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Abstract

We propose a novel type of balanced clustering algorithm to approximate attention.
Attention complexity is reduced from O(N2) to O(N logN), where N is the
sequence length. Our algorithm, SMYRF, uses Locality Sensitive Hashing (LSH) in
a novel way by defining new Asymmetric transformations and an adaptive scheme
that produces balanced clusters. The biggest advantage of SMYRF is that it can
be used as a drop-in replacement for dense attention layers without any retraining.
On the contrary, prior fast attention methods impose constraints (e.g. queries and
keys share the same vector representations) and require re-training from scratch.
We apply our method to pre-trained state-of-the-art Natural Language Processing
and Computer Vision models and we report significant memory and speed benefits.
Notably, SMYRF-BERT outperforms (slightly) BERT on GLUE, while using 50%
less memory. We also show that SMYRF can be used interchangeably with dense
attention before and after training. Finally, we use SMYRF to train GANs with
attention in high resolutions. Using a single TPU, we were able to scale attention
to 128x128=16k and 256x256=65k tokens on BigGAN on CelebA-HQ.

1 Introduction

Attention layers enable long-range representation learning and are becoming indispensable in ar-
chitectures for both Image Synthesis [1, 2, 3] and Natural Language Processing [4, 5, 6, 7, 8, 9].
Attention finds further uses in other domains like symbolic mathematics and music modeling as
well [10, 11, 12]. Unfortunately, attention layers have high computational and memory cost which
scales quadratically in the size of the input sequence. This constraint is so onerous that the canonical
implementation of attention for image synthesis - Self-Attention GAN [2] - could only afford to
use one self-attention layer. For NLP, modern transformer-based models can only be trained in
large industry research labs with massive infrastructure investments. For instance, the recently
published GPT-3 [13] model uses 96 attention layers trained on input sequences of 2048 tokens.
When fine-tuning pre-trained attention models, NLP researchers usually truncate input sentences,
limiting performance on datasets with longer inputs.

Recent research [14, 3] indicates that dense attention is statistically and computationally ineffi-
cient [15, 16, 3]: it does not account for the locality inherent in many tasks. Alternatives have been
proposed that are either more efficient [12, 17, 18, 19, 20, 7, 21, 22] or that better accommodate
locality [23, 3]. Most such alternatives have been sparse. Sparsity can be achieved by limiting
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attention to pre-defined positions [23, 3, 22, 12]. Recent work [17, 18, 19, 20] proposes data-driven
sparsity, which allows for discovery of arbitrarily complex dependencies between input positions.

Despite this progress, new state-of-the-art models [8, 13, 9, 24, 25, 26] still use the original dense
attention layers. There are three reasons for this: (i) alternative fast-attention mechanisms degrade the
performance of the underlying model. For example, replacing dense attention layers in Transformers
with memory efficient local attention [23] increases perplexity from 41.57 to 44.23 [20]. (ii) some
mechanisms work well, but make very strict assumptions. For example, in Star Transformer [22]
all nodes attend to a relay node which summarizes the content of the entire input sequence, but this
prevents the use of causal masking, so it can only be used for encoding. (iii) some alternatives are only
efficient in theory. For example, in some variants [17, 27] sparsification of the attention map happens
after instantiating the matrix, and so quadratic memory is still used before instantiation. Finally,
[12, 28] require highly specialized GPU-kernels and which prevents usage in several hardware
settings (e.g. TPUs). The design of fast and efficient attention layers remains a challenge.

Our Contributions:
1) We propose a novel type of balanced clustering to approximate attention. We call the underlying
optimization problem Attention Biclustering and prove that finding an exact solution is computation-
ally intractable.
2) We propose an algorithm for solving Attention Biclustering efficiently in practice. Our algorithm,
SMYRF, uses Locality Sensitive Hashing (LSH) in a novel way by defining new Asymmetric trans-
formations and an adaptive scheme that produces balanced clusters.
3) Our method, SMYRF, can handle different query and key vectors, just like normal dense attention.
As a result, SMYRF layers are drop-in replacements for pre-trained models, unlike previously pro-
posed fast-attention mechanisms such as Sinkhorn [20], Reformer [18] and Routing Transformer [19].
4) We show through numerous experiments that SMYRF attention layers are very effective in terms
of performance, memory and speed, even without any training. We measure the memory-performance
trade-off of applying SMYRF to state-of-the-art NLP and Computer Vision models, across more
than a dozen tasks. For example, we are able to shrink the memory requirements of a pre-trained
BigGAN [1] by 50% while maintaining 98.2% of its Inception score without re-training.
5) We finetune SMYRF on GLUE [25] starting from a BERT (base) checkpoint. We demonstrate that
SMYRF-BERT outperforms BERT while using 50% less memory. We also show that with 75% less
memory, SMYRF maintains 99% of BERT performance on GLUE. Due to SMYRF’s portability, we
are also able to conduct experiments for various memory configurations with pre-trained BERT and
RoBERTa [9] models on IMDB. We show slight performance drops for great memory benefits.
6) We show that SMYRF can be interchanged with dense layers before and after training. We report
performance gains by using SMYRF in a back-and-forth manner: we replace dense with SMYRF
during training (to earn in memory) and we replace SMYRF with dense attention during inference (to
earn in performance). The interchangeability of SMYRF with dense attention is unique, as it has not
been observed in previously proposed attention alternatives [18, 19, 20, 28, 3].
7) We are able to scale the resolution of attention for GANs, due to our reduced memory footprint.
We train a BigGAN with an 128× 128 SMYRF attention layer and show it outperforms the dense
attention performance, decreasing FID from 26.06 to 25.03 in Celeba-HQ-128 [29]. Finally, we
successfully train a BigGAN with attention at resolution 256× 256 on a single v3-8 TPU.
8) We open-source our code and pre-trained models to encourage more related research:
https://github.com/giannisdaras/smyrf.

2 Background

Attention [30] works by computing inner products of query and key vectors. Depending on the
application, these vectors may represent embeddings for tokens or image pixels. Input of each
attention layer is three sets: Q,K,V for query, key and value vectors respectively. Attention of q to
the keys set K outputs a new vector oq , which is a weighted sum of value vectors vi ∈ V where each
weight wi increases with the inner product q · ki. Specifically, the output is computed as:

oq =
N
∑

i=1

wivi, wi =
eq·ki

∑N

j=1
eq·kj

. (1)
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Here, we assumed for notational simplicity that N = |Q| = |K|. Using matrix notation, attention is
equivalently defined as σ(Q ·KT ) · V where Q,K, V are matrices with rows the embeddings for
each query, key, value and the function σ(.) computes the row-wise softmax.

3 Approximating Attention with Clustering

3.1 Motivation

Our method is motivated by the observation that attention matrices have interesting structure in real
datasets. Naively, to compute dense attention, as equation 1 shows, we need to compute all outputs oqi ,
i.e. O(|Q| · |K|), a quadratic number of inner products qi ·kj , qi ∈ Q, kj ∈ K. However, we observe
that in most real networks, the attention weights wi are sparse, because of the softmax operation and
the structure of the vectors. For example we observe that in a pre-trained BigGAN on ImageNet, on
average 98.11± 0.26%1 of keys get weight less than 0.01 in softmax and 86.11± 2.92% of them
get less than 1

|K| , where K is the number of keys.

