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Abstract

The goal of compressed sensing is to estimate a high dimensional vector from
an underdetermined system of noisy linear equations. In analogy to classical
compressed sensing, here we assume a generative model as a prior, that is, we
assume the vector is represented by a deep generative model G : R

k → R
n.

Classical recovery approaches such as empirical risk minimization (ERM) are
guaranteed to succeed when the measurement matrix is sub-Gaussian. However,
when the measurement matrix and measurements are heavy-tailed or have outliers,
recovery may fail dramatically. In this paper we propose an algorithm inspired by
the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy-tailed
data, even in the presence of outliers. Theoretically, our results show our novel
MOM-based algorithm enjoys the same sample complexity guarantees as ERM
under sub-Gaussian assumptions. Our experiments validate both aspects of our
claims: other algorithms are indeed fragile and fail under heavy-tailed and/or
corrupted data, while our approach exhibits the predicted robustness.

1 Introduction

Compressive or compressed sensing is the problem of reconstructing an unknown vector x∗ ∈ R
n

after observing m < n linear measurements of its entries, possibly with added noise: y = Ax∗ + η,
where A ∈ R

m×n is called the measurement matrix and η ∈ R
m is noise. Even without noise, this

is an underdetermined system of linear equations, so recovery is impossible without a structural
assumption on the unknown vector x∗. The vast literature [84, 37, 72, 9, 18, 27, 2, 86, 11] on this
subject typically assumes that the unknown vector is “natural,” or “simple,” in some application-
dependent way.

Compressed sensing has been studied on a wide variety of structures such as sparse vectors [19],
trees [20], graphs [90], manifolds [21, 89] or deep generative models [15]. In this paper, we
concentrate on deep generative models, which were explored by [15] as priors for sample-efficient
reconstruction. Theoretical results in [15] showed that if x∗ lies close to the range of a generative
model G : Rk → R

n with d−layers, a variant of ERM can recover x∗ with m = O(kd log n)
measurements. Empirically, [15] shows that generative models require 5− 10× fewer measurements
to obtain the same reconstruction accuracy as Lasso. This impressive empirical performance has
motivated significant recent research to better understand the behaviour and theoretical limits of
compressed sensing using generative priors [36, 50, 62]

A key technical condition for recovery is the Set Restricted Eigenvalue Condition (S-REC) [15],
which is a generalization of the Restricted Eigenvalue Condition [14, 17] in sparse recovery. This
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condition is satisfied if A is a sub-Gaussian matrix and the measurements satisfy y = Ax∗ + η. This
leads to the question: can the conditions on A be weakened, and can we allow for outliers in y and
A? This has significance in applications such as MRI and astronomical imaging, where data is often
very noisy and requires significant pruning/cleansing.

As we show in this paper, the analysis and algorithm proposed by [15] are quite fragile in the presence
of heavy-tailed noise or corruptions in the measurements. In the statistics literature, it is well known
that algorithms such as empirical risk minimization (ERM) and its variants are not robust to even a
single outlier. Since the algorithm in [15] is a variant of ERM, it is susceptible to the same failures in
the presence of heavy-tails and outliers. Indeed, as we show empirically in Section 6, precisely this
occurs.

Importantly, recovery failure in the setting of [15] (which is also the focus of this paper) can be
pernicious, precisely because generative models (by design) output images in their range space,
and for well-designed models, these have high perceptual quality. In contrast, when a classical
algorithm like LASSO [84] fails, the typical failure mode is the output of a non-sparse vector. Thus
in the context of generative models, resilience to outliers and heavy-tails is especially critical. This
motivates the need for algorithms that do not require strong assumptions on the measurements.

In this paper, we propose an algorithm for compressed sensing using generative models, which is
robust to heavy-tailed distributions and arbitrary outliers. We study its theoretical recovery guarantees
as well as empirical performance, and show that it succeeds in scenarios where other existing recovery
procedures fail, without additional cost in sample complexity or computation.

1.1 Contributions

We propose a new reconstruction algorithm in place of ERM. Our algorithm uses a Median-of-Means
(MOM) loss to provide robustness to heavy-tails and arbitrary corruptions. As S-REC may no longer
hold, we necessarily use a different analytical approach. We prove recovery results and sample
complexity guarantees for this setting even though previous assumptions such as the S-REC [15]
condition do not hold. Specifically, our main contributions are as follows.

• (Algorithm) We consider robust compressed sensing for generative models where (i) a constant frac-
tion of the measurements and measurement matrix are arbitrarily (perhaps maliciously) corrupted
and (ii) the random ensemble only satisfies a weak moment assumption.

We propose a novel algorithm to replace ERM. Our algorithm uses a median-of-means (MOM)
tournament [65, 54] i.e., a min-max optimization framework for robust reconstruction. Each
iteration of our MOM-based algorithm comes at essentially no additional computational cost
compared to an iteration of standard ERM. Moreover, as our code shows, it is straightforward to
implement.

• (Analysis and Guarantees) We analyze the recovery guarantee and outlier-robustness of our algo-
rithm when the generative model is a d-layer neural network using ReLU activations. Specifically,
in the presence of a constant fraction of outliers in y and A, we achieve ‖G(ẑ) − G(z∗)‖2 ≤
O(σ2 + τ) with sample size m = O(kd log n), where σ2 is the variance of the heavy-tailed noise,
and τ is the optimization accuracy. Using different analytical tools (necessarily, since we do not
assume sub-Gaussianity), we show our algorithm, even under heavy-tails and corruptions, has the
same sample complexity as the previous literature has achieved under much stronger sub-Gaussian
assumptions. En route to our result, we also prove an interesting result for ERM: by avoiding
the S-REC-based analysis, we show that the standard ERM algorithm does in fact succeed in the
presence of a heavy-tailed measurement matrix, thereby strengthening the best-known recovery
guarantees from [15]. This does not extend (as our empirical results demonstrate) to the setting of
outliers, or of heavy-tailed measurement noise. For these settings, our new algorithm is required.

• (Empirical Support) We empirically validate the effectiveness of our robust recovery algorithm
on MNIST and CelebA-HQ. Our results demonstrate that (as our theory predicts) our algorithm
succeeds in the presence of heavy-tailed noise, heavy-tailed measurements, and also in the presence
of arbitrary outliers. At the same time our experiments confirm that ERM can fail, and in fact fails
dramatically: through an experiment on the CelebA-HQ data set, we demonstrate that the ERM
recovery approach [15], as well as other natural approaches including ℓ1 loss minimization and
trimmed loss minimization [81], can recover images that have little resemblance to the original.
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1.2 Related work

Compressed sensing with outliers or heavy-tails has a long history. To deal with outliers only in
y, classical techniques replace the ERM with a robust loss function such as ℓ1 loss or Huber loss
[58, 74, 64, 24], and obtain the optimal statistical rates. Much less is known for outliers in y and A for
robust compressed sensing. Recent progress on robust sparse regression [22, 10, 23, 26, 78, 60, 59, 81]
can handle outliers in y and A, but their techniques cannot be directly extended to arbitrary generative
models G. Another line of research [43, 70, 65, 54] considers compressed sensing where the
measurement matrix A and y have heavy-tailed distributions. Their techniques leverage variants
of Median-of-Means (MOM) estimators on the loss function under weak moment assumptions
instead of sub-Gaussianity, which generalize the classical MOM mean estimator in one dimension
[73, 48, 3, 70].

[88] deals with compressed sensing of generative models when the measurements and the responses
are non-Gaussian. However, the distribution model in [88] requires more stringent conditions
compared to the weak moment assumption as will be specified in Definition 1, and their algorithm
cannot tolerate arbitrary corruptions.

Generative priors have shown great promise in compressed sensing and other inverse problems,
starting with [15], who generalized the theoretical framework of compressive sensing and restricted
eigenvalue conditions [84, 27, 14, 17, 41, 13, 12, 28] for signals lying on the range of a deep
generative model [33, 53]. Results in [50, 62, 47] established that the sample complexities in [15] are
order optimal. The approach in [15] has been generalized to tackle different inverse problems [35,
8, 6, 71, 7, 79, 8, 61, 5, 46, 34, 4]. Alternate algorithms for reconstruction include [16, 25, 49, 30,
29, 82, 66, 25, 77, 38, 39]. The complexity of optimization algorithms using generative models have
been analyzed in [32, 40, 57, 36]. See [75] for a more detailed survey on deep learning techniques
for compressed sensing. A related line of work has explored learning-based approaches to tackle
classical problems in algorithms and signal processing [1, 45, 69, 42].

