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Abstract

We study the problem of discovering the simplest latent variable that can make
two observed discrete variables conditionally independent. The minimum entropy
required for such a latent is known as common entropy in information theory. We
extend this notion to Rényi common entropy by minimizing the Rényi entropy of
the latent variable. To efficiently compute common entropy, we propose an iterative
algorithm that can be used to discover the trade-off between the entropy of the
latent variable and the conditional mutual information of the observed variables.
We show two applications of common entropy in causal inference: First, under the
assumption that there are no low-entropy mediators, it can be used to distinguish
causation from spurious correlation among almost all joint distributions on simple
causal graphs with two observed variables. Second, common entropy can be
used to improve constraint-based methods such as PC or FCI algorithms in the
small-sample regime, where these methods are known to struggle. We propose a
modification to these constraint-based methods to assess if a separating set found
by these algorithms are valid using common entropy. We finally evaluate our
algorithms on synthetic and real data to establish their performance.

1 Introduction

Understanding the causal workings of a system from data is essential in many fields of science and
engineering. Recently, there has been increasing interest in causal inference in the machine learning
(ML) community. While most of ML has traditionally been relying solely on correlations in the data,
it is now widely accepted that distinguishing causation from correlation is useful even for simple
predictive tasks. This is because causal relations are more robust to the changes in the dataset and
can help with generalization, while an ML system relying solely on correlations might suffer when
these correlations change in the environment the system is deployed in [12].

A causal graph is a directed acyclic graph that depicts the causal workings of the system under study
[38]. Since it indicates the causes of each variable, it can be seen as a qualitative summary of the
underlying mechanisms. Learning the causal graph is the first step for most of the causal inference
tasks, since inference algorithms rely on the causal structure. Causal graphs can be learned from
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randomized experiments [17, 14, 44, 28, 27]. In settings where performing experiments are costly or
infeasible, one needs to resort to observational methods, i.e., make best use of observational data,
potentially under assumptions about the data generating mechanisms.

There is a rich literature on learning causal graphs from observational data [47, 54, 11, 1, 35, 46, 20,
50, 9]. Score-based methods optimize a regularized likelihood function in order to discover the causal
graph. Under certain assumptions, these methods are consistent; they obtain a causal graph that is in
the correct equivalence class for the given data [34, 10]. However, score-based methods are applicable
only in the causally sufficient setting, i.e., when there are no latent confounders. A variable is called
a latent confounder if it is not observable and causes at least two observed nodes. Constraint-based
methods directly recover the equivalence class in the form of a mixed graph [1, 34, 47, 35, 55]:
They test the conditional independence (CI) constraints in the data and use them to infer as much as
possible about the causal graph. Despite being well-established for graphs with or without latents,
constraint-based methods are known to work well only with an abundance of data. Early errors in CI
statements might lead to drastically different graphs due to the sequential nature of these algorithms.
A third class of algorithms can be described as those imposing assumptions in order to identify the
graphs which are otherwise not identifiable [20, 46, 39, 21, 26]. Most of this literature focuses on the
cornerstone case of two variables X,Y where constraint and score-based approaches are unable to
identify if X causes Y or Y causes X , simply because they are indistinguishable without additional
assumptions. This literature contains a wide range of assumptions that we summarize in Section 7.2.

Information theory has been shown to provide tools that can be useful for causal discovery [8, 42, 30,
15, 52, 26, 48]. In this work, we explore the uses of common entropy for learning causal graphs from
observational data. To define common entropy, first consider the following problem: Given the joint
probability distribution of two discrete random variables X,Y , we want to construct a third random
variable Z such that X and Y are independent conditioned on Z. Without any constraints this can be
trivially achieved: Simply picking Z = X or Z = Y ensures that X ⊥⊥ Y |Z . However, this trivial
solution requires Z to be as complex as X or Y . We then ask the following question: is there a simple
Z that makes X,Y conditionally independent? In this work, we use Rényi entropy of the variable as
a notion of its complexity. Then the problem becomes identifying Z with the smallest Rényi entropy
such that X ⊥⊥ Y |Z . Shannon entropy of this Z is called the common entropy of X and Y [31].

We demonstrate two uses of common entropy for causal discovery. The first is in the setting of two
observed variables. Suppose we observe two correlated variables X,Y . Figure 1 shows some causal
graphs that can induce correlation between X,Y . Note that Latent Graph differs from the others in
that X does not have any causal effect on Y . Then distinguishing the latent graph from the others is
important to understand whether an intervention on one of the variables will cause a change in the
other. We show that if the latent confounder is simple, i.e., has small entropy then one can distinguish
the latent graph from the triangle and direct graphs using common entropy. To identify the latent
graph, we assume that the correlation is not induced only by a simple mediator, which eliminates the
mediator graph. We show that this is a realistic assumption using simulated and real data.

Second, we show that common entropy can be used to improve constraint-based causal discovery
algorithms in the small sample regime. For such algorithms, correctly identifying separating sets, i.e.,
sets of variables that can make each pair conditionally independent, is crucial. Our key observation is
that, for a given pair of variables common entropy provides us with an information-theoretic lower
bound on the entropy of any separating set. Therefore, it can be used to reject incorrect separating
sets. We present our modification on the PC algorithm, which is called the EntropicPC algorithm.

To the best of our knowledge, the only result for finding common entropy is given in [31], where they
identify its analytical expression for binary variables. They also note that the problem is difficult in
the general case. To address this gap, in Section 2 we propose an iterative algorithm to approximate
common entropy. We also generalize the notion of common entropy to Rényi common entropy.

Our contributions can be summarized as follows:

• In Section 2, we introduce the notion of Rényi common entropy. We propose a practical
algorithm for finding common entropy and prove certain guarantees. Readers interested
only in the applications of common entropy to causal inference can skip this section.

• In Section 3, under certain assumptions, we show that Rényi0 common entropy can be used
to distinguish latent graph from the triangle and direct graphs in Figure 1. We also show
this identifiability result via Rényi1 common entropy for binary variables, and propose a
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Figure 1: Different graphs that explain correlation between the observed X,Y . Z,M are unobserved.

conjecture for the general case. In Section 5.2, we validate one of our key assumptions in
real and synthetic data. In Section 5.3, we validate our conjecture via real and synthetic data.

• In Section 4, we propose EntropicPC, a modified version of the PC algorithm that uses
common entropy to improve sample efficiency. In Section 5.5, we demonstrate significant
performance improvement for EntropicPC compared to the baseline PC algorithm. We also
illustrate that EntropicPC discovers some of the edges missed by PC in ADULT data [13].

• In Section 5, in addition to the above, we provide experiments on the performance of our
algorithm for finding common entropy, as well as its performance on distinguishing the
latent graph from the triangle graph on synthetic data.

Notation: Support of a discrete random variable X is shown as X . p(.) and q(.) are reserved for
discrete probability distribution functions (pmfs). [n] := {1, 2, . . . , n}. p(Y |x) is shorthand for
the conditional distribution of Y given X = x. Shannon entropy, or entropy in short, is H(X) =
−
∑

x p(x) log(p(x)). Rényi entropy of order r is Hr(X)= 1
1−r

log (
∑

x p
r(x)). It can be shown

that Rényi entropy of order 1 is identical to Shannon entropy. D=(V, E) is a directed acyclic graph
with vertex set V and edge set E ⊂ V ×V . Pai represents the set of parents of vertex Xi in the graph
and pai a specific realization. If D is a causal graph, the joint distribution between the variables
(vertices of the graph) factorizes relative to the graph as p(x1, x2, . . . , )=

∏
i p(xi|pai).

2 Rényi Common Entropy

We introduce the notion of Rényi common entropy, which generalizes the common entropy of [31].

Definition 1. Rényi common entropy of order r or Rényir common entropy of two random variables
X,Y with probability distribution p(x, y) is shown by Gr(X,Y ) and is defined as follows:

Gr(X,Y ) := min
q(x,y,z)

Hr(Z)

s.t. I(X;Y |Z) = 0;
∑

z

q(x, y, z) = p(x, y), ∀x, y;
∑

q(.) = 1; q(.) ≥ 0
(1)

Rényi common entropy lower bounds the Rényi entropy of any variable that makes the observed
variables conditionally independent. We focus on two special cases: Rényi0 and Rényi1 common
entropies. Among all variables Z such that X ⊥⊥ Y |Z , Rényi0 common entropy is the logarithm of
the minimum number of states of Z and Rényi1 common entropy is its minimum entropy.

In Section 3, we show that Rényi0 common entropy can be used for distinguishing the latent graph
from the triangle or direct graphs in Figure 1. Since we expect Rényi0 common entropy to be sensitive
to finite-sample noise in practice, we focus on Rényi1 common entropy. Rényi1 common entropy,
or simply common entropy, was introduced in [31], where authors derived the analytical expression
for two binary variables. They also remark that finding common entropy for non-binary variables is
difficult. We propose an iterative update algorithm to approximate common entropy in practice, by
assuming that we have access to the joint distribution between X,Y .