Further, we observe that the attention matrix is near low-rank, even after the softmax. By definition,
the matrix Q·KT is going to be of rank at most the dimension of the query and key vectors. Therefore,
if the embeddings dimension is smaller than the input sequence, the attention matrix is low-rank. This
is more pronounced for images and long-context language models. However, one can easily construct
cases of low-rank matrices which become full rank after softmax. Our finding is that this does not
happen in practice. In the Appendix we show that real attention matrices of pretrained models have a
sharp decay in their singular values and hence can be well approximated by low-rank matrices.

SMYRF benefits from sparsity and low-rank structure of attention matrices. By clustering keys
and queries into groups, we obtain block-diagonal structure in the approximate attention matrix,
since only query-key pairs within the same cluster are computed. We show that this method leads to
accurate approximations of dense attention and it can be computed much faster and with much less
memory.

3.2 Problem Formulation

We formulate the assignment of keys and queries into clusters as an optimization problem. Denote
with Pij = qTi kj the element (i, j) of the product matrix P = Q ·KT and the attention map with

M = σ(Q ·KT ). We will assign query and key vectors into L clusters c1, c2, ..., cL and compute
attention only within each cluster. For fast execution on TPUs/GPUs, all partial attentions should be
computed in parallel. For this reason, we require that clusters are balanced: i.e. all clusters contain
the same number of keys and queries. We note that the number of keys in each cluster does not have

to be equal to the number of queries. Formally, each cluster contains
|Q|
L

queries and
|K|
L

keys.

We denote with CL the set of all possible assignments in L balanced non-overlapping clusters.
A specific assignment is denoted by CL

t and there are T possible such assignments, where T is
exponentially large in the number of keys and queries.

CL = {CL
1 , C

L
2 , ...C

L
T }.

CL
t = {c1, c2, ..., cL} :

{

ci = {q1, ..., q |Q|
L

, k1, ..., k |K|
L

}, ci ⊆ Q ∪K, ∀i ∈ {1, ..., L}

cx ∩ cy = ∅ ∀cx, cy ∈ CL
t .

(2)

We emphasize that every key and query is assigned in a unique cluster for any valid assignment CL
t :

cx ∩ cy = ∅ ∀cx, cy ∈ CL
t . We also define a masking operator Maskǫ that takes as input: (i) a

clustering CL
t ∈ CL and (ii) the product matrix P and replaces (q, k) pairs that are not in the same

cluster with −a, where a ∈ R
+ is a constant chosen to satisfy e−a = ǫ for a given ǫ ≥ 0. Formally:

Maskǫ(C
L
t , Pij) =

{

Pij iff ∃t : (i, j) ∈ ct,

−a, o/w.

1The reported numbers are calculated by inspecting the attention maps of 1000 random generated images.
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Intuitively, the masking operator replaces inner products of queries and keys that are not in the same
cluster with an arbitrarily small number, so that the softmax will assign a score arbitrarily close to

zero to these entries. We denote with P̂ǫ = Maskǫ(C
L
t , P ) the product matrix after the masking. With

this notation, P̂0 = Mask0(C
L
t , P ), is the product matrix for the within-clusters attention.

Attention Biclustering: Under this formulation, we are searching for the cluster assignment CL
t that

approximates the dense attention matrix σ(P ) as well as possible, in Frobenius norm:

min
CL
t ∈CL

||σ(P̂0)− σ(P )||F . (3)

Note that L must divide the number of queries and keys for this problem to be well-defined.

3.3 Complexity of Attention Biclustering

We start by showing that Attention Biclustering, the optimization problem defined in (3), is provably
computationally intractable.

Theorem 1. Attention Biclustering (3) is NP-hard.

We defer the proof of this theorem to the Appendix. Our proof proceeds by first establishing hardness
before the softmax, using a reduction from three dimensional matching [31]. We then leverage this to
establish hardness of approximating attention through clustering after the softmax operation.

We consider it interesting to establish the computational intractability of Attention Biclustering, since
this clustering formulation is quite unique due to the softmax operation. Our hardness result rules out
an exact polynomial solution, unless P=NP. We propose an efficient algorithm that leverages hashing
to assign queries and keys to clusters. Formally proving an approximation guarantee or provable
inapproximability for the attention approximation problem we proposed remains open.

3.4 Proposed algorithm: SMYRF

Our algorithm consists of the following steps:

1) We first propose novel asymmetric transformations F,G : Rd → R
d′

such that for all given queries
q1, q2 ∈ Q and keys k ∈ K: q1 · k ≤ q2 · k ⇐⇒ ||F (q1)−G(k)||2 ≤ ||F (q2)−G(k)||2.

2) We then use a Locality Sensitive Hashing (LSH) function h : Rd′

→ R to map transformed vectors
in real numbers, so that that vectors that are close in Euclidean distance correspond to numbers that
are close on the real line.
3) We sort vectors based on their LSH value and group them by adapting the thresholds to ensure L
balanced clusters.
4) We perform dense attention within each cluster.

Our approximate attention algorithm relies on a few technical innovations:

Novel Asymmetric Transformations: We need an efficient way to find, for any given query vector
qi ∈ Q the set of keys with which it has big inner products. This problem, called Maximum Inner
Product Search (MIPS), can be efficiently solved by transforming query and key vectors to convert
it to a Nearest Neighbor Search (NNS) as proposed in the pioneering Asymmetric LSH (Locality
Sensitive Hashing) work by Shrivastava et al. [32].

We are looking for functions F : R
d → R

d′

, G : R
d → R

d′

such as: ||F (q) − G(k)||22 =
D(q ·k), ∀(q, k) where D : R → R a decreasing function that depends only on the inner product q ·k.
We constrain our focus on functions D that decrease linearly with the inner product q · k. Several
previous works have proposed Asymmetric LSH transformations [32, 33, 34] but focus on the case
where we have a single query q and multiple keys. In that case, any norm ||q||a where a = {1, ...,∞}
is constant and thus D = D(q · k, ||q||a).

Our central algorithmic contribution is the proposal of novel asymmetric functions:

F (qi) =
[

qi; 0;
√

M2
Q +M2

K − ||qi||22

]

, G(ki) =
[

ki;
√

M2
Q +M2

K − ||ki||22; 0
]

(4)

where we use the constants MQ = maxqi ||qi||2, MK = maxki
||ki||2, or any other upper bound

on the norms. With this transformation, all queries and keys are mapped to a (d+ 2)-dimensional
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ball with radius
√

M2
Q +M2

K and the distance of the transformed vectors decreases linearly with the

inner product of the original vectors:

||F (qi)−G(ki)||
2
2 = 2 ·

(

M2
Q +M2

K − qi · ki
)

. (5)

Note that the Euclidean distance of the transformed vectors depends only on the inner product of
the original vectors and not on individual norms ||qi||2 as in previous work [35, 34, 33]. We include
details of comparison to the numerous prior asymmetric transformations in the Appendix.

Adaptive Clustering: The final step of SMYRF is to use the hashed values to create balanced
clusters. These are created by forming balanced hash buckets where every group is assigned the same
number of query and key vectors. We modify the E2LSH [35] hashes to create balanced clusters
as follows: Instead of rounding the E2LSH to an integer value as in [35], we adaptively set the
boundaries of the 1-d hashed space to ensure the same number of query and key vectors per interval.
Computationally wise, this only requires sorting the hashes. We explain the mathematical details of
our adaptive clustering scheme and the differences with E2LSH in the Appendix.