2 Notation

For functions f(n) and g(n), we write f(n) . g(n) to denote that there exists a universal constant
c1 > 0 such that f(n) ≤ c1g(n). Similarly, we write f(n) & g(n) to denote that there exists
a universal constant c2 > 0 such that f(n) ≥ c2g(n). We write f(n) = O(g(n)) to imply that
there exists a positive constant c3 and a natural number n0 such that for all n ≥ n0, we have
|f(n)| ≤ c3g(n). Similarly, we write f(n) = Ω(g(n)) to imply that there exists a positive constant
c4 and a natural number n1 such that for all n ≥ n1, we have |f(n)| ≥ c4g(n).

3 Problem formulation

Let x∗ = G(z∗) ∈ R
n be the fixed vector of interest. The deep generative model G : Rk → R

n

(k ≪ n) maps from a low dimensional latent space to a higher dimensional space. In this paper, G is
a feedforward neural network with ReLU activations and d layers.

Our definition of heavy-tailed samples assumes that the measurement matrix A only has bounded
fourth moment. Our corruption model is Huber’s ǫ-contamination model [44]. This model allows
corruption in the measurement matrix A and measurements y. Precisely, these are:

Definition 1 (Heavy-tailed samples). We say that a random vector a is heavy-tailed if for a universal
constant C > 0, the 4th moment of a satisfies

(
E
[
〈a, u〉4

]) 1

4 ≤ C
(
E
[
〈a, u〉2

]) 1

2 , ∀u ∈ R
n.

For all δ > 0, the (4 + δ)th moment of a need not exist, and we make no assumptions on them.

Definition 2 (ǫ-corrupted samples). We say that a collection of samples {yi, ai} is ǫ-corrupted if
they are i.i.d. observations drawn from the mixture

{yi, ai} ∼ (1− ǫ)P + ǫQ,

where P is the uncorrupted distribution, Q is an arbitrary distribution.
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Thus we assume that samples {yi, ai}
m
i=1 are generated from (1− ǫ)P + ǫQ, where Q is an adversary,

and P satisfies the following:

Assumption 1. Samples (yi, ai) ∼ P satisfy yi = a⊤i G(z∗) + ηi, where the random vector ai is
isotropic and heavy-tailed as in Definition 2, and the noise term ηi is independent of ai, i.i.d. with
zero mean and bounded variance σ2.

4 Our Algorithm

‖·‖ refers to ℓ2 unless specified otherwise. The procedure proposed by [15] finds a reconstruction
x̂ = G(ẑ), where ẑ solves:

ẑ := argmin
z∈Rk

‖AG(z)− y‖2.

This is essentially an ERM-based approach. As is well known from the classical statistics literature,
ERM’s success relies on strong concentration properties, guaranteed, e.g., if the data are all sub-
Gaussian. ERM may fail, however, in the presence of corruption or heavy-tails. Indeed, our
experiments demonstrate that in the presence of outliers in y or A, or heavy-tailed noise in y, [15]
fails to recover G(z∗).

Remark Unlike typical problems in M -estimation and high dimensional statistics, the optimiza-
tion problem that defines the recovery procedure here is non-convex, and thus in the worst case,
computationally intractable. Interestingly, despite non-convexity, as demonstrated in [15], (some
appropriate version of) gradient descent is empirically very successful. In this paper, we take this as
a computational primitive, thus sidestepping the challenge of proving whether a gradient-descent
based method can efficiently provide guaranteed inversion of a generative model. Our theoretical
guarantees are therefore statistical but our experiments show empirically excellent performance.

4.1 MOM objective

It is well known that the median of means estimator achieves nearly sub-Gaussian concentration for
one dimensional mean estimation of variance bounded random variables [73, 48, 3]. Inspired by the
median-of-means algorithm, we propose the following algorithm to handle heavy-tails and outliers in
y and A. We partition the set [m] into M disjoint batches {B1, B2, · · · , BM} such that each batch
has cardinality b = m

M
. Without loss of generality, we assume that M exactly divides m, so that b is

an integer. For the jth batch Bj , define the function

ℓj(z) :=
1

b
‖ABj

G(z)− yBj
‖2, (1)

where ABj
∈ R

b×n denotes the submatrix of A corresponding to the rows in batch Bj . Similarly,

yBj
∈ R

b denotes the entries of y corresponding to the batch Bj . Our workhorse is a novel variant of
median-of-means (MOM) tournament procedure [65, 54] using the loss function eq. (1):

ẑ = arg min
z∈Rk

max
z′∈Rk

median
1≤j≤M

(ℓj(z)− ℓj(z
′)). (2)

We do not assume that the minimizer is unique, since we only require a reconstruction G(ẑ) which
is close to G(z∗). Any value of z in the set of minimizers will suffice. The intuition behind this
aggregation of batches is that if the inner player z′ chooses a point close to z∗, then the outer player
z must also choose a point close to z∗ in order to minimize the objective. Once this happens, there is
no better option for z′. Hence a neighborhood around z∗ is almost an equilibrium, and in fact there
can be no neighborhood far from z∗ with such an equilibrium.

Computational considerations. The objective function eq. (2) is not convex and we use Algo-
rithm 1 as a heuristic to solve eq. (2). In Section 6, we empirically observe that gradient-based
methods are able to minimize this objective and have good convergence properties. Our main theorem
guarantees that a small value of the objective implies a good reconstruction and hence we can certify
reconstruction quality using the obtained final value of the objective.

5 Theoretical results

We begin with a brief review of the Restricted Eigenvalue Condition in standard compressed sensing
and show that S-REC is satisfied by heavy-tailed distributions.

4



Algorithm 1 Robust compressed sensing of generative models

1: Input: Data samples {yj , aj}
m
j=1.

2: Output: G(ẑ).
3: Parameters: Number of batches M .

4: Initialize z and z′.
5: for t = 0 to T − 1, do
6: For each batch j ∈ [M ], calculate 1

|Bj |
(ℓj(z)− ℓj(z

′)) by eq. (1).

7: Pick the batch with the median loss median
1≤j≤M

(ℓj(z)− ℓj(z
′)), and evaluate the gradient for z and z′ using

backpropagation on that batch.
(i) perform gradient descent for z;
(ii) perform gradient ascent for z′.

8: end for
9: Output the G(ẑ) = G(z).

5.1 Set-Restricted Eigenvalue Condition for heavy-tailed distributions

Most theoretical guarantees for compressed sensing rely on variants of the Restricted Eigenvalue Con-
dition(REC) [14, 17] and the closest to our setting is the Set Restricted Eigenvalue Condition [15](S-
REC). Formally, A ∈ R

m×n satisfies S-REC(S, γ, δ) on a set S ⊆ R
n if for all x1, x2 ∈ S,

‖Ax1 −Ax2‖ ≥ γ‖x1 − x2‖ − δ.

While we can prove many powerful results using the REC condition, proving that a matrix satisfies
REC typically involves sub-Gaussian entries in A. If we don’t have sub-Gaussianity, proving REC
requires a finer analysis. A recent technique called the small-ball method [67] requires significantly
weaker assumptions on A, and can be used to show REC [67, 85] for A satisfying Assumption 1.
While this technique can be used for sparse vectors, we do not have a general understanding of what
structures it can handle, since existing proofs make heavy use of sparsity.

We now show that a random matrix whose rows satisfy Assumption 1 will satisfy S-REC over the
range of a generator G : Rk → R

n with high probability. This generalizes Lemma 4.2 in [15]– the
original lemma required i.i.d. sub-Gaussian entries in the matrix A, whereas the following lemma
only needs the rows to have bounded fourth moments.

Lemma 5.1. Let G : Rk → R
n be a d−layered neural network with ReLU activations. Let A ∈

R
m×n be a matrix with i.i.d. rows satisfying Definition 1. For any γ < 1, if m = Ω

(
1

1−γ2 kd log n
)
,

then with probability 1− e−Ω(m), for all z1, z2 ∈ R
k, we have

1

m
‖AG(z1)−AG(z2)‖

2 ≥ γ2‖G(z1)−G(z2)‖
2.

This implies that the ERM approach of [15] still works when we only have a heavy-tailed measurement
matrix A. However, as we show in our experiments, heavy-tailed noise in y and outliers in y,A will
make ERM fail catastrophically. In order to solve this problem, we leverage the median-of-means
tournament defined in eq. (2), and we will now show it is robust to heavy-tails and outliers in y,A.

