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Abstract

Given an inverse problem with a normalizing flow
prior, we wish to estimate the distribution of the
underlying signal conditioned on the observations.
We approach this problem as a task of conditional
inference on the pre-trained unconditional flow
model. We first establish that this is computa-
tionally hard for a large class of flow models.
Motivated by this, we propose a framework for
approximate inference that estimates the target
conditional as a composition of two flow models.
This formulation leads to a stable variational in-
ference training procedure that avoids adversarial
training. Our method is evaluated on a variety of
inverse problems and is shown to produce high-
quality samples with uncertainty quantification.
We further demonstrate that our approach can be
amortized for zero-shot inference.

1. Introduction

We are interested in solving inverse problems using a pre-
trained normalizing flow prior. Inverse problems encompass
a variety of tasks such as image inpainting, super-resolution
and compressed sensing from linear projections. Due to this
generality, the applications range from scientific and med-
ical imaging to computational photography (Ongie et al.,
2020). Inverse problems can be solved by either super-
vised (Pathak et al., 2016; Richardson et al., 2020; Yu et al.,
2018) or unsupervised (Menon et al., 2020; Bora et al., 2017;
Pajot et al., 2019) methods, see the recent survey (Ongie
et al., 2020) for a unified presentation.

In this paper we focus on unsupervised image reconstruction
techniques that benefit from a pre-trained deep generative
prior, specifically normalizing flows. Flow models (Papa-
makarios et al., 2019) are a family of generative models
that provide efficient sampling, likelihood evaluation, and
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inversion. While other types of models can outperform flow
models in terms of likelihood or sample quality, flow models
are often simpler to train and evaluate compared to other
models.

These characteristics make normalizing flows attractive for
numerous downstream tasks, including density estimation,
inverse problems, semi-supervised learning, reinforcement
learning, and audio synthesis (Ho et al., 2019; Asim et al.,
2019; Whang et al., 2020; Atanov et al., 2019; Ward et al.,
2019; Oord et al., 2018).

Even with such computational flexibility, how to perform
efficient probabilistic inference on a flow model subject
to observations obtained from an inverse problem remains
challenging. This question is becoming increasingly impor-
tant as flow models increase in size, and the computational
resources necessary to train them from scratch are out of
reach for many researchers and practitioners1. Our goal is
to re-purpose these powerful pre-trained models for differ-
ent custom inverse problems without re-training them from
scratch.

Concretely, we wish to recover the distribution of the
unknown image x from the observed measurements
y
∗ = A(x) + noise. We assume that a pre-trained flow

model p(x) serves as the prior for natural images we are
sensing, and that the measurement function A(·) (also
known as forward operator) is differentiable. Thus the
goal is to estimate the following conditional distribution
as accurately as possible:

p(x | A(x) = y
∗).

We propose a novel formulation that composes a new flow
model with the pre-trained prior p(x) to estimate the con-
ditional distribution given observations y∗. While such a
composed model is in general intractable to train for latent
variable models, the invertibility of the given prior leads
to a tractable and stable training procedure via variational
inference (VI).

Our contributions:

• We show that even though flow models are designed to

1For example, Kingma & Dhariwal (2018) report that their
largest model had 200M parameters and was trained on 40 GPUs
for a week.
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vation) that is being conditioned on, and y
∗ is the given

realization of y. The variational family Q must be appro-
priately chosen to allow efficient sampling and likelihood
evaluation for all q ∈ Q. Note that q is specific to the
particular value of y∗.

The variational posterior q can also be amortized over the
observation (Kingma & Welling, 2013), leading to a single
model trained to minimize the following amortized varia-
tional inference (AVI) objective:

min
q∈Q

Ey [DKL(q(x | y) ‖ p(x | y))] , (2)

An amortized posterior has the advantage that it only needs
to be trained once for all y, but it generally achieves worse
likelihood than SVI and often requires a more complex
model (Cremer et al., 2018).

3. Hardness of Conditional Sampling

Before we present our method, we first establish a hardness
result for conditional sampling for flow models. Specifi-
cally, if an algorithm is able to efficiently sample from the
conditional distribution of a flow model with additive cou-
pling layers (Dinh et al., 2015), then it can be used to solve
NP-complete problems efficiently. The formal statement
and the proof of the theorem can be found in Appendix A.

