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the original image and the noise.

• We extend our framework to the general setting where

the signal prior is given as a latent-variable model, for

which likelhood evaluation is intractable. The result-

ing formulation presents a unified view on existing

approaches based on GAN, VAE and flow priors.

• We empirically show that our method achieves excel-

lent reconstruction in the presence of noise with var-

ious complex and dependent structures. Specifically,

we demonstrate the efficacy of our method on various

inverse problems with structured noise and non-linear

forward operators.

• We provide the initial theoretical characterization of

likelihood-based priors for image denoising. Specif-

ically, we show a reconstruction error bound that de-

pends on the local concavity of the log-likelihood func-

tion.

2. Background

2.1. Normalizing Flow Models

Normalizing flow models are a class of likelihood-based

generative models that represent complex distributions by

transforming a simple distribution (such as standard Gaus-

sian) through an invertible mapping (Tabak & Turner, 2013).

Compared to other types of generative models, flow models

are computationally flexible in that they provide efficient

sampling, inversion and likelihood estimation (Papamakar-

ios et al., 2019, and references therein).

Concretely, given a differentiable invertible mapping G :
R

n → R
n, the samples x from this model are generated

via z ∼ pG(z),x = G(z). Since G is invertible, change of

variables formula allows us to compute the log-density of

x:

log p(x) = log p(z) + log |det JG−1(x)| , (2)

where JG−1(x) is the Jacobian of G−1 evaluated at x. Since

log p(z) is a simple distribution, computing the likelihood

at any point x is straightforward as long as G−1 and the

log-determinant term can be efficiently evaluated.

Notably, when a flow model is used as the prior for an

inverse problem, the invertibility of G guarantees that it

has an unrestricted range. Thus the recovered signal can

represent images that are out-of-distribution, albeit at lower

probability. This is a key distinction from a GAN-based

prior, whose generator has a restricted range and can only

generate samples from the distribution it was trained on. As

pointed out by Asim et al. (2019) and also shown below

in our experiments, this leads to performance benefits on

out-of-distribution examples.

2.2. Inverse Problems with a Generative Prior

We briefly review the existing literature on the application

of deep generative models to inverse problems. While vast

literature exists on compressed sensing and other inverse

problems, the idea of replacing the classical sparsity-based

prior (Candes et al., 2006; Donoho, 2006) with a neural

network was introduced relatively recently. In their pioneer-

ing work, Bora et al. (2017) proposed to use the generator

from a pre-trained GAN or a VAE (Goodfellow et al., 2014;

Kingma & Welling, 2013) as the prior for compressed sens-

ing. This led to a substantial gain in reconstruction quality

compared to classical methods, particularly at small number

of measurements.

Following this work, numerous studies have investigated dif-

ferent ways to utilize various neural network architectures

for inverse problems (Mardani et al., 2018; Heckel & Hand,

2019; Mixon & Villar, 2018; Pandit et al., 2019; Lucas et al.,

2018; Shah & Hegde, 2018; Liu & Scarlett, 2020; Kabkab

et al., 2018; Mousavi et al., 2018; Raj et al., 2019; Sun et al.,

2019). One straightforward extension of (Bora et al., 2017)

proposes to expand the range of the pre-trained generator

by allowing sparse deviations (Dhar et al., 2018). Similarly,

Shah & Hegde (2018) proposed another algorithm based

on projected gradient descent with convergence guarantees.

Van Veen et al. (2018) showed that an untrained convolu-

tional neural network can be used as a prior for imaging

tasks based on Deep Image Prior by Ulyanov et al. (2018).

More recently, Wu et al. (2019) applied techniques from

meta-learning to improve the reconstruction speed, and

Ardizzone et al. (2018) showed that by modelling the for-

ward process with a flow model, one can implicitly learn

the inverse process through the invertibility of the model.

Asim et al. (2019) proposed to replace the GAN prior of

(Bora et al., 2017) with a normalizing flow model and re-

ported excellent reconstruction performance, especially on

out-of-distribution images.