LatentSearch: An Algorithm for Calculating Rényi1 Common Entropy

In this section, our objective is to solve a relaxation of the Rényi1 common entropy problem in (1).
Instead of enforcing conditional independence as a hard constraint of the optimization problem, we
introduce conditional mutual information as a regularizer to the objective function. This allows us
to discover a trade-off between two factors, the entropy H(Z) of the third variable and the residual
dependency between X,Y after conditioning on Z, measured by I(X;Y |Z). We then have the loss

L = I(X;Y |Z) + βH(Z). (2)
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Algorithm 1 LatentSearch: Iterative Update Algorithm

1: Input: Supports of x, y, z, X ,Y,Z, respectively. β ≥ 0 used in (2). Observed joint p(x, y). Initialization
q1(z|x, y). Number of iterations N .

2: Output: Joint distribution q(x, y, z)
3: for i ∈ [N ] do
4: Form the joint:

qi(x, y, z)← qi(z|x, y)p(x, y), ∀x, y, z.
5: Calculate:

qi(z|x)←

∑

y∈Y

qi(x,y,z)

∑

y∈Y,z∈Z

qi(x,y,z)
, qi(z|y)←

∑

x∈X

qi(x,y,z)

∑

x∈X ,z∈Z

qi(x,y,z)
, qi(z)←

∑

x∈X ,y∈Y

qi(x, y, z)

6: Update:

qi+1(z|x, y)←
1

F (x,y)
qi(z|x)qi(z|y)

qi(z)1−β , where F (x, y) =
∑

z∈Z

qi(z|x)qi(z|y)

qi(z)1−β .

7: return q(x, y, z) := qN+1(z|x, y)p(x, y)

Rather than searching over q(x, y, z) and enforcing the constraint
∑

z q(x, y, z) = p(x, y), ∀x, y, we
can search over q(z|x, y) and set q(x, y, z) = q(z|x, y)p(x, y). Therefore we have L = L(q(z|x, y)).
The support size of Z determines the number of optimization variables. Proposition 5 in [31] shows
that without loss of generality, we can assume |Z| ≤ |X ||Y|. In general, L is neither convex nor
concave. Although first order methods (e.g., gradient descent) can be used to find a stationary point,
as we empirically observe the convergence is slow and the performance is very sensitive to the step
size. To this end, we propose a multiplicative update algorithm LatentSearch in Algorithm 1. Given
p(x, y), LatentSearch starts from a random initialization q0(z|x, y), and at each step i iteratively

updates qi(z|x, y) to qi+1(z|x, y) to minimize the loss (2). Specifically, in the ith step it marginalizes
the joint qi(x, y, z) to get qi(z|x), qi(z|y), and qi(z), and imposing a scaled product form on these
marginals, updates the joint to return qi+1(x, y, z). This decomposition and the update rule are
motivated by the partial derivatives associated with the Lagrangian of the loss function (2) (See
Section 7.3). More formally, as we show in the following theorem, after convergence LatentSearch
outputs a stationary point of the loss function. For the proof, please see Sections 7.3, 7.4.

Theorem 1. The stationary points of LatentSearch are also stationary points of the loss in (2).
Moreover, for β = 1, LatentSearch converges to either a local minimum or a saddle point of (2),
unless it is initialized at a local maximum.

Therefore, if the algorithm converges to a solution, it outputs either a local minimum, local maximum
or a saddle point. We observe in our experiments that the algorithm always converges for β ≤ 1.

For each β, LatentSearch outputs a distribution q(.) from which H(Z) can be calculated. When
using LatentSearch to approximate Rényi1 common entropy, we will run it for multiple β values and
pick the distribution q(.) with the smallest H(Z) such that I(X;Y |Z) ≤ θ for a practical threshold θ
to declare conditional independence. See Figure 3b for a sample output of LatentSearch for multiple
β values in the I −H plane. See also lines 6− 7 of Algorithm 2 for an algorithmic description.

3 Identifying Correlation without Causation via Rényi Common Entropy

Suppose we observe two discrete random variables X,Y to be statistically dependent. Reichenbach’s
common cause principle states that X and Y are either causally related, or there is a common cause
that induces the correlation.1 If the correlation is only due to a common cause, intervening on either
variable will have no effect on the other. Therefore, it is important for policy decisions to identify
this case of correlation without causation. Specifically, we want to distinguish latent graph from the
triangle or direct graphs in Figure 1. Since our goal is not to identify the causal direction between X
and Y , we use triangle, direct and mediator graphs to refer to either direction. We show that, under
certain assumptions, Rényi common entropy can be used to solve this identification problem.

Our key assumption is that the latent confounders, if they exist, have small Rényi entropy. In other
words, in Figure 1 Hr(Z) ≤ θr for some θr. We consider two cases: Rényi0 and Rényi1 entropies.
H0(Z) ≤ θ0 is equivalent to upper bounding the support size of Z. H1(Z) ≤ θ1 upper bounds the
Shannon entropy of Z. In general, H1(Z) ≤ θ can be seen as a relaxation of H0(Z) ≤ θ as the latter

1We assume no selection bias in this work, which can also induce spurious correlation.
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implies the former but not vice verse. Accordingly, we show stronger results for Rényi0, whereas we
leave the most general identifiability result of Rényi1 as a conjecture. We also quantify how small the
confounder’s Rényi entropy should be for identifiability.

Note that bounding the Rényi entropy of the latent confounder in the latent graph bounds the Rényi
common entropy of the observed variables. Therefore, in order to distinguish the latent graph from
the triangle and direct graphs, we need to obtain lower bounds on the Rényi common entropy of a
typical pair X,Y when data is generated from the triangle or direct graphs.

We first establish bounds on the Rényi0 common entropy for the triangle and direct graphs, which
hold for almost all parametrizations. To measure the fraction of causal models for which our bound
is valid, we use a natural probability measure on the set of joint distributions by sampling each
conditional uniformly randomly from the probability simplex:

Definition 2 (Uniform generative model (UGM)). For any causal graph, consider the following
generative model for the joint distribution p(x1, x2, . . .) =

∏
i p(xi|pai), where Xi ∈ Xi, ∀i: For

all i and pai, let the conditional distribution p(Xi|pai) be sampled independently and uniformly
randomly from the probability simplex in |Xi| dimensions.

The following theorem uses the measure induced by UGM to show that for almost all distributions
obtained from the triangle or direct graph, Rényi0 common entropy of the observed variables is large.

Theorem 2. Consider the random variables X,Y, Z with supports [m], [n], [k], respectively. Let
p(x, y, z) be a pmf sampled from the triangle or the direct graphs according to UGM. Then with
probability 1, G0(X,Y ) = log(min{m,n}).

Now consider the latent graph where Z is the true confounder. We clearly have that G0(X,Y ) ≤
H0(Z) since Z indeed makes X,Y conditionally independent. In other words, G0(X,Y ) is upper
bounded in the latent graph whereas it is lower bounded in the triangle and the direct graphs by
Theorem 2. Therefore, as long as the correlation cannot be explained by the mediator graph, G0(X,Y )
can be used as a parameter to identify the latent graph. In order to formalize this identifiability
statement, we need two assumptions with parameters (r, θ):

Assumption 1 (r, θ). Consider any causal model with observed variables X,Y . Let Z represent the
variable that captures all latent confounders between X,Y . Then Hr(Z) < θ.

Assumption 2 (r, θ). Consider a causal model where X causes Y . If X causes Y only through a
latent mediator Z, i.e., X → Z → Y , then Hr(Z) ≥ θ.

Assumption 1 states that the collection of latent confounders, represented by Z, has to be "simple",
which is quantified by its Rényi entropy. This assumption can also be interpreted as relaxing the causal
sufficiency assumption by allowing weak confounding. Assumption 2 states that if the correlation
is induced only due to a mediator, this mediator cannot have low Rényi entropy. Even though this
assumption might seem restrictive, we provide evidence on both real and synthetic data in Section
5.2 to show it indeed often holds in practice. We have the following corollary:

Corollary 1. Consider the random variables X,Y with supports [m], [n], respectively. For θ =
log(min{m,n}), latent graph can be identified with probability 1 under UGM, Assumption 1,2(0, θ).

Corollary 1 indicates that, when the latent confounder has less than min{m,n} number of states, we
can infer that the true causal graph is the latent graph from observational data under Assumptions 1
and 2. However, using common entropy, we cannot distinguish triangle graph from the direct graph.
Also note that the identifiability result holds for almost all parametrizations of these graphs, i.e., the
set of parameters where it does not hold has Lebesgue measure zero.