5.2 Main results

We now present our main result. Theorem 5.5 provides recovery guarantees in terms of the error in
reconstruction in the presence of heavy-tails and outliers, where ẑ is the (approximate) minimizer
of eq. (2). First we show that the minimum value of the objective in eq. (2) is indeed small if there
are no outliers.

Lemma 5.2. Let M denote the number of batches. Assume that the measurements y and measurement
matrix A are drawn from the uncorrupted distribution satisfying Assumption 1. Then with probability
1− e−Ω(M), the objective in Equation (2) satisfies

min
z∈Rk

max
z′∈Rk

median
1≤j≤M

(ℓBj
(z)− ℓBj

(z′)) ≤ 4σ2. (3)

We now introduce Lemma 5.3 and Lemma 5.4, which control two stochastic processes that appear in
eq. (2). We show that minimizing the objective in eq. (2) implies that you are close to the unknown
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vector G(z∗). Notice that since z∗ is one feasible solution of the inner maximization step of z′, we
can consider z′ = z∗. Now consider the difference of square losses in eq. (2), which is given by:

ℓj(ẑ)− ℓj(z
∗) =

1

b
‖ABj

G(ẑ)− yBj
‖2 −

1

b
‖ABj

G(z∗)− yBj
‖2,

=
1

b
‖ABj

(G(ẑ)−G(z∗))‖2 −
2

b
η⊤Bj

(ABj
(G(ẑ)−G(z∗))),

where the last line follows from an elementary arithmetic manipulation.

Assume we have the following bounds on a majority of batches:

1

b
‖ABj

(G(ẑ)−G(z∗))‖2 & ‖G(ẑ)−G(z∗)‖2, (4)

−
2

b
η⊤Bj

(ABj
(G(ẑ)−G(z∗))) & −‖G(ẑ)−G(z∗)‖. (5)

Since the objective is the median of the sum of the above terms, a small value of the objective implies
that ‖G(ẑ)−G(z∗)‖ is small. We formally show these bounds in Lemma 5.3, Lemma 5.4.

Lemma 5.3. Let G : Rk → R
n be a generative model from a d-layer neural network using ReLU

activations. Let A ∈ R
m×n be a matrix with i.i.d. uncorrupted rows satisfying Definition 1. Let

the batch size b = Θ
(
C4

)
, let the number of batches satisfy M = Ω(kd log n), and let γ be a

constant which depends on the moment constant C. Then with probability at least 1− e−Ω(m), for
all z1, z2 ∈ R

k there exists a set J ⊆ [M ] of cardinality at least 0.9M such that

1

b
‖ABj

(G(z1)−G(z2))‖
2 ≥ γ2‖G(z1)−G(z2)‖

2 , ∀j ∈ J.

Lemma 5.4. Consider the setting of Lemma 5.3 with measurements satisfying y = AG(z∗) + η,
where y,A, η satisfy Assumption 1 with noise variance σ2. For a constant batch size b and number
of batches M = Ω(kd log n), with probability at least 1− e−Ω(m), for all z ∈ R

k there exists a set
J ⊆ [M ] of cardinality at least 0.9M such that

1

b
|ηTBj

ABj
(G(z)−G(z∗))| ≤ σ‖G(z)−G(z∗)‖ , ∀j ∈ J.

The above lemmas do not account for the ǫ−corrupted samples in Definition 2. However, since the
batch size is constant in both the lemmas, there exists a value of ǫ such that sufficiently many batches
have no corruptions. Hence we can apply Lemma 5.3, Lemma 5.4 to these uncorrupted batches.
Using these lemmas with a constant batch size b, we obtain Theorem 5.5. We defer its proof to
Appendix E.

Theorem 5.5. Let G : Rk → R
n be a generative model from a d-layer neural network using ReLU

activations. There exists a (sufficiently small) constant fraction ǫ which depends on the moment
constant C in Definition 1 such that the following is true. We observe m = O(kd log n) ǫ-corrupted

samples from Definition 2, under Assumption 1. For any z∗ ∈ R
k, let ẑ minimize the objective

function given by eq. (2) to within additive τ of the optimum. Then there exists a (sufficiently large)
constant c, such that with probability at least 1− e−Ω(m), the reconstruction G(ẑ) satisfies

‖G(ẑ)−G(z∗)‖2 ≤ c(σ2 + τ),

where σ2 is the variance of noise under Assumption 1.

We briefly discuss the implications of Theorem 5.5, with regards to sample complexity and error in
reconstruction.

Sample Complexity. Our sample complexity matches that of [15] up to constant factors. This
shows that the minimizer of eq. (2) in the presence of heavy-tails and outliers provides the same
guarantees as in the case of ERM with sub-Gaussian measurements.

Statistical accuracy and robustness. Let us analyze the error terms in our theorem. The term τ is
a consequence of the minimization algorithm not being perfect, since it only reaches within τ of the
true minimum. Hence it cannot be avoided. The term σ2 is due to the noise in measurements. In the
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a Student’s t−distribution (a typical example of heavy-tails) for A and η. We compare Algorithm 1
with the baseline ERM [15] for heavy-tailed data without arbitrary corruptions on MNIST [55] and
CelebA-HQ [51, 63]. We trained a DCGAN [80] with k = 100 and d = 5 layers to produce 64× 64
MNIST images. For CelebA-HQ, we used a PG-GAN [51] with k = 512 to produce images of size
256× 256× 3 = 196, 608.

We vary the number of measurements m and obtain the reconstruction error ‖G(ẑ)−G(z∗)‖2/n for
Algorithm 1 and ERM, where G(z∗) is the ground truth image. In Figure 1, Algorithm 1 and ERM
both have decreasing reconstruction error per pixel with increasing number of measurements. To
conclude, even for heavy-tailed noise without arbitrary outliers, Algorithm 1 obtains significantly
smaller reconstruction error when compared to ERM.

Arbitrary corruptions. In this experiment, we use the same heavy-tailed samples as above, and
we add ǫ = 0.02-fraction of arbitrary corruption. We set the outliers of measurement matrix A as
random sign matrix, and the outliers of y are fixed to be −1. We note that we don’t use any targeted
attack to simulate the outliers. We perform our experiments on the CelebA-HQ dataset using a
PG-GAN of latent dimension k = 512, and fix the number of measurements to m = 1000.

We compare our algorithm to a number of natural baselines. Our first baseline is ERM [15] which
is not designed to deal with outliers. While its fragility is interesting to note, in this sense it is
not unexpected. For outliers in y, classical robust methods replace the loss function by an ℓ1 loss
function or Huber loss function. This is done in order to avoid the squared loss, which makes recovery
algorithms very sensitive to outliers. In this case, we have ẑ := argmin‖y −AG(z)‖1.

We also investigate the performance of trimmed loss minimization, which is a recent algorithm
proposed by [81]. This algorithm picks the t−fraction of samples with smallest empirical loss for
each update step, where t is a hyper-parameter.

We run Algorithm 1 and its variant MOM minimization. The MOM minimization directly minimizes

ẑ = arg min
z∈Rk

median1≤j≤M (ℓj(z)), (6)

and we use gradient-based methods similar to Algorithm 1 to solve it. Since Algorithm 1 optimizes
z and z′ in one iteration, the actual computation time of MOM tournament is twice that of MOM
minimization. As shown in Figure 2, Figure 3, ERM [15] and ℓ1 loss minimization fail to converge to
the ground truth and in particular, they may recover a completely different person. Trimmed loss
minimization [81] only succeeds on occasion, and when it fails, it obtains a visibly different person.
The convergence of the MOM minimization per iteration is very similar to the MOM tournament, and
they both achieve much smaller reconstruction error compared to trimmed loss minimization. The
right panel of Figure 2 plots the reconstruction error versus the actual computation time, showing our
algorithms match baselines. We plot the MSE vs. number of measurements in Figure 4b, where the
fraction of corruptions is set to ǫ = 0.02.

Miscellaneous Experiments Is ERM ever better than MOM? So far we have analyzed cases
where MOM performs better than ERM. Since ERM is known to be optimal in linear regression
when dealing with uncorrupted sub-Gaussian data, we expect it to be superior to MOM when our
measurements are all sub-Gaussian. We evaluate this in Fig. 4a and observe that ERM obtains smaller
MSE in this setting. Notice that as we reduce the number of batches in MOM, it approaches ERM.

How sensitive is MOM to the number of batches? In Figure 4c we study the MSE of MOM
tournaments and MOM minimization as we vary the number of batches.

