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Abstract
Monocular depth estimation (MDE), which is the task of using a single image to predict scene
depths, has gained considerable interest, in large part owing to the popularity of applying deep
learning methods to solve “computer vision problems”. Monocular cues provide sufficient
data for humans to instantaneously extract an understanding of scene geometries and relative
depths, which is evidence of both the processing power of the human visual system and
the predictive power of the monocular data. However, developing computational models to
predict depth from monocular images remains challenging. Hand-designed MDE features
do not perform particularly well, and even current “deep” models are still evolving. Here
we propose a novel approach that uses perceptually-relevant natural scene statistics (NSS)
features to predict depths from monocular images in a simple, scale-agnostic way that is
competitive with state-of-the-art systems.While the statistics of natural photographic images
have been successfully used in a variety of image and video processing, analysis, and quality
assessment tasks, they have never been applied in a predictive end-to-end deep-learning
model for monocular depth. Correspondingly, no previous work has explicitly incorporated
perceptual features in a monocular depth-prediction approach. Here we accomplish this by
developing a newclosed-formbivariatemodel of image luminances and use features extracted
from this model and from other NSS models to drive a novel deep learning framework for
predicting depth given a single image.

Keywords Monocular depth estimation · Natural scene statistics · Depth estimation ·
Bivariate natural scene statistics · Neural networks

1 Introduction

The human visual system (HVS) uses both binocular and monocular cues to perceive depths
and instantaneously reconstruct the 3D world. Even from a single image, without binocular
cues, humans are able to easily gain a good understanding of the 3D geometry of the scene,
e.g., relative distances and object sizes. Recently, modeling depth frommonocular luminance
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has gained interest, and deep learning approaches to depth estimation have shown promising
results. However, designing computational models to estimate depth frommonocular images,
or Monocular Depth Estimation (MDE), remains an ill-posed, challenging problem.

Recent work in estimating depth from monocular images has made use of deep network
architectures and training on large databases [6,8,11,13,14,26,28–30,63]. Some models were
trained with stereo or multiple views [13,14,26], but the amount of multi-view ground-truth
data that is available is limited. Other approaches require post-processing, refinement steps,
or multi-phase training [8,29] or use networks having tens of millions of trained parameters
[6,11,28,30,63]. One previous approach used natural image statistic features in a Bayesian
framework to regress depth using a simpler learner (Support Vector Regressor) [56], however
that model requires training two distinct sub-models, and depth-prediction is subsequently
a two-part process. Here we show that perceptually available information provided by the
local, scale-invariant statistics of natural scenes, or natural scene statistics (NSS), can be used
to predict depth in a simple end-to-end network, yielding significantly improved results.

Natural Scene Statistics (NSS) have proven to be useful in understanding the evolution of
the HVS and for exploring complex visual problems [5,39,47,57,61]. In a related study, the
authors of Liu et al. [32] deployed statistical models of luminance/chrominance and depth/
disparity NSS, and the relationships between them, to drive a Bayesian stereo algorithm
to predict disparity. The authors of Su et al. [51] extended that work by introducing NSS
models of themarginal and conditional distributions of luminances/chrominances and depths/
disparities of natural scenes and used them to improve a chromatic Bayesian stereo algorithm.
More recently, bivariate and correlation NSSmodels for natural images and depth maps were
developed, but these only operate on spatially adjacent bandpass responses [52,53]. NSS
models of spatially adjacent luminance coefficients have also been shown to provide strong
features on visual problems [33,34], but they have yet to be applied to the problem of depth
prediction method, monocular, stereo, or otherwise.

Here we advance the problem of perceptual depth prediction, by first introducing a new
closed-form correlation model of local bivariate luminance statistics. We then use features
derived from this model, along with other univariate and bivariate NSS features, to train a
deep neural network (DNN) to predict inverse-range patches from luminance patches. When
building this model, we represent each inverse-range patch using a sparse code, each element
of which supplies a weight on each patch within a dictionary of image patches, which was
learned from patches sampled from depth perception databases of ground-truth luminance-
depth images. We discuss the construction of our network and emphasize connections and
parallels to perceptual models and concepts. To our knowledge, no previous work has derived
or made explicit use of perceptually-relevant features when predicting depth frommonocular
images. In the sections following, we explain the new correlation NSS model, the dictionary
construction, and the network design, including the data processing steps, the network archi-
tecture, the training and testing details, and the results. We show that our simple network
trained using perceptually-relevant features and a perceptually-relevant loss function is able
to predict dense depth maps in a manner that is competitive with state-of-the-art methods.