3. Our Method

3.1. Notations and Setup

We use bold lower-case variables to denote vectors, ‖ · ‖
to denote ℓ2 norm, and ⊙ to denote element-wise multi-

plication. We also assume that we are given a pre-trained

latent-variable generative model pG(x) that we can effi-

ciently sample from. Importantly, we assume the access to

a noise distribution p∆ parametrized as a normalizing flow,

which itself can be an arbitrarily complex, pre-trained distri-

bution. We let f denote the deterministic and differentiable

forward operator for our measurement process. Thus an ob-

servation is generated via y = f(x) + δ where x ∼ pG(x)
and δ ∼ p∆(δ).
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Note that while f and p∆ are known, they cannot be treated

as fixed across different examples, e.g. in compressed sens-

ing the measurement matrix is random and thus only known

at the time of observation. This precludes the use of end-

to-end training methods that require having a fixed forward

operator.

3.2. MAP Formulation

When the likelihood under the prior pG(x) can be computed

efficiently (e.g. when it is a flow model), we can pose the

inverse problem as a MAP estimation task. Concretely, for

a given observation y, we wish to recover x as the MAP

estimate of the conditional distribution pG(x|y):

argmax
x

log p(x|y)

= argmax
x

[log p(y|x) + log pG(x)− log p(y)]

(1)
= argmax

x

[log p∆(y − f(x)) + log pG(x)]

, argmin
x

LMAP(x;y),

where

LMAP(x;y) = − log p∆(y − f(x))− log pG(x). (3)

Note that in (1) we drop the marginal density log p(y) as it

is constant and rewrite p(y|x) as p∆(y − f(x)).

Recalling that the generative procedure for the flow model

is z ∼ N (0, I),x = G(z), we arrive at the following loss:

LMAP(z;y) , − log p∆(y − f(G(z)))− log pG(G(z))
(4)

The invertibility of G allows us to minimize the above loss

with respect to either z or x:

argmin
z

LMAP(z;y)

= argmin
z

[− log p∆ (y − f(G(z)))− log pG(G(z))]

= argmin
x

[− log p∆ (y − f(x))− log pG(x))]

= argmin
x

LMAP(x;y)

We have experimented with optimizing the loss both in

image space x and latent space z, and found that the latter

achieved better performance across almost all experiments.

Since the above optimization objective is differentiable, any

gradient-based optimizer can be used to approximately find

the minimizer. In practice, even with an imperfect model

and approximate optimization, we observe that our approach

performs well across a wide range of tasks as shown in the

experimental results below.

3.3. MLE Formulation

When the signal prior does not provide tractable likelihood

evaluation (e.g. for the case of GAN and VAE), we view

the problem as a maximum-likelihood estimation under

the noise model. Thus we attempt to find the signal that

maximizes noise likelihood within the support of pG(x) and

arrive at a similar, but different loss:

argmax
x∈supp p(x)

log p∆(y − f(x))

= argmax
z

log p∆(y − f(G(z)))

, argmin
z

LMLE(z;y),

where

LMLE(z;y) , − log p∆(y − f(G(z))). (5)

3.4. Prior Work

In (Bora et al., 2017), the authors proposed to use a deep

generative prior for inverse problem, but the choice of mod-

els was restricted to GANs and VAEs with explicit low-

dimensional prior. Subsequently Asim et al. (2019) general-

ized this paradigm using Flow-based models. We describe

here the methods proposed in those papers in detail. Impor-

tantly, we show that their approaches are special cases of

our MAP/MLE formulations, under Gaussian noise assump-

tions. Furthermore, note that both papers considered linear

inverse problems, so they correspond to the case where

f(x) = Ax under our notation.

GAN Prior: (Bora et al., 2017) considers the following

loss:

LBora(z;y) = ‖y −AG(z)‖2 + λ ‖z‖2 , (6)

which tries to project the input y onto the range of the

generator G with ℓ2 regularization on the latent variable.

Aside from the regularization term, this corresponds exactly

to our MLE loss for a Gaussian p∆. While (Bora et al.,

2017) motivated this objective as a projection on the range

of G, our approach reveals a probabilistic interpretation

based on the MLE objective for the noise.