In order to select the optimal number of batches (M ), we keep a set of validation measurements
that we do not use in the optimization routines for estimating x. We can run MOM for different
value of M to get multiple reconstructions, and then evaluate each reconstruction using the validation
measurements to pick the best reconstruction. Note that one should use the median-of-means loss
while evaluating the validation error as well.

7 Conclusion

The phenomenon observed in Figure 3 highlights the importance of our method. Our work raises
several questions about why the objective we consider can be minimized, and suggests we need a new
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9 Broader Impact

Sparsity has played an important role across many areas of statistics, engineering and computer
science, as a regularizing prior that captures important structure in many applications. Recent work
has illustrated that given enough data, deep generative models are poised to play a revolutionary role,
as a modern, data-driven replacement for sparsity. Much work remains to bring this agenda to fruition,
but we believe that, as a variety of recent works have suggested, this direction can revolutionize
imaging in a number of different important domains, not least of all, medical imaging.

This work addresses the robustness, and hence the trustworthiness and reliability of GAN-inversion-
based techniques. As mentioned, this is especially critical, since high quality GANs will always
produce perceptually high quality images, hence recovery failures may not be readily detectable by
inspection.

Still, many significant issues remain that this work does not address. This includes understanding
when and how sufficiently powerful and expressive GANs can be trained, since the scope of high
quality GANs still appears to be limited. Another important consideration includes the core compu-
tational issue: the GAN inversion problem, which this work also faces, is intractable in the worst
case, yet in practice appears to not pose a significant challenge. Understanding this dichotomy is very
important.
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A Proof of Lemma 5.1

Lemma (Lemma 5.1). Let G : Rk → R
n be a d−layered neural network with ReLU activations.

Let A ∈ R
m×n be a matrix with i.i.d rows satisfying Assumption 1. If m = Ω

(

1
1−γ2 kd log n

)

, then

with probability 1− e−Ω(m), A satisfies

1

m
‖AG(z1)−AG(z2)‖

2 ≥ γ2‖G(z1)−G(z2)‖
2

for all z1, z2 ∈ R
k.

Proof. The proof is based on Proposition A.1 and Proposition A.2, which will be introduced as
follows. Proposition A.1 shows that the set SG = {G(z1)−G(z2) : z1, z2 ∈ R

k} lies in the range

of eO(kd logn) different 2k−dimensional subspaces.

Proposition A.2 guarantees the result for a single subspace with probability 1 − e−m. Since m =
Ω(kd log n), the proof follows from a union bound over the eO(kd logn) subspaces in Proposition A.1.

Proposition A.1. If G : Rk → R
n is a d−layered neural network with ReLU activations, then the

set SG = {G(z1) − G(z2) : z1, z2 ∈ R
k} lies in the union of O

(

n2kd
)

different 2k−dimensional
subspaces.

Proof of Proposition (A.1). From Lemma 8.3 in [15], the set {G(z) : z ∈ R
k} lies in the union of

O(nkd) different k−dimensional subspaces.

This implies that the set

{G(z1)−G(z2) : z1, z2 ∈ R
k}

lies in the union of M = O(n2kd) different 2k−dimensional subspaces.

Proposition A.2. Consider a single 2k−dimensional subspace given by S1 = {Wz : W ∈
R

n×2k,WTW = I2k, z ∈ R
2k}. Let A ∈ R

m×n be a matrix with i.i.d rows drawn from a

distribution satisfying Assumption (1). If m = O( C2k
3

4
−γ2

), with probability 1− e−Ω(m), A satisfies

1

m
‖Av‖2 ≥ γ2‖v‖2, ∀v ∈ S1.

Proof. The proof follows Theorem 14.12 in [87], with non-trivial modifications for our setting.

We want to show that for all vectors v ∈ S1,

1

m
||Av||2 ≥ γ2||v||2.

For u, τ ∈ R, define the truncated quadratic function

φτ (u) =

{

u2 if |u| ≤ τ,

τ2 otherwise.
(7)

By construction, φτ (〈ai, v〉) ≤ 〈ai, v〉
2.

This implies that

1

m
||Av||2 =

1

m

m
∑

i=1

〈ai, v〉
2 =

‖v‖2

m

m
∑

i=1

〈ai,
v

‖v‖ 〉
2 (8)

≥
‖v‖2

m

m
∑

i=1

φτ (〈ai,
v

‖v‖ 〉) (9)
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≥ ‖v‖2E

[
∑m

i=1
φτ (〈ai,

v
‖v‖ 〉)

m

]

− ‖v‖2

∣

∣

∣

∣

∣

∑m

i=1
φτ (〈ai,

v
‖v‖ 〉)

m
− E

[
∑m

i=1
φτ (〈ai,

v
‖v‖ 〉)

m

]
∣

∣

∣

∣

∣

(10)

= ‖v‖2E
[

φτ (〈a,
v

‖v‖ 〉)
]

− ‖v‖2

∣

∣

∣

∣

∣

∑m

i=1
φτ (〈ai,

v
‖v‖ 〉)

m
− E

[

φτ (〈a,
v

‖v‖ 〉)
]

∣

∣

∣

∣

∣

(11)

≥ ‖v‖2E
[

φτ (〈a,
v

‖v‖ 〉)
]

− ‖v‖2 sup
v∈S1

∣

∣

∣

∣

∣

1

m

m
∑

i=1

φτ (〈ai,
v

‖v‖ 〉)− E

[

φτ (〈a,
v

‖v‖ 〉)
]

∣

∣

∣

∣

∣

(12)

In Claim A.3 we will show that for τ2 = C4

3

4
−γ2

, we have

E

[

φτ (〈a,
v

‖v‖ 〉)
]

≥ (γ2 +
1

4
).

In Claim A.4 we will show that with overwhelming probability in m,

sup
v:‖v‖≤1

∣

∣

∣

∣

∣

1

m

m
∑

i=1

φτ (〈ai,
v

‖v‖ 〉)− E

[

φτ (〈a,
v

‖v‖ 〉)
]

∣

∣

∣

∣

∣

≤
1

4
.

These two results together imply that

1

m
‖Av‖2 ≥ γ2‖v‖2.

with overwhelming probability in m.

Claim A.3. Assume that the random vector a satisfies Assumption (1) with constant C. Let φτ be
the thresholded quadratic function defined in Eqn (7). For all v ∈ R

n, ‖v‖ ≤ 1, we have

E [φτ (〈a, v〉)] ≥

(

1−
C4

τ2

)

‖v‖2.

Proof.

‖v‖2 − E [φτ (〈a, v〉)] =E
[

〈a, v〉2
]

− E [φτ (〈a, v〉)] (13)

=E
[

(〈a, v〉2 − τ2)1{|〈a,v〉|≥τ}

]

(14)

≤E
[

〈a, v〉21{|〈a,v〉|≥τ}

]

(15)

By the Cauchy-Schwartz inequality,

E
[

〈a, v〉21{|〈a,v〉|≥τ}

]

≤
(

E
[

〈a, v〉4
])

1

2 (Pr [|〈a, v〉| ≥ τ ])
1

2 (16)

From Assumption (1), we have

(

E
[

〈a, v〉4
])

1

2 ≤ C2
E
[

〈a, v〉2
]

.

From Chebyshev’s inequality and Assumption (1), we have

(Pr [|〈a, v〉| ≥ τ ])
1

2 ≤

(

E
[

|〈a, v〉|4
]

τ4

)
1

2

≤

(

C4
E
[

|〈a, v〉|2
]2

τ4

)

1

2

=
C2

E
[

|〈a, v〉|2
]

τ2
. (17)

Substituting the above two inequalities into eq. (16), we get

E
[

〈a, v〉21{|〈a,v〉|≥τ}

]

≤
C4

E
[

〈a, v〉2
]2

τ2
(18)

=
C4‖v‖4

τ2
≤

C4‖v‖2

τ2
. (19)
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Substituting into Eqn (13),

‖v‖2 − E [φτ (〈a, v〉)] ≤
C4‖v‖2

τ2
, (20)

which completes the proof.

Claim A.4. For an orthonormal matrix U ∈ R
n×2k, let S := {v : v = Uz, ‖v‖ = 1}. Let φτ be the

function defined in Proposition A.2. For m = Ω
(

τ2k
)

, we have

sup
v∈S

∣

∣

∣

∣

∣

1

m

m
∑

i=1

φτ (〈ai, v〉)− E [φτ (〈a, v〉)]

∣

∣

∣

∣

∣

≤
1

4
.

with probability 1− e−Ω(m).