Next, we investigate if Rényi1 common entropy can be used for the same goal. Finding Rényi1
common entropy in general is challenging. For binary X,Y we can use the analytical expression of
[31] to show that G1(X,Y ) is almost always larger than H(Z) asymptotically for the triangle graph:

Theorem 3. Consider the random variables X,Y, Z with supports [2], [2], [k], respectively. Let
p(x, y, z) be a pmf sampled from the triangle graph according to UGM except p(z), which can be
arbitrary. Then lim

H(Z)→0
P(G1(X,Y )>H(Z))=1, where P is the probability measure induced by UGM.

In Section 7.8, we provide simulations for binary and ternary Z to demonstrate the behavior for small
non-zero H(Z). Then, we have the following asymptotic identifiability result using common entropy:
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Algorithm 2 InferGraph: Identifying the Latent Graph

1: Input: k : Support size of Z, p(x, y), T : I(X;Y |Z) threshold, {βi}i∈[N ], θ : H(Z) threshold.

2: Randomly initialize N distributions q
(i)
0 (z|x, y), i ∈ [N ].

3: for i ∈ [N ] do

4: q(i)(x, y, z)← LatentSearch(q
(i)
0 (z|x, y), βi).

5: Calculate I(i)(X;Y |Z) and H(i)(Z) from q(i)(x, y, z).

6: S = {i : I(i)(X;Y |Z) ≤ T}.

7: if min({H(i)(Z) : i ∈ S}) > θ or S = ∅ then
8: return Triangle or Direct Graph
9: else

10: return Latent Graph

Algorithm 3 EntropicPC (for F = False) and EntropicPC-C (for F = True)

1: Input: CI Oracle C for V = {X1, . . . Xn}. Common entropy oracle B. Entropy oracle H . Flag F .
2: Form the complete undirected graph D = (V, E) on node set V .
3: l← −1. maysep(Xi, Xj)← True, ∀i, j.
4: while ∃i, j s.t. (Xi, Xj) ∈ E and |adjD(Xi)\{Xj}| > l and maysep(Xi, Xj) = True. do
5: l← l + 1
6: for All i, j s.t. (Xi, Xj) ∈ E and |adjD(Xi)\{Xj}| ≥ l do
7: while (Xi, Xj) ∈ E and ∃S ⊆ adjD(Xi)\{Xj} s.t. |S| = l and maysep(Xi, Xj) = True. do
8: Pick a new S ⊆ adjD(Xi)\{Xj} s.t. |S| = l.
9: if C(X,Y |Z) = True then

10: if H(S) ≥ B(Xi, Xj) then
11: E ← E − {(Xi, Xj)}.
12: sepset(Xi, Xj)← S.
13: else if F = True then
14: maysep(Xi, Xj)← False
15: else
16: if B(Xi, Xj) ≥ 0.8min{H(Xi), H(Xj)} then
17: maysep(Xi, Xj)← False
18: Orient unshielded colliders according to separating sets {sepset(Xi, Xj)}i,j∈[n] [11].
19: Orient as many of the remaining undirected edges as possible by repeatedly applying the Meek rules [35].
20: Return: D = (V, E).

Corollary 2. For binary X,Y under UGM, Assumption 1,2(1, θ) if the entropy upper bound θ is
known, the fraction of causal models for which latent graph can identified goes to 1 as θ goes to 0.

For the general case, we conjecture that when the data is sampled from the triangle or the direct
graphs, G1(X,Y ) scales with min{H(X), H(Y )}.

Conjecture 1. Consider the random variables X,Y, Z with supports [m], [n], [k], respectively. Let
p(x, y, z) be a pmf sampled from the triangle or direct graphs according to UGM except p(z), which

can be arbitrary. Then, there exists a constant α=Θ(1) such that with probability 1−(min{m,n})−c

G1(X,Y )>αmin{H(X), H(Y )} for some constant c = c(α).

According to Conjecture 1, we expect that for most of the parametrizations of the triangle and
direct graphs, common entropy of the observed variables should be lower-bounded by the entropies
of the observed variables, up to a scaling by a constant. It is easy to see that under assumptions
similar to those in Corollaries 1 and 2, Conjecture 1 implies identifiability of the latent graph. In
Section 5, we conduct experiments to support the conjecture and identify α. We conclude this section
by formalizing how LatentSearch can be used in Algorithm 2, under Assumption 1(1, θ), 2(1, θ).
Conjecture 1 suggests that, in Algorithm 2, we can set θ=αmin{H(X), H(Y )} for some α < 1.

4 Entropic Constraint-Based Causal Discovery

A causal graph imposes certain CI relations in the data. Constraint-based causal discovery methods
utilize CI statements to reverse-engineer the underlying causal graph. Consider a causal graph over a
set V of observed variables. Constraint-based methods identify a set SX,Y ⊂ V as a separating set
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for every pair X,Y if the CI statement X ⊥⊥ Y |SX,Y holds in the data. Starting with a complete
graph, edges between pairs are removed if they are separable by some set. Separating sets are later
used to orient parts of the graph, which is followed by a set of orientation rules [47, 55] .

Despite being grounded theoretically in the large sample limit, in practice these methods require a
large number of samples and are very sensitive to noise: An incorrect CI statement early on might lead
to a drastically different causal graph at the end due to their sequential nature. Another issue is that
the distribution should be faithful to the graph, i.e., any connected pair should be dependent [47, 29].

To help alleviate some of these issues, we propose a simple modification to the existing constraint-
based learning algorithms using common entropy. Our key observation is that the common entropy
of two variables provide an information-theoretic lower bound on the entropy of any separating
set. In other words, common entropy provides us with a necessary condition for a set SX,Y to be
a valid separating set: X ⊥⊥ Y |SX,Y only if H(SX,Y )≥G1(X,Y ). Accordingly, we can modify
any constraint-based method to ensure this condition. We only lay out our modifications on the PC
algorithm. It can be trivially applied to other methods such as modern variants of PC and FCI.

We propose two versions: EntropicPC and the conservative version EntropicPC-C. In both, SX,Y

is accepted only if H(SX,Y )≥G1(X,Y ). The difference is how they handle pairs X,Y that are
deemed CI despite that H(SX,Y )<G1(X,Y ). EntropicPC-C concludes that the data for X,Y is
unreliable and simply declares them non-separable by any set. EntropicPC only does this when
common entropy is large, i.e., G1(X,Y )≥0.8min{H(X), H(Y )}; otherwise it searches for another
set that may satisfy H(SX,Y )≥G1(X,Y ). 0.8 is chosen based on our experiments in Section 5.

We provide the pseudo-code in Algorithm 3. It is easy to see that both algorithms are sound in the
sample limit. The case of S=∅ in line 10 is of special interest. Setting H(∅)=0 is not reasonable
with finitely many samples since the common entropy of independent variables will not be estimated
as exactly zero. To address this, in simulations H(∅) is set to 0.1min{H(X), H(Y )} in line 10.
This and the choice of 0.8 as the coefficient in line 16 can be seen as hyper-parameters to be tuned.

5 Experiments

5.1 Performance of LatentSearch

We evaluate how well LatentSearch performs by generating data from the latent graph and comparing
the entropy it recovers with the entropy of the true confounder Z in Figure 2a. In the generated data,
we ensure H(Z) is bounded above by 1 for all n. This makes the task harder for the algorithm for
larger n. The left axis shows the fraction of times LatentSearch recovers a latent with entropy smaller
than H(Z). The right axis shows the worst-case performance in terms of the entropy gap between
the algorithm output and true entropy. We generated 100 random distributions for each n. The same
number of iterations is used for the algorithm for all n. As expected, performance slowly degrades as
n is increased, since H(Z) < 1, ∀n. We conclude that LatentSearch performs well within the range
of n values we use in this paper. Further research is needed to make LatentSearch adapt to n.

5.2 Validating Assumption 2: No Low-Entropy Mediator

We conducted synthetic and real experiments to validate the assumption that, in practice, it is unlikely
for cause-effect pairs to only have low-entropy mediators. First, in Figure 3c we generated data
from X→Z→Y and evaluated H(Z). p(X) is sampled uniformly from the probability simplex.
p(Z|x), ∀x are sampled from Dirichlet with parameter αDir. It is observed that mediator entropy
scales with log2(n) for all cases. This supports Assumption 2 by asserting that for most causal
models, unless the mediator has a constant number of states, its entropy is close to H(X), H(Y ).

Second, in Figure 3a, we run LatentSearch on the real cause-effect pairs from Tuebingen dataset [36].
Our goal is to test if the causation can be solely due to low-entropy mediators: If it is, then common
entropy should be small since mediator can make the observed variables conditionally independent.
We used different thresholds for conditional mutual information for declaring two variables condition-
ally independent. Investigating typical I−H plots for this dataset (see (b)), we conclude that 0.001 is

a suitable CMI threshold for this dataset. From the empirical cdf of α := G1(X,Y )
min{H(X),H(Y )} across the

dataset, we identified that for most pairs G1(X,Y ) ≥ 0.8min{H(X), H(Y )}. This indicates that if
the causation is solely due to a mediator, it must have entropy of at least 0.8min{H(X), H(Y )}.
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Broader Impact

This work lays the foundations for using the information-theoretic notion of common entropy within
the context of discovering causal relations from data.