Computational Complexity and speedups: For notational simplicity we assume |Q| = |K| = N .

The total time and memory complexity of SMYRF is O
(

H ·N · logN +H · N2

L

)

, where: H

denotes hashing rounds, N number of query/key vectors and L number of clusters. For most of our
experiments we choose L = O(N), H = O(1), and thus complexity is O(N logN). Even though
we obtain optimal complexity for L = O(N), H = O(1), both L,H are parameters that can be
tuned to satisfy the desired memory-performance trade-off. Regarding speed, SMYRF accelerates a
lot attention as sequence length increases. For example, for sequence length 2048, SMYRF-BERT
offers ≈ 20% speedup, while for 4096 speedup increases to ≈ 50%. We include detailed speed plots
for applying SMYRF to BERT in the Appendix.

4 Experiments

4.1 Pre-trained models

We first illustrate that SMYRF is an excellent drop-in replacement for pre-trained dense attention. We
show significant memory benefits for relatively small performance drop, with no training at all. We
use a pre-trained2 BigGAN, which is a state-of-the-art model in Image Generation for ImageNet [37].
BigGAN has a single attention layer at resolution 64 × 64 (4096 queries). We replace BigGAN’s
dense attention with a SMYRF layer at the same resolution, with no other modifications. Figure
1 illustrates images generated by SMYRF-BigGAN for different memory savings, ranging from
99.44% (first column) to 50% (one to last column). Last column shows generated images using the
dense attention layer (100% memory). As shown, SMYRF enables a new tradeoff in the design
space. We can drastically reduce attention memory by 93.75% with a small degradation or select any
other point in this tradeoff depending on hardware specifications. We report a few Inception [38] and
FID [39] scores for different memory savings in Table 1. We emphasize that no further modification
was made to this model other than replacing the attention layer. By shrinking 50% the memory
requirements of attention, SMYRF maintains 98.2% of Inception performance without any training.
In the Appendix, we also include visualizations of clustering assignments in real-world images.

4.2 Finetuning pre-trained models

In this section, we finetune pre-trained models with SMYRF. We show that finetuned SMYRF models,
with 50% memory reduction, can outperform dense attention. We also show that even with more
aggressive memory-shrinking, up to 97%, SMYRF maintains a relatively good performance.

We train SMYRF-BERT (base) on GLUE [25, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51] bench-
mark, using sequence length 128. We compare the following five models: (i) BERT [6] (base),
(ii) SMYRF-BERT (base) with 50% memory reduction (2nd row), (iii) SMYRF-BERT (base) with
25% memory reduction (3rd row), (iv) BERT (base) with input sequences truncated to 64 tokens
(50% memory reduction, 4th row), (v) BERT (base) with input sequences truncated to 32 tokens

2Since BigGAN’s official checkpoints are not publicly available, we use the authors’ open-source, Py-
Torch [36] pre-trained models: https://github.com/ajbrock/BigGAN-PyTorch
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In Table 4, we provide results for a Back-and-Forth procedure: we finetune with SMYRF and then
for inference we use dense attention. By doing that, we observe performance almost equivalent to
training with dense attention, while saving computational resources with SMYRF training. This
indicates interchangeability between SMYRF and dense attention, which has not been previously
reported. We use it to to train in a memory efficient manner and obtain maximum final performance.

Avg. # C CoLA MNLI-m/mm MRPC QNLI QQP RTE SST-2 STS-B

BERT128 82.69 1 1 57.83 84.43/84.68 88.41 91.31 89.70 65.70 93.46 88.73
SMYRF-
BERT

83.12 2 32 58.79 85.02/84.27 87.69 91.14 89.72 68.59 93.23 89.65

81.74 2 16 58.90 82.86/83.49 85.72 89.53 89.33 64.98 93.12 87.75
BERT64 81.57 1 64 58.80 82.34/82.47 87.02 90.48 89.69 61.73 93.00 88.64

BERT32 73.56 1 32 56.40 64.51/63.41 77.89 79.81 88.59 55.23 92.66 83.53

Table 2: Results on GLUE [25] (dev). # : hashing rounds. C : the number of queries per cluster.
SMYRF outperforms BERT while using 50% less memory in each of the 12 attention layers.

Dataset Memory Accuracy Rounds Cluster

BERT

IMDB

100% 94.12% 1 512

SMYRF-
BERT

50% 92.64% 8 32
25% 92.52% 16 8
12.5% 91.46 8 8
6.25% 88.78% 8 4
3.125% 87.49% 4 4

RoBERTa 100% 94.96% 1 512
SMYRF-RoBERTa 50% 93.72 8 32

Table 3: Finetuning BERT [6] (base) and RoBERTa [9] (base) on IMDB dataset for various configu-
rations. For SMYRF models, we train and evaluate with SMYRF.

Dataset Memory SMYRF Inference Accuracy

RoBERTa

IMDB

100% ✗ 94.96%
SMYRF-
RoBERTa

50%
✗ 93.72%
X 94.62%

BERT 100% ✗ 94.12%
SMYRF-
BERT

50%
✗ 92.64%
X 93.54%

Table 4: Interchangeability of SMYRF and dense attention. We train with SMYRF and evaluate
with dense attention for lightweight training and maximum performance.

4.3 Training from scratch

We also include experiments for networks trained from scratch. This shows that a non-pretrained
model can learn with randomly initialized, SMYRF layers. Initially, the random weights produce less
sparsity. However, the model quickly learns to create sparse attention maps and learning under our
framework is possible. We use BigGAN [1] as the underlying model (see Appendix for details). We
conduct our experiments on Celeba-HQ [29], which contains 30K images of celebrities at resolution
1024× 1024. We choose Celeba-HQ because: (i) images are in resolution higher than 128× 128, (ii)
our budget is limited and Celeba-HQ requires much less training steps compared to ImageNet [37].
With SMYRF, we move attention from 64 × 64 resolution to 128 × 128 and train with 50% less
memory than dense attention. In Table 5, we report FID for BigGAN and SMYRF-BigGAN after
120K steps training on Celeba-HQ-128 (downsampled to 128× 128). SMYRF-BigGAN outperforms
BigGAN’s FID by 3.95%. Generated images from our model are shown in Figure 2. We finally move
the attention layer to resolution 256× 256 (65k length) and we successfully train on Celeba-HQ-256
for 120K steps on a single TPU v3-8. As far as we know, no other GAN has been trained with
attention in higher resolution than this. Details and generated images are included in the Appendix.
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Resolution Attention Memory Rounds C FID

BigGAN
128×128

64× 64 100% 1 4096 26.06
SMYRF-BigGAN 128× 128 50% 4 2048 25.03

Table 5: Results on BigGAN training on Celeba-HQ-128 for 120K steps. Moving attention from
64× 64 to 128× 128 helps performance: FID decreases from 26.06 to 25.03. Memory percentages
in this Table have as reference the memory a dense attention layer would use at the given resolution.

Model IMDB (3 epochs)

SMYRF-RoBERTa 93.7%
E2LSH 89.3%

Reformer 88.7%

Table 6: LSH ablation experiment. The E2LSH model corresponds to the SMYRF-RoBERTa model
using the E2LSH [35] hashing scheme instead of the asymmetrical transformations. The Reformer
model corresponds to running SMYRF-RoBERTa with the cross polytope LSH [53] scheme, which
is used in the Reformer [18] paper.