Proof. Define

Zm = sup
v∈S

∣

∣

∣

∣

∣

1

m

m
∑

i=1

φτ (〈ai, v〉)− E [φτ (〈a, v〉)]

∣

∣

∣

∣

∣

.

We will first show that

EA [Zm] ≤
1

8
for large enough m. Then we use Talagrand’s inequality [83] to show that

Pr

[

Zm ≥ E [Zm] +
1

8

]

≤ e−Ω(m),

using which we can conclude that Zm ≤ 1
4 with probability 1− e−Ω(m).

By the symmetrization inequality, we have

EA [Zm] ≤ 2Eǫ,A

[

sup
v∈S

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ǫiφτ (〈ai, v〉)

∣

∣

∣

∣

∣

]

where {ǫi}
m
i=1 are i.i.d Bernoulli ±1 random variables.

Since φτ is a Lipschitz function with Lipschitz constant 2τ , we can apply the Ledoux-Talagrand
contraction inequality [56] (refer to Appendix G for the sake of completeness) to get

2Eǫ,A

[

sup
v∈S

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ǫiφτ (〈ai, v〉)

∣

∣

∣

∣

∣

]

≤8τEǫ,A

[

sup
v∈S

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ǫi〈ai, v〉

∣

∣

∣

∣

∣

]

(21)

=8τEǫ,A

[

sup
v∈S

∣

∣

∣

∣

1

m
ǫTAv

∣

∣

∣

∣

]

. (22)

Since S := {v : v = Uz, ‖v‖ = 1}, we have

8τEǫ,A

[

sup
v∈S

∣

∣

∣

∣

1

m
ǫTAv

∣

∣

∣

∣

]

(23)

=8τEǫ,A

[

sup
z:‖z‖=1

∣

∣

∣

∣

8τ

m
ǫTAUz

∣

∣

∣

∣

]

(24)

≤
8τ

m
Eǫ,A

[

‖ǫTAU‖2
]

(25)

≤
8τ

m

√

Eǫ,A [‖ǫTAU‖22] (26)
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The third line follows from the Cauchy-Schwartz inequality, and the fourth line follows from Jensen’s
inequality.

Notice that
Eǫ

[

‖ǫTAU‖22
]

= trace(AUUTAT ) = trace(UTATAU)

Since UTU = I2k, we have

Eǫ,A

[

‖ǫTAU‖22
]

= EA

[

trace(UTATAU)
]

(27)

=

m
∑

i=1

Eai
trace(UTaia

T
i U) (28)

=

m
∑

i=1

trace(UT InU) = m trace(I2k) = 2km. (29)

Putting this together, and choosing m = Ω(τ2k), we have

EA [Zm] ≤ 8τ

√

2k

m
≤

1

8
.

We now need to show that

Pr

[

Zm ≥ E [Zm] +
1

8

]

≤ e−Ω(m).

By construction, φτ (〈ai, v〉) ≤ τ2 for all v ∈ S.

In order to apply Talagrand’s inequality, we need to bound

σ2 = sup
v∈S

E

[

(φτ (〈a, v〉)− E [φτ (〈a, v〉)])
2
]

.

We can bound this by

var(φτ (〈a, v〉) ≤ E
[

φ2
τ (〈a, v〉)

]

(30)

≤ τ2E [φτ (〈a, v〉)] ≤ τ2 (31)

Applying Talagrand’s inequality, we have

Pr [Zm ≥ E [Zm] + t] ≤ C1 exp

(

−
C2mt2

τ2 + τ2t

)

.

Setting t = 1
8 ,m = Ω(τ2k) we get

Pr[Zm ≥
1

4
] ≤ Pr

[

Zm ≥ E [Zm] +
1

8

]

≤ C1e
−

C2m

τ2 = e−Ω(m).

This concludes the proof.

B Proof of Lemma 5.2

Lemma B.1. Let M denote the number of batches. Then with probability 1− e−Ω(M), the objective
in Equation (2) satisfies

min
z∈Rk

max
z′∈Rk

median
1≤j≤M

ℓBj
(z)− ℓBj

(z′) ≤ 4σ2. (32)

Proof. By setting z ← z∗, for all z′ ∈ R
k, for any j ∈ [M ], we have

ℓBj
(z∗)− ℓBj

(z′) ≤ ℓBj
(z∗) =

1

b
‖ηBj

‖2. (33)
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Since the noise is i.i.d. and has variance σ2, we have E
[

ℓBj
(z∗)

]

= E
1
b
‖ηBj

‖2 = σ2.

For batch j ∈ [M ], define the indicator random variable

Yj = 1
{

ℓBj
(z∗) ≥ 4σ2

}

.

By Markov’s inequality, since E[ℓBj
(z∗)] = σ2, we have

Pr [Yj = 1] ≤
1

4
⇒ E





M
∑

j=1

Yj



 ≤
M

4
. (34)

By the Chernoff bound,

Pr





M
∑

j=1

Yj ≥
M

2



 ≤ Pr





M
∑

j=1

Yj ≥ 2E[

M
∑

j=1

Yj ]



 ≤ e−Ω(M). (35)

The above inequality implies that with probability 1− e−Ω(M), for all z′ ∈ R
k, at least M

2 batches
satisfy

ℓBj
(z∗)− ℓBj

(z′) ≤ 4σ2.

This gives

min
z∈Rk

max
z′∈Rk

median
1≤j≤M

(ℓBj
(z)− ℓBj

(z′)) ≤ 4σ2. (36)

C Proof of Lemma 5.3

Lemma (Lemma 5.3). Let G : Rk → R
n be a generative model from a d-layer neural network using

ReLU activations. Let A ∈ R
m×n be a matrix with i.i.d rows satisfying Assumption 1. Let the batch

size b = Θ
(

C4
)

, let the number of batches satisfy M = Ω(kd log n), and let γ be a constant which

depends on the moment constant C. Then with probability at least 1− e−Ω(m), for all z1, z2 ∈ R
k

there exists a set J ⊆ [M ] of cardinality at least 0.9M such that

1

b
‖ABj

(G(z1)−G(z2))‖
2 ≥ γ2‖G(z1)−G(z2)‖

2 , ∀j ∈ J.

Proof. Proposition A.1 shows that the set SG = {G(z1)−G(z2) : z1, z2 ∈ R
k} lies in the range of

eO(kd logn) different 2k−dimensional subspaces.

Proposition C.1 guarantees the result for a single subspace with probability 1 − e−Ω(M). Since
M = Ω(kd log n) and the batch size is constant which depends on the moment constant C, the

lemma follows from a union bound over the eO(kd logn) subspaces in Proposition A.1.

Proposition C.1. Consider a single 2k−dimensional subspace given by S = {Wz : W ∈
R

n×2k,WTW = I2k, z ∈ R
2k}. Let A ∈ R

m×n be a matrix with i.i.d rows drawn from a
distribution satisfying Assumption (1) with constant C. If the batch size b = O(C4) and the number

of batches satisfies M = Ω
(

k log 1
ǫ

)

, with probability 1− e−Ω(M), for all x ∈ S, there exist a subset

of batches Jx ⊆ [M ] with |Jx| ≥ 0.90M such that

1

b
‖ABj

x‖2 ≥ γ2‖x‖2 ∀j ∈ Jx,

where γ = Θ
(

1
C2

)

is a constant that depends on the moment constant C.
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Proof. Since the bound we want to prove is homogeneous, it suffices to show it for all vectors in S
that have unit norm. Let W ∈ R

n×2k be the orthonormal matrix spanning S, and S1 denote the set
of unit norm vectors in its span. That is,

S1 = {Wz : z ∈ R
2k, ‖z‖ = 1,W ∈ R

n×2k,WTW = I2k}.

For a fixed x ∈ S1 and 0 < t < 1, we have

E
[

〈a, x〉2
]

=E
[

〈a, x〉21{〈a, x〉 ≤ t2‖x‖2}
]

E
[

〈a, x〉21{〈a, x〉 > t2‖x‖2}
]

(37)

≤ t2‖x‖2 + E
[

〈a, x〉4
]

1

2

(

Pr
[

〈a, x〉2 ≥ t2‖x‖2
])

1

2 (38)

≤ t2‖x‖2 + C2‖x‖2
(

Pr
[

〈a, x〉2 ≥ t2‖x‖2
])

1

2 (39)

⇒ Pr
[

〈a, x〉2 ≥ t2‖x‖2
]

≥

(

1− t2
)2

‖x‖4

C4‖x‖4
=

(

1− t2
)2

C4
= C1. (40)

This is essentially a modified version of the Paley-Zigmund inequality [76].

