able to outperform
CC on 38% of the data sets across all groups.

Among models, LR and MLPC, trained with (stochastic) gradient
descent, Table 3 indicate that LR generally outperforms MLPC across
all groups since a single pass is usually not sufficient to train MLPC
to high accuracy without any pre-training or meta-learning. Over
all data sets, FBFC* performs comparably to LR, showing an median
improvement of around 1.3%, while outperforming LR on 58% of the
data sets. However, we are unable to reject the null hypothesis here.
With Group A data sets, FBFC* significantly outperforms LR on 78%
of the data sets, showing a median improvement of around 3.4%. In
Group B, where LR is the strongest baseline, FBFC* underperforms
LR, showing a median drop of around 0.68%, but the difference is
not significant as we are unable to reject the null hypothesis.

These results demonstrate that the proposed FBFC/FBFC* allow
us to enjoy strong performance on (i) data sets where nonparametric
kNNC perform well, as well as on (ii) data sets where parametric
models are more favorable, enjoying best of both worlds with a
single pass training. This behaviour is verified with a large number
of data sets, implying the wide practical utility of FBFC/FBFC*.

4.5 Problem insights through class similarities

We wish to highlight the ability to generate problem insights in
terms of class hierarchies utilizing the class encodings wy, [ € [L]
generated during FBFC training. We consider FBFC generated on two
data sets with already interpretable labels: MNIST data set for digits
classification, and Letters data set for English letter classification.
We wish to explore whether the FBFC is able to obtain a semantically
meaningful hierarchy without any additional supervision. For the
best FBFC* model, we generate dendograms for the classes using

_ {wwy) S
s(ly,lp) = Towr, T, T 2 the similarity in Figure 4.

With MNIST (Figure 4a), we see three main clusters of digits
(7,4,9), (5,3,8) and (0,1,6). The first two clusters are semantically



meaningful because of the structure of the digits. (0,6) in the (0,1,6)
also have similar structure. With Letters (Figure 4b), of the 26 classes,
(m,n,v,w), (a,u), (v.£p), (i), (x,8,2), (t1), (c.e), (q,g,0), (h,k) are some
of the semantically meaningful groups discovered by FBFC without
any extra supervision beyond just the training set. These results in-
dicate that, for classification problems where we do not possess any
semantically meaningful classes, we can utilize the class encodings
generated by FBFC to find any underlying hierarchy if available.

5 CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel neuroscience inspired Fly Bloom
Filter based classifier (FBFC) that can be trained in a single pass of
the training set — a point never needs to be revisited, and the whole
training data does not need to be in memory. The inference requires
an efficient FlyHash followed by a very sparse dot product. On the
theoretical side, we established conditions under which FBFC agrees
with the INNC. We empirically validated our proposed scheme with
71 data sets of varied data dimensionality and demonstrated that
the predictive performance of our proposed classifier is competitive
with the kNNC and other single-pass classifiers.

We plan to pursue theoretical guarantees for FBFC and FBFC*
in general R4 by exploring data dependent assumptions such as
doubling measure. While our theoretical results connects FBFC to
INNC, thereby inheriting its generalization guarantees, in our em-
pirical evaluations, we also compared our proposed schemes to the
more general kNNC (which has better generalization guarantees).
Our empirical evaluations indicate that FBFC* significantly out-
performs INNC, while matching kNNC in most cases and at times
outperforming it. This motivates us to study the conditions un-
der which FBFC/FBFC* matches kNNC in future work. Additionally,
utilizing the sparse and randomized nature of FBFC, we will inves-
tigate differential privacy preserving properties of FBFC as well
as robustness of FBFC to benign and adversarial perturbations. Fi-
nally, we believe that FBFC can be adapted to handle concept drifts
and distribution shifts when learning with data streams (online
learning) by being able to forget past examples.
Acknowledgement. KS gratefully acknowledges funding from
NSF award FAIN 2019844.
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S1 SUPPLEMENTARY MATERIAL FROM §3.2.1

Proof for Claim 1 [FBFC training]. In TrainFBFC (Algorithm 1),
line 2 takes O(ms) time and memory, line 3 takes O(mL) time and
memory. Each FlyHash in line 5 takes O(ms) time for computing
M;,x, O(mlog p) time for performing the WTA operation T, (-),
and O(m) memory. FBF wy, update in line 6 takes O(p) time since
it is only updating p entries in wy. Hence the loop 4-7 takes time
O(n(ms+mlog p+p)) and maximum O(m) memory. Given p < m
and L < n, the total runtime is given by O(nm - max{s, log p}) time
and O(m - max{s, L}) memory, proofing the claim of the statement.