2 RelatedWork

2.1 NSS

Extensive work has been done analyzing and modeling the natural statistics of 2D and 3D
scenes and how the HVS processes this information. In particular, many statistical models
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have been developed that make use of statistical models of bandpass responses of luminance
and depth/disparity of real-world images [9,32,40,44,51,56,60]. Using locally normalized
luminance coefficientswhenmodeling such relationships has been explored to a lesser extent,
though NSS computed in this domain are also perceptually relevant [33,34].

There exists a strong relationship between luminance and co-located depth in natural
scenes [40]. Statistical models have been established that reliably capture the univariate
[32,51] and bivariate [52,53] statistics of real-world photographs quite well. There are a
variety of useful established closed-form NSS models of bandpass images [10,47,48,54,55],
and recentwork using them for themonocular depth estimation problemhas shown promising
results [56]. However, a bivariate model of luminance statistics as a function of orientation
and separation between pixels would better capture the relationships between pixels and
scene geometry. We develop and introduce a closed-form bivariate model for luminance
coefficients in Sect. 3.

2.2 Monocular Depth Estimation

Estimating dense depth maps of naturalistic scenes is useful for many computer vision tasks,
such as scene reconstruction and object detection/recognition. Estimating scene depths given
only a single monocular image is a much more challenging problem than multi-view (stereo)
or multi-frame (video) depth estimation. The latter two problems have been studied exten-
sively [17,22,25,37,41,64], however the problem of monocular depth estimation is a much
more poorly-posed problem and progress towards developing a solution has been more dif-
ficult.

Recent approaches toMDE that utilizeDNNshave shownpromising results [6,8,11,24,28–
30,43,63]. However, some of the highest-performing methods limit the resolution of the
output [8], require post-processing (correction) steps [6], require multi-phase training [63],
or reformulate the problem as a variation of a classification task [6,11]. Some recent methods
for MDE rely on stereo or multi-view data for training [12–14], thus potentially limiting their
generalizability.

Instead of predicting depth, we predict the inverse of depth, which is proportional to
disparity, and which we refer to as inverse range. The task of predicting the inverse of depth
follows the objective of stereo correspondence methods. Stereo algorithms aim to estimate
disparity, which can be used to compute depth directly if the baseline and focal length of
the stereo cameras are known. Our method uses a novel modular DNN architecture that
relies solely on monocular training data. It can be trained end-to-end, and because it operates
patch-wise, it is able to produce predictions for images of any resolution.

3 Luminance and Depth NSS

One hypothesis of vision science is that the sensory systems have become, through evolution
and adaptation, matched to the statistical properties of the signals to which they are exposed
[1,42,59]. When attempting to solve the MDE problem, the only available data from which
to predict depth is from single-view pixel data. Thus, we begin by exploring the statistical
relationships that exist between the bandpass luminance coefficients of images and their
corresponding depths. We develop a model that is able to capture the correlations between
spatially neighboring luminance values across multiple scales. We apply the bivariate model
introduced in Su et al. [52], [53] to the spatial domain, complete the correlation model, and
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present it in a closed form. We then use features derived from the new correlation model,
along with established univariate and bivariate luminance NSS features, to train a DNN to
predict depths from monocular image patches.

3.1 Univariate NSSModel

In the 1980s, Ruderman [44] observed interesting outcomes that arose by applying a sim-
ple process of image modification. After digitizing a large set of outdoor photographs, he
found that subtracting estimates of the local mean luminances from the prictures, then further
processing by dividing by the estimates of local variance (an example of a ‘divisive normal-
ization transformation’, or DNT), has a decorrelating and gaussianizing effect on the image
data. The DNT process is perceptually significant and is a reasonable approximation to the
nonlinear behavior of retino-cortical neurons [60]. We will start by reviewing simple spatial
domain NSS models, beginning with the univariate model detailed in Mittal et al. [33,34].
Given an image I , define the normalized luminance values:

Î (i, j) = I (i, j) − μ(i, j)

σ (i, j) + C
, (1)

where i, j index row and column pixels, respectively, C is a normalization constant that
stabilizes the quotient when σ is small, and

