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Abstract

We present a scalable technique for upper bound-

ing the Lipschitz constant of generative models.

We relate this quantity to the maximal norm over

the set of attainable vector-Jacobian products of a

given generative model. We approximate this set

by layerwise convex approximations using zono-

topes. Our approach generalizes and improves

upon prior work using zonotope transformers and

we extend to Lipschitz estimation of neural net-

works with large output dimension. This provides

efficient and tight bounds on small networks and

can scale to generative models on VAE and DC-

GAN architectures.

1. Introduction

We study the problem of bounding the Lipschitz constant

of generative models. The central technical difficulty is that

these are vector-valued functions with high-dimensional

outputs, so the techniques for Lipschitz estimation of scalar-

valued neural networks do not directly translate. Our ap-

proach is to frame the Lipschitz constant estimation prob-

lem as an optimization over the range of attainable vector-

Jacobian products. We overapproximate this set via lay-

erwise convex approximations, and then solve a relaxed

version of the optimization problem.

The primary challenge is computing the feasible set of

vector-Jacobian products over a range of inputs and vec-

tors. We generate an overapproximation of this set by repre-

senting it as a zonotope. While prior work has performed

reachability analysis of neural networks using zonotopes,

these approaches only consider the forward pass. Our tech-

nique generalizes this prior work and is able to yield tighter

bounds. Additionally, we are able to apply our approach to

backpropagation, where we pass zonotopes backwards in

place of vectors.

We present a general algorithm for mapping zonotopes
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through a variety of nonlinear operators and relate this

to a 2-dimensional geometric problem that we solve op-

timally. The final norm-maximization that arises turns

out to be equivalent to a mathematical question called the

Grothendieck problem. We demonstrate that the linear-

programming relaxation of this problem can be solved in

linear time with our machinery. To fairly compare our work

against existing Lipschitz estimation techniques, we first

compare the estimated Lipschitz value and runtime of our

algorithm on networks of increasing size trained on a toy

dataset. We observe that our approach favorably trades-off

accuracy for efficency and yields tighter bounds compared

to previous techniques. Further, it can significantly improve

the runtime of exact Lipschitz computations. We scale our

technique to generative models on MNIST and CIFAR-10,

using well-known architectures like DCGAN and VAEs with

both fully-connected and convolutional layers (Kingma &

Welling, 2013; Radford et al., 2015). Our approach yields

much tighter bounds compared to any other technique that

can handle vector-valued networks and can scale to such

architecture sizes.

2. Related Work

Robustness Certification: Lipschitz estimation is closely

related to robustness certification. Here, the goal is to pro-

vide a certificate of robustness against adversarial attacks

for a specified network and input region. The techniques

of interest in this domain are Lipschitz approximation and

reachability analysis. It has been noted multiple times that

an upper bound to the Lipschitz constant can provide a guar-

antee of robustness against adversarial examples (Hein &

Andriushchenko, 2017; Weng et al., 2018b;a). Reachability

analysis is frequently couched in the language of abstract

interpretations where the goal is to develop sound transfor-

mations to map sets through the forward pass of a given

classifier. The classes of sets considered include hyper-

boxes and zonotopes, as well as polytopes, imageStars, and

linear bounds (Singh et al., 2019a;b; Mirman et al., 2018;

Zico Kolter & Wong, 2017; Weng et al., 2018a; Xu et al.,

2020; Zhang et al., 2018; Singh et al., 2018; Tran et al.,

2020).

Lipschitz Approximation: A number of recent works

provide either heuristic estimates or provable upper bounds
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of the Lipschitz constant of neural networks. For ReLU net-

works, this problem is known to be NP-hard and has strong

inapproximability guarantees (Virmaux & Scaman, 2018;

Jordan & Dimakis, 2020). However for small networks it

has been shown that this quantity may be estimated to a

reasonable degree of accuracy. The majority of these works

are either unable to handle vector-valued neural networks

or are unable to scale to larger networks. Provable upper

bounds of the Lipschitz constant may be attained using inter-

val analysis (Weng et al., 2018a), semidefinite programming

(Fazlyab et al., 2019), linear or mixed-integer programming

(Jordan et al., 2019), or polynomial optimization (Latorre

et al., 2019; Chen et al., 2020). Heuristic estimates of the

Lipschitz constant may be attained by either randomness

and extreme-value theory (Weng et al., 2018b), or by a

greedy algorithm over the activation patterns (Virmaux &

Scaman, 2018). Our work can be viewed as a spiritual

successor to the interval analysis approach of Lipschitz esti-

mation and the zonotope abstract interpretation approaches

for robustness certification.

3. Problem Statement and Relaxation

Strategy

We formally define the problem of estimating the Lipschitz

constants of vector-valued functions and provide a broad

overview of the strategy for our convex relaxation. We start

with the notation we will employ.

Notation: We will denote vectors using lowercase letters,

matrices using capital letters and sets using calligraphic

letters. We denote the unit-norm ball with respect to the

α-norm as Bα. We refer to the dual norm of the α-norm as

the norm ‖·‖α∗ , defined as ‖v‖α∗ := supu∈Bα
|uT v|. For

a function f(·) : Rk → R
n, we denote the Jacobian with

respect to its argument as ∇xf(x), which is a matrix in

R
n×k. We will frequently abuse notation and for sets X

and functions f , we write f(X ) to denote the set {f(x) |
x ∈ X}. We use ⊙ to denote the Hadamard product of two

vectors, and ⊕ to denote the Minkowksi sum of two sets.

Lipschitz constants of vector-valued functions: Given

a neural network f : Rk → R
n, an input domain X ⊆ R

k

and norms ‖·‖α, ‖·‖β over Rk,Rn respectively, the local

Lipschitz constant is formally defined as:

L(α,β)(f,X ) := sup
x,y∈X

‖f(x)− f(y)‖β
‖x− y‖α

. (1)

When f is continuously differentiable and X is an open set,

this quantity may be written as an optimization over matrix

norms of the Jacobian. Letting ∇xf(x) be the Jacobian of

f evaluated at x, we have that

L(α,β)(f,X ) = sup
x∈X

‖∇xf(x)‖α→β . (2)

The matrix norm ‖M‖α→β is defined as

‖M‖α→β := sup
‖v‖α≤1

‖Mv‖β = sup
‖u‖β∗≤1

∥

∥MTu
∥

∥

α∗
. (3)

where the second equality follows from the definition of the

dual norm. Combining Equations 2 and 3, we can formu-

late the problem of computing the Lipschitz constant as an

optimization over vector-Jacobian products:

L(α,β)(f,X ) = sup
x∈X

sup
u∈Bβ∗

∥

∥∇xf(x)
Tu

∥

∥

α∗
. (4)

When f is nonsmooth, as in the case of neural networks with

ReLU nonlinearities, the optimization over the Jacobian in

Equation 4 is replaced with an optimization over Clarke

generalized subgradients (Jordan & Dimakis, 2020). For

our purposes, as we seek only to upper bound this quantity,

this distinction is of minimal importance.