4.4 Comparison with other efficient attention techniques

To validate the effectiveness of the proposed asymmetrical transformations, we replace SMYRF’s
hashing scheme with the E2LSH [35] scheme and the cross-polytope LSH [54] scheme of the
Reformer and we evaluate all models on the IMDB [52] dataset, after training for three epochs.
The results are summarized in Table 6. As shown, the asymmetrical transformations of SMYRF
largely outperform all the other LSH schemes. This is expected since by design SMYRF tries to form
clusters that maximize the inner products between queries and keys, while E2LSH and Reformer
try to minimize euclidean distance and angular distance respectively, which is not the best objective
when dealing with queries and keys with different vector representations and arbitrary norms.

To compare with the Longformer [28], we evaluate SMYRF on the Hyperpartisan News Detection [55]
dataset. For this task, Longformer reports 94.8% accuracy with 4096 context-length. SMYRF obtains
97.2% performance while only using 512 tokens. Longformer slightly outperforms (for ≈ 1%)
SMYRF in the IMDB dataset but it uses 8 times more tokens to achieve that. Unfortunately, the
available RoBERTa [9] models have been trained with maximum positional embeddings at 512 tokens
and thus we cannot determine whether bigger sequence lengths would favor SMYRF. Nevertheless,
SMYRF performs on par with other efficient attention techniques without requiring any pre-training.

5 Related work

The fact that attention maps of pre-trained layers are sparse is well-known [15, 16, 3, 17, 56, 57].
Relevant research to our work includes efforts to leverage that sparsity by limiting attention of each
element to a subset of the original sequence. [23] proposes to limit attention to a sliding window
around each element. Even though this simple idea is a strong baseline due to locality, this method is
usually outperformed [20, 18, 19] by data-driven methods for assigning to each query the keys it will
attend to. One recent research work that performs well with pre-defined sparsity is Longformer [28].
Longformer has been shown to perform well in downstream tasks after pre-training for 65K gradient
steps, resuming MLM training of a pre-trained RoBERTa [9] model. However, this work requires
custom GPU kernels that do not transfer across hardware (i.e. are not efficient on TPUs). SMYRF
differs from Longformer in other important aspects as well: (i) SMYRF does not require (even though
it might help) further pre-training before finetuning on downstream tasks. Therefore, SMYRF is
a drop-in replacement of dense attention, while Longformer [28] requires some adaptation of the
original dense attention. (ii) More importantly, the fixed sparsification idea used in Longformer [28]
is fundamentally different from our idea of using clustering to approximate attention and (iii) SMYRF
can be used interchangeably with dense attention while Longformer cannot. As we showed, a trained
SMYRF attention lower can be converted back to a normal dense attention layer during inference.

There are three research works that are very relevant to ours since they also propose data-driven
attention within each group: (i) the Reformer [18], (ii) the Sparse Sinkhorn Attention [20] paper and
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(iii) the Routing Transformer [19]. Reformer [18] changes the dense attention layer twofold: (i) it
tights vector representations of queries and keys, (ii) it sets their norm to be equal to 1. Reformer is the
first paper to propose LSH for clustering queries and keys. In Reformer, instead of using Asymmetric
LSH, the authors use Angular distance LSH for clustering. This works because of (i), (ii), i.e. the
Maximum Inner Product Search problem is equivalent to the Nearest Neighbor Search problem.
We consider SMYRF as a generalized version of Reformer, since it employs Asymmetric LSH
clustering to enable grouping of queries and keys that (i) do not have the same vectors, (ii) possibly
live outside or inside the unitary d−dimensional disk. Apart from this, SMYRF and Reformer are
similar: both networks sort vectors based on their LSH hash and both have linear attention complexity.
Sinkhorn [20] proposes a differentiable sorting module for clustering queries and keys. The sorting
layer is trained end-to-end with the rest of the model. It has only been shown to work well for training
from scratch and not for fine-tuning of pre-trained models. Routing Transformer [19] proposes
k−means clustering. In general, vectors that have small Euclidean distance are not guaranteed to
have big inner product. To alleviate this, in Routing Transformer queries and keys are forced to
have exactly the same vector representations and are also mapped to a d−dimensional unitary disk,
exactly as Reformer proposed. Because of these changes, also this method cannot be applied to
pre-trained models. Routing transformer has some other weaknesses as well: (i) the complexity is
O(N1.5) instead of O(N logN) which is the attention complexity of SMYRF and Reformer and (ii)
the clusters are not guaranteed to be balanced. To solve (ii), [19] proposes to keep the top-k vectors
in each cluster. However, this is not guaranteed to work well since it depends on the clusters ordering.

Comparing to the aforementioned methods, SMYRF is the only method that assigns dynamically
queries and keys in clusters and can be applied to pre-trained models. Due to its portability, SMYRF
is the first sparse attention model to report GLUE results on par with the underlying models. As we
showed, SMYRF can be used interchangeably with dense attention before, during and after training.
It also has linear attention complexity, similarly to Reformer. To the best of our knowledge, we are
also the first to prove that the problem that all these methods are trying to solve is NP-hard.

The optimization problem that SMYRF tries to solve is connected to the problem of bi-clustering [58].
Indeed, as shown in the proof of Theorem 3, the goal in Attention Biclustering is to find a clustering
of rows and columns of a matrix that maximizes the sum of the values of the clusters, where each
value at position (i, j) depends on the inner product of query i and key j. For bi-clustering, iterative
algorithms have been proposed [59]. Iterative techniques cannot be applied in the context of attention
in which everything happens in a parallel fashion for fast execution in modern hardware.

Finally, there are a lot of others not attention related techniques that can be used to save memory
and offer speedups. Examples of such techniques include knowledge distillation [60, 61], reversible
layers [62], gradient checkpointing [63], quantization [64] and pruning [65, 66]. SMYRF and all
these innovations are not mutually exclusive, i.e. they can be used together for maximum efficiency.

6 Conclusions

In this work we presented SMYRF, a novel type of balanced clustering to approximate attention. It
is based on Asymmetric LSH with novel transformations and an adaptive clustering scheme. As it
does not require changes to attention, SMYRF is the first sparse attention method that can be applied
directly to pre-trained models. We showed powerful experimental results, in terms of performance,
memory and speed. We also defined the underlying optimization problem that SMYRF tries to solve
and we proved it is NP-hard. The strong experimental performance of SMYRF inclines us to believe
that good approximation algorithms exist for this problem. Proving approximation guarantees for our
method and discovery of better approximation algorithms are left for future work.

9



7 Broader Impact

Our main contribution is to reduce the computational requirements for machine learning models with
attention-layers. Thus, any broader impact is likely to come from making these models more efficient
in both memory impact and inference speed. We expect that this will be mostly a good thing since it
democratizes the use of big attention layers: those who want to use such models but for whom the
computational resources required are too great (like university labs) will now have an easier time.
Moreover, GANs and language models will become easier to deploy on phones or other embedded
devices. Further, more efficient training reduces the environmental and energy footprint of deep
learning research. As the number of parameters of Transformer models grows, the latter becomes
critical [67].

Negative consequences are also possible: The idea of DeepFakes [68] has been well-discussed
elsewhere; a technique that makes these easier to create clearly has downsides. On the other hand,
any sufficiently determined actor (e.g. a nation-state attempting to commit election-fraud) already
has access to such technology, so perhaps the marginal negative impact will not be that large. Still,
whenever computational requirements are reduced, the ease of taking bad actions increases along
with the ease of taking good actions.