Proof of Claim 2 [FBFC inference]. In InferFBFC (Algorithm 1), the
FlyHash operation in line 11 takes time O(m(s + log p)) and O(m)
memory, while the operation in line 12 takes time O(Lp + L) since
each wlTh(x) takes time O(p) since h(x) only have p nonzero en-
tries. This leads to an overall runtime of O(m-max{s, log p, (pL/m)})
and memory overhead of O(max{m,L}), as per the claim.

Proof for Claim 3 [FBFC* training]. In TrainNBFBFC (Algorithm 2),
line 2 takes O(ms) time and memory, line 3 takes O(mL) time and
memory. Each FlyHash in line 5 takes O(m(s + log p)) time and
O(m) memory. FBF wy update in line 6 takes O(p) time since it
is only adding 1 to p entries in wy,. Hence the loop 4-7 takes time
O(n(ms+mlogp + p)) and maximum O(m) memory. The elemen-
twise exponentiation in line 8 takes atmost O(mL). Given p < m
and L < n, the total runtime is given by O(nm - max{s, log p}) time
and O(m - max{s, L}) memory, proofing the claim of the statement.

S2 SUPPLEMENTARY MATERIAL FROM §3.2.2

S2.1 Preliminaries & notations

We denote a single row of a lifting matrix M;, by 0 € {0, 1}4 drawn
iid. from Q, the uniform distribution over all vectors in {0, 1}4
with exactly s ones, satisfying s < d. For ease of notation, we
use M instead of M, and we use an alternate formulation of the
winner-take-all strategy as suggested in Dasgupta et al. [4], where
for any x € R?, 7, is a threshold that sets largest p entries of Mx
to one (and the rest to zero) in expectation. Specifically, for a given
x € R and for any fraction 0 < f < 1, we define 7, (f) to be the
top f-fractile value of the distribution 67 x, where 6 ~ Q:

Tx (f) = sup{o : PIQNQ(QTX >0) > f} (S1)

We note that for any 0 < f < 1, PrQNQ(GTx > 7x(f)) = f, where
the approximation arises from possible discretization issues. For
convenience, henceforth we will assume that this is an equality:

Pro.o(07x > oe(f) = f (S2)
For any two x,x” € R4, we define
406 %) = Prgg (07" >t (p/m) | 87x > 1 (p/m)).

This can be interpreted as follows — with h(x), h(x’) as the FlyHash
of x and x’, respectively, g(x, x") is the probability that A(x"); = 1
given that h(x); = 1, for any specific j € [m] (h(x); is the jth entry
of the FlyHash h(x)). Next, the following lemma establishes upper
and lower bounds of class specific novelty scores.

LEmMMA S1. Fixanyx € RY and let h(x) € {0, 1}™ be its FlyHash
using equation 1. For classi € {0, 1}, letx};\, = argmin (s ) esi [[x—

x’|| with any distance metric || - ||, and Agi = ﬂ(x/’y/)esi{O :0Tx! <
7y (p/m)}. Then the following hold for each classi € {0, 1} separately,
where the expectation is taken over the random choice of projection
matrix M:

(i) Em (w?h(x)/p) =Prg.p (Agi 1 0Tx = e (p/m)),

(i) Bt (w] h(x)/p) 2 1= Sesi qxx),

(iii) Epg (w;'—h(x)/p) < 1—q(xxyy)-

Proor. Part (i) follows from simple application of Lemma 2 of [4]
to class specific FBFs wj,i € {0, 1}. Part (ii) follows from simple
application of Lemma 3 of [4] to class specific FBFs. For part (iii),
simple application of Lemma 3 of [4] to FBF w; ensures that for any
x’ € SLEy (w;'—h(x)/p) < 1—¢q(x,x"). Clearly, Ep (w;rh(x)/p) <
1-q(x, xJiVN). O

$2.2 Two special cases

52.2.1 Special case I: Binary data. In this section we consider a
special case where examples from each class have binary feature
vectors with fixed number of ones. In particular, let X = X, = {x €
{0,1}4 : |x|; = b < d}.