The strategy we employ to upper bound Equation 4 will

rely on two clear steps. The first step is to generate a sound

approximation of the set of vector-Jacobian products of f ,

and the second step is to bound the maximal ‖·‖α∗ norm of

this set. Concisely, we first develop a set Y satisfying the

containment

{∇xf(x)
Tu | x ∈ X , u ∈ Bβ∗} ⊆ Y, (5)

and then we upper bound the maximal α∗ norm of Y .

We will focus in particular on the L(∞,1)(f,X ) Lipschitz

constant. The choice of ‖·‖α to be the ℓ∞ norm is standard

in the robustness certification literature. The choice of ‖·‖β
to be the ℓ1 norm will yield an upper bound for L(α,p)(f,X )
for p ≥ 1 as the dual ball, Bβ∗ is the ℓ∞ ball and contains

all other ℓp balls. This approach relies on mapping ℓ∞ balls

through both the forward and backward pass of a network,

which zonotopes are well-suited for.

Vector-Jacobian Products of Neural Networks: To han-

dle the step of overapproximating the set of vector-Jacobian

products, we turn our attention to the structure of the func-

tions we consider. We consider feedforward neural networks

with either fully-connected or convolutional layers and el-

ementwise nonlinearities, σ, such as the ReLU, tanh, or

sigmoid operators. A neural network f with L hidden lay-

ers may be evaluated according to the following recursion,

f(x) := WLZL(x) + bL (6)

Zi(x) = σ
(

Ẑi(x)
)

(7)

Ẑi(x) = WiZi−1(x) + bi (8)

Z0(x) = x, (9)

for i in {1, . . . L}. When f has convolutional layers, the

affine operator in the definition of Ẑi(x) may be instantiated

as a convolution operator.
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While the full Jacobian may be expensive to compute,

vector-Jacobian products are a standard operation performed

on neural nets via the backpropagation algorithm. This may

be evaluated according to the following recursion,

∇xf(x)
Tu := WT

1 J1(x)
TY1(x, u) (10)

Yi(x, u) = JT
i+1(x)Ŷi(x, u) (11)

Ŷi(x, u) = WT
i+1Yi+1(x, u) (12)

YL(x, u) = u, (13)

where Ji(x) is the Jacobian of the ith nonlinearity with

respect to its input, ∇
Ẑi
Zi(x), and i ranges from 1 to L−

1. For the standard elementwise nonlinearities, Ji(x) is

diagonal and may be written as the Hadamard product with

a vector. For example, when σ is the ReLU operator, this is

a Hadamard product with a vector taking entries in {0, 1},

depending on the sign of the input to each neuron. When

convolutional layers are used in place of fully-connected

layers, the transpose convolution operator with no bias terms

may be used in place of WT
i+1 in the definition of Ŷi(x, u).

For generative models that yield images, the outputs are

constrained to the hyperbox [0, 1]n, usually by applying

a sigmoid or tanh layer to the output of f . In this case,

ŶL−1(x, u) is WT
L JT

L (x)u, for JL(x) denoting the Jacobian

with respect to this final nonlinear layer.

As our goal is to generate a set Y satisfying the containment

in equation 5, we can unroll the recursions and iteratively

construct sets which serve as sound approximations of each

element in the recursion. For an input range of X , our

algorithm will yield a collection of sets Zi, Ẑi,Ji,Yi, Ŷi

satisfying the containments

X ⊆ Z0 Bβ∗ ⊆ ŶL (14)

WiZi−1 + bi ⊆ Ẑi WT
i Ŷi ⊆ Yi−1 (15)

σ(Ẑi) ⊆ Zi Ji ⊙ Yi+1 ⊆ Ŷi (16)

∇zσ(Zi) ⊆ Ji (17)

That is, we first overapproximate the range of attainable val-

ues of each layer of the neural net, Zi(X ) and Ẑi(X ). This

allows us to create sets that contain the true range of gradi-

ents for each nonlinearity, ∇Zi
Ẑi(X ) as per the left column.

Then a similar procedure is used to obtain sets which con-

tain the true range of partial vector-Jacobian products as the

backpropagation algorithm is performed, i.e. Yi(X , Bβ∗).
Ultimately this will yield a a set that contains the set of

attainable vector-Jacobian products ∇xf(X )TBβ∗ . Sound-

ness is encapsulated in the following theorem.

Theorem 1. For feedforward neural networks f , an input

set X and sets Zi, Ẑi,Ji,Yi, Ŷ〉 satisfying the containments

in Equations 14-17, the set of vector-Jacobian products

satisfies

{∇xf(x)
Tu | x ∈ X u ∈ Bβ∗} ⊆ Y0. (18)

For such a Y0, the Lipschitz constant of f may be upper-

bounded by maximizing the ‖·‖α∗ norm over the set Y0.

Abstracting this slightly, we notice that each of the recur-

sive containments follow one of four forms. The first is the

mapping of sets through affine operators as in equations 15.

Next we require the mapping of sets through the nonlinear-

ity σ or an elementwise multiplication as in equation 16.

Third we have the Jacobian operator of σ as in equation 17.

In the sequel we will describe a family of sets that trades

off expressiveness with efficiency of representation, and

then we develop a technique to perform each of these four

operations in a way that satisfies the required containments.

4. Hyperboxes and Zonotopes

The key idea to handle the sound approximations required

by Theorem 1 is to introduce a family of sets and develop

transformations that are closed under this family of sets

and preserve the necessary containment for the four classes

of operators. The families of sets we will consider here

are hyperboxes and zonotopes. Throughout our Lipschitz

estimation procedure, we will frequently make use of the

fact that linear programs and Minkowski sums of these sets

are efficiently computable.

Hyperboxes: An axis-aligned hyperbox in R
d may be

defined by a center point c ∈ R
d and a radius vector r ∈ Rd

with r ≥ 0, such that the set H(c, r) may be defined as

H(c, r) := {c+ r ⊙ y | ‖y‖∞ ≤ 1}.

Hyperboxes have very efficient representations, and en-

joy many nice computational properties. Namely, linear

programs over H(c, r) admit a closed-form solution com-

putable in time O(d) as do Minkowski sums:

max
x∈H(c,r)

aTx = aT c+ ‖a⊙ r‖1

H(c1, r1)⊕H(c2, r2) = H(c1 + c2, r1 + r2).

Zonotopes: Zonotopes are a family of sets that can be

much more expressive than hyperboxes but also enjoy many

of the same efficient subroutines. A zonotope may be

defined as the image of an affine operator applied to a

hyperbox, or equivalently, a Minkowski sum of line seg-

ments. Typically a zonotope in R
d is represented in the

G-representation, where a center c ∈ R
d and a generator

matrix G ∈ R
d×m are supplied. The number of columns, m

of E is referred to as the degrees of freedom of a zonotope.

Formally, these sets are described as

Z(c, E) := {c+ Ey | ‖y‖∞ ≤ 1}.

Linear programs over zonotopes also admit a closed form

solution as

max
x∈Z(c,E)

aTx = aT c+
∥

∥ETa
∥

∥

1
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which follows from the definitions of dual norms. An im-

portant and frequently used application of this fact is that

coordinate-wise lower and upper bounds may be efficiently

computed. Indeed, the smallest hyperbox containing a zono-

tope may be written as

Z(c, E) ⊆ H(c, |E|~1).

where |E| denotes the absolute value operator applied el-

ementwise to E. Similarly, the Minkowski sum of two

zonotopes is efficiently computable as

Z(c1, E1)⊕ Z(c2, E2) = Z(c1 + c2, E1||E2)

where E1||E2 is the concatenation of the columns of E1

with those of E2.