Theorem 1. (Informal) Suppose we are given a flow model

with additive coupling layers and wish to condition on a

subset of the input dimensions. If there is an efficient al-

gorithm that can sample from this conditional distribution,

then RP = NP . Further, this problem remains hard even

if we allow sampling to be approximate.

Importantly, this result shows that allowing approximate
sampling from the exact posterior does not affect the hard-
ness of the problem, as long as we require that the condition-
ing is exact. Thus we are motivated to consider approximate
conditioning, where the conditioned variable is allowed to
deviate from the given observation.

We also note that flow architectures that include additive
coupling layers make up a majority of existing models (e.g.
most of the models in Section 2.1). Thus our hardness result
applies to a variety of flow models used in practice.

4. Approximate Conditional Inference with

Composed Flows

Notation. Let px(x) be the pre-trained base model that
serves as the signal prior, parametrized by the invertible
mapping f : z 7→ x. A(x) is the differentiable measure-
ment function. We similarly define the pre-generator qz(z)

parametrized by the mapping f̂ : ǫ 7→ z, which represents
a distribution in the latent space of the base model. We

ǫ f̂ z f x

Figure 2: A flow chart of our conditional sampler. Gaussian
noise ǫ ∼ N (0, I) is mapped through the composition
of our pre-generator f̂ and the base model f to generate
conditional samples.

assume that all flow models use the standard Gaussian prior,
i.e. pz(z) and qǫ(ǫ) are N (0, I).

By composing the base model and the pre-generator, we
obtain the composed model, denoted qx(x), whose samples
are generated via ǫ ∼ N (0, I) → x = f(f̂(ǫ)). Figure 2
details this sampling procedure.

VI objective and smoothing.

Since our composed model qx is the composition of two
flow models, the VI objective in eq. (1) can be simplified
further (see Appendix B.1 for derivation):

min
f̂

DKL(qz ‖ pz) + Eqz [− log p(y = y
∗ | z)] (3)

Unfortunately this loss is challenging to optimize in practice
when using a flow-based variational posterior. Because
y = A(f(z)) is a deterministic function of z, the density
in the second term is zero for any z that fails to match
y
∗ exactly. Since our pre-generator qz is a flow model

defined by an invertible mapping f̂ and has full support,
it would inadvertently have nonzero probability mass on
invalid values of z and cause the loss to be infinity.

One simple solution to this issue is smoothing the obser-
vation, which turns the condition y = y

∗ into a soft con-
straint. Notice that this is in line with the hardness result
in Section 3, where we motivated the need for approximate
conditioning. In the context of inverse problems, smoothing
can also be viewed as the distribution for observation noise.

Concretely, we define a new random variable ỹ that is al-
lowed to deviate from y but penalized for the deviation.
While there are many choices for the distribution p(ỹ | y),
we consider the following scheme. For any symmetric dis-
tance measure d(·, ·) with d(y, ỹ) = 0 iff y = ỹ, we use the
distribution defined by p(ỹ | y) ∝ exp(−β ·d(ỹ,y)). Note
that we do not need to compute the normalization constant
as it is constant w.r.t. f̂ , which we optimize.

This formulation includes a wide range of options for
smoothing. For example, choosing ℓ2 distance and
β = 1/(2σ2) is equivalent to smoothing with Gaussian ker-
nel N (0, σ2

I), which leads to the following objective:

Lours(f̂) = DKL(qx ‖ px(· | ỹ = y
∗))

= DKL(qz ‖ pz) + Eqz

[

1

2σ2
‖A(f(z))− y

∗‖22
]

(4)
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This loss function offers an intuitive interpretation. The
first term tries to keep the learned distribution qx close to
the base distribution by pushing qz to match the prior of
the base model, while the second term tries to match the
observation y

∗. This is analogous to the KL/reconstruction
loss decomposition typically used in the VAE literature.

We could also choose to use a more sophisticated distance
measure such as LPIPS (Zhang et al., 2018). Interestingly,
our preliminary experiments showed no benefit in sample
quality when using LPIPS, so we ran our experiments with
Gaussian smoothing for simplicity. We leave a detailed
study on the effect of different smoothing techniques for
future work.

Bounding the marginal objective. An important related
task is estimating the marginal distribution after condition-
ing. In other words, can we estimate p(x2 | ỹ = y

∗) for
some partitioning of the input x = (x1,x2)? This includes
tasks such as data imputation, e.g. estimating p(x2 | x1).