THEOREM S2. Let S be a training set as given above. Fix any § €
(0,1), and set p > % In(4/6), m > (d/b)np, and s = logd/b(m/p),

where y = min {]EM ((wa—h(x))/p) LEm ((w;rh(x))/p)} and h(x)
is the FlyHash (eq. (1)). For a test point x € X, let its closest point
from S measured using €, metric be xNn, having label ynn € {0, 1},
satisfies, (i) ||[x — xnyN|l1 < 2b(1 — b/d)/3s, and (ii) ||x — xi|[1 >
2b(1-1b/d) for all (xi,y;) € S, withy; # ynn- Let wo, w1 € {0,1}™
be the FBFs constructed using S° and S respectively. Then, with
probability at least 1 — & (over the random choice of lifting matrix
M), FBFC prediction on x agrees with the INNC prediction on x.

REMARK 3. Note that, in the worst case, when b = % and n takes
. ) T N log(b+1) _
the maximum possible value, that isn = (b) FS<1-=5p—=

1- logd/2+1
2d

Otherwise, when either n < (Z) orb < d,s < d, implying a very
sparse lifting matrix M;,.

, implying that the lifting matrix is not very sparse.

52.2.2  Special Case Il: Permutation invariant distribution in R?. The
previous result focused on binary data (that is, X c {0, 1}4). Here
we focus on permutation invariant distributions in R? and present
a similar result for X ¢ R? - we show FBFC agrees with INNC in R¢
with high probability. Permutation invariant distributions in the
FBF context was introduced in Dasgupta et al. [4] and defined as
a distribution P over R¢ if, with any permutation o of {1,2,...,d}
and any x = (x1,...,xq) € Rd,P(xl, ceaXg) = P(xg(l), . ..,xa(d)).
Precisely, we show the following:

THEOREM S3. Let S be a training set as given above. Fix any
d € (0,1),s < d, and set p > %ln(S/é) and m > 14np/$,

where ;1 = min {EM ((w(;rh(x))/p) ,Em ((wirh(x))/p)},h(x) is the
FlyHash (1), and wo, w1 € {0, 1}™ are the FBFss constructed using S°
and S! respectively. For a test point x € R%, sampled from a permu-
tation invariant distribution, let xN N be its nearest neighbor from
S measured using foo metric, which satisfies ||x — xNN|lo < A/s,
where A = % (zx(2p/m) — 7x(p/m)) and has label yyn € {0,1}.



Then, with probability at least 1 — & (over the random choice of lifting
matrix M), FBFC prediction on x agrees with INNC prediction on x.

S2.3 Proof sketch of Theorem S2

Proof (sketch). Without loss of generality, assume that x satisfies
the relation ||x — xyn||1 = 2be for some 0 < € < 1 and yyn =
1. Clearly, 1-NN classifier will predict x’s class label to be 1. For
any x,x’ € Xp, the structural assumption of this lemma allows

us to write q(x,x’) ~ (xTx’/b)° and thereby, s ~ lﬁ)gg((r;l//bp)) =

loggp (m/p). Combining this with part (iv) and (v) of lemma S1, the
restriction on m as specified in the theorem and a simple algebraic
manipulation yield, E; (w;'—h(x)/p) < se and Epy (w(;rh(x)/p) >
1—b/d. For appropriate choice of ¢, and plugging the value of s, we
get By (w;'—h(x)/p) < Em (w(-)rh(x)/p). The desired result then

follows by applying lemma S4, provided p is large.
The following concentration result is standard and a similar form
has appeared in [4]. Due to space limitations we omit its proof.

LEMMA S4. Letxi, ..., Xxn, € Xp be the unlabeled examples of S*
and let %1,...,%n, € X}, be the unlabeled examples of S. Pick any
6 € (0,1) and x € Xp. With probability at least 1 — & over the choice
of random projection matrix M, the following holds,

() 4Ear (wTh(x))/p) < (wTh(x)/p < $Eu ((w] h(x))/p)
(i) §Ba (w7 ) /) < (W R /p < 3B ((wg b)) /)
provided p - min {EM (@) JEum (@)} > 121n(4/9).