5. Zonotopes and Sound Pushforward

Operators

Now we describe how to construct sound transformations

as required by the operations outlined in Equations 14-17.

Affine operators: Both hyperboxes and zonotopes have

efficient sound transformations when mapping through

affine operators. Consider an affine operator x → Ax+ b.

In general, hyperboxes are not closed under affine operation,

but the tightest sound operator maps a hyperbox H(c, r)
to the hyperbox H(Ac+ b, |A|r). Zonotopes, on the other

hand, are closed under affine operation and Z(c, r) maps to

Z(Ac+ b, AE).

Elementwise nonlinearities: In general, zonotopes may

not be closed under elementwise nonlinearities. Here we

will demonstrate a strategy for these mappings that are opti-

mal in a sense and improve upon the mappings of zonotopes

through elementwise nonlinearities from prior works.

In general, the problem we consider is to map a zonotope

Z ⊆ R
d through an operator Φ : Rd → R

d where Φ(x) =
(φ(x1), . . . , φ(xd)). That is, we wish to develop a zonotope

Z ′ satisfying Φ(Z) ⊆ Z ′.

The strategy we employ to construct Z ′ is to retain the

structure of Z and incorporate new degrees of freedom. We

will scale Z along each coordinate and cover the errors by

taking the Minkowski sum with a new zonotope:

Z ′ = (Λ⊙ Z)⊕ Ẑ

where Λ is a vector and Ẑ represents the a zonotope contain-

ing the new degrees of freedom. The following sufficient

condition states that this transformation satisfies the desired

containment property:

Lemma 1. For any zonotope Z ⊂ R
d and any operator Φ

operating over Rd, if Ẑ is a zonotope satisfying the contain-

ment

{Φ(z)− Λ⊙ z | z ∈ Z} ⊆ Ẑ (19)

then

Φ(Z) ⊆ (Λ⊙ Z)⊕ Ẑ.

We refer to the set {Φ(z)−Λ⊙ z | z ∈ Z} as the residuals,

and reduce the problem to finding a vector Λ and set Ẑ

containing these residuals. Our strategy is to consider sets

Ẑ that are axis-aligned hyperboxes, i.e. Ẑ = H(b∗, µ∗).
While there are many such residual hyperboxes, a reason-

able heuristic would be to choose Λ to yield the smallest

hyperbox satisfying Lemma 1.

By considering only transformations that scale each coor-

dinate of Z independently and accounting for the residuals

with a hyperbox, it suffices to consider each coordinate indi-

vidually. In this case, the soundness criterion of Equation

19 reduces to the condition:

{φ(zi)− Λizi | z ∈ Z} ⊆ [bi − µ, bi + µ].

By our heuristic, we would like to minimize the size of the

residual interval, 2µ in the above equation. This may be

written as a min-max optimization:

min
Λi,bi

max
z∈Z

|φ(zi)− Λizi − bi|. (20)

Indeed, this may be equivalently be viewed as fitting an

affine function L(zi) := Λizi+bi to the function φ(zi) such

that the maximum absolute value deviation between L(zi)
and φ(zi) is minimized across all Z. Now assume that the

optimal objective value of the above min-max is 2µ∗, and

the argmin and argmax are (Λ∗
i , b

∗
i ) and (z∗i ) respectively.

Then by definition, we have that

{φ(zi)− Λ∗
i zi | z ∈ Z} ⊆ [b∗i − µ∗, b∗i + µ∗].

By computing the optimal solution to Equation 20 for each

coordinate i, we can compute Λ∗ and a residual hyperbox

H(b∗, µ∗) satisfying the sufficient condition required by

Lemma 1.

It remains to be seen how to efficiently solve the min-max

of Equation 20. We consider this problem graphically and

notice that any 2-dimensional set of points described as the

points with vertical deviation of no more than µ from an

affine function L(zi) is a parallelogram with vertical sides.

Indeed, we refer to sets of the form

{(zi, yi) | zi ∈ [li, ui] |yi − L(zi)| ≤ µ}

as vertical parallelograms, parameterized by the line L(·)
and vertical range µ and denoted as P (L, µ). As we have

shown, the min-max can be reduced to an instance of the

vertical-parallelogram fitting problem.

Definition 1. The vertical parallelogram fitting problem

asks the following question. Given a 2-dimensional set S,

we seek to find the vertical parallelogram with minimal area

that contains the set S.
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Since the horizontal range of the provided set S is fixed, the

area of a vertical parallelogram hinges only upon the length

of its vertical side. We discuss how to solve this problem in

the next section.

Applying this problem to the particular form of the min-max

in Equation 20, we arrive at the following theorem:

Theorem 2. When S is the set {(zi, φ(zi)) | zi ∈ [li, ui]},

the solution to the vertical parallelogram fitting problem

yields the optimal solution to Equation 20. Repeated calls

to this subroutine yields the tightest hyperbox fitting the

residuals as in equation 19.

Jacobians of Elementwise Operators: Now we consider

sound operators for the Jacobians of these elementwise non-

linearities, which will ultimately yield the sets Ji as in

equation 17. Specifically the goal is to develop a set con-

taining

{∇zΦ(z) | z ∈ Z}

for any zonotope Z. While the strategy presented above cer-

tainly applies to this case, we choose to develop a hyperbox

approximation for this containment. As hyperboxes allow

for independence of coordinates and the Φ operator is an

elementwise operator, this reduces to computing, for each

coordinate i, the values:

j
(l)
i := min

z∈Z
φ′(zi) j

(u)
i := max

z∈Z
φ′(zi).

When the ith coordinate of Z is bounded in [li, ui], the

above minimum and maximum may be solved efficiently

for common nonlinearities. Indeed for ReLU, we have

that j
(l)
i = sign(li) and j

(u)
i = sign(ui). For the sig-

moid and tanh operators, this is j
(l)
i = φ′(max({|li|, |ui|}))

and j
(u)
i = φ′(min({|li|, |ui|}). This may be computed

for every coordinate i and yields the hyperbox with center
j(u)+j(l)

2 and radius j(u)−j(l)

2 ).

Elementwise multiplication: Using the above machin-

ery, we can handle the elementwise multiplication operator

in a sound fashion. Given a zonotope Z and a hyperbox H ,

we wish to develop a zonotope which contains the set

{x⊙ z | x ∈ H, z ∈ Z}

Parallel to Lemma 1, we employ a strategy where we seek

to find the hyperbox that most tightly fits the residual set.