Finally, the technique proposed in this paper relies heavily on the assumption that attention maps
are approximately sparse. It’s possible (though we have no particular reason to think that this
has happened or would happen) that, at some intermediate layer of a complicated neural network,
enforcing sparsity when the ground-truth maps are non-sparse could result in ignoring salient
features of atypical data points, thus resulting in fairness-related issues. Determining whether these
approximations cause fairness issues in general could be an interesting subject for future work.
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9 NP-hardness of Attention Biclustering

To prove Theorem 1, we first prove the following lemma.

Lemma 1. The optimization problem:

min
CL
t ∈CL

||P̂ǫ − P ||2F

is NP-hard.

Proof of Lemma 1. We will show that this problem is NP-hard, by showing that if we could solve in
polynomial time all instances of this problem, we could solve in polynomial time the 3-dimensional
matching problem (3-DM), which is known to be NP-complete. Following the notation of the main

paper, we define ǫ = e−a and P̂ǫ denotes the queries-keys product matrix with −a in positions that
correspond to queries and keys that do not belong to the same cluster.

It holds that:

min
CL

||P̂ǫ − P ||2F = min
CL
t ∈CL

∑

(q,k) 6∈CL
t

(q · k − (−a))
2

= min
CL
t ∈CL





∑

(q,k)∈Q×K

(q · k + a)
2 −

∑

(q,k)∈CL
t

(q · k + a)
2



 = min
CL
t ∈CL



−
∑

(q,k)∈CL
t

(q · k + a)
2





= max
CL
t ∈CL

∑

(q,k)∈CL
t

(q · k + a)
2

(6)

Since for all given sets Q,K we can create (in polynomial time) sets Q′,K′ such that: (q · k + a)
2
=

q′ · k′, ∀(q, k) ∈ Q×K, (q′, k′) ∈ Q′ ×K′, the problem is equally hard to solving:

max
CL
t ∈CL

∑

(q′,k′)∈CL
t

q′ · k′ (7)
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We can refer to this latest optimization problem as the max-mass problem.

Now consider the case where: |Q| = |K|, L = |Q|/2, i.e. for this problem instance we have the
same amount of queries and keys and we want to group them optimally to clusters with the constraint
that each cluster should contain exactly 2 queries and 2 keys.

Note that for 1 query and one key per cluster this becomes weighted bipartite matching (which is
efficiently solvable). For 1 query and m keys per cluster this is a generalized matching problem,
which is also polynomially solvable [69].

If we are able to solve the latter with a polynomial algorithm, then we can show that we can solve the
3-DM problem with a polynomial algorithm.

Any instance of the 3-DM problem can be expressed with finite, disjoint sets X,Y, Z and a set
T of triples (x, y, z) : x ∈ X, y ∈ Y, z ∈ Z. Visually, we can depict any instance of
a 3-DM as a graph with three disjoint vertex sets, with T containing the edges of the graph.
For example, the 3-DM instance X = {1red, 2red}, Y = {1blue, 2blue}, Z = {1green, 2green}, T =
{(1red, 1blue, 1green), (1red, 2blue, 2green), (2red, 1blue, 1green)} is shown in (1,1) of Figure 3. We are look-
ing for a set T ′ ⊆ T in which every vertex is covered exactly once. Finding this solution, in case it
exists, it is known to be an NP-hard problem. For this example, there is a valid solution, which is
shown in (1, 2) of Figure 3.

We can transform any instance in the following way: we create one query and one key vector for each
vertex x ∈ X with the property that their inner product is some large positive constant r1 ∈ R

+. We
can visualize this using red edges, following the previous example where we denoted with red color
the vertices of X . We also set the inner product of any key vector that corresponds to vertex of X
with all the other query vectors to be 0. Visually, a “missing" edge means that the inner product of the
corresponding vectors is 0 (no-reward). We also create a key vector for each vertex y ∈ Y with the
property that if (x, y, z) ∈ T for some z, then the key vector for y and the query vector for x have
inner product r1, else 0. We can show the non-zero edges of this category visually with blue color,
following the previous example. Note that blue and red edges are equivalent in terms of the inner
product between the vertices they connect, since both have inner product r1. Finally, we create a
query vector for each z ∈ Z with the property that if (x, y, z) ∈ T for some x then the key vector for
y and the query vector for z have inner product r2, else 0 where r2 ∈ R

+ is a small positive constant.
Again, we can show the non-zero edges of this category with green color, following the previous
example. For the given example, the transformation is shown in (2, 1) of Figure 3.

We have hypothesized that we have a polynomial algorithm to solve the max-mass problem of (7).
The key observation for our proof is that, by construction, the best cluster in terms of potential
accumulated mass is a cluster with one red, one blue and one green edge, as the ones shown right of
the dashed bar of Figure 4. Indeed, the only way to obtain a cluster of more mass is to group two blue
vertices with two red vertices, as shown in (1, 1) of Figure 4. By doing that, you earn one more r1
compared to the clustering shown in (1, 2) of Figure 4, but you lose 2 · r1, which are the rewards that
they red keys could give (as they are left with no connections). Thus, the two clusterings on the right
side of Figure 4 are preferable compared to any other potential two clustering that can be obtained by
choosing the left grouping.

Since we have proved that the best possible clustering is one with one red, one blue and one green
edge, it is now left to prove that if there is a 3-DM, then it is possible to group all queries and keys
into clusters with this optimality property. Indeed, if there is a 3-DM, we can cover each vertex
exactly one time, by matching any vertex of X with a vertex from Y and a vertex from Z. With our
transformation, this means that we can group each red node with itself and one blue and one green
vertex, which is an optimal cluster as it contains one red, one blue and one green edge. Thus, solving
polynomially our problem would mean that we could also solve in polynomial time the 3-DM, which
is known to be NP-hard.

Proof of Theorem 1. We will show that if we can solve in polynomial time the problem:

minCL ||σ(P̂0)−σ(P )||2F , then we can also solve in polynomial time the problem minCL ||P̂ǫ−P ||2F
(for an appropriate ǫ) which we have proven to be NP-hard.
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where qD denotes the denominator of the dense softmax and qCL
t

denotes the denominator of the

cluster softmax, i.e. qD =
∑

k∈K eq·k and qCL
t
=

∑

k∈CL
t
eq·k for a given cluster CL

t ∈ CL.

We will now show that for a proper choice of a, this problem is equivalent to:

max
CL
t ∈C

∑

(q,k)∈CL
t

e2q·k.

Let Rq = 2
qDq

CL
t

− 1
q2
CL
t

. As we increase the value of a, the inner product of its query with its’

special key gets significantly bigger compared to other inner products and thus for large enough
values of a, we know that each query will get clustered with its’ special key. We can control
how close qD, qCL

t
are by setting appropriately the a value. Specifically, we choose a such that

qD(1− ǫ) < qCL
t
, ∀q ∈ Q, CL

t ∈ CL, where ǫ = ǫ(a) a small positive constant the choice of which

we will determine soon. By definition, qCL
t

is always smaller than qD, and thus we for that choice of

a we have qD(1 − ǫ) < qCL
t
< qD. Then, Rq > 2

q2
D

− 1
q2
D
(1−ǫ)2

= 1
q2
D

(2 − 1
(1−ǫ)2 ) =

1−ǫ′

q2
D

where

1 + ǫ′ = 1
(1−ǫ)2 . But also, Rq =

2q
CL
t
−qD

q2
CL
t

qD
< 2qD−qD

q2
CL
t

qD
= 1

q2
CL
t

< 1
(1−ǫ)2qD

= (1 + ǫ′) 1
q2
D

. Then, we

have that:
1− ǫ′

q2D
< Rq <

1 + ǫ′

q2D
. (8)

Now consider the following optimization problems:
{

P0 : max
∑

(q,k)∈CL
t
e2qkRq

P1 : max
∑

(q,k)∈CL
t

e2qk

qD

.