Consider a batch Bj , which has b samples. By the concentration of Bernoulli random variables, with

probability 1− 2e−Ω(C1b), we have

∑

i∈Bj

1
{

〈ai, x〉
2 ≥ t2‖x‖2

}

≥
bC1

2

This implies that if we set b such that 1− 2e−Ω(C1b) = 0.975, then with probability 0.975, Bj has
bC1

2 samples 〈ai, x〉 whose magnitude is at least t‖x‖. This implies that the average square magnitude
over the batch satisfies

1

b
‖ABj

x‖2 =
1

b

∑

i∈Bj

〈ai, x〉
2 ≥ t2‖x‖2

bC1

2b
=

C1t
2‖x‖2

2
, (41)

with probability 0.975.

Consider the indicator random variable associated with the complement of the above event. That is,

Yj(x) =

{

1

b
‖ABj

x‖2 ≤
C1t

2

2
‖x‖2.

}

From (41) we have that E [Yj(x)] ≤ 0.025.

Consider the sum of indicator random variables over M batches. By standard concentrations of

Bernoulli random variables, we have with probabibility 1− e−Ω(M),

M
∑

j=1

Yj(x) ≤ 2E





M
∑

j=1

Yj(x)



 ≤ 0.05.

This implies that there exist a subset of batches J ⊆ [M ] with |J | ≥ 0.95M such that

1

b
‖ABj

x‖2 ≥
C1t

2‖x‖2

2
∀ j ∈ J,

with probability 1− e−Ω(M). This shows that we have the statement of the proposition for a fixed
vector in S1.

We now show that this holds true for an ǫ−cover of S1. Let Sǫ denote a minimial ǫ−covering
of S1. That is, Sǫ is a finite subset of S1 such that for all x ∈ S1, there exists x̃ ∈ Sǫ such that
‖x− x̃‖ ≤ ǫ. Since S1 has dimension 2k and diameter 1, we can find a set Sǫ whose cardinality is at

most
(

O
(

1
ǫ

))2k
.

By a union bound, with probability 1− e−Ω(M)|Sǫ|, for all x̃ ∈ Sǫ there exists a subset of batches
Jx̃ ⊂ [M ] with |Jx̃| ≥ 0.95M such that

1

b
‖ABj

x̃‖2 ≥
C1t

2

2
∀ j ∈ Jx̃ (42)
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Since |S|ǫ ≤ eO(k log 1

ǫ
), if M = Ω

(

k log 1
ǫ

)

, the above statement holds with probability 1−e−Ω(M).

We now show that the statement of the proposition is true for all vectors in S1. Since the proposition
statement holds for an ǫ−cover of S1, we now only need to consider the effect of A at a scale of ǫ.

Now consider the set
S2 = {x− x̃ : x ∈ S1, x̃ ∈ Sǫ, ‖x− x̃‖ ≤ ǫ}.

Note that this a subset of all vectors in the span of W that have norm at most ǫ. That is, if

S3 = {Wz : z ∈ R
2k, ‖z‖ ≤ ǫ},

we have S2 ⊆ S3.

For a vector v ∈ R
n, consider the random variable

Zi(v) = 1

[

〈ai, v〉 ≥
√
C1t

2
√
2

]

.

Define the random process

Ψ(a1, a2, · · · , am) = sup
v∈S2

1

m

m
∑

i=1

1

[

|〈ai, v〉| ≥
√
C1t

2
√
2

]

.

By the bounded difference inequality, with probability 1− 2e−C2δ
2

,

Ψ(a1, a2, · · · , am) ≤ E [Ψ(a1, a2, · · · , am)] +
δ√
m

Since S2 ⊆ S3, we can bound the expectation of Ψ by

E [Ψ(a1, · · · , am)] ≤ E sup
v∈S3

1

m

m
∑

i=1

1

[

|〈ai, v〉| ≥
√
C1t

2
√
2

]

(43)

≤ E sup
v∈S3

m
∑

i=1

|〈ai, v〉|
mt

√
C1/2

√
2

(44)

= E sup
v∈S3

m
∑

i=1

2
√
2|〈ai, v〉|
mt

√
C1

(45)

≤ E sup
v∈S3

∣

∣

∣

∣

∣

m
∑

i=1

2
√
2
|〈ai, v〉| − E [|〈a, v〉|]

mt
√
C1

∣

∣

∣

∣

∣

+ sup
v∈S3

m
∑

i=1

2
√
2E [|〈a, v〉|]
mt

√
C1

(46)

Since a is isotropic and v has norm at most ǫ, by Jensen’s inequality, we can bound the second term
in the RHS by

E sup
v∈S3

m
∑

i=1

2
√
2E [|〈a, v〉|]
mt

√
C1

.
ǫ

t
√
C1

. (47)

To bound the first term in the RHS, we use the Gine-Zinn symmetrization inequality [31, 68, 56]

E sup
v∈S3

∣

∣

∣

∣

∣

m
∑

i=1

2
√
2
|〈ai, v〉| − E [|〈a, v〉|]

mt
√
C1

∣

∣

∣

∣

∣

. E sup
v∈S3

∣

∣

∣

∣

∣

m
∑

i=1

ξi〈ai, v〉
mt

√
C1

∣

∣

∣

∣

∣

(48)

where ξi, i ∈ [m] are i.i.d ±1 Bernoulli variables.

We can bound this by

E sup
v∈S3

∣

∣

∣

∣

∣

m
∑

i=1

ξi〈ai, v〉
mt

√
C1

∣

∣

∣

∣

∣

= Eξ,A

[

sup
v∈S3

∣

∣

∣

∣

ξTAv

mt
√
C1

∣

∣

∣

∣

]

, (49)

= Eξ,A

[

sup
z:‖z‖≤ǫ

∣

∣

∣

∣

ξTAWz

mt
√
C1

∣

∣

∣

∣

]

(50)
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≤ Eξ,A

[

ǫ‖ξTAW‖
mt

√
C1

]

(51)

≤ ǫ
√

Eξ,A‖ξTAW‖2
mt

√
C1

(52)

=
ǫ
√

EAtrace(AWWTAT )

mt
√
C1

(53)

=
ǫ
√
2km

mt
√
C1

.
ǫ

t

√

k

mC1
(54)

The third line follows from the Cauchy-Schwartz inequality, and the fourth line follows from Jensen’s
inequality.

Since m = Mb, from the above inequality and Eqn (47) we can now bound EΨ as

E [Ψ(a1, · · · , am)] .
ǫ

t

√

k

MbC1
+

ǫ

t
√
C1

(55)

Substituting the above inequality into the bounded difference inequality, we have with probability at

least 1− e−Ω(δ2),

Ψ(a1, a2, · · · , am) .
ǫ

t

√

k

MbC1
+

ǫ

t
√
C1

+
δ√
Mb

(56)

Setting M = Ω(k), δ = O
(
√

M
b

)

, ǫ = O
(

t
b

√
C1

)

, we can reduce the terms in the above inequality

to

ǫ

t

√

k

MbC1
≤ O

(

1

b
3

2

)

, (57)

ǫ

t
√
C1

≤ O

(

1

b

)

, (58)

δ√
Mb

≤ O

(

1

b

)

, (59)

Since b > 1, the sum of these three terms is dominated by O
(

1
b

)

. From this, we can conclude that

for small enough ǫ, δ, with probability 1− e−Ω(M
b ),

Ψ(a1, a2, · · · , am) ≤ 0.05

b
(60)

⇒ sup
v∈S3

m
∑

i=1

1

[

|〈ai, v〉| ≥
t
√
C1

2
√
2

]

≤ 0.05M. (61)

This allows us to control the effect of A at a scale of ǫ. It says that there at most 0.05M samples on

which vectors with magnitude at most ǫ have a magnitude greater than t
√
C1

2
√
2

after interacting with A.

This implies that there at least 0.95M batches in which all samples are well behaved.

Since we have control over an ǫ−cover of S1 as well as vectors at a scale of ǫ in S1, we can now
prove our result for all vectors in S1.