Flow Prior: (Asim et al., 2019) replaces the GAN prior

of (Bora et al., 2017) with a flow model. In that paper the

authors consider the objective below that tries to simultane-

ously match the observation and maximize the likelihood of

the reconstruction under the model:

L(z;y) = ‖y −AG(z)‖2 − γ log pG(x), (7)

for some hyperparameter γ > 0. This loss is a special

case of our MAP loss for isotropic Gaussian noise δ ∼
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N (0, γ I), since the log-density of δ becomes log p∆(δ) =

− 1
2γ ‖δ‖2 − C for a constant C. However, Asim et al.

(2019) report that due to optimization difficulty, they found

the following proxy loss to perform better in experiments:

LAsim(z;y) = ‖y −AG(z)‖2 + γ ‖z‖ . (8)

This is again related to a specific instance of our loss

when the flow model is volume-preserving (i.e. the log-

determinant term is constant). Continuing from eq. (2): This

allows us to recover the ℓ2-regularized version of LAsim:

We reiterate that both of the aforementioned objectives are

special cases of our formulation for the case of zero-mean

isotropic Gaussian noise. Thus we expect that our method

better handles non-Gaussian noise and experimentally con-

firm that our approach indeed leads to better reconstruction

performance for noises with nonzero mean or conditional

dependence across different pixel locations.

Connections to Blind Source Separation: Here we focus

on the connection between our formulation and blind source

separation. For the denoising case where we have identity

forward operator, we see that our observation is simply the

sum of two random variables y = x+ δ. Given two flow-

based priors (one for each of x and δ), the task of extracting

x from y thus becomes a blind source separation problem

with two sources. While rich literature exists for various

source separation problems (Hu et al., 2017; Subakan &

Smaragdis, 2018; Wang & Chen, 2018; Hoshen, 2019), two

recent studies are particularly relevant to our setting as they

make use of a neural network prior.

In Double-DIP, Gandelsman et al. (2019) utilize Deep Image

Prior (Ulyanov et al., 2018) as a signal prior to perform blind

source separation from multiple mixtures. This work differs

from ours in that we focus on single-mixture setting with

pre-trained signal priors. Our use of pre-trained priors is a

key distinction, since DIP is untrained and may not apply

to other modalities and datasets. In contrast, our method is

applicable as long as we are able to train a deep generative

prior for the signal and the noise.

In (Jayaram & Thickstun, 2020), the authors use a flow-

based prior (Kingma & Dhariwal, 2018) for blind source

separation. Unlike our approach, however, they sample

from the posterior using Langevin dynamics (Welling &

Teh, 2011; Neal et al., 2011). The authors use simulated

annealing to speed up mixing, and this approach would in

theory be able to asymptotically sample from the correct

posterior. The advantage of our approach is that it is gener-

ally faster (as it avoids costly MCMC procedure), and it can

be applied to non-likelihood based priors for the signal x.

4. Theoretical Analysis

In this section we provide some theoretical analysis of our

approach in denoising problems with a flow-based prior. Un-

like most prior work, we take a probabilistic approach and

avoid making specific structural assumptions on the signal

we want to recover, such as sparsity or being generated from

a low-dimensional Gaussian prior.

For denoising, we show that better likelihood estimates

lead to lower reconstruction error. Note that while our

experiments employed flow models, our results apply to

any likelihood-based generative model. Detailed proof is

included in the appendix.

4.1. Recovery Guarantee for Denoising

Suppose we observe y = x∗ + δ with Gaussian noise

δ ∼ N (0, σ2I) with ‖δ‖ = r. We perform MAP inference

by minimizing the following loss with gradient descent:

LMAP(x) =− log p∆(y − x)− log p(x)

=
1

2σ2
‖y − x‖2 + q(x), (9)

where we write q(x) , − log p(x) for notational conve-

nience. Notice that the image we wish to recover is a natural

image with high probability rather than an arbitrary one, and

reconstruction is not expected to succeed for the latter case.

Thus we consider the case where the ground truth image x∗

is a local maximum of p.