Let F (c), G(c) the objective functions of P0, P1 respectively.

Using (8), we get that:
(1− ǫ′)G(c) ≤ F (c) ≤ (1 + ǫ′)F (c). (9)

Our claim is that for a suitable choice of ǫ′, i.e. for a suitable choice of a, it holds that argmaxP0 =
argmaxP1

4.We prove that by contradiction. Let c1 be the optimal choice of P0 and c2 be the optimal
choice of P1. Then, we know that F (c1) > F (c2) and G(c2) > G(c1). Using (9), we get that:

(1− ǫ′)G(c1)− (1 + ǫ′)G(c2) < F (c1)− F (c2) < (1 + ǫ′)G(c1)− (1− ǫ′)G(c2). (10)

We denote with d the gap between the optimal value F (c1) and the non optimal solution F (c2), i.e.
d = F (c1)− F (c2). Then, from (10), we get that:

d < (1 + ǫ′)G(c1)− (1− ǫ′)G(c2)− (1− ǫ′)G(c1) + (1 + ǫ′)G(c2) = 2e′(G(c1) +G(c2)).

Let θ1 the maximum value of G(c1) +G(c2) among all the clusterings c1, c2 ∈ CL, i.e. among all
the possible valid clusterings in L groups. Then, d < 2ǫ′θ1. However, since F is a function that
maps from discrete clusterings to real numbers, two non-optimal solutions of F (c) differ for at least
a minimum distance. In that case, the minimum distance should be at least epminRmin, where pmin is
the minimum product between any query and any key and Rmin is the minimum value that R can
take for any clustering. Let θ2 = epminRmin. Then, d ≥ θ2. If we choose ǫ′ such that: 2ǫ′θ1 < θ2
then we have a contradiction. This is always possible since we can set the value of ǫ′ to arbitrarily
small values as we grow a arbitrarily big. Thus, we proved that the problems P0, P1 have the same

argmax for a proper choice of a. Then, for that choice of a the problem minCL ||σ(P̂0)− σ(P )||2F
is equivalent to P1 which is equivalent to the problem:

max
CL
t ∈C

∑

(q,k)∈CL
t

e2q·k,

since qD does not affect the choice of optimal clusters.

4We assume that if there is a set of optimal solutions, then we pick with the same order from that set for both
problems.
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In the latter problem, we can replace all queries q and keys k with new vectors q′, k′ such that:
q′ · k′ = e2q·k. This is equally hard to solving:

max
CL
t ∈C

∑

(q,k)∈CL
t

q · k

which we proved to be NP-hard.

10 Code

To encourage further research in sparse attention models, we open-source all our code and
we release a Python package, named smyrf. The repository for the code is the following:
https://github.com/giannisdaras/smyrf . smyrf implements SMYRF attention for Pytorch [36]. We
plan to release implementation for Tensorflow [70] soon as well. smyrf contains various examples
on pre-training and finetuning state-of-the-art models for Computer Vision and Natural Language
Processing tasks. Regarding examples, at the moment smyrf includes:

• a TPU-compatible implementation of SMYRF-BigGAN, based on the official Pytorch
implementation (https://github.com/ajbrock/BigGAN-PyTorch) for GPUs.

• code for training SMYRF-BigGAN on Celeba-HQ on a single TPU device.

• interactive notebooks showing how to use a pre-trained BigGAN for image generation with
SMYRF on Celeba-HQ and ImageNet.

• tools to visualize cluster memberships for pixels of SMYRF generated images.

• code for replacing dense attention with SMYRF layers for state-of-the-art pre-trained NLP
models, compatible with HuggingFace’s Transformers [71] library.

• interactive notebooks for fine-tuning pre-trained NLP models on GLUE [25] and IMDB [52].

• tools for profiling SMYRF’s performance compared to dense attention.

We also share the weights of SMYRF-BigGAN trained on Celeba-HQ at resolutions 128 × 128
and at 256 × 256 with attention at 128 × 128, 256 × 256 respectively. Although these models are
outperformed by non-attention GANs (e.g. StyleGAN [72, 73]), we believe that releasing them will
help researchers understand better attention at higher resolutions. Hopefully, SMYRF will motivate
the usage of more attention layers on new GAN architectures.

11 Singular values decay for pre-trained models

As noted in the paper, row-wise softmax can change the rank of a matrix. For example, the matrix
[

1 0
2 0

]

has rank 1, while the matrix σ

([

1 0
2 0

])

=

[

0.7311 0.2689
0.8808 0.1192

]

has rank 2. Back to the

context of attention, we have defined the product matrix P = Q ·KT , where Q : R|Q|×d represents

the queries matrix and K : R|K|×d the keys matrix. By the definition of rank, if the embeddings
dimension is smaller than the sequence length dimension, i.e. d < min(|Q|, |K|), then P is low rank.
However, the attention matrix after softmax, i.e. σ(P ), could be a full rank matrix. In this section,
we provide experimental evidence that attention maps produced by pre-trained models are actually
near low-rank.

Figures 5, 6 depict the singular values of the attention maps (for a random input5) for a pre-trained
BigGAN (attention map dimensions: 4096× 1024) and a pre-trained BERT (shown attention map
dimensions: 64×64, 256×256). For the pre-trained BigGAN (Figure 5) the decay in singular values
is exponential. Specifically, in Figure 5 most singular values are very close to 0, which means that
the attention map is effectively low rank. Figure 6 shows decay of singular values for a pre-trained
BERT for sequence lengths: (a) 64, (b) 128. We illustrate decay for 144 heads (12 heads for each one
of the 12 layers). For the majority of heads, singular values decay exponentially. We also see that
the heads that do not demonstrate exponential decay in the singular values maintain this property

5We experimented with different random inputs and there is no qualitative difference in the decay of singular
values)
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13 SMYRF Clustering

13.1 Asymmetric Locality Sensitive Hashing (ALSH)

SMYRF clusters depend on the hashing indices of asymmetrically transformed queries and keys.

As mentioned in the paper, we are looking for functions F : Rd → R
d′

, G : Rd → R
d′

such as:
||F (q) − G(k)||22 = D(q · k), ∀(q, k) where D : R → R a decreasing function that depends only
on the inner product q · k. Essentially, functions F,G are applied to queries and keys to convert the
problem of Maximum Inner Product Search (MIPS) to Nearest Neighbor Search (NNS). For the
latter problem, a lot lot of effective Locality Sensitive Hashing (LSH) functions have been proposed
(e.g. [35, 74, 53]). The novel idea of converting MIPS to NNS is called Asymmetric Locality
Sensitive Hashing (ALSH) and was first introduced in [32]. Since then, a lot of different asymmetric
transformations have been proposed [34, 35, 33]. In this section, we show why previously proposed
transformations are not suitable for our problem and how our novel asymmetric transformations,
defined in Equation 4, relate to previous work.