For any x ∈ S1, let x̃ ∈ Sǫ be the point in the ǫ−cover which is closest to x. For a batch Bj , we can
express ‖ABj

x‖ as

1√
b
‖ABj

x‖ ≥ 1√
b
‖ABj

x̃‖ − 1√
b
‖ABj

(x− x̃)‖. (62)

From (42), there exists a subset of batches Jx̃ ⊆ [M ] with |Jx̃| ≥ 0.95M such that

1√
b
‖ABj

x̃‖ ≥
√
C1t√
2

∀ j ∈ Jx̃. (63)

23



From (61), there exists a subset of batches Jx−x̃ ⊆ [M ] with |Jx−x̃| ≥ 0.95M such that for all
j ∈ Jx−x̃,

|〈ai, x− x̃〉| ≤
√
C1t

2
√
2

∀ i ∈ Bj (64)

⇒ 1√
b
‖ABj

(x− x̃)‖ ≤
√
C1t

2
√
2
, (65)

⇒ − 1√
b
‖ABj

(x− x̃)‖ ≥ −
√
C1t

2
√
2
. (66)

From the bounds on ‖ABj
x̃‖ and the bound on ‖ABj

(x− x̃‖, we can conclude that for all x ∈ S1

there exist a subset of batches Jx = Jx̃ ∩ Jx−x̃ with cardinality at least 0.9M such that

1√
b
‖ABj

x‖ ≥
√
C1t

2
√
2
, ∀ j ∈ Jx. (67)

This completes the proof, with γ =
√
C1t

2
√
2

= t(1−t2)

C22
√
2

.

D Proof of Lemma 5.4

Lemma (Lemma 5.4). Consider the setting of Lemma 5.3 with measurements satisfying y =
AG(z∗) + η. For any t > 0 and noise variance σ2, let the batch size b and number of batches M

satisfy b = Θ(σ
2

t2
) and M = Ω(kd log n). Then with probability at least 1− e−Ω(m), for all z ∈ R

k

there exists a set J ⊆ [M ] of cardinality at least 0.9M such that

1

b
|ηTBj

ABj
(G(z)−G(z∗))| ≤ t‖G(z)−G(z∗)‖ , ∀j ∈ J.

Proof. Proposition A.1 shows that the set SG = {G(z1) − G(z2) : z1, z2 ∈ R
k} lies in the range

of eO(kd logn) different 2k−dimensional subspaces. This trivially implies that for a fixed z∗ ∈ R
k,

the set {G(z) − G(z∗) : z ∈ R
k} also lies in the range of eO(kd logn) different 2k−dimensional

subspaces.

Proposition D.1 guarantees the result for a single subspace with probability 1 − e−Ω(M). Since
M = Ω(kd log n) and the batch size is constant which depends on the noise variance σ2 and t2, the

lemma follows from a union bound over the eO(kd logn) subspaces.

Proposition D.1. Consider a single 2k−dimensional subspace given by S = {Wz : W ∈
R

n×2k,WTW = I2k, z ∈ R
2k}. Let A ∈ R

m×n be a matrix with i.i.d rows drawn from a

distribution satisfying Assumption (1) with constant C. If the batch size b = Θ
(

σ2

t2

)

and the number

of batches satisfies M = Ω
(

k log 1
ǫ

)

, with probability 1− e−Ω(M), for all x ∈ S, there exist a subset

of batches Jx ⊆ [M ] with |Jx| ≥ 0.90M such that

1

b
|ηTBj

ABj
x| ≤ t‖x‖ , ∀j ∈ J.

Proof. Since the bound we want to prove is homogeneous, it suffices to show it for all vectors in S
that have unit norm. Let W ∈ R

n×2k be the orthonormal matrix spanning S, and S1 denote the set
of unit norm vectors in its span. That is,

S1 = {Wz : z ∈ R
2k, ‖z‖ = 1,W ∈ R

n×2k,WTW = I2k}.

Consider the set Sǫ, which is a minimal ǫ−covering of S1. That is, for every x ∈ S1, there exists
x̃ ∈ Sǫ such that ‖x̃− x‖ ≤ ǫ.

For a fixed x̃ ∈ Sǫ, and t > 0, by Chebyshev’s inequality,

Pr

[

1

b
|ηTABj

x̃| ≥ t

2

]

≤
∑

i∈Bj

(

η2i 〈ai, x̃〉2
)

b2t2/4
(68)
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=
bσ2‖x̃‖2

b2t2/4
(69)

=
σ24

bt2
≤

1

40
, (70)

if b ≥ 160σ2

t2
.

Define the indicator random variable

Yi(x) = 1

{

1

b
|ηTABi

x| ≥
t

2

}

.

From Eqn (70) we have

E [Yi(x̃)] ≤
1

40
.

By concentration of Bernoulli variables, with probability 1− e−Ω(M),

M
∑

j=1

Yi(x̃) ≤ 2E [Y1(x̃)] ≤
1

20
.

This implies that for a fixed x̃ ∈ Sǫ, with probability 1 − e−Ω(M), there exist a subset of batches
Jx̃ ⊆ [M ] with cardinality 0.95M such that

1

b
|ηTABj

x̃| ≤
t

2
∀ j ∈ Jx̃. (71)

Since the size of Sǫ is at most
(

O
(

1
ǫ

))2k
, we can union bound over all x̃ in Sǫ. Hence, if M =

Ω
(

k log 1
ǫ

)

, then with probability 1 − e−Ω(M), for all x̃ ∈ Sǫ, there exist a subset Jx̃ ⊆ [M ] with
cardinality 0.95M such that

1

b
|ηTABj

x̃| ≤
t

2
∀ j ∈ Jx̃. (72)

This shows that the multiplier component is well behaved on a large fraction of the batches for an
ǫ−cover of S1. Now we need to extend the argument to all vectors in S1.

Now consider the set

S2 = {x− x̃ : x ∈ S1, x̃ ∈ Sǫ, ‖x− x̃‖ ≤ ǫ}.

Note that this a subset of all vectors in the span of W that have norm at most ǫ. That is, if

S3 = {Wz : z ∈ R
2k, ‖z‖ ≤ ǫ},

we have S2 ⊆ S3.

For any v ∈ R
n, define the random variable

Zj(v) = 1

{

|ηia
T
i v| ≥

t

2

}

. (73)

Now define the random process

Ψ(a1, · · · , am) = sup
v∈S2

1

m

m
∑

i=1

Zi(v) (74)

Since S2 ⊆ S3, we can bound E [Ψ] via

E [Ψ] ≤ E

[

sup
v∈S3

1

m

m
∑

i=1

Zi(v)

]

(75)
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≤ E

[

sup
v∈S3

1

m

m
∑

i=1

|ηiaTi v|
t/2

]

(76)

≤ E

[

sup
v∈S3

∣

∣

∣

∣

∣

1

m

m
∑

i=1

|ηiaTi v| − E|ηiaTi v|
t/2

∣

∣

∣

∣

∣

]

+ E

[

sup
v∈S3

1

m

m
∑

i=1

E|ηiaTi v|
t/2

]

(77)

We can bound the term on the right by

E

[

sup
v∈S3

1

m

m
∑

i=1

E|ηiaTi v|
t/2

]

≤
E

[

sup
v∈S3

‖ηi‖2 |〈ai, v〉|
]

t/2
(78)

.
σǫ

t
, (79)

where we have used the Cauchy Schwartz inequality, followed by the fact that η is independent noise
and has variance σ2, a is isotropic, and v ∈ S3 has norm at most ǫ.

To bound the term on the left, we use the Gine-Zinn symmetrization inequality [31, 68, 56]

E

[

sup
v∈S3

∣

∣

∣

∣

∣

1

m

m
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∣

∣

∣

∣
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∣

∣

∣

∣
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∣

∣

∣

∣

]

(80)

where ξi, i ∈ [m] are i.i.d ± Bernoulli random variables.

Let ξη = (ξ1η1, ξ2η2, · · · , ξmηm) denote the the element wise product of the vectors ξ =
(ξ1, ξ2, · · · , ξm) and η = (η1, η2, · · · , ηm). We can bound the above inequality by

E sup
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∣
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∣

∣

∣

= Eξ,η,A

[

sup
v∈S3

∣

∣

∣

∣

(ξη)TAv

mt/2

∣

∣

∣

∣

]
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= Eξ,η,A

[

sup
z:‖z‖≤ǫ
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∣

∣

∣
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(82)

≤ Eξ,η,A

[

ǫ‖(ξη)TAW‖
mt/2

]

(83)

≤ ǫ
√

Eξ,η,A‖(ξη)TAW‖2
mt/2

(84)

=
ǫσ

√

EAtrace(AWWTAT )

mt/2
(85)

=
ǫσ

√
2km

mt/2
.