μ(i, j) =
K∑

k=−K

L∑

l=−L

wk,l Ik,l(i, j), (2)

and

σ(i, j) =
√√√√

K∑

k=−K

L∑

l=−L

wk,l(Ik,l(i, j) − μ(i, j))2, (3)

where, as in Mittal et al. [33], we use a patch sampling window w = {wk,l |k =
−K , ..., K , l = −L, ..., L} that is a 2D circularly/symmetric Gaussian weighting function
sampled out to 3 standard deviations and rescaled to unit volume. In the experiments, we use
K = L = 3, but operate over multiple scales.

Although in principle, the empirical distributions of the DNT luminance coefficients
should be Gaussian-shaped, we instead fit the histograms with the zero-mean generalized
Gaussian distribution (GGD) function:

f (x;α, σ 2) = α

2βΓ (1/α)
exp

(
−

( |x |
β

)α)
, (4)

where

β = σ

√
Γ (1/α)

Γ (3/α)
, (5)

and

Γ (a) =
∫ ∞

0
ta−1e−t dt, a > 0. (6)

123



Perceptual Monocular Depth Estimation 1209

Fig. 1 GGD fit to bandpass, divisively normalized luminance histogram from the LIVE SV database [37].

The GGD is parameterized by α and σ 2, which represent the shape and variance, respec-
tively, of the distribution. We use the maximum-likelihood method detailed in Sharifi and
Leon-Garcia [45] to estimateα and σ 2. One of the databases that we use is the large newLIVE
Surround-View (SV) Database [37], which contains over 130, 000 pairs of synthetically-
generated naturalistic color images and ground-truth depth maps. We have found that the
parameters of the best GGD fits to the DNT luminance coefficients of LIVE SV support the
use of natural picture statistics models on the images in the LIVE SV database, as shown
in Fig. 1: the distributions of the normalized luminance coefficients strongly tend towards a
unit normal Gaussian [33,44].

The LIVE SV database was originally generated for the purpose of exploring surround-
view driver assistance imaging systems, where the feeds from four fisheye cameras placed
around avehicle are combined to generate a top-downviewof the vehicle and its surroundings.
The SV database, contains fisheye stereo pairs and their corresponding depth maps, also
subjected to the fisheye distortion. The spatial distortion can be removed to obtain typical
rectilinear photographic images of city scenes,which include pedestrians, bikes,motorcycles,
a variety of vehicles, and other realistic content. Instructions to download the database can
be found at https://github.com/janicepan/live-sv/.

3.2 Bivariate NSSModel

Our bivariate NSS model extends the work done in Su et al. [52], [53], which explored
the NSS of spatially adjacent directional bandpass (wavelet) responses. We use a simpler
isotropic bandpass/DNT model. As with Su et al., [52], [53], we use a bivariate generalized
Gaussian distribution (BGGD) to model the pairwise statistics of pixels having four relative
orientations, separated by distance d , as shown in Fig. 2: the horizontal (0o), right diagonal
(45o), vertical (90o), and left diagonal (135o).

The bivariate generalized Gaussian distribution is:

f (x;M, αb, βb) = 1

|M|gαb,βb (x
�M−1x), (7)
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Fig. 2 Visualization of distances andorientations betweenpairs of pixels onwhichwemodel bivariate statistics.
Left: distance is measured in pixels, while orientation is measured clockwise from the positive horizontal.
Right: the four orientations considered in our bivariate statistical model.

where x ∈ IR2, M is a 2 × 2 covariance matrix, αb and βb are scale and shape parameters,
respectively, and gαb,βb (·) is:

gαb,βb (y) = βbΓ (1)
(
2

1
βb παb

) 1
2 Γ

( N
2βb

)e
− 1

2

(
y

αb

)βb

, y ∈ IR+. (8)

The elements of matrix M are pairwise covariances, for which we seek a simple closed-
form correlation model so that the overall second-order statistical model (7), (8) is also of
closed form. Figures 3 and 4 plot the correlations against the distance between the pixels for
four different orientations, on two different databases. Figure 3 was generated on the LIVE
Color+3D Database Release 2 [56], which contains 98 sets of high-definition (1920× 1080)
stereo color image pairs with co-registered dense ground-truth depth maps. The images in
this database are pristine, natural images, i.e., with minimal distortion. The depth data was
captured using a RIEGL VZ-400 terrestrial range scanner calibrated to the camera.