This soundness criterion is proved in the following lemma:

Lemma 2. For any zonotope Z ⊆ R
d and hyperbox H ⊆

R
d, if Ẑ is a zonotope satisfying the containment

{x⊙ z − Λ⊙ z | x ∈ H z ∈ Z} ⊆ Ẑ (21)

then

{x⊙ z | x ∈ H z ∈ Z} ⊆ (Λ⊙ Z)⊕ Ẑ.

lemma

Since ⊙ acts elementwise, H is a hyperbox, and we only

seek to fit a hyperbox residual, we may again consider each

coordinate independently. This reduces to another min-max

problem where the maximum is now taken over both Z and

H .

min
Λi,bi

max
z∈Z,x∈H

|xi · zi − Λizi − bi|. (22)

We may again solve this via a reduction vertical-

parallelogram fitting problem. We can suppose that zi is

contained in the interval [l
(z)
i , u

(z)
i ] and xi is contained in

the interval [l
(x)
i , u

(x)
i ]. Then the following theorem relates

the vertical parallelogram fitting problem to the elementwise

multiplication operator.

Theorem 3. When S is the set {(z, x · z) | l(z) ≤ z ≤
u(z) l(x) ≤ x ≤ u(x)}, the solution to the vertical-

parallelogram fitting problem yields the optimal solution to

Equation 22. Repeated calls to this subroutine yields the

tightest hyperbox fitting the residuals as in Equation 21.

theorem In this sense, we may once again compute the

vertical parallelogram fit for each coordinate i to generate

the scaling factor Λ and residual hyperbox Z ′.

6. Vertical-Parallelogram fitting problem

In the cases of elementwise operators or elementwise mul-

tiplication by a hyperbox, we have reduced the problem of

tightly fitting the residuals to the vertical parallelogram fit-

ting problem. Here we describe our algorithm to solve this

problem and illustrate its use on two examples. Prior work

has optimally solved this problem for the ReLU nonlinearity,

but is unnecessarily loose for differentiable nonlinearities.

We provide full derivations for the ReLU, sigmoid, tanh,

and absolute value operators in the appendix.

Algorithm Consider some general 2-dimensional set S.

We will walk through the major components of our algo-

rithm and describe the necessary subroutines to fit a vertical

parallelogram to S. Recall that vertical-parallelograms are

parameterized by a scalar vertical side-length, 2µ, and an

affine function L(·) which is parameterized by a slope λ

and intercept b.

First we compute the vertical-side length µ. Since verti-

cal parallelograms are convex, any vertical parallelogram

containing the target set S must contain its convex hull. As-

suming that the set S is bounded in the horizontal dimension

by [lx, ux], the convex hull of S may be decomposed into a

convex upper and lower hull, h+(x), h−(x) such that

conv(S) = {(x, y) | x ∈ [lx, ux], h−(x) ≤ y ≤ h+(x)},

where the upper hull is concave and the lower hull is convex.

The vertical deviation between these hulls, which we refer
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of the upper and lower hulls, yielding an admissible range

of [αux−βlx
ux−lx

, βux−αlx
ux−lx

]. We choose λ to be the midpoint of

this interval. The intercept of the center line may then be

chosen such that it passes through the point (ux,
α+β
2 ux).

We plot the resulting parallelogram in blue.

7. Maximizing Norms over Zonotopes

The final step to upper bounding the Lipschitz constant of

a network is to compute a maximization of the ‖·‖α∗ norm

over a zonotope Z, which contains the set of all attainable

vector-Jacobian products. While maximizing a convex norm

over a convex set may be hard in general, it suffices to upper

bound this value. We may always upper bound this norm

efficiently by transforming Z into the tightest containing

hyperbox and computing the norm over this hyperbox. Any

maximal-ℓp norm of a hyperbox is efficiently computable,

so this technique is quite efficient. However as we typically

consider the α to be the ℓ∞ norm, we focus on techniques to

maximize the dual ℓ1 norm specifically. First we show that

this problem is equivalent to computing the Grothendieck

problem, i.e. to compute the matrix norm ‖·‖∞→1 .

Theorem 4. The problem of computing the maximal ℓ1
norm of a zonotope is equivalent to the ‖·‖∞→1 matrix

norm: both problems are NP-hard in general. Additionally,

any approximation algorithm with approximation ratio α

for the Grothendieck problem will yield an approximation

algorithm with ratio α for the zonotope ℓ1 maximization

problem and vice versa.

theorem The Grothendieck problem is well-studied and it

has been shown that the semidefinite relaxation yields an

approximation ratio of < 1.783 (Braverman et al., 2013).

However, this relaxation may be quite slow. We present a

novel result that states that the linear-programming relax-

ation for the ℓ1 zonotope norm maximization problem, and

equivalently the Grothendieck problem, may be computed

in linear time.

Theorem 5. For a zonotope, Z(c, E), the linear program-

ming relaxation of maxz∈Z(c,E) ‖z‖1 is computable in time

O(|E|) where |E| denotes the number of elements in E.

theorem The proof follows from applying the vertical-

parallelogram fitting algorithm to the absolute value op-

erator and then solving a linear program over the resulting

zonotope.

8. Experiments

We highlight that our algorithm, which we refer to as ZLip,

is specifically designed to provide Lipschitz estimates of

networks with large output dimension. However, the ap-

proaches outlined above are applicable to scalar functions

as well. As much of the literature focuses on classifiers, we

first compare our approach on a binary classification task

against other Lipschitz estimation techniques. Then we ap-

ply ZLip to generative models for MNIST and CIFAR-10. A

full description of the experimental details and additional ex-

periments on MNIST and CIFAR-10 classifiers are present

in the supplementary.

Toy Network Benchmarks: To fairly compare against

existing Lipschitz estimation techniques, we present results

on the 2-dimensional Circle dataset from (Aziznejad et al.,

2020), where the binary classification is resolved by taking

the sign of the output. We consider the L(∞,|·|)(f,X ) Lip-

schitz constant for fully-connected networks f with input

dimension 2 and a varying amount of layers of width 100

and the ReLU nonlinearity. We report the average Lipschitz

estimate and compute time for the following techniques:

Fast-Lip, LipSDP, SeqLip, CLEVER, and LipMIP. Fast-Lip

and LipSDP provide provable upper bounds (Weng et al.,

2018a; Fazlyab et al., 2019). SeqLip and CLEVER provide

heuristic estimates and LipMIP computes this quantity ex-

actly (Virmaux & Scaman, 2018; Weng et al., 2018b; Jordan

& Dimakis, 2020). LipMIP leverages interval analysis as a

first step, so we also consider a modified version that instead

uses the layerwise approximations yielded by ZLip.

In Figure 2, we plot the reported Lipschitz estimate and

runtime of these other techniques applied on input regions

that are random hyperboxes of ℓ∞ radius 0.1 centered at

elements in the test set. These plots can demonstrate where

each technique lies with respect to the efficiency-accuracy

tradeoff. In varying the architecture size, we observe that

ZLip yields the tightest provable upper bounds for small

networks, and only begins to provide looser bounds than

LipSDP at 9 hidden layers, at which point LipSDP is three

orders of magnitude slower than ZLip. Additionally, using

ZLip in place of interval analysis in LipMIP can provide

speedups of up to 100x while preserving the exactness of

Lipschitz computation.