In our setup, computing p(x2 | ỹ = y
∗) is in general

intractable because we only have access to the joint distri-
bution px(x1,x2) through the base model. Fortunately, our
VI loss for the joint conditional px(x | ỹ = y

∗) provides
an upper bound (derivation in Appendix B.2):

(Joint KL) = DKL(qx(x) ‖ px(x | ỹ = y
∗))

≥ DKL(qx(x2) ‖ px(x2 | ỹ = y
∗)).

Thus we are justified in our use of eq. (4) in place of the
intractable marginal KL.

Benefits of solving inverse problems distributionally.

Here we explain a key benefit of recovering the condi-
tional distribution instead of just a point estimate. Given
the observation y

∗ generated from the underlying signal
x
∗, suppose we wish to recover x

∗ with respect to the
ℓ2 loss. Then the optimal recovery function is the mini-
mum mean square error (MMSE) estimator x̂MMSE(y

∗) =

argmin
x̂
‖x∗ − x̂(y∗)‖22. Under a mild assumption, the

MMSE estimator is known to be the conditional expecta-
tion: x̂MMSE(y

∗) = E [x | y∗] .

Importantly, this is different from the objective employed by
existing methods that produce point estimates. For example,
Bora et al. (2017) minimize the reconstruction error based
on a projection to the range of a GAN:

x̂bora(y
∗) = argmin

x∈range(G)

‖A(x)− y
∗‖22 ,

and Asim et al. (2019) use an objective loosely based on a
MAP estimate:

x̂asim(y
∗) = argmax

x

p(x | y∗).

The issue with these objectives is that, even if these opti-
mizations could be done perfectly, they would not produce

x̂MMSE(y
∗) and thus lead to suboptimal recovery with re-

spect to the ℓ2 loss.

Instead, our approach is to recover the entire conditional
distribution p(x|y∗) and use it to obtain a Monte Carlo
estimate of the conditional mean E [x | y∗]. While MCMC
methods can also be used for this purpose, they often take
prohibitively long due to slow mixing and may produce
correlated samples. Our approximate posterior is explicitly
parametrized as a flow and can efficiently generate i.i.d.
samples. As we will see in our experiments later, this has
a significant performance benefit compared to the existing
approaches in terms of reconstruction error and the speed
of inference.

5. Related Work

Conditional generative models. There has been a large
amount of work on conditional generative modeling, with
varying levels of flexibility for what can be conditioned on.
In the simplest case, a fixed set of observed variables can be
directly fed into the model as an auxiliary conditioning in-
put (Mirza & Osindero, 2014; Sohn et al., 2015; Ardizzone
et al., 2019). Some recent works proposed to extend exist-
ing models to support conditioning on arbitrary subsets of
variables (Ivanov et al., 2018; Belghazi et al., 2019; Li et al.,
2019). This is a much harder task as there are exponentially
many subsets of variables that can be conditioned on.

More relevant to our setting is (Engel et al., 2017), which
studied conditional sampling from non-invertible latent vari-
able generators such as VAE and GAN. It proposes to ad-
versarially train a pre-generator, thereby avoiding the issue
of intractability of VI for non-invertible models. Due to
the adversarial training and the lack of invertibility of the
base model, however, the learned conditional sampler lacks
the computational flexibility of a flow-based posterior, such
as tractable likelihood computation and inversion. The key
difference of our method is that by explicitly parametrizing
the conditional generator to be invertible as a composition of
two flow models, we avoid the need for adversarial training.

We highlight several reasons why one might prefer our ap-
proach over the above methods: (1) the training data for
the base model is not available, and only the model itself
is made public (2) the conditional posterior is too costly to
train from scratch (3) we wish to perform downstream tasks
that require exact likelihood or inversion (4) we want to get
some insight on the distribution defined by the given model.

Markov Chain Monte Carlo methods. When one is only
concerned with generating samples, MCMC techniques of-
fer a promising alternative. Unlike VI using an approx-
imate posterior, MCMC methods come with asymptotic
guarantees to generate samples from the target posterior .
Though directly applying MCMC methods on complex high-
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dimensional posteriors parametrized by a neural network
often comes with many challenges in practice (Papamarkou
et al., 2019), methods based on Langevin Monte Carlo have
recently shown promising results (Neal et al., 2011; Welling
& Teh, 2011; Song & Ermon, 2019).