Problems that require discovering causal relations from observational data are prominent across many
different fields. Causality is also central to the development of AI. Therefore, we expect this work to
have a positive impact by providing a new methodology and identifying settings in which causality
can be inferred using this framework.

In terms of the negative effects, we do not foresee an immediate negative effect that may arise because
of this work. The only risks would be due to the risks associated with having stronger machine
learning models, and better AI that could be misused or exploited.
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7 Appendix

7.1 Detailed Background

Let D = (V, E) be a directed acyclic graph on the set of vertices V = {V1, V2, . . . , Vn} with directed
edge set E . Each directed edge ek ∈ E is a tuple ek = (Vi, Vj). Let P be a joint distribution over a set
of variables labeled by V . D is called a valid Bayesian network for the distribution P, if P factorizes
with respect to the graph D as P(V1, V2, . . . Vn) =

∏
i P(Vi|pai), where pai are the set of parents of

vertex Vi in graph D. In a Bayesian network D that is valid for P, if three vertices X,Y, Z satisfy a
graphical criterion called the d-separation on D, then X ⊥⊥ Y |Z in P. The faithfulness assumption
allows us to infer dependence relations based on d-separation: P is said to be faithful to graph D
when the following holds: Any three variables X,Y, Z that are not d-separated are conditionally
dependent, i.e., X 6⊥⊥ Y |Z in P.

Note that the edges in a Bayesian network do not carry a physical meaning: They simply indicate how
a joint distribution can be factorized. Causal Bayesian networks (or causal graphs) [38] on the other
hand capture the causal relations between variables: They extend the notion of Bayesian networks to
different experimental, the so called interventional settings. An intervention is an experiment that
changes the workings of the underlying system and sets the value of a variable, shown as do(X = x).
Causal Bayesian networks allow us to calculate the joint distributions under these experimantal
conditions, called the interventional distributions2.

In this paper, we work with the causal graphs given in Figure 1. From the d-separation principle, we
see that the latent graph satisfies X ⊥⊥ Y |Z , whereas under the faithfulness condition, X 6⊥⊥ Y |Z
in the triangle graph or the direct graph. Checking the existence of such a latent variable can help
us recover the true causal graph as we discover in the next sections. We work with discrete ordinal
or categorical variables. Suppose the support sizes of the observed variables X and Y are m and n,
respectively. The joint distribution can be represented with an m × n non-negative matrix whose
entries sum to 1. We assume that we have access to this joint distribution.

We use [n] to represent the set {1, 2, . . . , n} for any n ∈ N. Capital letters represent random
variables, lowercase letters represent realizations3. Letters X,Y are reserved for the observed
variables, whereas Z is used for the latent variable. To represent the probability mass function
over three variables X,Y, Z, we use p(x, y, z) := P(X = x, Y = y, Z = z) and similarly for any
conditional p(z|x, y) := P(Z = z|X = x, Y = y). For a function q(x, y, z) that is understood to be
a probability mass function, we use shorthand notation for marginals and conditionals such as q(x, y)
and q(x|z) to represent the functions obtained from q(x, y, z) via standard operations on probability
distributions. Lowercase boldface letters are used for vectors and uppercase boldface letters are used
for matrices. We also use p(Z|x, y) to represent the conditional distribution P(Z|X = x, Y = y)
(Similarly for p(Z|x), p(Z|y)). card(X) stands for the support size of X . Rényi entropy of order
α of a random variable X is defined as Hα(X) = 1

1−α
log

∑
i p

α
i . Rényi entropy of order 0 gives

the support size of a random variable. It can be shown that in the limit as α → 1, Rényi entropy
becomes Shannon entropy, defined as H1(X) = −

∑
x p(x) log2(p(x)) in bits. In a graph D with

nodes labeled as {Xi}i, pai stands for the set of parents of Xi in D. Dir(α) stands for Dirichlet
distribution with parameter α.

7.2 Detailed Related Work

Latent Variable Discovery: Latent variables have been used to model and explain dependence
between observed variables in different communities under different names. Probabilistic latent
semantic analysis (pLSA) [19] aims at constructing a variable that explains dependence. However the
objective is not to minimize entropy of the constructed variable. Latent Dirichlet allocation (LDA) is
another framework which is widely used in topic modeling [4, 2]. Although LDA encourages sparsity
of topics, this does not correspond to minimizing the support size of the constructed latent variable.
Factorizing the joint distribution matrix between two observed variables via NMF with generalized
KL divergence loss recovers solutions to the pLSA problem [16]. Similar to pLSA, NMF does not
have an incentive to discover low-entropy latents.

2For a formal introduction to Pearl’s framework please see [47, 38].
3In some proofs, xi is used to represent the probability that the variable X takes the value i for simplicity.

13



Perhaps the most relevant to ours in the machine learning literature are the two papers in the Bayesian
setting [5, 45]. They use low-entropy priors on the latent variable’s distribution while performing
inference. However their approach is different and their methods cannot be used to discover the
tradeoff between conditional mutual information and the entropy of the latent variable. In [45], the
authors use low-entropy prior as a proxy for discovering latent factors with sparse support.

Finding the latent variable with smallest entropy that renders the two observed variables conditonally
independent is closely related to some of the problems in information theory: Wyner’s common
information [53] is defined as the minimum rate of the source from which the observed variables
X,Y can be reconstructed using additional random bits. Wyner allows multiple channel uses and is
interested in the approximate reconstruction of the observed joint distribution. This can be seen as
approximate reconstruction of the joint distribution when we raise the dimension of X and Y via
cartesian product with itself. [31] considers finding the source with the minimum rate for the exact
recovery of the observed joint distribution, but still in the asymptotic regime of multiple channel uses.
They also introduce the notion of common entropy and obtain an analytical expression for binary
variables, which we utilize in this work.

Learning Causal Graphs with Latents: Learning causal graphs with latent variables has been
extensively studied in the literature. In graphs with many observed variables, some of the edges can
be recovered from the observational data (for example through algorithms that employ conditional
independence (CI) tests such as IC* [38] and FCI [47]). However, latent variables make the CI tests
less informative, by inducing spurious correlations between the observed variables. For example for
the graphs in Figure 1 CI tests on the observed variables is not informative of the causal structure.

Identifiability of causal structures without latent variables from data has been studied extensively in
the literature under various assumptions [20, 41, 37, 39, 40, 3, 15, 26]. Our approach can be seen
as an extension of [26]: There, the authors assume that the exogenous variables have small Rényi
entropy and suggest an algorithm to distinguish the causal graph X → Y from X ← Y . However,
their approach cannot be used in the presence of latent variables. In the presence of latents [6]
considers a setup similar to [26], where the hidden variable has small support size, however also
assumes the mapping to the hidden variable is deterministic. In [23], authors identify a condition
on p(Y |X) which implies that there does not exist any latent variable Z with small support which
can make X,Y conditionally independent. For discrete variables, this assumption implies that the
conditionals p(Y |x) lie on the boundary of the probability simplex, which corresponds to the joint
probability matrix to be sparse in a structured way. In the continuous variable setting, [43] propose
using kernel methods to detect latent confounders. [52] and [8] analyzes the discoverability of causal
structures with latents using the entropic vector of the variables. Finally, related work also includes
[21] and [33], where the authors extend the additive noise model based approach in [20] to the case
with a latent confounder. Algebraic geometry can be used to distinguish causal graphs as the set of
distributions that can be encoded by a graph correspond to different algebraic varieties. However,
these methods in general are not scalable beyond a few variables and a few number of states [32].
Authors in [22] propose using Kolmogorov complexity of the causal model and declare the graph
with smaller complexity to be the true graph. [25] uses description length as a proxy to Kolmogorov
complexity to identify the latent confounders. In [48], the authors use information inequalities to infer
which subsets of a set of observed variables must have latent confounders, along with an associated
lower bound on the entropy of these confounders. In our setting of two observed variables, this gives
the trivial bound of H(Z) ≥ I(X;Y ) for any latent confounder Z.

7.3 Proof of Theorem 1: Stationarity

In this section, we show the first part of Theorem 1, i.e., that the stationarity points of the algorithm
are also stationary points of the given loss function. We write the objective function more explicitly
in terms of the optimization variables q(z|x, y):

L(q(·|·, ·)) =
∑

x,y,z

q(x, y, z) log

(

q(x, y|z)

q(x|z)q(y|z)

)

− β
∑

z

q(z) log(q(z)) (3)

=
∑

x,y,z

p(x, y)q(z|x, y) log

(

q(z|x, y)

q(z|x)q(z|y)

)

+ (1− β)
∑

z

q(z) log(q(z)) + I(X;Y ) (4)

by Bayes rule and assuming that q(z|x, y) and p(x, y) are strictly positive.
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Our objective then is
minimize
q(z|x,y)

L(q(z|x, y))

subject to
∑

z

q(z|x, y) = 1, ∀x, y,

q(z|x, y) ≥ 0, ∀z, x, y.