Generative Models: We now scale our approach to gen-

erative models for the MNIST and CIFAR-10 datasets. We

train multiple VAEs and GANs using fully-connected and

convolutional layers and the ReLU and tanh nonlinearities

(Kingma & Welling, 2013; Radford et al., 2015). To evalu-

ate over VAEs, we consider input sets X that are ℓ∞ balls

surrounding the encodings of images taken from the test

set. For GAN evaluation, we consider ℓ∞ balls surrounding

random inputs from the training distribution and evaluate

L(∞,1)(f,X ) of the generator. The only other nontrivial

Lipschitz estimation approach that tolerates vector-valued

networks and is able to scale to networks of this size is Fast-

Lip. Full experimental details are presented in the Appendix,

as well as experiments with input sets of different radii.

Table 1 displays results for random inputs with ℓ∞ radius of
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A. Proofs of Lemmas and Theorems

Theorem 1. For feedforward neural networks f , an input set X and sets Zi, Ẑi,Ji,Yi, Ŷ〉 satisfying the containments in

Equations 14-17, the set of vector-Jacobian products satisfies

{∇xf(x)
Tu | x ∈ X u ∈ Bβ∗} ⊆ Y0. (18)

For such a Y0, the Lipschitz constant of f may be upper-bounded by maximizing the ‖·‖α∗ norm over the set Y0.

Proof. Suppose Zi, Ẑi,Ji,Yi, Ŷi satisfy the containments is equation 14-17. Now consider any x ∈ X and u ∈ Bβ∗ . The

proof follows from repeated applications of the following statement: for any function g, if A ⊆ B, then g(A) ⊆ g(B). We

iteratively apply this statement to the forward recursion to see that Ẑi(x) ∈ Ẑi for all i, and similarly for Zi(x) ∈ Zi. From

equation 17, JT
i+1(x) ∈ Ji+1 for all i. We may now perform the backward recursion to see that Yi(x, u) ∈ Yi and similarly

for Ŷi(x, u), Ŷi. Repeating this for all i yields the desired result.

Lemma 1. For any zonotope Z ⊂ R
d and any operator Φ operating over Rd, if Ẑ is a zonotope satisfying the containment

{Φ(z)− Λ⊙ z | z ∈ Z} ⊆ Ẑ (19)

then

Φ(Z) ⊆ (Λ⊙ Z)⊕ Ẑ.

Proof. By assumption, for every z ∈ Z, there exists a ẑ ∈ Ẑ such that Φ(z) − Λ ⊙ z = ẑ. This implies that, Φ(z) =
(Λ⊙ z) + ẑ. By definition,

(Λ⊙ Z)⊕ Ẑ := {Λ⊙ z + ẑ | z ∈ Z ẑ ∈ Ẑ},

so Φ(z) ∈ (Λ⊙ Z)⊕ Ẑ for every z ∈ Z.

Theorem 2. When S is the set {(zi, φ(zi)) | zi ∈ [li, ui]}, the solution to the vertical parallelogram fitting problem yields

the optimal solution to Equation 20. Repeated calls to this subroutine yields the tightest hyperbox fitting the residuals as in

equation 19.

Proof. Suppose that {Λi, bi, µi}
d
i=1 is the set of solutions to the vertical parallelogram fitting problem for each set Si =

{(zi, φ(zi) | zi ∈ [li, ui]}. Since the coordinate-wise bounds li, ui are chosen such that l ≤ z ≤ u for all z ∈ Z, the

containment holds:

{Φ(z)− Λ⊙ z − b | z ∈ Z} ⊆ {Φ(z)− Λ⊙ z − b | l ≤ z ≤ u}.

By definition of solutions to the vertical parallelogram fitting problem, the set of vectors {Φ(z)− Λ⊙ z − b | l ≤ z ≤ u}
is contained in the hyperbox H(0, µ). Adding b to each element of each set, we see that {Φ(z)− Λ⊙ z | l ≤ z ≤ u} is

contained in the hyperbox H(b, µ), thus satisfying the assumptions of Lemma 1.

Lemma 2. For any zonotope Z ⊆ R
d and hyperbox H ⊆ R

d, if Ẑ is a zonotope satisfying the containment

{x⊙ z − Λ⊙ z | x ∈ H z ∈ Z} ⊆ Ẑ (21)

then

{x⊙ z | x ∈ H z ∈ Z} ⊆ (Λ⊙ Z)⊕ Ẑ.

Proof. By assumption, for every z ∈ Z and every x ∈ H , there exists a ẑ ∈ Ẑ such that x⊙ z − Λ⊙ z = ẑ. This implies

that, x⊙ z = (Λ⊙ z) + ẑ. And by definition

(Λ⊙ Z)⊕ Ẑ := {Λ⊙ z + ẑ | z ∈ Z ẑ ∈ Ẑ},

so x⊙ z ∈ (Λ⊙ Z)⊕ Ẑ for every z ∈ Z.

Theorem 3. When S is the set {(z, x · z) | l(z) ≤ z ≤ u(z) l(x) ≤ x ≤ u(x)}, the solution to the vertical-parallelogram

fitting problem yields the optimal solution to Equation 22. Repeated calls to this subroutine yields the tightest hyperbox

fitting the residuals as in Equation 21.
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Proof. Suppose that {(Λi, bi, µi)}
d
i=1 is the set of solutions to the vertical parallelogram fitting problem for each set

Si = {(zi, xi ⊙ zi) | l
(z)
i ≤ zi ≤ u

(z)
i , l

(x)
i ≤ xi ≤ u

(x)
i }. Let H be the hyperbox with lower and upper-bounds denoted

by l(x), u(x). Since the coordinate-wise bounds li, ui are chosen such that l(z) ≤ z ≤ u(z) for all z ∈ Z, the containment

holds:

{x⊙ z − Λ⊙ z − b | z ∈ Z x ∈ H} ⊆ {Φ(z)− Λ⊙ z − b | l(z) ≤ z ≤ u(z) x ∈ H}.

By definition of solutions to the vertical parallelogram fitting problem, the set of vectors {x ⊙ (z) − Λ ⊙ z − b |
l(z) ≤ z ≤ u(z) x ∈ H} is contained in the hyperbox H(0, µ). Adding b to each element of each set, we see that

{x⊙ z − Λ⊙ z | l ≤ z ≤ u x ∈ H} is contained in the hyperbox H(b, µ), thus satisfying the assumptions of Lemma

2.

Theorem 4. The problem of computing the maximal ℓ1 norm of a zonotope is equivalent to the ‖·‖∞→1 matrix norm:

both problems are NP-hard in general. Additionally, any approximation algorithm with approximation ratio α for the

Grothendieck problem will yield an approximation algorithm with ratio α for the zonotope ℓ1 maximization problem and

vice versa.

Proof. We prove this via a strict reduction in showing that any instance of one problem may be converted into an instance of

the other and will keep the same optimal value. To do this, we first note that for any matrix M , with (0||M) denoting the

zero-column prepended to the columns of M , that ‖M‖∞→1 = ‖(0||M)‖∞→1. This follows since

‖(0||M)‖∞→1 = max
v∈B∞

‖(0||M)v‖1 = maxu∈B∞
‖Mu‖ = ‖M‖∞→1 .