Theorem 4.1. Let x∗ be a local optimum of the model p(x)
and y = x∗ + δ be the noisy observation. Assume that q
satisfies local strong convexity within the ball around x∗

defined as Bd
r (x

∗) ,
{

x ∈ R
d : ‖x− x∗‖ ≤ r

}

, i.e. the

Hessian of q satisfies Hq(x) � µI ∀x ∈ Bd
r (x

∗) for for

some µ > 0. Then gradient descent starting from y on

the loss function (9) converges to x̄, a local minimizer of

LMAP(x), that satisfies:

‖x̄− x∗‖ ≤
1

µσ2 + 1
‖δ‖

Even though the theorem is quite straightforward, it still

serves as some initial understanding on the denoising task

under a likelihood-based prior. It sheds light on how the

reconstruction is affected by the structure of the probabilistic

model and the likelihood of the natural signal one wants to

recover. This theorem shows that a well-conditioned model

with large µ leads to better denoising and confirms that

our MAP formulation encourages reconstructions with high

density. Thus, the maximum-likelihood training objective is

directly aligned with better denoising performance.
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networks (Song & Ermon, 2019). On the theoretical side,

one central question that remains open is to analyze the

optimization problem we formulated. In this paper we em-

pirically minimize this loss using gradient descent, but some

theoretical guarantees would be desirable, possibly under

assumptions, e.g. random weights following the framework

of (Hand & Voroninski, 2020).
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Bengio, Y., Léonard, N., and Courville, A. Estimating or

propagating gradients through stochastic neurons for con-

ditional computation. arXiv preprint arXiv:1308.3432,

2013.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. Com-

pressed sensing using generative models. In Proceed-

ings of the 34th International Conference on Machine

Learning-Volume 70, pp. 537–546. JMLR. org, 2017.

Candes, E. J., Romberg, J. K., and Tao, T. Stable signal

recovery from incomplete and inaccurate measurements.

Communications on pure and applied mathematics, 59

(8):1207–1223, 2006.

Candes, E. J., Eldar, Y. C., Strohmer, T., and Voroninski, V.

Phase retrieval via matrix completion. SIAM review, 57

(2):225–251, 2015a.

Candes, E. J., Li, X., and Soltanolkotabi, M. Phase re-

trieval via wirtinger flow: Theory and algorithms. IEEE

Transactions on Information Theory, 61(4):1985–2007,

2015b.

Chen, G.-H., Tang, J., and Leng, S. Prior image constrained

compressed sensing (piccs): a method to accurately re-

construct dynamic ct images from highly undersampled

projection data sets. Medical physics, 35 2:660–3, 2008.

Choi, H., Jang, E., and Alemi, A. A. Waic, but why? gen-

erative ensembles for robust anomaly detection. arXiv

preprint arXiv:1810.01392, 2018.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. Im-

age denoising with block-matching and 3d filtering. In

Image Processing: Algorithms and Systems, Neural Net-

works, and Machine Learning, volume 6064, pp. 606414.

International Society for Optics and Photonics, 2006.

Dhar, M., Grover, A., and Ermon, S. Modeling sparse devi-

ations for compressed sensing using generative models,

2018.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-

mation using real nvp. arXiv preprint arXiv:1605.08803,

2016.

Donoho, D. L. Compressed sensing. IEEE Transactions on

information theory, 52(4):1289–1306, 2006.

Gandelsman, Y., Shocher, A., and Irani, M. ” double-dip”:

Unsupervised image decomposition via coupled deep-

image-priors. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp.

11026–11035, 2019.

Gao, R., Nijkamp, E., Kingma, D. P., Xu, Z., Dai, A. M., and

Wu, Y. N. Flow contrastive estimation of energy-based

models. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), June

2020.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio,

Y. Generative adversarial nets. In Advances in neural

information processing systems, pp. 2672–2680, 2014.

Hand, P. and Voroninski, V. Global guarantees for enforcing

deep generative priors by empirical risk. IEEE Transac-

tions on Information Theory, 2020.

Heckel, R. and Hand, P. Deep decoder: Concise image rep-

resentations from untrained non-convolutional networks.