(5)

We can write the Lagrangian, which we represent with L̄, as

L̄ =
∑

x,y,z

p(x, y)q(z|x, y) log

(

q(z|x, y)

q(z|x)q(z|y)

)

+ I(X;Y ) + (1− β)
∑

z

q(z) log(q(z))

+
∑

x,y

δx,y

(

∑

z

q(z|x, y)− 1

)

(6)

In order to find the stationary points of the loss, we take its first derivative and set it to zero. To
compute the partial derivatives, notice that q(z|x), q(z|y), q(z) are linear functions of q(z|x, y) (use
Bayes rule and marginalization). We can then easily write the partial derivatives of these quantities
with respect to q(z|x, y) as follows:

∂q(z|x)

∂q(z|x, y)
=

∂
∑

y′

q(z|x, y′)p(y′|x)

∂q(z|x, y)
= p(y|x),

∂q(z|y)

∂q(z|x, y)
=

∂
∑

x′

q(z|x′, y)p(x′|y)

∂q(z|x, y)
= p(x|y)

∂q(z)

∂q(z|x, y)
=

∂
∑

x′,y′

q(z|x′, y′)p(x′, y′)

∂q(z|x, y)
= p(x, y).

Using these expressions we have the following.

∂L̄

∂q(z|x, y)
= p(x, y) [1 + log(q(z|x, y)) − (1 + log(q(z|x)))

− (1 + log(q(z|y))) +(1− β)(1 + log(q(z))) + δx,y]

= p(x, y)

[

−β + δx,y + log

(

q(z|x, y)q(z)1−β

q(z|x)q(z|y)

)]

Assuming p(x, y) > 0, any stationary point then satisfies

q(z|x, y) =

(

1

2

)δx,y−β
q(z|x)q(z|y)

q(z)1−β
(7)

Since q(z|x, y) is a probability distribution, we have

∑

z

q(z|x, y) =

(

1

2

)δx,y−β
∑

z

q(z|x)q(z|y)

q(z)1−β
= 1 (8)

Defining F (x, y) :=
(

1
2

)δx,y−β
, we have

F (x, y) =
1

∑

z

q(z|x)q(z|y)
q(z)1−β

. (9)

From the algorithm description, any stationary point of Algorithm 1 should satisfy

q(z|x, y) = F (x, y)
q(z|x)q(z|y)

q(z)1−β
, (10)

for the same F (x, y) defined above. Therefore a point is a stationary point of the loss function if and
only if it is a stationary point of LatentSearch (Algorithm 1).
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7.4 Proof of Theorem 1: Convergence

In this section, we show the latter statement in Theorem 1, i.e., LatentSearch converges to a local
minimum or a saddle point. We can rewrite the loss as

L(q(·|·, ·)) =
∑

x,y,z

q(x, y, z) log

(

q(x, y|z)

q(x|z)q(y|z)

)

− β
∑

z

q(z) log(q(z)) (11)

=
∑

x,y,z

p(x, y)q(z|x, y) log

(

q(z|x, y)

q(z|x)q(z|y)

)

+ I(X;Y ) + (1− β)
∑

z

q(z) log(q(z)), (12)

If we substitute β = 1, we obtain

L(q(·|·, ·)) =
∑

x,y,z

p(x, y)q(z|x, y) log

(

q(z|x, y)

q(z|x)q(z|y)

)

+ I(X;Y ). (13)

Our optimization problem can be written as

minimize
q(z|x,y)

L(q(z|x, y))

subject to
∑

z

q(z|x, y) = 1, ∀x, y.
(14)

Notice that L(q(z|x, y)) is not convex or concave in q(z|x, y). However we can rewrite the mini-
mization as follows:

minimize
q(z|x,y)

minimize
r(z|x),s(z|y)

∑

x,y,z

p(x, y)q(z|x, y)

log

(

q(z|x, y)

r(z|x)s(z|y)

)

+ I(X;Y )

subject to
∑

z

q(z|x, y) = 1, ∀x, y

∑

z

r(z|x) = 1, ∀x,

∑

z

s(z|y) = 1, ∀y.

To see that (15) is equivalent to (14), notice that the optimum for the inner minimization is r∗(z|x) =
q(z|x) and s∗(z|x) = q(z|y). This is due to the fact that (15) is convex in r(z|x) and s(z|y) and
concave in t(z), which can be seen through the partial derivatives of the Lagrangian:

min
q(z|x,y)

min
r(z|x),s(z|y)

∑

x,y,z

p(x, y)q(z|x, y) + log

(

q(z|x, y)

r(z|x)s(z|y)

)

+ I(X;Y ) (15)

+
∑

x,y

δx,y

(

∑

z

q(z|x, y)− 1

)

+
∑

x

ηx

(

∑

z

r(z|x)− 1

)

(16)

+
∑

x

νy

(

∑

z

s(z|y)− 1

)

(17)

Let L̄ be defined as

L̄ =
∑

x,y

δx,y

(

∑

z

q(z|x, y)− 1

)

+
∑

x

ηx

(

∑

z

r(z|x)− 1

)

+
∑

x

νy

(

∑

z

s(z|y)− 1

)

(18)
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For fixed q(z|x, y), s(z|y), we have

∂L̄

∂r(z|x)
= −

p(x)q(z|x)

r(z|x)
+ ηx

∂2L̄

∂r(z|x)
2 =

p(x)q(z|x)

r(z|x)2
.

Therefore L̄ is convex in r(z|x) and the optimum can be obtained by setting the first derivative to
zero. Then we have

r∗(z|x) =
p(x)q(z|x)

ηx
, ∀x, z. (19)

Since we have
∑

z

r∗(z|x) = p(x)
ηx

∑

z

q(z|x) = 1, we obtain r∗(z|x) = q(z|x). Similarly, we can

show that s∗(z|x) = q(z|y). Notice that this inner minimization is exactly the same as the first update
of Algorithm 1.

We can also show that L is convex in the variables r, s jointly: This can be seen through the fact that
∂2

∂r(z|x)s(z|y)L = 0 and the Hessian is positive definite.

This concludes that (15) is equivalent to (5). Moreover, since the objective function is convex in
q(z|x, y) and also jointly convex in r(z|x), s(z|y), we can switch the order of the minimization terms.
Therefore, we can equivalently write

min
r(z|x),s(z|y)

min
q(z|x,y)

∑

x,y,z

p(x, y)q(z|x, y) log

(

q(z|x, y)

r(z|x)s(z|y)

)

+ I(X;Y ) + L̄ (20)

Let us analyze the inner minimization in this equivalent formulation for fixed r(z|x), s(z|x). Similarly,
we can take the partial derivative as follows:

∂L̄

∂q(z|x, y)
= p(x, y) [1 + log(q(z|x, y))− log(r(z|x))− log(s(z|x)) + δx,y]

= p(x, y)

[

1 + δx,y + log

(

q(z|x, y)

r(z|x)s(z|y)

)]

∂2L̄

∂q(z|x, y)
2 = p(x, y)

[

1

q(z|x, y)

]

.

Notice that ∂2L̄
∂q(z|x,y)2

> 0. Hence L̄ is convex in q(z|x, y). Then the optimum can be obtained by

setting the first derivative to zero. We have

p(x, y)

[

1 + δx,y + log

(

q(z|x, y)

r(z|x)s(z|y)

)]

= 0, (21)

or equivalently

q(z|x, y) =

(

1

2

)1+δx,y

r(z|x)s(z|y). (22)

Note that if we define
F (x, y) :=

∑

z

r(z|x)s(z|y),

since
∑

z

q(z|x, y) =
(

1
2

)1+δx,y
∑

z

r(z|x)s(z|y) = 1, we can write

q(z|x, y) =
1

F (x, y)
r(z|x)s(z|y). (23)

This is exactly the same as the second update of LatentSearch (Algorithm 1) if r(z|x) =
q(z|x), s(z|y) = q(z|y).

Therefore, if qi(z|x, y) is the current conditional at iteration i, the next update of LatentSearch
(Algorithm 1) is equivalent to first solving the inner minimization of (15) thereby assigning r(z|x) =
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qi(z|x), s(z|y) = qi(z|y), then switching the order of the minimization operations, and solving the
inner minimization of (20), therefore assigning qi+1(z|x, y) =

1
F (x,y)qi(z|x)qi(z|y). In each of this

two-step optimization iteration, either loss function goes down, or it does not change. If it does not
change, the algorithm has converged. Otherwise, it cannot go down indefinitely since loss (2) is lower
bounded as I(X;Y |Z) ≥ 0 and H(Z) ≥ 0 and therefore has to converge. This proves convergence
of the algorithm to either a local minimum or a saddle point. The converged point cannot be a local
maximum since it is arrived at after a minimization step.