Next, it suffices to show that

max
z∈Z(c,E)

‖z‖1 = ‖(c||E)‖∞→1 , (23)

for if this were true, certainly any zonotope could be reduced to a matrix-norm maximization problem, and any matrix

norm problem could first prepend the zero column to the matrix and be reduced to a zonotope norm-maximization problem.

Any α-approximation algorithm for one problem could provide an α-approximation for any instance of the other via this

reduction.

First we show that max
z∈Z(c,E)

‖z‖1 ≤ ‖(c||E)‖∞→1. As the right-hand-side may be written

‖(c||E)‖∞→1 = max
|v0|≤1

max
v∈B∞

‖v0 · c+ Ev‖1

and whereas the left-hand side of Equation 23 is the same optimization with v0 restricted to 1. Therefore the (≤) direction

of Equation 23 holds. For the other direction, consider any integral solution to the RHS,

(v∗0 , v
∗) ∈ argmax

|v0|≤1,v∈B∞

‖v0 · c+ Ev‖1 .

Without loss of generality, v∗0 may be chosen to be 1, and the point (c+Ev∗) is in Z(c, E). Hence there’s a point in Z(c, E)
with ℓ1 norm at least that of ‖(c||E)‖∞→1, thus proving the (≥) direction of equality 23.

Theorem 5. For a zonotope, Z(c, E), the linear programming relaxation of maxz∈Z(c,E) ‖z‖1 is computable in time

O(|E|) where |E| denotes the number of elements in E.

Proof. First we write down the Linear-programming relaxation of the zonotope-norm maximization problem and then relate

this to the mapping of the zonotope through the absolute value operator, by our vertical-parallelogram fitting procedure. The

final result follows from linear programs being efficiently solvable over zonotopes.

Consider some zonotope Z(c, E) ⊆ R
d which has coordinate-wise upper and lower bounds [li, ui] for every i ∈ [d]. We

partition the coordinates into three sets of indices: S−, S+, S such that S− := {i | ui ≤ 0}, S+ := {i | li > 0} and S is

the set of indices not in either S− or S+. We may write down the familiar mixed-integer programming relaxation for the
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absolute value operator by introducing |S| continuous variables, {ti}i∈S , and d integer variables {ai}i∈S , where ti ∈ R and

ai ∈ {0, 1}:

max
∑

i∈S

ti −
∑

i∈S−

zi +
∑

i∈S+

zi (24)

ti ≥ zi (25)

ti ≥ −zi (26)

ti ≤ −zi + 2 · ui · ai (27)

ti ≤ zi − 2 · li · (1− ai) (28)

ai ∈ {0, 1} (29)

z ∈ Z(c, E) (30)

Where the constraints enforce that ti = |zi|. The first two constraints require that ti ≥ |zi|. To show ti ≤ |zi|, we proceed

by cases. When zi > 0, then 27 implies that ai = 1, for otherwise ti < 0 contradicting the first constraint. This causes 28

to imply ti ≤ zi. When zi < 0, 28, ai = 0, for otherwise 27 again implies that ti < 0. This causes 27 to imply ti ≤ −zi.

When zi = 0, either case can hold and ti = 0. The linear programming relaxation lets ai be in the range [0, 1] instead of

{0, 1}.

For any fixed zi, we can compute the maximum value of ti under this relaxation, which is a function of the now-continuous

variable, ai. By setting the upper bounds to equality, the optimal value of ai is ai =
zi−li
ui−li

and t is then upper bounded by

ti ≤
−zi + 2ui · (zi − li)

ui − li

. We observe that this is an equivalent relaxation to the upper-hull provided by the absolute value operator and our

vertical-parallelogram fitting procedure (next section). This allows us to rewrite the optimization above as

max
z∈Z(c,E)

∑

i∈S

−zi + 2ui · (zi − li)

ui − li
−

∑

i∈S−

zi +
∑

i∈S+

zi

which we notice is a linear program over a zonotope. The objective vector may be developed in O(d) time, and linear

programs may be solvable over zonotopes in O(|E|) time.
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B. Pseudocode

Algorithm 1 ZLip

Require: L-layer feedforward neural network f , input set X , norm β

Returns: Zonotope Y0 ⊇ {∇xf(x)
T v | x ∈ X , v ∈ Bβ∗}

function ZLIP(f,X , β)

Z0 ← Zonotope(X ) ⊲ Cast input set to zonotope

for i← 1 to L do ⊲ Forward pass (e.g., DeepZ)

Ẑi ← map affine(Wi, bi,Zi− 1)
Zi ← map nonlin(σ, Ẑi)
Ji ← elementwise jacobian(σ,Zi) ⊲ Gradient range for ∇zσ(Zi)

end for

ŶL ← Zonotope(Bβ∗) ⊲ Cast dual ball to zonotope

for i← L to 1 do ⊲ Backward pass

Yi−1 ← map affine(WT
i , 0, Ŷi)

Ŷi−1 ← elementwise mul(Ji, Yi−1)
end for

Ŷ0 ← map affine(WT
0 , 0, Ŷ0)

return Ŷ0
end function

Algorithm 2 Vertical Parallelogram Fitting

Require: Function σ : R→ P(R), and interval [c− |E|, c+ |E|]
Returns: Slope Λ∗, Altitude µ∗, center b∗

function VP FIT(σ, c, E)

I ← c± |E|
S← {(x, σ(x)) | x ∈ I}
h−, h+← conv hull(S) ⊲ Possibly hard, depends on σ

x∗ ← argmaxx∈I h+(x)− h−(x)
µ∗ ← h+(x∗)− h−(x∗) ⊲ Altitude

Λ∗ ← δ(h−(x∗)) ∩ δ(−h+(x∗)) ⊲ Slope of parallogram’s non-vert side

b∗ ← 1

2
· (h+(x∗) + h−(x∗)) ⊲ Intercept

return Λ∗, µ∗, b∗

end function
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Algorithm 3 Auxiliary Functions

function MAP NONLIN(σ, Z(c, E)) ⊲ Z(c, E) ⊆ R
d, σ is elementwise

for i← 1 to d do

Λi, b
∗

i , µ
∗

i ← VP Fit(σi, ci, E
T
i )

end for

return Z(b∗,diag(µ∗))⊕ (Λ⊙ Z(c, E))
end function

function ELEMENTWISE MUL(H(l, u), Z(c, E))
for i← 1 to d do

Λi, b
∗

i , µ
∗

i ← VP Fit([li, ui], ci, E
T
i ) ⊲ Overloading VP Fit signature

end for

return Z(b∗,diag(µ∗))⊕ (Λ⊙ Z(c, E))
end function

C. Detailed Derivations for Vertical Parallelogram Fitting

We recall the algorithm from Section 6 for fitting a vertical parallelogram to a 2-dimensional set S. The first step was

to compute the upper and lower convex hulls of S. For sets of the form {(x, f(x)) | x ∈ [l, u]} for some differentiable

function, this is equivalent to the biconjugate and the biconjugate of the negation of f . In this case, there exists a simple

algorithm to yield the upper-convex hull. The lower-convex hull may be found the same way, but for the set {(x,−f(x))}.
Observe that if f is convex over [l, u], then the upper convex hull is the secant line between the endpoints (l, f(l)) and

(u, f(u)) and the lower-convex hull is f(x); vice versa for concave functions. For functions that are neither convex or

concave over [l, u], the upper convex hull may be piecewise continuous, alternating between secant-line segments and f .