We list the asymmetric transformations that have been widely used to convert a MIPS to NNS:



























[32]: F (qi) =
[

qi;
1
2 , ...;

1
2

]

, G(ki) =
[

Uki; ||Uki||
2
2; ...; ||Uki||

2m

2

]

[33]: F (qi) = [qi; 0] , G(ki) =
[

ki;
√

M2
K − ||ki||22

]

[34]: F (q) = MK

||q||2
· [q; 0] , G(k) =

[

k;
√

M2
K − ||k||22

]

where MK = maxk ||k||2 and U a positive constant such as: ||U · ki||
2m+1

2 → 0, ∀ki ∈ K. The
corresponding Euclidean distances of the transformed vectors are given below:























[32]: ||F (qi)−G(ki)||
2
2 = ||qi||

2
2 +

m
4 − 2Uqi · ki + ||U · ki||

2m+1

2

[33]: ||F (qi)−G(ki)||
2
2 = ||qi||

2
2 +M2

K − 2qi · ki

[34]: ||F (qi)−G(ki)||
2
2 = 2 ·M2

K − 2 MK

||qi||
· qi · k

In all these transformations the Euclidean distance of the transformed vectors, i.e. ||F (qi)−G(ki)||2
decreases linearly with the inner product qi · ki. However, an extra term, p(||qi||), appears. Indeed,
these transformations were proposed for the case of a single query (e.g. a user) and multiple keys (e.g.
movies) and for such applications ||qi|| is considered constant. On the contrary, for our setting, the
transformations of [32, 34, 33] cannot be applied since ||q||2 is no longer a constant. To illustrate this
better, consider the case where q1, q2 ∈ Q with q1 6= q2 and k ∈ K a key such as: q1 ·k = q2 ·k. Since
we are looking for big inner products, we expect to have transformations F,Q : ||F (q1)−G(k)||2 =
||F (q2)−G(k)||2. For [32, 33], if ||q1||2 < ||q2||2 then ||F (q1)−G(k)||2 < ||F (q2)−G(k)||2 and
for [34]: ||F (q1) − G(k)||2 > ||F (q2) − G(k)||2. Thus, all [32, 34, 33] do not satisfy our desired
property, i.e. ||F (q1)−G(k)||2 = ||F (q2)−G(k)||2. To solve this problem, we propose (see main
paper) the novel asymmetric functions:

F (qi) =
[

qi; 0;
√

M2
Q +M2

K − ||qi||22

]

, G(ki) =
[

ki;
√

M2
Q +M2

K − ||ki||22; 0
]

(11)

where we use the constants MQ = maxqi ||qi||2, MK = maxki
||ki||2, or any other upper bound

on the norms. With this transformation, all queries and keys are mapped to a (d+ 2)-dimensional

ball with radius
√

M2
Q +M2

K and the distance of the transformed vectors decreases linearly with the

inner product of the original vectors:

||F (qi)−G(ki)||
2
2 = 2 ·

(

M2
Q +M2

K − qi · ki
)

. (12)

Note that the Euclidean distance of the transformed vectors depends only on the inner product of the
original vectors and not on individual norms ||qi||2 as in previous work.
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13.2 Adaptive Clustering

The next step, after the asymmetric transformations, is to map the transformed queries F (q) and
keys G(k) to real numbers, so that if ||F (q) − G(k)||2 is small, then |h(F (q)) − h(G(k))| is also

small with high probability, where h : Rd′

→ R is the mapping function. After mapping, we sort
independently queries and keys based on their hash and we split them into groups of equal size. There

are numerous hashing functions [54, 35, 74, 75] h : Rd′

→ R that belong to the LSH family that we
can leverage to achieve that. One of the most widely adopted hash functions for locality sensitive
hashing is E2LSH [35]:

hE2LSH(u) =

⌊

(u · a) + b

r

⌋

(13)

where a = (a1, ..., a
′
d) ∈ R

d′

with ai ∈ N (0, 1) and b ∈ U(0, r) and r is a scalar parameter which
controls LSH sensitivity. Since we re-group vectors by sorting on their LSH index, the floor operator
and the division with r are not needed. Our simplified hashing function is defined as:

hours(u) = (u · a) + b (14)

We roughly removed a division by a constant. Thus, this simplified hashing function preserves the
locality-sensitive properties of E2LSH [35]. Namely, if ||u1 − v1||2 ≤ ||u2 − v2||2 then with high

probability: |h(u1)− h(v1)| ≤ |h(u2)− h(v2)|, ∀u1, u2, v1, v2 ∈ R
d′

.

13.3 Merging hashing rounds

In our experiments, we run multiple hashing rounds each time, similarly to [18]. Each time we
run LSH, we end up with a (possibly) different clustering assignment and thus (possibly) different
attention output. Specifically, we repeat the process H times (where H is usually a small constant,
e.g. 8) to reduce the probability that we miss big inner products. In this section, we explain how
we merge the partial attention outputs (made from different hashing rounds) into a single attention
output.

Without loss of generality, we will present the merging algorithm for a single query q. At each
clustering round h we get (from the adaptive clustering) a set of key vectors Khq

⊆ K. The
corresponding attention output is:

ohq =
∑

k∈Khq

wkvk, wk =
eq·k

∑

k′∈Khq
eq·k′

We merge the attention outputs of the different rounds with a weighted sum. The weight, ah, for each
round h, is the fraction of the softmax mass that was acquired in this round to the total mass acquired
by all rounds. Formally the attention output o′q for query q is computed as:

o′q =

H
∑

h=1

ah ·
∑

k∈Khq

wkvk, wk =
eq·k

∑

k′∈Khq
eq·k′

, ah =

∑

k′∈Khq
eq·k

′

∑H

n=1

∑

k′∈Knq
eq·k′

(15)

To explain this merging scheme, we will show that under certain assumptions, this merging scheme
can lead to exact approximation of the real attention output. We start by listing these assumptions.

Assumption 1 (Sparsity of weights). For any given query q ∈ Q, the key set K has at most T and at
least one vectors ki ∈ Kq such as:

ki ∈ Kq, kj 6∈ Kq ⇒
eq·kj

eq·ki
= 0

From Assumption 1, it follows that at most T and at least one key vector ki gets a non-zero score,
wi 6= 0, after softmax.

Assumption 2 (Fairness of LSH clustering). For any given query q ∈ Q and two keys k1, k2 ∈ K,

if wk1
6= 0 ∧ wk2

6= 0, then
∑H

n=1

∑

k1∈Knq
1 =

∑H

n=1

∑

k2∈Knq
1 where H denotes the hashing

rounds and Knq
denotes the chosen key set for query q at hash round n.
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Assumption 2 simply states that each query is clustered the same number of times with all its’ big
inner products along the different hashing rounds.

Assumption 3 (Effectiveness of LSH clustering). There is a small constant H , which denotes the
number of hashing rounds, such as:

∀k ∈ K : wq 6= 0 ⇒ ∃n : 1 ≤ n ≤ H ∧ k ∈ Kqn .

The latter assumption states that we need a small number of hashing rounds H to catch all big inner
products of a given query.

We state the following theorem:

Theorem 2. If Assumptions 1, 2, 3 hold, then our approximation algorithm is exact.