The idea of leveraging the favorable geometry of the latent
space of a flow model is also applicable to MCMC meth-
ods. For example, Hoffman et al. (2019) utilized the latent
space of a flow model to improve mixing of Hamiltonian
Monte Carlo. More recently Cannella et al. (2020) proposed
PL-MCMC, a Metropolis-Hastings based sampler with tran-
sition kernel also defined in the latent space of a pre-trained
flow. A similar idea was later adapted by Nijkamp et al.
(2020) in the context of training energy-based models.

Inverse problems with deep generative prior. In a linear
inverse problem, a vector x ∈ R

d generates a set of measure-
ments y∗ = Ax ∈ R

m, where the number of measurements
is much smaller than the dimension: m ≪ d. The goal is
to reconstruct the vector x from y

∗. While in general there
are (potentially infinitely) many possible values of x that
agree with the given measurements, it is possible to iden-
tify a unique solution when there is an additional structural
assumption on x.

Classically, the simplifying structure was that x is sparse
(Tibshirani, 1996; Candes et al., 2006; Donoho et al., 2006;
Bickel et al., 2009; Baraniuk, 2007). Recent work has con-
sidered alternative structures, such as the vector x coming
from a deep generative model. Starting with Bora et al.
(2017), there has been extensive work studying various set-
tings under different priors and inference techniques (Grover
& Ermon, 2019; Mardani et al., 2018; Heckel & Hand, 2019;
Mixon & Villar, 2018; Pandit et al., 2019; Lucas et al., 2018;
Shah & Hegde, 2018; Liu & Scarlett, 2020; Kabkab et al.,
2018; Mousavi et al., 2018; Raj et al., 2019; Sun et al.,
2019). In particular, we note that Asim et al. (2019) utilize
a flow-based prior similar to our setting.

It is important to note that the above approaches focus on
recovering a single point estimate that best matches the mea-
surements. However, there can be many inputs that fit the
measurements and thus uncertainty in the reconstruction.
Due to this shortcoming, several recent works focused on
recovering the signal distribution conditioned on the mea-
surements (Tonolini et al., 2019; Zhang & Jin, 2019; Adler
& Öktem, 2018; 2019).

We note that our approach differs from these, since they are
learning-based methods that require access to the training
data. On the contrary, our work leverages a pre-trained prior
to produce an approximate conditional posterior, which
can then be used for a variety of tasks such as generating
conditional samples or estimating the MMSE recovery.

6. Experiments

We validate the efficacy of our proposed method in terms of
both sample and reconstruction quality against three base-
lines: Langevin Monte Carlo (LMC), Ambient VI, and PL-
MCMC (Cannella et al., 2020). Both LMC and Pl-MCMC
are MCMC techniques that can (asymptotically) sample
from the true conditional distribution our method tries to ap-
proximate. For the comparisons to be fair, we implemented
both methods to run MCMC chains in the latent space of
the base model, analogous what our method does for VI.
Ambient VI is identical to our method, except it performs
VI in the image space and is included for completeness. In
addition, we also conduct our experiments on three different
datasets (MNIST, CIFAR-10, and CelebA-HQ) to ensure
that our method works across a range of settings.

We report four different sample quality metrics: Frechet
Inception Distance (FID), Learned Perceptual Image Patch
Similarity (LPIPS), and Inception Score (IS) for CIFAR-10
(Heusel et al., 2017; Zhang et al., 2018; Salimans et al.,
2016). While not strictly a measure of perceptual similar-
ity, the average mean squared error (MSE) is reported for
completeness. Additionally, we also report pairwise LPIPS
metric used by Zheng et al. (2019) to measure the diversity
of generated samples.

For all our experiments, we use the multiscale RealNVP
architecture (Dinh et al., 2016) for both the base model and
the pre-generator. We use Adam optimizer (Kingma & Ba,
2014) to optimize the weights of the pre-generator using the
loss defined in eq. (4). The images used to generate obser-
vations were taken from the test set and were not used to
train the base models. We refer the reader to Appendix C for
model hyperparameters and other details of our experiment
setup.

6.1. Image Inpainting

We perform inpainting tasks using our approach, where
we sample missing pixels conditioned on the visible ones.
We consider three different conditioning schemes: bottom
half (MNIST), top half (CelebA-HQ), and randomly chosen
subpixels (CIFAR-10). For MNIST, we use the smoothing
parameter value of σ = 0.1 and for CIFAR-10 and CelebA-
HQ, we use σ = 0.05.