For function f , let the secant line of f between x1 and x2 be denoted as Secf (x1, x2).

We take inspiration from the gift-wrapping procedure for finding convex hulls of finite 2-dimensional point sets. In

gift-wrapping, the idea is to find the left-most point in the set and sweep a ray clockwise until an intersection with another

point in the set is found. The sweep continues, with ray now starting at the newly intersected point until the left-most point

is intersected again. Our procedure sweeps performs a sweep over rays of decreasing slope, noting that any intersecting

point must lie on the set S and thus the ray is a secant line. Hence, the key subroutine to find the upper hull is to solve a

maximization over slopes of secant lines. For a fixed x0, the slope of the secant line Secf (x0, x) is
f(x)−f(x0)

x−x0

, and the

maximization we seek to solve is a constrained variant of this,

max
x∈[x0,u]

f(x)− f(x0)

x− x0
. (31)

When f is differentiable, then we can differentiate the above objective and set to zero and solve for x in the equality

f ′(x) =
f(x)− f(xi)

x− xi

(32)

This procedure may be repeated until the max is attained at an x ≥ ui, for which the final secant line spans between

(xi, f(xi)) and (u, f(u)).

Once piecewise forms for the convex upper and lower hulls are formed, the maximal altitude can be computed by

maximizing the piecewise function h+(x)−h−(x). The proper slope for the tightest fitting vertical parallelogram is attained

by considering an element in the intersection of subgradients of h− and −h+ at their maximal altitude.

C.1. Sigmoid/Tanh

We demonstrate the above procedure for finding convex upper and lower hulls of sets {(x, f(x) | x ∈ [l, u]} where f is

S-shaped like sigmoid and tanh. We say a function f is S-shaped if it is monotonically increasing and there exists an x′

such that f is concave for all x ≥ x′. We break this into cases, based on the values of [l, u]. If f is either convex or concave

over the entire interval [l, u], then the upper hull is either the secant line or f respectively, and vice versa for the lower hull.

In this case, the maximum altitude is attained at the x where f ′(x) is equal to the slope of this secant line.
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D. Experiments

D.1. Model Architectures

Here we will describe the structure of each of the architectures considered. For networks with only fully connected

and elementwise nonlinearities, we denote the architectures by [nin, n1, . . . nL . . . nout], where ni denotes the number of

neurons in the ith hidden layer, and ReLU nonlinearities are implied between each layer. We will use the notation “FC X” to

denote fully connected layers with an output of X neurons, and Convs(C ×W ×H) to denote convolutional layers with a

stride of s and output dimension of C channels, and kernels of size W ×H . Transpose convolutional layers are denoted

ConvT

s
(C ×W ×H). For layers of the same size repeated k times, we’ll denote this as [layers]×k.

Toy Networks: For the networks trained on the toy dataset, the input and output dimension are each 2, and the scalar-

valued output is attained by taking the dot product with the vector [+1,−1]. These have varying depth, but all have

architectures like

x →
[

FC100 → ReLU
]

×k

→ FC2 → z

where the number of hidden layers denotes the number of ReLU layers in the network.

Generators for MNIST and CIFAR: For MNIST and CIFAR, we trained 6 VAEs and 2 GANs. These each have the

same architecture with the exception of varying input/output shapes. The VAEs each have a latent dimension of 20 and the

GANs have an input dimension of 100. We use the notation D and C to denote the output dimnension and channel: (784, 1)
for MNIST and (3072, 3) for CIFAR-10.

• VAESmall: [D, 400, 200, 20, 200, 400, D]. Where the decoder is just the [20, 200, 400, D] subnetwork.

• VAEMed: [D, 400, 200, 100, 50, 100, 200, 400, D] where the decoder is just the [50, 100, 200, 400, D] subnetwork.

• VAEBig: [D, 400, 200, 200, 200, 200, 100, 200, 200, 200, 200, 400, D], where the decoder is just the

[100, 200, 200, 200, 200, 400, D] subnetwork.

• VAECNN: x → Conv2(16× 4× 4) → ReLU → Conv2(32× 4× 4) → ReLU → FC50 → FC800 → ReLU →
ConvT

2
(16× 5× 5) → ReLU → ConvT

2
(C × 4× 4) → Sigmoid.

• VAETanh: Same as VAEMed with tanh nonlinearities in place of ReLU.

• VC-Tanh: Same as VAECNN with tanh nonlinearities in place of ReLU.

• FFGAN: [100, 256, 512, 1024, D].

• DCGAN: x → ConvT

1
(256 × 4 × 4) → ReLU → ConvT

2
(128 × 4 × 4) → ReLU → ConvT

2
(64 × 4 × 4) →

ReLU → ConvT
2
(C × 4× 4) → tanh.

Classifiers for MNIST and CIFAR: For MNIST and CIFAR, we trained three fully connected networks. We refer to

these as {tiny, small,med, }−∗. Each of these were trained with both the ReLU and tanh nonlinearities with both standard

and PGD adversarial training. We will describe the training techniques in the next section.

• Tiny*: [D, 20, 20, 10].

• Small*: [D, 100, 100, 100, 10].

• Med*: [D] + [100]× 6 + [10].

D.2. Datasets, Training Methods, and Computing Environment

Computing Environment: All networks were trained using Pytorch on a machine with 2× GeForce RTX 2070 GPU’s.

All Lipschitz evaluations were performed using the CPU only, an Intel i7-9700K. Mixed integer programming evalutaions

were performed using 4 cores and the Gurobi optimizer.
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Table 3. Mean ratio of Lipschitz estimates provided by other abstract domains relative to the estimate provided by ZLip, evaluated on

MNIST VAE decoders. We see that as the model becomes larger, using zonotopes in the forward pass yields a tighter bound.

Radius 0.01 0.1

Method FastLip H → Z Z → H FastLip H → Z Z → H

VAESmall 7.85 1.33 5.89 9.39 3.08 3.11

VAEMed 276.41 12.71 43.78 410.92 51.81 12.25

VAEBig 4238.83 123.21 85.65 26018.02 1357.93 26.64

D.5. Experimental Results on Classifiers

MNIST: For completeness and comparison against other networks on more realistic networks, we present results of

our Lipschitz bounding technique versus several recent works for a variety of networks trained both with the standard

classification loss as well as those trained adversarially. We evaluate the Lipschitz value returned by SeqLip, LipSDP,

Fast-Lip, CLEVER, and ZLip for inputs of radius 0.1 centered at elements taken from the test set. If f is the trained classifier

which has outputs in R
10, we consider the Lipschitz constant of the network fi(·)− fi+1(·) for each example where the true

label is i. First we present the values for the MNIST networks trained with the standard CrossEntropy Loss in Table 4 and

times are presented in Table 5. We remark that the bounds reported by CLEVER for networks with high dimension have

been shown to be quite loose, so it is unclear what the correct Lipschitz value is for each of these networks. The most salient

points here are that the values returned by ZLip are comparable to those returned by LipSDP at a significantly faster runtime.