In International Conference on Learning Representations,

2019.

Hendrycks, D. and Dietterich, T. G. Benchmarking neural

network robustness to common corruptions and surface

variations. arXiv preprint arXiv:1807.01697, 2018.

Hoshen, Y. Towards unsupervised single-channel blind

source separation using adversarial pair unmix-and-remix.

In ICASSP 2019-2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp.

3272–3276. IEEE, 2019.

Hu, W., Liu, R., Lin, X., Li, Y., Zhou, X., and He, X. A deep

learning method to estimate independent source number.

In 2017 4th International Conference on Systems and

Informatics (ICSAI), pp. 1055–1059, 2017. doi: 10.1109/

ICSAI.2017.8248441.

Jayaram, V. and Thickstun, J. Source separation with deep

generative priors. In International Conference on Ma-

chine Learning, pp. 4724–4735. PMLR, 2020.



Solving Inverse Problems with a Flow-based Noise Model

Kabkab, M., Samangouei, P., and Chellappa, R. Task-aware

compressed sensing with generative adversarial networks.

In Proceedings of the AAAI Conference on Artificial In-

telligence, volume 32, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow

with invertible 1x1 convolutions. In Advances in Neural

Information Processing Systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

Liu, Z. and Scarlett, J. Information-theoretic lower bounds

for compressive sensing with generative models. IEEE

Journal on Selected Areas in Information Theory, 1(1):

292–303, 2020.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face

attributes in the wild. In Proceedings of International

Conference on Computer Vision (ICCV), December 2015.

Lucas, A., Iliadis, M., Molina, R., and Katsaggelos, A. K.

Using deep neural networks for inverse problems in imag-

ing: beyond analytical methods. IEEE Signal Processing

Magazine, 35(1):20–36, 2018.

Lustig, M., Donoho, D., and Pauly, J. M. Sparse mri: The

application of compressed sensing for rapid mr imaging.

Magnetic Resonance in Medicine: An Official Journal

of the International Society for Magnetic Resonance in

Medicine, 58(6):1182–1195, 2007.

Mardani, M., Sun, Q., Donoho, D., Papyan, V., Monajemi,

H., Vasanawala, S., and Pauly, J. Neural proximal gradi-

ent descent for compressive imaging. In Neural Informa-

tion Processing Systems, pp. 9573–9583, 2018.

Menon, S., Damian, A., Hu, S., Ravi, N., and Rudin, C.

Pulse: Self-supervised photo upsampling via latent space

exploration of generative models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 2437–2445, 2020.

Mixon, D. G. and Villar, S. Sunlayer: Stable denoising with

generative networks. arXiv preprint arXiv:1803.09319,

2018.

Mousavi, A., Dasarathy, G., and Baraniuk, R. G. A data-

driven and distributed approach to sparse signal repre-

sentation and recovery. In International Conference on

Learning Representations, 2018.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and

Lakshminarayanan, B. Do deep generative models know

what they don’t know? arXiv preprint arXiv:1810.09136,

2018.

Nalisnick, E., Matsukawa, A., Teh, Y. W., and Lakshmi-

narayanan, B. Detecting out-of-distribution inputs to

deep generative models using a test for typicality. arXiv

preprint arXiv:1906.02994, 2019.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. Hand-

book of markov chain monte carlo, 2(11):2, 2011.

Pandit, P., Sahraee, M., Rangan, S., and Fletcher, A. K.

Asymptotics of map inference in deep networks. arXiv

preprint arXiv:1903.01293, 2019.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,

S., and Lakshminarayanan, B. Normalizing flows for

probabilistic modeling and inference. arXiv preprint

arXiv:1912.02762, 2019.

Raj, A., Li, Y., and Bresler, Y. Gan-based projector for faster

recovery with convergence guarantees in linear inverse

problems. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 5602–5611, 2019.

Shah, V. and Hegde, C. Solving linear inverse problems

using gan priors: An algorithm with provable guarantees.

In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 4609–4613.

IEEE, 2018.