7.5 Proof of Theorem 2

We first show the result for distinguishing latent graph from the triangle graph.

Since X,Y are discrete variables, we can represent the joint distribution of X,Y in matrix form. Let
M = [p(x, y)](x,y)∈[m]×[n]. With a slight abuse of notation, let z := [z1, z2, . . . zk] be the probability

mass (row) vector of variable Z, i.e., P [Z = i] = z[i] = zi. Similarly, let xz := [xz,1, xz,2, . . . xz,k]
be the conditional probability mass vector of X conditioned on Z = z, i.e., P [X = i|Z = z] =
xz[i] = xz,i. Finally, let yz,x := [yz,x,1, yz,x,2, . . . yz,x,n] be the conditional probability mass vector
of Y conditioned on X = x and Z = z. We can write the matrix M as follows:

M =

k
∑

i=1

zi









xi,1yi,1

xi,2yi,2

...
xi,myi,m









(24)

Now suppose for the sake of contradiction that there exists such a q(x, y, z) such that
∑

z q(x, y, z) =
p(x, y) and X ⊥⊥ Y |Z . Then M admits a factorization of the form

M =

k
∑

i=1

z′i











x′

i,1y
′

i,1

x′

i,2y
′

i,2
...

x′

i,my′

i,m











, (25)

where x′

i,j ,y
′

i,j , z
′

i are due to the joint q(x, y, z) and are potentially different form their counterparts

in (24). Notice that since X ⊥⊥ Y |Z , we have y′

i,j = y′

i,l, ∀(j, l) ∈ [k] × [m]. Therefore the

matrices










x′

i,1y
′

i,1

x′

i,2y
′

i,2
...

x′

i,my′

i,m











, (26)

are rank 1 ∀i ∈ [k]. Therefore, M has NMF rank at most k. Since matrix rank is upper bounded by
the NMF rank, rank(M) ≤ k. Therefore, there exists a q(x, y, z) such that

∑

z

q(x, y, z) = p(x, y)

and X ⊥⊥ Y |Z only if rank(M) ≤ k. In fact, it is easy to show that this is an if and only if relation:
Any NMF of the joint distribution corresponds to a latent confounder and and latent confounder
corresponds to an NMF of the joint distribution. Next, we show that under the generative model
described in the theorem statement, this happens with probability zero.

We have the following lemma:

Lemma 1. Let {xi : i ∈ [n]} be a set of vectors sampled independently, uniformly randomly from
the simplex Sn−1 in n dimensions. Then, {xi : i ∈ [n]} are linearly independent with probability 1.

Proof. If xi are linearly dependent, then there exists a set {αi : i ∈ [n]} such that
n
∑

i=1

αixi = 0. Let

j = argmax{i ∈ [n] : αi > 0}. Equivalently xj is in the range of the set of vectors {xi : i ∈ [j−1]}.
Therefore, we can write

P [{xi : i ∈ [n]} are linearly independent ]

≤
n
∑

i=2

P [xi ∈ R(x1, . . . ,xi−1)] , (27)
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where R(x1, . . . ,xi−1), is the range of the vectors x1, . . . ,xi−1, i.e., the vector space spanned by
x1, . . . ,xi−1.

Notice that dim(R(x1, . . . ,xi−1)) < n−1, ∀i ≤ n−1. Therefore, codimension of R(x1, . . . ,xi−1)
with respect to the simplex is non-zero ∀i ≤ n − 1. Therefore, the Lebesgue measure
of R(x1, . . . ,xi−1) ∩ Sn−1 is zero with respect to the uniform measure over Sn−1. Hence,
P [xi ∈ R(x1, . . . ,xi−1)] = 0, ∀i ≤ n− 1.

The above argument does not hold for the last term in the summation in (27). However, intersection
of any n− 1 dimensional vector space with the simplex Sn−1 is an n− 2 dimensional slice of the
simplex [51]. Therefore, it has Lebesgue measure zero with respect to the uniform measure over the
simplex.

Corollary 3. Let {xi : i ∈ [n]} be a set of vectors sampled independently, uniformly randomly from
the simplex Sn−1 in n dimensions. Let {ci 6= 0 : i ∈ [n]} be arbitrary real scalars that are non-zero.
Then, {cixi : i ∈ [n]} are linearly independent with probability 1.

Proof. The proof of Lemma 1 goes through since the span of a set of vectors does not change with
scaling of the vectors.

M is rank deficient if and only if its determinant is zero, i.e., det(M) = 0. The determinant is
a polynomial in {zi : i ∈ [k]}. By induction, one can show that if a finite degree multivariate
polynomial is not identically zero, the set of roots has zero Lebesgue measure (for example, see [7]).
The uniform measure over the simplex is absolutely continuous with respect to Lebesgue measure.
Hence, the set of roots of a finite degree multivariate polynomial has measure zero with respect to the
uniform measure over the simplex.

To show that det(M) is not identically zero, it is sufficient to choose a set of z′is for which determinant
is non-zero. First, observe that by Corollary 3, each matrix









xi,1yi,1

xi,2yi,2

...
xi,myi,m









(28)

is full rank with probability 1. Let z1 = 1 and zj , ∀j ∈ {2, 3, . . . , k}. Then det(M) 6= 0 since M is
full rank. Therefore, the determinant, which is a polynomial in {zi : i ∈ [k]} is not identically zero.
This concludes the proof that with probability 1, rank(M) = n > k.

If the distribution is generated from the direct graph, from Lemma 1, we know that the rows of
conditional probability matrix are linearly independent. Since joint probability matrix can be obtained
by scaling each row of this matrix with the probability values of X , and this operation does not
change rank, joint probability matrix obtained from the direct graph is full rank with probability 1.
Therefore non-negative rank of this matrix has to be n, concluding the proof.

7.6 Proof of Corollary 1

The statement follows from the fact that the proposed generative model induces a non-zero probability
measure on every joint distribution, which is the set of distributions that can be encoded from the
triangle graph and any distribution that can be encoded by the latent graph requires X ⊥⊥ Y |Z ,
which we show in Theorem 2 happens with probability zero.

7.7 Proof of Theorem 3

We give the proof for binary Z. The argument can be extended to when Z has any finite number of
states.

We overload the notation and use z for the probability that random variable Z is 0. We have

p(Z = 0) = z, p(Z = 1) = 1− z (29)

p(X = 0|Z = z) = xz (30)

p(Y = 0|X = x, Z = z) = yx,z (31)
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The conditional distributions from UGM can be sampled uniformly from the simplex via normalized
exponential random variables, however in the case of binary variables, this is equivalent to sampling
uniformly. Hence, we can assume xz, yx,z are uniform random variables with support [0, 1]. Based
on this generative model, we can calculate p(x) and p(y|x) as follows:

p(X = 0) = x0z + x1(1− z), (32)

p(X = 1) = (1− x0)z + (1− x1)(1− z)

p(Y = 0|X = 0) =
y0,0x0z + y0,1x1(1− z)

x0z + x1(1− z)
(33)

p(Y = 0|X = 1) =
y1,0(1− x0)z + y1,1(1− x1)(1− z)

(1− x0)z + (1− x1)(1− z)
(34)

We use the characterization of [31] for the minimum entropy Z that can make X,Y conditionally
independent. Let t = p(X = 0) and let α := p(Y = 0|X = 0), β := p(Y = 0|X = 1). We re-state
their theorem for self-containment of our paper:

Theorem 4 ([31]). Consider two binary random variables X,Y . Define t := p(X = 0), α :=
p(Y = 0|X = 0), β := p(Y = 0|X = 1). Let α′ = min{α, β}, β′ := max{α, β}. Then of all
q(x, y, z′) where q(x, y) = p(x, y) and X ⊥⊥ Y |Z minimum entropy Z ′ has entropy

LB := min{Hb(A), Hb(B)}, (35)

A = t

(

1−
α′

β′

)

, B = (1− t)

(

1−
1− β′

1− α′

)

(36)

Note that in the generative model we are considering, the entries of p(x, y) are random variables,
which implies that LB is a random variable.

Consider a sequence zn. Let Zn be the binary random variable where P(Zn = 0) = zn. Notice that
H(zn) converges to zero if and only if zn converges to either 0 or 1. Since the generative model is
symmetric with respect to the conditionals p(x|z = 0) compared to p(x|z = 1) and p(y|x, z = 0)
compared to p(y|x, z = 1), without loss of generality we can consider the case where zn goes to 0.

Now suppose 0 < z0 < 0.5 and zn is a monotonically decreasing sequence. When we substitute zn
for z in the generative model, we use the symbols in Theorem 4 with subscript n to distinguish them
for different values of n.