We also note that LipSDP errors when applied to networks as large as MedReLU or MedTanh.

For the PGD trained MNIST networks, we present the values and times in tables 6, 7. In direct comparison to the tables for

the networks trained with CrossEntropy loss, we notice that all methods report lower values for the adversarially trained

network. This tracks with prior work that adversarial regularization serves as a form of Lipschitz regularization.

CIFAR-10: The same experiments as above were performed on networks trained to classify the CIFAR-10 dataset. We

present these results in Tables 8-11, but note that these results are qualitatively very similar to the results for the MNIST

networks.

Table 4. Lipschitz values reported by various networks evaluated on the various Classifiers described above. All numbers report an average

over regions of radius 0.1 centered at examples from the test set.

Lipschitz Estimates (MNIST) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 3.51×103 2.94×103 7.36×103 1.15×101 5.59×103

SmallReLU 2.12×104 1.52×104 1.94×105 9.59×100 9.34×104

MedReLU 1.08×106 — 1.45×108 1.06×101 1.77×107

TinyTanh 1.33×104 1.14×104 2.56×104 2.97×101 1.98×104

SmallTanh 5.80×104 4.29×104 3.24×105 3.26×101 1.68×105

MedTanh 5.50×106 — 4.29×108 3.56×102 6.94×107
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Table 5. Times for MNIST classifiers trained with the Cross-Entropy loss

Lipschitz Times (MNIST) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 5.08×10
−1 1.78×10

1 1.75×10
−3 5.98×10

1 4.20×10
−1

SmallReLU 2.28×10
0 2.63×10

2 9.73×10
−2 1.01×10

2 9.36×10
−1

MedReLU 3.35×10
0 — 1.07×10

−1 1.75×10
2 2.13×10

0

TinyTanh 5.90×10
1 1.82×10

1 1.96×10
−3 5.98×10

1 4.22×10
−1

SmallTanh 4.56×10
0 2.28×10

2 1.05×10
−1 1.09×10

2 9.87×10
−1

MedTanh 9.91×10
0 — 1.08×10

−1 1.77×10
2 2.03×10

0

Table 6. Values for MNIST classifiers trained with the PGD loss
Lipschitz Estimates (MNIST) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 3.97×10
2 2.66×10

2 3.48×10
2 1.07×10

0 1.42×10
2

SmallReLU 1.52×10
3 9.35×10

2 1.98×10
4 1.85×10

0 5.39×10
3

MedReLU 3.91×10
4 1.64×10

4 1.45×10
7 2.26×10

0 9.36×10
5

TinyTanh 1.38×10
3 8.61×10

2 6.86×10
2 3.14×10

0 5.17×10
2

SmallTanh 7.96×10
3 4.81×10

3 5.68×10
4 6.24×10

0 2.42×10
4

MedTanh 2.73×10
5 1.30×10

5 5.98×10
7 1.90×10

1 6.27×10
6

Table 7. Times for MNIST classifiers trained with the PGD loss

Lipschitz Times (MNIST) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 1.18×10
−2 1.14×10

1 1.74×10
−3 2.71×10

1 1.10×10
−1

SmallReLU 2.71×10
1 1.77×10

2 1.13×10
−1 1.13×10

2 1.12×10
0

MedReLU 3.10×10
0 4.42×10

2 1.11×10
−1 1.76×10

2 2.17×10
0

TinyTanh 6.11×10
−1 1.62×10

1 1.84×10
−3 5.33×10

1 3.77×10
−1

SmallTanh 4.61×10
0 1.77×10

2 8.66×10
−2 7.72×10

1 7.31×10
−1

MedTanh 3.29×10
0 5.00×10

2 1.16×10
−1 1.86×10

2 2.15×10
0



Provable Lipschitz Certification for Generative Models

Table 8. Values for CIFAR-10 classifiers trained with the Cross Entropy loss

Lipschitz Values (CIFAR-10) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 1.11×10
3 8.51×10

2 1.13×10
3 6.05×10

−1 8.89×10
2

SmallReLU 1.27×10
4 7.23×10

3 1.55×10
5 1.43×10

0 6.32×10
4

MedReLU 4.30×10
5 1.78×10

5 2.42×10
8 2.22×10

0 2.13×10
7

TinyTanh 4.12×10
3 3.22×10

3 5.52×10
3 2.28×10

0 4.32×10
3

SmallTanh 2.61×10
4 1.77×10

4 1.72×10
5 5.73×10

0 7.82×10
4

MedTanh 1.28×10
6 — 1.86×10

8 1.26×10
1 2.22×10

7

Table 9. Values for CIFAR-10 classifiers trained with the PGD loss
Lipschitz Values (CIFAR-10) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 3.01×10
2 1.92×10

2 4.63×10
1 1.17×10

−1 3.95×10
1

SmallReLU 2.03×10
3 1.22×10

3 2.15×10
4 3.62×10

−1 7.75×10
3

MedReLU 3.61×10
4 1.26×10

4 1.70×10
7 5.22×10

−1 1.26×10
6

TinyTanh 1.81×10
3 1.31×10

3 1.05×10
3 8.94×10

−1 8.91×10
2

SmallTanh 1.51×10
4 7.25×10

3 2.62×10
4 2.67×10

0 1.35×10
4

MedTanh 2.57×10
5 9.56×10

4 1.41×10
7 3.14×10

0 1.81×10
6

Table 10. Times for CIFAR-10 classifiers trained with the CrossEntropy loss

Lipschitz Times (CIFAR-10) — CrossEntropy Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 2.32×10
−1 5.02×10

2 9.59×10
−2 5.91×10

1 6.24×10
−1

SmallReLU 7.14×10
0 2.88×10

3 1.07×10
−1 1.06×10

2 1.16×10
0

MedReLU 7.45×10
1 4.81×10

3 6.38×10
−2 9.88×10

1 1.32×10
0

TinyTanh 6.45×10
−1 5.05×10

2 1.18×10
−1 7.28×10

1 8.66×10
−1

SmallTanh 3.11×10
1 3.25×10

3 1.17×10
−1 1.22×10

2 1.22×10
0

MedTanh 1.09×10
0 6.78×10

3 6.34×10
−3 3.98×10

0 1.89×10
−1

Table 11. Times for CIFAR-10 classifiers trained with the PGD loss
Lipschitz Times (CIFAR-10) — PGD Loss

Network SeqLip SDP Fast-Lip CLEVER ZLip

TinyReLU 1.47×10
−1 3.94×10

2 1.09×10
−1 6.74×10

1 7.93×10
−1

SmallReLU 4.11×10
1 2.52×10

3 9.89×10
−2 9.12×10

1 1.07×10
0

MedReLU 5.22×10
1 4.01×10

3 1.14×10
−1 1.89×10

2 2.39×10
0

TinyTanh 8.12×10
−2 4.60×10

2 1.13×10
−1 7.02×10

1 8.25×10
−1

SmallTanh 4.97×10
0 3.28×10

3 1.13×10
−1 1.22×10

2 1.23×10
0

MedTanh 1.13×10
0 3.90×10

3 5.77×10
−3 3.98×10

0 1.89×10
−1