ǫσ

t

√

k

m
(86)

The third line follows from the Cauchy-Schwartz inequality, and the fourth line follows from Jensen’s
inequality, and the fifth line follows from the fact that ξη has i.i.d coordinates that are independent of
A and have variance σ2.

From the above inequality and eq. (78), we get

E[Ψ(a1, a2, · · · , am)] .
σǫ

t

√

k

m
+

σǫ

t
.

σǫ

t
(87)

If we choose ǫ = c1
t
σb

for a small enough constant c1, then we can bound the expectation as

E [Ψ(a1, · · · , am)] ≤ 0.025

b
(88)
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By the bounded differences inequality, with probability 1− e−Ω(δ2),

Ψ(a1, · · · , am) ≤ E [Ψ(a1, · · · , am)] +
δ√
m

(89)

Setting δ = 0.025
√

M
b

, we get δ√
m

= 0.025√
Mb

√
M
b
= 0.025

b
. This gives

Ψ(a1, · · · , am) ≤ 0.025

b
+

0.025

b
=

0.05

b
. (90)

From which we conclude that

⇒ sup
v∈S2

m∑

i=1

1

{
|ηiaTi v| ≥

t

2

}
≤ 0.05m

b
= 0.05M. (91)

Now consider any x ∈ S1. There exists x̃ ∈ Sǫ such that ‖x̃− x‖ ≤ ǫ . From eq. (72) there exist a
subset Jx̃ ⊆ [M ] with cardinality 0.95M such that

1

b
|ηTBj

ABj
x̃| ≤ t

2
∀ j ∈ Jx̃. (92)

Similarly, from eq. (91), there exists a subset Jx−x̃ ⊆ [M ] with cardinality 0.95M such that for all
j ∈ Jx−x̃, we have

|ηiaTi (x− x̃)| ≤ t

2
∀ i ∈ Bj , (93)

⇒ 1

b
|ηTBj

ABj
(x− x̃)| ≤ t

2
. (94)

From the triangle inequality and a simple union bound, for all x ∈ S1, there exists a subset Jx =
Jx̃ ∩ Jx−x̃ with cardinality 0.9M such that

1

b
|ηTBj

ABj
x| ≤ 1

b
|ηTBj

ABj
(x− x̃)|+ 1

b
|ηTBj

ABj
x̃| (95)

≤ t

2
+

t

2
= t (96)

This completes the proof.

E Proof of Theorem 5.5

Proof. In Theorem 5.5, we fix the batch size b to be a suitable constant, specified in Lemma 5.3,
Lemma 5.4. Then for ǫ ≤ 0.01

b
, the number of arbitrarily corrupted samples of A and y are at most

0.01
b

bM = 0.01M . This implies that there exist 0.99M batches with uncorrupted samples of A, y.
For the rest of the proof, consider only these uncorrupted batches, and ignore the corrupted batches.

For a batch j, define the following

Qj(ẑ, z
∗) :=

1

b
‖ABj

(G(ẑ)−G(z∗))‖2, (97)

Mj(ẑ) :=
2

b
η⊤Bj

(ABj
(G(ẑ)−G(z∗))). (98)

it is easy to verify that ℓj(ẑ)− ℓj(z
∗) = Qj(ẑ, z

∗)−Mj(ẑ). The component Qj(ẑ, z
∗) is commonly

called the quadratic component, and Mj(ẑ) is called the multiplier component.

By Lemma 5.2, the minimum value of the MOM objective is at most 4σ2 with high probability. Since
ẑ minimizes the objective eq. (2) to within additive τ of the optimum, it implies that the median batch
satisfies

Qj(ẑ, z
∗)−Mj(ẑ) ≤ 4σ2 + τ. (99)
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Using Lemma 5.3, Lemma 5.4 on the 0.99M batches that do not have corruptions, if the batch
size is a large enough constant, we see that there exist 0.78M batches on which both the following
inequalities hold

γ2‖G(ẑ)−G(z∗)‖2 ≤ Qj(ẑ, z
∗) and − σ‖G(ẑ)−G(z∗)‖ ≤ −Mj(ẑ). (100)

Putting the above two inequalities together, the median batch satisfies

γ2‖G(ẑ)−G(z∗)‖2 − σ‖G(ẑ)−G(z∗)‖ ≤ 4σ2 + τ.

Solving the quadratic inequality for ‖G(ẑ)−G(z∗)‖, we have

‖G(ẑ)−G(z∗)‖2 . σ2 + τ.

F Experimental Setup

F.1 MNIST dataset

We first compare Algorithm 1 with the baseline ERM [15] for heavy tailed dataset without arbitrary
corruptions on MNIST dataset [55]. We trained a DCGAN [80] to produce 64× 64 MNIST images.3

We choose the dimension of the latent space as k = 100, and the model has 5 layers.

Based on this generative model, the uncorrupted compressed sensing model P has heavy tailed
measurement matrix and stochastic noise: y = AG(z∗) + η. We consider a Student’s t distribution
(a typical example of heavy tails) – the measurement matrix A is generated from a Student’s t
distribution with degrees of freedom 4, and η with degrees of freedom 3 with bounded variance σ2.
We vary the number of measurement m and obtain the reconstruction error ‖G(ẑ) − G(z∗)‖2 for
Algorithm 1 and ERM, where G(z∗) is the ground truth image. Each curve in Figure 1a demonstrates
the averaged reconstruction error for 50 trials. In Figure 1a, Algorithm 1 and ERM both have
decreasing reconstruction error per pixel with increasing number of measurement. In particular,
Algorithm 1 obtains significantly smaller reconstruction error comparing with the baseline ERM.

F.2 CelebA-HQ dataset

We continue the study of empirical performance of our algorithm on real image datasets with higher
quality. We generate high quality RGB images with size 256× 256 from CelebA-HQ4. Hence the
dimension of each image is 256× 256× 3 = 196608. In all of our experiments, we fix the dimension
of the latent space as k = 512, and train a DCGAN on this dataset to obtain a generative model G.

We first compare our algorithm with the baseline ERM [15] for heavy tailed dataset without arbitrary
corruptions, and then deal with the situation of outliers.

Heavy tailed samples. In this experiment, we deal with the uncorrupted compressed sensing model
P , which has heavy tailed measurement matrix and stochastic noise: y = AG(z∗) + η. We also
use a Student’s t distribution for A and η – the measurement matrix A is generated from a Student’s
t distribution with degrees of freedom 4, and stochastic noise η with degrees of freedom 3 with a
bounded variance.

We obtain the reconstruction error ‖G(ẑ) − G(z∗))‖ vs. the number of measurement m for our
algorithm and ERM, where z∗ is the ground truth. In Figure 1b, each curve is an average of 20
trials. For heavy tailed y and A without any corruption, both methods are consistent, and have
decaying reconstruction error with increasing sample size. Our method obtains significantly smaller
reconstruction error, and shows competitive results over the baseline ERM for heavy tailed data set,
even without any arbitrary outliers.

3Code was cloned from the following repository https://github.com/pytorch/examples/tree/
master/dcgan.

4Code was cloned from the following repository: https://github.com/facebookresearch/pytorch_
GAN_zoo.
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F.3 Hyperparameter selection

When using the Adam [52] optimizer, we varied the learning rate over [0.1, 0.05, 0.01, 0.005] for our
algorithm and baselines. When using the Yellowfin [91] optimizer, we varied our learning rates over
[10−4, 5 ·10−5, 10−5, 5 ·10−6, 10−6]. We selected the best learning rate based on fresh measurements
that were not used for optimization.

G Background

Theorem G.1 (Ledoux-Talagrand Contraction Inequality). For a compact set T , let x1, · · · , xm be
i.i.d vectors whose real valued components are indexed by T , i.e., xi = (xi,s)s∈T . Let φ : R → R

be a 1-Lipschitz function such that φ(0) = 0. Let ǫ1, · · · , ǫm be independent Rademacher random
variables. Then
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.

Theorem G.2 (Talagrand’s Inequality for Bounded Empirical Processes). For a compact set T , let
x1, · · · , xm be i.i.d vectors whose real valued components are indexed by T , i.e., xi = (xi,s)s∈T .

Assume that Exi,s = 0 and |xi,s| ≤ b for all s ∈ T . Let Z = sups∈T

∣

∣

1

m

∑m

i=1
xi,s

∣

∣. Let

σ2 = sups∈T Ex2

s and ν = 2bEZ + σ2. Then

Pr [Z ≥ EZ + t] ≤ C1 exp

(

−
C2mt2

ν + bt

)

.

where C1, C2 are absolute constants.
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