Song, Y. and Ermon, S. Generative modeling by estimat-

ing gradients of the data distribution. In Proceedings

of the 33rd Annual Conference on Neural Information

Processing Systems, 2019.

Subakan, Y. C. and Smaragdis, P. Generative adversar-

ial source separation. In 2018 IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 26–30. IEEE, 2018.

Sun, Y., Liu, J., and Kamilov, U. S. Block coordinate

regularization by denoising. NeurIPS, 2019.

Tabak, E. G. and Turner, C. V. A family of nonparametric

density estimation algorithms. Communications on Pure

and Applied Mathematics, 66(2):145–164, 2013.

Tibshirani, R. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1):267–288, 1996.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Deep image

prior. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 9446–9454,

2018.



Solving Inverse Problems with a Flow-based Noise Model

Van Veen, D., Jalal, A., Soltanolkotabi, M., Price, E., Vish-

wanath, S., and Dimakis, A. G. Compressed sensing

with deep image prior and learned regularization. arXiv

preprint arXiv:1806.06438, 2018.

Wang, D. and Chen, J. Supervised speech separation based

on deep learning: An overview. IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 26(10):

1702–1726, 2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic

gradient langevin dynamics. In Proceedings of the 28th

international conference on machine learning (ICML-11),

pp. 681–688. Citeseer, 2011.

Wu, Y., Rosca, M., and Lillicrap, T. P. Deep compressed

sensing. CoRR, abs/1905.06723, 2019. URL http:

//arxiv.org/abs/1905.06723.



Solving Inverse Problems with a Flow-based Noise Model

A. Omitted Proof

A.1. Proof for Denoising

Proof of Theorem 4.1. We first show that gradient descent

with sufficiently small learning rate will converge to x̄, the

locally-optimal solution of Equation (9). Recall the loss

function L(x) := q(x) + 1
2σ2 ‖x − y‖2 (we subsume the

scaling 1
2 into 1

σ2 without loss of generality). Notice in the

ball Bd
r (x

∗) :=
{

x ∈ R
d | ‖x− x∗‖ ≤ r

}

, L is
(

µ+ 1
σ2

)

strongly-convex. We next show there is a stationary point

x̄ ∈ Bd
r (x

∗) of L(x).

∇L(x̄) = 0 =⇒ ∇q(x̄) +
1

σ2
(x̄− y) = 0

=⇒ ∇q(x̄)−∇q(x∗) =
1

σ2
(y − x̄)

=⇒ 〈∇q(x̄)−∇q(x∗), x̄− x∗〉

=
1

σ2
〈y − x̄, x̄− x∗〉

From strong convexity of q,

〈∇q(x̄)−∇q(x∗), x̄− x∗〉 ≥ µ‖x̄− x∗‖2.

Thus,

1

σ2
〈y − x∗, x̄− x∗〉

=
1

σ2
〈(y − x̄) + (x̄− x∗) , x̄− x∗〉

=
1

σ2
〈y − x̄, x̄− x∗〉+

1

σ2
〈x̄− x∗, x̄− x∗〉

= 〈∇q(x̄)−∇q(x∗), x̄− x∗〉+
1

σ2
‖x̄− x∗‖2

≥ µ‖x̄− x∗‖2 +
1

σ2
‖x̄− x∗‖2

=

(

µ+
1

σ2

)

‖x̄− x∗‖2

Finally, by Cauchy-Schwartz inequality,

〈y − x∗, x̄− x∗〉 ≤ ‖y − x∗‖ · ‖x̄− x∗‖.

So we get ‖x̄ − x∗‖ ≤ 1
1+µσ2 ‖y − x∗‖ ≤ ‖δ‖ ≤ r, in

other words, x̄ ∈ Bd
r (x

∗).

Notice L is
(

µ+ 1
σ2

)

strongly-convex in Bd
r (x

∗), which

contains the stationary point x̄. Therefore x̄ is a local min-

imizer of L(x). Also note that we implicitly require q to

be twice differentiable, meaning in a compact set Bd
r (x

∗)
its smoothness is upper bounded by a constant M . Thus

gradient descent starting from y ∈ Bd
r (x

∗) with learning

rate smaller than 1
M

will converge to x̄ without leaving the

(convex) set Bd
r (x

∗).