S2.4 Result for multi-class classification

Theorem S2 can be easily extended to multi-class setting involving
L classes in a straight forward manner by applying concentration

w, h(x) . . .
result the terms ( L 5 ), for i € [L], and using a union bound.
: . _ no+e-4+np
CoROLLARY S5. Given a training set S = {(xi,yi)};2] c

Xpx Y c {0, 134 %x{0,1,...,L - 1} of size X .- m, let S = uktst,
where S* is the subset of S with label i satisfying |S*| = n; and
n = max{no,...,ny—1}. For any test example x € Xj,, let its clos-
est point from S measured using £; metric be xNN having label
yn~N € {0,...,L —1}. Fixany § € (0,1) and set p > % In(2L/6),
m > (d/b)np, and s = logd/b(m/p), where,

o= min {Byr (wg hC0)/p))- - Bar (], h(x))/p)) ) and )
is the F1yHash function from equation 1. Assume that for all (x;,y;) €
S, with y; # ynNN, lIx — xill1 = 2b(1 — b/d) and xNN satisfies
llx —xnNll1 < M Let wy,...,wr—1 € {0,1}™ be the FBFs
constructed using S°, . .., L1 respectively. Then, with probability at
least 1 — 8 (over the random choice of projection matrix M), prediction
of FBFC on x agrees with the prediction of INNC on x.

S$2.5 Proof sketch of Theorem S3

Proof (sketch). Without loss of generality, assume that yyn = 1.
We first show that Eyy (w] h(x)/p) < Eyp (w(-)'—h(x) /p) with high
probability and then using standard concentration bound presented
in lemma S4, we achieve the desired result. Since ||x — xyN||co <
A/s, using lemma 9 of [4], we get q(x, xyn) = 1/2. Combining this
with part (iv) of lemma S1, we get Epy (w;'—h(x) /p) < 1/2. Next

Table S1: Details of data sets used for FBFC/FBFC* specific evalua-
tions. For MNIST, we flatten the 28 X 28 images to points in R734.

DATA SET n d L EXPERIMENT

GINA PRIOR 2 3468 784 10 OpENML

USPS 9294 256 10 OpENML
LETTERS 20000 16 26 OpeENML
MNIST 60000 784 10 VisioN

using properties of permutation invariant distribution, linearity
of expectation, the Markov’s inequality, and part (v) of lemma S1
we show that Eyy (w(-)'—h(x)/p) > 1 — a with probability at least
1-48/2,if m > 2png/(ad). Choosing o appropriately and applying
concentration bound from lemma S4, the result follows.

The above result can similarly be extended to a multi-class setting
in a straight forward manner.

S3 SUPPLEMENTARY MATERIAL FROM §4

Implementation & Compute Resource. The proposed scheme is im-
plemented in Python 3.8 to fit the scikit-1learn API [28]. We use
scikit-learn implementations of various baselines, and generate
synthetic data with the make_classification function [12] in the
data module of scikit-learn. The experiments are performed
on a 16-core 128GB machine running Ubuntu 18.04. The code is
available at https://github.com/rithram/fbfc.

Details on baselines. Here we detail all the baselines considered
in our empirical evaluations and their respective hyper-parameter
and the subsequent hyper-parameter optimization.

» SBFC. We tune over the SimHash dimensionality m in the range
m € [1,d] (the traditional use) and projecting up m € [d, 2048d],
where d is the data dimensionality.

» LR. We consider logistic regression trained with a single epoch of
a stochastic algorithm. We utilize the scikit-learn implemen-
tation (linear_model.LogisticRegression)and tune over the
following hyper-parameters - (a) penalty type (¢1/£2), (b) regular-
ization € [2_10, 210], (c) choice of solver (liblinear [8], SAG [32],
SAGA [7]), (d) with/without intercept, (e) one-vs-rest or multi-
nomial for multi-class, (f) with/without class balancing. We con-
sider a total of 960 hyper-parameter configurations for each
experiment.

» MLPC. We consider a multi-layer perceptron trained for a single
epoch with the “Adam” stochastic optimization scheme [19]. We
use sklearn.neural_network.MLPClassifier and tune over
the following hyper-parameters - (a) number of hidden layers
{1, 2}, (b) number of nodes in each hidden layer {16, 64, 128},
(b) choice of activation function (ReLU/HyperTangent), (d) reg-
ularization, (e) batch size € [2, 28], (f) initial learning rate €
[10_5, 0.1]. The remaining hyper-parameters are set to the de-
faults in scikit-learn. This results in a total of 288 hyper-
parameters configurations per experiment.


https://github.com/rithram/fbfc
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