The event that there does not exist a latent variable with small entropy that can make the observed
variables independent is equivalent to the event that the lower bound is strictly greater than the entropy
of the true latent variable:

P(Qp = ∅) = P(p(x, y) : ∄q(x, y, z′) (37)

s.t.
∑

z′

q(x, y, z′) = p(x, y), (38)

X ⊥⊥ Y |Z ′ , H(Z ′) ≤ H(Z)) (39)

= P(LB > H(Z)) (40)

We want to show that
lim
n→∞

P(LBn > H(Zn)) = 1. (41)

Define the following events:

εAzn := {Event that Hb(An) ≤ Hb(zn)}. (42)

εBzn := {Event that Hb(Bn) ≤ Hb(zn)}. (43)

By union bound

P(LBn ≤ H(Zn)) ≤ P(εAzn) + P(εBzn) (44)

We first investigate the term limn→∞ P(εAz ). By conditioning on the event that An ≤ 0.5 and
An > 0.5, we can reduce the comparison between Hb(a), Hb(c) to a comparision between a and c.
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Due to first applying the law of total probability and then Bayes rule, we have

P(εAzn) = P
(

εAzn |An ≤ 0.5
)

P(An ≤ 0.5) + P
(

εAzn |An > 0.5
)

P(An > 0.5)

= P (An ≤ zn|An ≤ 0.5)P(An ≤ 0.5) + P (An ≥ 1− zn|An > 0.5)P(An > 0.5)

= P (An ≤ zn)P(An ≤ 0.5|An ≤ zn) + P (An ≥ 1− zn)P(An > 0.5|An ≥ 1− zn)

= P (An ≤ zn) + P (An ≥ 1− zn)

Define the following random variable:

SA
n := −zn + tn

(

1−
α′
n

β′
n

)

, (45)

where the terms on the right hand side are as defined in Theorem 4. Then P (An ≤ zn) = P
(

SA
n ≤ 0

)

and P (An ≥ 1− zn) = P
(

SA
n ≥ 1

)

. We have

P
(

SA
n ≤ 0

)

=

∫

0

−∞

SA
n dµ, (46)

where µ is the probability measure induced by the generative model. Note that tn ∈ [0, 1], zn ∈

(0, 0.5),
α′

n

β′

n

∈ (0, 1], we have |Sn| ≤ 1. Then from the dominated convergence theorem since
∫

1dµ = 1 < ∞, we have

lim
n→∞

∫

0

−∞

SA
n dµ =

∫

0

−∞

lim
n→∞

SA
n dµ. (47)

We have

lim
n→∞

SA
n = lim

n→∞
−zn + tn

(

1−
α′
n

β′
n

)

(48)

Both αn and βn are random variables supported on [0, 1]. Moreover, since limit exists for αn, βn, it
also exists for α′

n := min{αn, βn}, similarly it exists for β′
n. Therefore,

lim
n→∞

−zn + tn(1−
α′
n

β′
n

) = x1

(

1−
limn α

′
n

limn β′
n

)

(49)

= x1

(

1−
limn min{αn, βn}

limn max{αn, βn}

)

(50)

= x1

(

1−
min{limn αn, limn βn}

max{limn αn, limn βn}

)

(51)

= x1

(

1−
min{y0,1, y1,1}

max{y0,1, y1,1}

)

(52)

where the last equation follows from the equations (32)-(34). Finally, we have that
∫

0

−∞

x1

(

1−
min{y0,1, y1,1}

max{y0,1, y1,1}

)

dµ (53)

= P

(

x1

(

1−
min{y0,1, y1,1}

max{y0,1, y1,1}

)

≤ 0

)

(54)

= P

(

x1

(

1−
min{y0,1, y1,1}

max{y0,1, y1,1}

)

= 0

)

= 0 (55)

(56)

where the last two equations follow from the fact that x1

(

1−
min{y0,1,y1,1}
max{y0,1,y1,1}

)

is supported in the

interval [0, 1] and has an absolutely continuous measure, which implies that measure of a single point
is zero.

Similarly, we can calculate

P
(

SA
n ≥ 1

)

=

∫ ∞

1

SA
n dµ = 0, (57)
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which leads to P
(

εAzn
)

= 0.

Next, we consider the same analysis for P
(

εBzn
)

. One difference is the replacement of tn with 1− tn
which does not affect the derivation except for the replacement of x1 with 1− x1. Moreover, in the
numerator within the paranthesis in (55, min{y0, 1, y1,1} is replaced with 1−max{y0, 1, y1,1} and
similarly in the denominator max{y0, 1, y1,1} is replaced with 1−min{y0, 1, y1,1}. It follows that

P
(

εBzn
)

= 0. This implies that limn→∞ P (LBn ≤ H(Zn)) = 0 concluding the proof.

7.7.1 Comments on Distinguishing Direct Graph from Latent Graph with Entropy

Consider the uniform generative model for the triangle graph. It is easy to see that in this case, in
(36), t, α′, β′ become independent and uniformly distributed random variables with the compact
support [0, 1]. One can calculate the distribution of this lower bound accordingly. This can be used to
obtain the probability of identifiability between direct graph and the latent graph for a given upper
bound on the entropy of the latent variable. We do not pursue this calculation here.

7.7.2 Extension to Z with k states

Consider the setting where Z has k states. We use the following notation in this section:

p(Z = i) = z(i). (58)

First, note that the characterization of [31] is still applicable since they show increasing the dimension
of Z to more than two states cannot reduce the minimum entropy. Similar to the above proof, we will
assume a sequence of random variables Zn. Let Zn be a sequence of random variables with the pmf

p(Zn = i) = z(i)n . (59)

Note that H(Zn) → 0 if and only if ∃i ∈ [k] such that z
(i)
n → 1 and (z

(j)
n )j 6=i → 0. In the

following, we show that a similar analysis to the binary case goes through irrrespective of how

(z
(j)
n )j 6=i converges to the zero vector. Suppose without loss of generality z

(1)
n → 1.

Due to the grouping rule of entropy, we have

H(Zn) = Hb(z
(1)
n ) + (1− z(1)n )H((wi

n)2≤i≤k), (60)

where w
(i)
n =

z(i)
n

1−z
(1)
n

. Let N be such that z
(1)
N ≥ 1 − ǫ

log2(k)
. Then z

(1)
n ≥ 1 − ǫ

log2(k)
, ∀n > N .

Then we have H(Zn) ≤ Hb(z
(1)
n ) + ǫ, ∀n ≥ N .

Now we can replicate the proof for the binary Z as follows. Let us define the events:

εAn := {Event that Hb(An) ≤ Hb(z
(1)
n )}.

εBn := {Event that Hb(Bn) ≤ Hb(z
(1)
n )}.

δAn := {Event that Hb(z
(1)
n ) < Hb(An) ≤ H(Zn)}.

δBn := {Event that Hb(z
(1)
n ) < Hb(Bn) ≤ H(Zn)}.

By union bound

P(LBn ≤ H(Zn)) ≤ P(εAn ) + P(εBn ) + P(δAn ) + P(δBn ) (61)

We can write

P(δAn ) ≤

∫ Hb(z
(1)
n

)+ǫ

Hb(z
(1)
n )

Hb(A)dµ. (62)

It is easy to see that limn→∞ P(δAn ) = 0 since ǫ → 0 and the measaure induced by the generative
model is absolutely continuous in the integral.

The rest of the analysis follows similarly to the binary case: We can obtain expressions for α, β using

k terms instead of 2. In the limit, all but the term that contains z
(1)
n go to zero and we can conclude

the proof using the same arguments.
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Figure 7: I(X;Y |Z) vs. H(Z) tradeoff curve obtained by LatentSearch (Algorithm 1) for an arbitrary
joint p(x, y) from the graph X ← Z → Y . We observed that the curve’s shape is consistent across
many runs irrespective of the graph, although the crossing point where I(X;Y |Z) = 0 changes.

7.10 Complete Details of Experiments

In this section, we explain some of the key implementation details for the experiments in Section 5
that were left out from the main text due to space constraints.

Sampling a low-entropy latent: In many experiments, we sample distributions from either the
latent graph or the triangle graph such that entropy of the latent confounder Z is small. For example,
we enforce H(Z) ≤ θ for varying thresholds θ in Figure 2c . We use a form of rejection sampling
combined with sampling from Dirichlet distributions with low-entropy as follows:

Suppose, we need N samples where H(Z) ≤ θ. We initialize α(0) = 1 and obtain 10N samples

from Dir(α(0)). If we have at least N samples where H(Z) ≤ θ, we are done. If not, we update α

by halving it, i.e., α(1) = 0.5α(0). The lower the α value, the lower-entropy distributions we will
obtain from Dir(α). Then we repeat this process until iteration i, where at least N samples can

be obtained from 10N samples using Dir(α(i)). We conclude by analyzing the histogram plots of
H(Z) that this method not only allows us to sample distributions where H(Z) ≤ θ but also where
H(Z) ≈ θ, providing us with a better control over the entropy of the latent confounder.