B. Additional Experimental Results

Here we include experimental results and details not in-

cluded in the main text. Across all the experiments, we

individually tuned the hyperparameters for each method.

B.1. Experimental Details

Dataset. For MNIST, we used the default split of 60,000

training images and 10,000 test images of (LeCun et al.,

1998). For CelebA-HQ, we used the split of 27,000 training

images and 3,000 test images as provided by (Kingma &

Dhariwal, 2018).

During evaluation, the following Python script was used to

select 1000 MNIST images and 100 CelebA-HQ images

from their respective test sets:

np.random.seed(0)

indices_mnist = np.random.choice(

10000, 1000, False)

np.random.seed(0)

indices_celeba = np.random.choice(

3000, 100, False)

Note that CelebA-HQ images were further resized to 64×64
resolution.

Noise Distributions. For the sinusoidal noise used in the

experiments, the standard deviation of the k-th pixel/row is

calculated as:

σk = 0.1 ·

(

exp

(

sin(2π ·
k

16
)

)

− 1

)

/(e− 1),

clamped to be in range [0.001, 1]. For Figure 9b,

we used vary the coefficient 0.1 to values in

{0.05, 0.1, 0.2, 0.3, 0.4}.

For the radial noise used in the additional experiment below,

the standard deviation of each pixel with ℓ2 distance is

d from the center pixel (31, 31) is computed as: σk =
0.1 ·exp(−0.005 ·d2), clamped to be in range [0.001, 1000].

B.2. Additional Result: Removing RADIAL Noise

Consider the measurement process y = x+ δradial, where

each pixel follows a Gaussian distribution, but with variance

that decays exponentially in distance to the center point. For

a pixel whose ℓ2 distance to the center pixel is d, the stan-

dard deviation is computed as σ(d) = exp
(

−0.005 · d2
)

.

See Figure 8 and Figure 9a for reconstructions as well as

PSNR plot comparing the methods considered.

B.3. Additional Result: 1-bit Compressed Sensing

Figure 9b shows the performance of each method at differ-

ent noise scales for a fixed number of measurements. We
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Hyperparameter CelebA-HQ MNIST

Learning rate 5e−4 1e−3
Batch size 16 128

Image size 64× 64× 3 28× 28× 1
Pixel depth 5 bits 8 bits

Number of epochs 300 200

Number of scales 6 3

Residual blocks per scale 10 6

Learning rate halved every 60 epochs 40 epochs

Max gradient norm 500 100

Weightnorm regularization 1e−5 5e−5

Table 1. Hyperparameters used for RealNVP models.

Figure 10. Samples from the RealNVP models used in our experi-

ments.

Figure 11. Out-of-distribution images used in our experiments. We

included different types of out-of-distribution instances including

grayscale images and cartoons with flat image areas.

D. Experiment Hyperparameters

Here we list the hyperparameters used for each experiment.

We used the Adam optimizer (Kingma & Ba, 2014) for all

appropriate methods below.

Denoising MNIST Digits.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,

2019): 400

• Optimization steps for Ours (MLE) and (Bora et al.,

2017): 1000

• Smoothing parameter for Ours (MAP & MLE): β = 1.0

• Regularization for (Asim et al., 2019): γ = 0.0

• Regularization for (Bora et al., 2017): λ = 0.01

Noisy Compressed Sensing.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,

2019): 300

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 100

• Regularization for (Asim et al., 2019): γ = 10

• Regularization for (Bora et al., 2017): λ = 0.001

• Regularization for LASSO: λ = 0.01

Denoising Sinusoidal Noise.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,

2019): 150

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 0.5

• Regularization for (Asim et al., 2019): γ = 2.0

• Regularization for (Bora et al., 2017): λ = 0.01

Noisy 1-bit Compressed Sensing.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,

2019): 200

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 1.0

• Regularization for (Asim et al., 2019): γ = 1.0

• Regularization for (Bora et al., 2017): λ = 0.01