In Section 6 we see that our approach produces natural and
diverse samples for the missing part of the image. The
empirical pixelwise variance (normalized and averaged over
the color channels) also confirms that, while the observation
is not perfectly matched, most of the high-variance regions
are in the unobserved parts as expected.

We also quantitatively evaluate the quality of the generated
samples using widely used sample quality metrics, as shown
in Table 1. As we can see, our method outperforms the base-
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will show that the distribution conditioned on y = M can
generate satisfying assignments with high probability.

We have that

p(XA | y = M) =
p(y = M,XA)

p(y = M,XA) + p(y = M,XA)

If we can show that p(y = M,XA) ≪ p(y = M,XA),
then we have that the generated samples are with high prob-
ability satisfying assignments.

Note that,

p(y = M,XA) = p(y = M | XA)P (XA)

≤ p(y = M | XA).

Also notice that if x ∈ XA, then fM (x) = 0. Thus y ∼
N (0, 1) and P (y = M | XA) = Θ(exp(−M2/2)).

Now consider any satisfying assignment xa. Let X ′
a be the

region X ′
a = {x ∈ R

d : ‖a − x‖∞ ≤ 1
2m}. Note that for

every x in this region we have fM (x) ≥M/2. Additionally,
we have that P (X ′

a) = Θ(m)−d. Thus for any x ∈ X ′
a, we

have p(Y = M | x) & exp(−M2/8). We can conclude
that

p(y = M,XA) ≥ p(Y = M,X ′
a)

=

∫

X′

a

p(Y = M | x)p(x) dx

& exp(−M2/8−Θ(d logm)).

For M = O(
√
d logm), we have that p(y = M,XA) is

exponentially smaller than p(y = M,XA). This implies
that sampling from the distribution conditioned on y = M
will return a satisfying assignment with high probability.

A.4. Hardness of Approximate Sampling

Definition 2. The complexity class RP is the class of de-
cision problems with efficient random algorithms that (1)
output YES with probability 1/2 if the true answer is YES
and (2) output NO with probability 1 if the true answer is
NO. It is widely believed that RP is a strict subset of NP .

A simple extension of the above theorem shows that even
approximately matching the true conditional distribution in
terms of the total variation (TV) distance is computationally
hard. TV distance is defined as dTV(p, q) = supE |p(E)−
q(E)| ≤ 1, where E is an event. The below corollary shows
that it is hard to conditionally sample from a distribution
that is even slightly bounded away from 1.

Corollary 3. The conditional sampling problem remains

hard even if we only require the algorithm to sample from

a distribution q such that dTV(p(· | x = x∗), q) ≤ 1 −
1/poly(d), where d is the dimension of the distribution.

We show that the problem is still hard even if we require
the algorithm to sample from a distribution q such that
dTV(p(x | y = y∗), q) ≥ 1/poly(d).

Consider the event XA from above. We saw that p(XA |
y = M) ≥ 1− exp(−Ω(d)). We have that dTV(p(· | y =
M), q) ≥ 1− exp(−Ω(d)− q(XA)).

Suppose that the distribution q has q(XA) ≥ 1/poly(d).
Then by sampling a polynomial number of times from q
we sample an element of XA, which allows us to find a
satisfying assignment. Thus if we can efficiently create such
a distribution, we would be able to efficiently solve SAT
and RP = NP. As we are assuming this is false, we must
have q(XA) ≤ 1/poly(d), which implies dTV(p(· | y =
M), q) ≥ 1− 1/poly(d).

B. Missing Derivations

B.1. Derivation of Equation (4)

Here we present a detailed derivation of Equation (4). Note
that this equality is true up to a constant w.r.t. f̂ .

Lours(f̂)

, DKL(qx(x) ‖ px(x | ỹ = y
∗))

= Ex∼qx [log qx(x)− log px(x, ỹ = y
∗)] + log px(ỹ = y

∗)

A
= Ex∼qx [log qx(x)− log px(x)− log pσ(ỹ = y

∗ | x)]
B
= Ex∼qx [log qx(x)− log px(x)]

+ Ex∼qx [− log pσ(ỹ = y
∗ | y = A(x))]

= DKL(qx(x) ‖ px(x))
+ Ex∼qx [− log pσ(ỹ = y

∗ | y = A(x))]

C
= DKL(qz(z) ‖ px(z)) + Ez∼qz

[

1

2σ2
‖A(f(z))− y

∗‖22
]

In (A), we drop log px(ỹ = y
∗), as it is constant w.r.t. f̂ .