Proof of Theorem 2. With our merging scheme (Equation 15), the attention output is:

o′q =

H
∑

h=1

∑

k∈Khq





∑

k′∈Khq
eq·k

′

∑H

n=1

∑

k′∈Knq
eq·k′

·
eq·k

∑

k′∈Khq
eq·k′



 · vk =

H
∑

h=1

∑

k∈Khq
eq·k · vk

∑H

n=1

∑

k′∈Knq
eq·k′

(16)

Under Assumption 1, the dense attention output for this query is the vector:

oq =
∑

k∈Kq

eq·k
∑

k′∈Kq
eq·k′

· vk

where Kq is the set of keys ki for query q for which wi 6= 0.

Under Assumption 3, all keys that have big inner product with a given query q are clustered with that
query, at least one time. Also, under Assumption 2, all these keys are clustered the same amount of
times with each query. We will denote the amount of a query is clustered with each one of its’ big
inner products with Nq . It holds that:

H
∑

n=1

∑

k′∈Knq

eq·k
′

= Nq ·
∑

k′∈Kq

eq·k
′

(17)

By substitution in Equation 17, we get:

oq =

∑H

n=1

∑

k∈Khq
eq·k · vq

Nq ·
∑

k′∈Kq
eq·k′

(18)

Under Assumptions 1, 2 small inner products get a zero-score and all big inner products are clustered

Nq times each. Thus, we can write for the nominator:
∑H

n=1

∑

k∈Khq
eq·k · vq = Nq

∑

k∈Kq
eq·k

′

.

Substituting to Equation 18, we get:

o′q =
∑

k∈Kq

eq·k
∑

k′∈Kq
eq·k′

vk = oq

In this section, we explained in detail our merging scheme. We also showed that under certain
assumptions on the data, this scheme leads to exact approximations of dense attention output. We
fully understand that the assumptions are far too tight to hold in practice and since distortion is
introduced. However, as we demonstrated in the Experiments section, the distortion is negligible
even for large memory reductions, since SMYRF can perform on par (or even better, e.g. GLUE)
with dense attention, especially on downstream Natural Language Processing tasks, using a fraction
of the original memory.
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14 Complexity analysis and speedups

In the paper, we presented shortly the complexity of our algorithm. In this section, we explain it in
more detail and we also include speed plots that demonstrate the effectiveness of SMYRF for long
sequences.

14.1 Complexity Analysis

For the complexity analysis, we assume for simplicity that |Q| = |K| = N , i.e. the number of
available queries is equal to the number of available keys.

We run the algorithm H times (i.e. rounds of LSH). Each run has two stages:

– Clustering in L clusters (of equal size). For clustering, we hash all points with LSH which
requires complexity O(N) and then we sort points based on their hash, which requires
complexity O(N · logN). Overall, the complexity is O(N · logN).

– Within clusters attention. Attention within each cluster has quadratic cost with respect to
the cluster size. Each cluster has size N

L
, so the complexity of attention in a single cluster is

O(N
2

L2 ). We have L such clusters, and thus the overall complexity is O(N
2

L
).

The total complexity is: O
(

H ·N · logN +H · N2

L

)

. We choose L = O(N), i.e. each query

attends to a small constant number of keys. We obtain complexity: O(H ·N · logN).

14.2 Speedups

In this subsection, we present two speed plots to demonstrate the speed effectiveness of SMYRF for
large sequences. The first plot, Figure 8, shows elapsed time for SMYRF-BERT (base) GPU inference
for various batch-sequence length configurations. In all these experiments batch size ×N = 65K,
where N denotes the sequence length. We underline that SMYRF has (almost) constant speed in
all these configurations while the speed of dense attention decreases rapidly us the sequence length
increases. Notably, SMYRF is already faster than dense attention in sequence length 1024 tokens.
The second plot, Figure 9, shows seconds per iteration for SMYRF-BERT (base) GPU inference for
various hashes-cluster configurations. In all these experiments, batch size is fixed to 1. As shown, all
different configurations significantly outperform (in terms of speed) dense attention as the sequence
length increases.

15 Experimental details

15.1 Natural Language Processing experiments

In this section, we provide some details about the experimental settings for the Natural Language
Processing experiments.

15.1.1 IMDB

IMDB [52] contains 25,000 train and 25,000 dev labeled movie reviews. The task is to identify if
a given movie review is positive or negative. The average sentence length in IMDB is 300 tokens
and the 95th percentile of context length is 705 tokens. In our experiments, we truncated/padded all
sentences to 512 tokens. For all our experiments, we trained for 3 epochs, with batch size 8. We
used Adam [76] as our optimizer with learning rate 3 · 10−5. The dataset is available publicly in this
link: https://ai.stanford.edu/ amaas/data/sentiment/. The experiments on IMDB run on a single GPU
provided by Google Colab.

15.1.2 GLUE

GLUE [25] is a standard multitask benchmark for Natural Language Processing. For a full description
of tasks, dataset statistics and files, please refer to the official website: https://gluebenchmark.com/.
Following previous literature (e.g. [9, 6, 5, 24]), for our GLUE experiments we truncate/pad all
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Figure 10: Generated images from SMYRF-BigGAN on Celeba-HQ-256. Attention at 256× 256.
The trained model uses 50% less memory compared to the memory dense attention would use.

16.1 Learning from scratch under extreme sparsity

Our initial goal was to train a SMYRF model from scratch with extreme memory reductions, e.g. to
the magnitude of 99%. Such reduction could enable the training of SMYRF-BigGAN with attention
at 1024 × 1024. However, our preliminary experiments with BigGAN [1], failed (mode-collapse
very early in the training process). We tried to investigate this further and we found that during the
early stages of the training the Frobenius norm of the difference between the SMYRF and the dense
attention map is really high. We believe that this is due to the non-sparsity of the attention maps in
the early stages of the training. It is also possible that their eigenvalues decay slower which means
that their effective rank is higher compared to pre-trained models. One way to solve the problem
is to dynamically adapt the memory reduction (e.g. by selecting the number of hashes) during the
training. One way to achieve that is to use as many hashes as need to achieve a certain bound for the
Frobenius norm. In the early stages of training, we expect that more hashes are needed for an accurate
reconstruction. The number of hashes should decay as the training progresses and the attention maps
become more sparse and have lower rank. One disadvantage of this approach is that at the early stages
of the training, more memory is needed. However, we observed that the period of time in which the
attention maps are not very sparse is minor compared to the whole training time for BigGAN and
thus this approach can lead to significant savings. We aim to explore this more in the future.

16.2 Better LSH based clustering schemes

The biggest advantage of clustering with an LSH-based scheme is that the attention complexity is
linear (compared to K-means clustering for example, see Routing Transformer [19]). However, while
inspecting SMYRF, we found that LSH-clustering is the biggest bottleneck to greater performances.
For example, if each query attends to at its’ top-k (in terms of inner product) keys (instead of the keys
assigned with LSH), the performance improves considerably. Finding exactly the top-k keys for each
query is expensive (especially in high dimensions) and thus this approach is not viable. However, this
observation motivates research in finding even more effective LSH-based clustering schemes. Even
though we tried other ALSH variants, we did not manage to find something that works better than
our proposed transformations till now. We consider this problem an interesting future direction since
ALSH has been widely explored only for the case of a single query and multiple keys. In this paper,
we did the first step in extending this to multiple queries, but we are inclined to believe that further
research can lead to even better results in this direction.
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