Choosing number of states of latent variable in LatentSearch: Recall that LatentSearch allows
us to discover a tradeoff between H(Z) and I(X;Y |Z), which, combined with a I(X;Y |Z) for
conditional independence, can be used to approximate common entropy. Since only X,Y are
observed, we do not know how many states k Z has. As pointed out in the main text, one can try
all k ≤ mn without loss of generality, where m,n are the number of states of X,Y , respectively.
However, in practice, this takes a long time. Furthermore, we identified that this is not necessary for
the estimation of common entropy.

We observe that if we search over Z with very large number of states, e.g., k = mn, performance of
LatentSearch does not improve compared to having k = min{m,n}. This is because the number
of optimization parameters increases significantly which may require many more iterations. It also
slows down the algorithm. We observed that choosing k = max{m,n} provides the smallest entropy
latents in practice. Therefore, we set k = max{m,n} in LatentSearch for our experiments.

Sampling DAGs for testing EntropicPC in Figure 4: We first sample Erdös-Rényi graphs with
parameter 0.2. Since there are 10 nodes, this corresponds to an average degree of 2 per node. Note
that these graphs are undirected. We need to make them directed and ensure there are no cycles. For
this, we randomly picked a total order between the nodes and directed the edges respecting that total
order. It can be easily shown that the resulting graphs have no cycles.

Sampling joint distributions for a given DAG in Figure 4: For every DAG we generate, we need
to obtain a joint distribution from which we sample a dataset. To obtain a distribution for a given
graph, we employ a method from Chickering and Meek [10]. It is known that constraint-based
methods require the data to be faithful to the graph, i.e., every pair of variables that are connected
in the graph should be dependent. This notion should also be true under any conditioning set. In
practice, this does not always hold. Specifically, nodes that are far away from each other in the graph
might be almost statistically independent. To ensure faithfulness in practice, Chickering and Meek
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use a method to sample conditional distributions for a given DAG [10]. In summary, it ensures that
parent-child relations are far from uniform. The details of their sampling method, which we also use,
are as follows:

For a variable X with m states, they define the vector v = 1
T
( 11 ,

1
2 , . . . ,

1
m
), T =

∑m

i=1
1
i
. For the

jth instantiation of the parent set of X , pa
(j)
x , they use the vector vj which is the j-shifted version of

v. The shifts are cyclic in the sense that vm = v. They later sample p(X|pa
(j)
x ) from the Dirichlet

distribution with parameter vector vj . When each coordinate parameter of Dirichlet is identical, the
expected distribution is uniform. When Dirichlet is sampled with parameters vj as given above,
each coordinate has a different parameter. Indeed, the expected distribution becomes vj rather than

uniform. Therefore, this method ensures that p(x|pajx) is typically far from uniform, encouraging
strong dependence between parents and the children in the graph.

Details specific to Figure 2a: We sampled 100 distributions from the latent graph for each value
of n, where X,Y, Z all have n states. In each distribution, we ensure that H(Z) ≤ 1 using the
low-entropy sampling method described above. We use LatentSearch on 50 different values of β,
uniformly spaced in the interval [0, 0.1]. We set the latent variable for LatentSearch to n number of
states. We run LatentSearch for 500 iterations each time. We used the conditional mutual information
threshold of 0.001: In other words, of the algorithm outputs for the 50 β values used, we pick the
smallest entropy Z discovered by the algorithm among those that ensure I(X;Y |Z) ≤ 0.001. We
then compare this value with the entropy of the true latent confounder.

Details specific to Figure 2b: We sample 1000 distributions from the triangle graph. As mentioned
in the main text, we use LatentSearch output to approximate common entropy. The settings for
LatentSearch are the same as above, i.e., we use 50 β values uniformly spaced in the range [0, 0.1],
use n states for the latent and run the algorithm for 500 iterations. Entropy recovered by LatentSearch
for a pair X,Y is then compared with min{H(X), H(Y )}. The y−axis shows that fraction of times
the reconstructed latent has entropy of at least αmin{H(X), H(Y ) for different values of α.

Details specific to Figure 2c: For this figure we sample 1000 distributions from both triangle
graph and the latent graph for various upper bounds on the entropy of Z. Low-entropy sampling
is done as explained before. Finally, Algorithm 2 is used to identify the true causal graph with
θ = 0.8min{H(X), H(Y )}. LatentSearch settings used within Algorithm 2 are as given previously.

Details specific to Figure 3a: Tuebingen dataset consists of around 100 real cause-effect pairs.
We run LatentSearch to understand whether real cause-effect pairs can be made independent by
low-entropy variables. As explained in the main text, we used different conditional independence
thresholds. Visual inspection of I −H curves suggest that 0.001 is a good threshold for this dataset.
This can be done by checking, for the given range of β values, where the curve disengages form the
x = 0 axis. We used 100 β values in the range [0, 0.1] and run the LatentSearch algorithm for 1000
iterations for this experiment.

Details specific to Figure 3b: This figure is an example of the tradeoff curve LatentSearch discovers
for various values of β. Each dot corresponds to a joint distribution p(x, y, z) constructed by
LatentSearch for a given value of β after a certain number of iterations. As can be seen from
(2), smaller β values enforce smaller I(X;Y |Z). The horizontal line indicates min{H(X), H(Y )}.
X,Y can always be separated with this much entropy since by definition X ⊥⊥ Y |X and X ⊥⊥ Y |Y .
Ideally, i.e., with infinite samples and infinitely many β values, the point that intersects the x = 0 line
(i.e., the y− axis) should give the common entropy. To account for finite-sample effects, we use a
different horizontal line, which we call conditional mutual information threshold, as described before.

Details specific to Figure 3c: We sample from the graph X → Z → Y and investigate H(Z).
Note that Z acts as a mediator if it is not observed. Our goal is to understand if it is typical to have
low-entropy mediators. We set the dimensions of X,Y, Z to n. If Z has k states, H(Z) ≤ log(k).
Our goal is to demonstrate that unless k is a constant, H(Z) scales similar to H(X), H(Y ). Most
of the details of this experiment are provided in the main text. Note that when αDir ≤ 1

n
for a

distribution with n states, a sample from Dirichlet distribution typically looks very peaked, i.e., it
has very high probability for one of the states, and very low probabilities for the rest. When such
a low αDir is used to sample the conditional of p(Z|x) for every value of x, X and Z are almost
deterministically related, i.e., there is almost no additional entropy introduced in the system. We
show that even then the entropy of the mediator scales. Larger αDir values will give distributions
that are closer to uniform, which in turn will make Z close to uniform and have log(n) entropy.
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Figure 8: [Section 5.5] Output of (a) EntropicPC and (b) PC in ADULT Data.

Details specific to Figure 4: Our goal is to demonstrate how well output of EntropicPC approximates
a true causal graph by checking graphical distances between the skeleton and essential graph. Essential
graph is the mixed graph where undirected edges show the edges that cannot be learned whereas
directed edges show the edges that can be learned. Structural Hamming Distance counts the number
of edges that should be reverted, added or removed to change the output graph into the true graph.
For skeleton discovery, we see edge discovery as a classification problem and calculate the F-score
as an established summary of the classifier performance. The graph and distribution sampling are
described above. We sample a dataset with 100000 variables and for each figure, we subsample
varying number of samples from this dataset without replacement. This is repeated for 100 different
graphs, and their corresponding distributions.

7.11 EntropicPC and PC on ADULT Dataset

Due to space constraints in the main text, we provide the outputs of PC and EntropicPC algorithms
for the ADULT dataset in this section. The results are given in Figure 8.

Note that the bidirected edges represent undirected, i.e., unoriented edges. Even though the true
causal graph is not known, we can easily conclude that EntropicPC discovers a much more reasonable
graph: salary is caused by education,occupation whereas PC misses both edges. Both algorithms
seems to suffer from unfaithful data - sex is not required to separate marital-status and occupation
whereas we expect it to since it should be a source node. This drives both algorithms to orient sex as
a collider.

7.12 EntropicPC on Line and Collider Graphs

To demonstrate effectiveness of EntropicPC compared to PC on the simplest possible graph, we
conducted the experiments of Figure 4 on the line graph X → Y → Z and the collider graph
X → Y ← Z. The results are given in Figures 9 and 10, respectively.

7.13 Comparing LatentSearch with EM, NMF and Gradient descent

7.13.1 Comparison to gradient descent

Instead of using LatentSearch for minimizing the loss in (2), one can use gradient descent. Even
though the objective is not convex, gradient descend will still output a stationary point if it converges.
However gradient descend comes with many practical issues, as we detail in the following, and
support with experiments.
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