In (B), we use the conditional independence ỹ ⊥⊥ x | y.
In (C), we use the invariance of KL divergence under invert-
ible transformation to rewrite it in terms of z.

B.2. Joint VI vs. Marginal VI

We also provide a justification for using the joint VI loss
as discussed in Section 4. Specifically, we show that the
joint VI loss in eq. (4) is an upper bound to the intractable
marginal VI loss. Assuming the partitioning x = (x1,x2),
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we have:

(Joint KL)

= DKL(qx(x) ‖ px(x|x̃1 = x
∗))

= Eqx [log qx(x1,x2)− log px(x1,x2|x̃1 = x
∗)]

= Eqx

[

log qx(x2) + log qx(x1 | x2)

− log px(x2|x̃1 = x
∗)− log px(x1 | x̃1 = x

∗,x2)

]

= Eqx [log qx(x2)− log px(x2|x̃1 = x
∗)]

+ Eqx

[

Eqx(x1|x2)

[

log qx(x1 | x2)− log px(x1 | x̃1 = x
∗,x2)

]]

= DKL(qx(x2) ‖ px(x2|x̃1 = x
∗))

+ Eqx(x2) [DKL(qx(x1 | x2) ‖ px(x1|x̃1 = x
∗,x2))]

≥ DKL(qx(x2) ‖ px(x2|x̃1 = x
∗))

= (Marginal KL),

where the last inequality is due to the nonnegativity of KL.
Note that equality holds when

DKL(qx(x1 | x2) ‖ px(x1|x̃1 = x
∗,x2)) = 0,

i.e. when our variational posterior matches the true condi-
tional.

C. Experiment Details

C.1. Our Algorithm

Algorithm 1 Training the pre-generator for a given observa-

tion under transformation. We assume that f̂ is an invertible
neural network with parameters θ.

1: Input: y∗: observation, A: differentiable measurement
function.

2: for i = 1 . . . num_steps do

3: for j = 1 . . .m do

4: Sample ǫ
(j) ∼ N (0, I)

5: z
(j) ← f̂(ǫ(j)) (reparametrization trick)

6: end for

7: L ← 1
m

m
∑

j=1

[

log qz(z
(j))− log pz(z

(j))

+ 1
2σ2

∥

∥A(f(z(j)))− y
∗
∥

∥

2

2

]

8: θ ← θ −∇θL (gradient step)
9: end for

C.2. Hyperparameters: Base Model and Pre-generator

See Table 3 and Table 4 for the hyperparameters used to
define the network architectures train them. For the color

datasets CIFAR-10 and CelebA-HQ, we used 5-bit pixel
quantization following Kingma & Dhariwal (2018). Addi-
tionally for CelebA-HQ, we used the same train-test split
(27,000/3,000) of Kingma & Dhariwal (2018) and resized
the images to 64× 64 resolution. Uncurated samples from
the base models are included for reference in Figure 10.

Table 3: Hyperparameters used to train the base models
used in our experiments.

Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 6 6
Res. blocks per scale 8 12 10
Res. block channels 32 64 80
Bits per pixel 8 5 5
Batch size 128 64 32
Learning rate 0.001 0.001 0.001
Test set bits-per-dim 1.053 1.725 1.268

Table 4: Hyperparameters used to define and train the pre-
generator for each of our experiments.

Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 4 3
Res. blocks per scale 3 4 3
Res. block channels 32 48 48
Batch size 64 32 8

C.3. Hyperparameters: Image Inpainting

We randomly chose 900/500/300 images from
MNIST/CIFAR-10/CelebA-HQ test sets, applied masks
defined in Section 6.1, and generated samples conditioned
on the remaining parts. FID and other sample quality
metrics were computed using 6 conditional samples per
test image for all MNIST experiments, and 8 conditional
samples for all CIFAR-10 and CelebA-HQ experiments.

For VI Methods (Ours & Ambient VI)

• Learning rate: 1e−3 for MNIST; 5e−4 for the others
• Number of training steps: 4000 for CelebA-HQ; 1000

for the others

For Langevin Dynamics

• Learning rate: 5e−4 for all datasets
• Length of chain: 1000 for CIFAR-10; 4000 for the

others

For PL-MCMC

• Learning rate: 5e−4