As previously mentioned, we also utilized the LIVE Surround-View (SV) Database [37],
because of its size, which greatly facilitates the training of deep models, and the guar-
anteed accuracy of its ground-truth range measurements. Large amounts of ground-truth
co-registered luminance and depth data are very difficult to obtain, and this dataset contains
over 130, 000 pairs of naturalistic color images and corresponding depth maps. Since the
data was generated synthetically, it contains perfectly calibrated co/registered luminance-
/depth data. The correlation plots generated using this synthetic data nicely agree with those
computed on pristine images captured by high-definition cameras, which, along with the
univariate GGD fits (Fig. 1), supports the use of LIVE SV for developing MDE models of
natural photographic + depth images.

We have found that a difference-of-exponentials can be used to accurately model the
empirical correlation values:

ρ(d) = 2ead − eabd , (9)

where d is the pixel separation, a controls the decay steepness (and thus, the location of the
dip that is evident in the plots), and b controls the width of the dip (or lack thereof). Figure
5 shows possible shapes the model (9) can exhibit when varying the parameters a and b. In
the left plot, a is fixed at -0.5, while b varies, and in the right plot, b is fixed at 0.5, while a
varies.

123



Perceptual Monocular Depth Estimation 1211

Fig. 3 Empirical luminance correlations computed on the LIVE Color+3D Release 2 Database. Top row:
correlation as a function of distance for (from L to R) θ = {0, 45o, 90o, 135o} and 7 different scales. Bottom
row: correlation functions averaged over scales showing confidence bands.

Fig. 4 Empirical luminance correlations computed on the LIVE SV Database. Top row: correlation as a
function of distance for (from L to R) θ = {0, 45o, 90o, 135o} and 7 different scales. Bottom row: correlation
functions averaged over scales showing confidence bands.

Fig. 5 Difference of exponentials (correlation model (9)) with (left) fixed a and varying b and (right) fixed b
and varying a.
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4 Sparse Dictionary Representation for Inverse-RangeMaps

It is strongly believed that the HVS extracts statistical elements of visual stimuli to produce
efficient representations [1,42,59]. Early on, Barlow [3] proposed that early visual processing
in the brain acted to removemuch of the considerable redundancy present in visual signals by
generating statistically independent neural responses. Further, a significant amount of prior
work has demonstrated the connection between NSS and sparse representations [2,9,35,36].
In particular, Field [9] showed that simple cells in the primary visual cortex (V1) create
sparse representations of the natural world, which is largely made up of regular structures
of 3D objects and surfaces. Following Field’s paper, there has been extensive work showing
that receptive fields similar to those of simple cells can be optimized to produce sparse
representations of natural scenes [4,18,20,35,58]. Regularities in depth are strongly tied to
luminance regularities, and depth and luminance statistics can be similarly modeled [21,31,
32,49–53].

Su et. al. [56] postulated that depth maps tend to be composed of simple, regular patterns,
and used a small dictionary of five canonical patterns to represent priors in a Bayesian
depth prediction framework. They achieved promising results on predicting dense depth
maps. We adopt a similar approach as Su et al. [56], but with important differences. We
use a significantly larger collection of picture + depth data to learn a larger, more descriptive
dictionary of inverse-rangepatterns. Insteadof using steerable pyramids,webuild dictionaries
of divisively-normalized inverse-range patches, computed by applying (1) to the inverse-
range maps:

Îir (i, j) = Iir (i, j) − μir (i, j)

σir (i, j) + Cir
. (10)

On each database that we used to develop and test our models, we randomly extracted
200,000 DNT inverse-range patches of size 31× 31 across a range of scales. We first scaled
each image to multiple resolutions, the choice of which we discuss in Sect. 5.2, and for
each image, regardless of resolution, we extracted patches of constant size 31× 31. We then
applied least angle regression (LARS) [7], which is a stepwise regression algorithm that,
at each step, selects a patch from a collection of possible dictionary elements that has the
strongest correlation with the data, and then iteratively selects patches based upon a refitting
of residuals to build the dictionary. The candidates for the dictionary patches were initialized
using singular value decomposition (SVD) to be the orthogonal basis for IR961 (because
312 = 961). In other words, if we have n× p data matrix A, where n is the number of image
patches used to learn the dictionary (200,000), and p = 312 = 961, then applying SVD
gives:

A = USVT, (11)

and the candidate dictionary elements are the rows of SVT. By iteratively selecting the
strongest patch to include in the dictionary, we obtain a small subset of orthogonal patches
that can be used to reconstruct any DNT inverse-range image, thereby removing a signif-
icant amount of redundancy in the representation of the input data. LARS is implemented
in Python in the MiniBatchDictionaryLearning function from the decomposition
module within the scikit-learn library [38]. By including patches frommultiple scales during
construction of the dictionary, we were able to build a reasonably scale-agnostic model.

Using this method, we obtained a set of 64 31× 31-sized basis patches, so that any image
patch within the database can be represented using a linear combination of these 64 bases.
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Fig. 6 Dictionaries of learned sparse inverse-range patches computed on each of the three tested databases.

Each patch from each image in the database can thus, instead of being represented by 312

pixels, be represented by a sparse 64-length code, each element of which represents a weight
for the corresponding dictionary patch. Figure 6 shows the learned dictionaries of inverse-
range patches on each of the three datasets we tested. We also tried learning dictionaries of
different sizes (36 and 81), and found that the smaller 36-element dictionary yielded image
reconstructions with significantly greater loss, whereas the 64- and 81-element dictionaries
yielded comparable high-accuracy image reconstructions.

Figure 7 shows examples of reconstructions of one DNT inverse-range image from each
database. To demonstrate the applicability of the dictionaries to images of different scales,
the examples in Fig. 7 are of varying resolutions. The example from the SV database in Fig.
7a is 360 × 640, which is 25% of the resolution of the original (720 × 1280); the example
from the LIVE Color+3D Database in Fig. 7b is 270×480, or 1/16-th the original resolution
of 1080×1920; and the example from the NYUDepth Dataset in Fig. 7c is of full resolution
480 × 640 (460 × 620 with some invalid edge pixels removed).

5 Method

We now explain the components of our inverse-range patch prediction model. We start by
describing the model input features in Sect. 5.1. Then we describe each of the relevant
luminance + depth datasets, and how we processed each of them to extract the necessary
features in Sect. 5.2, We detail the design of the network architecture in Sect. 5.3, and relate
how we trained the model in Sect. 5.4.

5.1 NSS Features

The goal is to take an input luminance patch that is a projection of part of a 3D scene, and
densely predict its corresponding depth patch. We use patches of size 31 × 31 through-
out. From each patch within a luminance image, we extract a 982-length feature vector F
comprising:

– DNT luminance coefficients: Li j for i, j ∈ 1, ..., 31,
– Luminance patch mean: μL ,
– Luminance patch variance: vL ,
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Fig. 7 From left to right in each row: Original luminance image; ground-truth inverse-range map; divisively
normalized bandpass ground-truth inverse-range; divisively normalized bandpass inverse-range image recon-
structed from the dictionary elements in Fig. 6a

– Normalized y-coordinate of the luminance patch: y,
– Luminance GGD parameters: αGGD, σGGD,
– Luminance BGGD parameters: αBGGDk , βBGGDk for k = [1, ..., 4],
– Luminance correlation model parameters: ak, bk for k = [1, ..., 4],

where k indexes the four pairwise orientations {0o, 45o, 90o, 135o}, and μL and vL are
extracted during the divisive normalization step. The GGD parameters are estimated using
the moment-matching approach used in Mittal et al. [33] and proposed in Sharifi and Leon-
Garcia [45]; the BGGD parameters are estimated using the moment-matching approach for
fittingmultivariate generalizedGaussian distributions (MGGD) detailed in Gómez et al. [16];
and the correlationmodel parameters are estimated using theNelder-Mead simplex algorithm
[27], as implemented in the fminsearchMATLAB function, to fit the constrained differ-
ence of exponentials (9) to the empirical correlations, for integer pixel separations ranging
from d = 1 to d = 16 pixels.

5.2 Datasets

Next we describe the datasets that we used and explain how the data was processed for both
training and testing. On each dataset, we extract and use only the luminance channel, and
compute inverse-range as the reciprocal of depth. We also selected 20 images from each
dataset that we set aside to evaluate the performance of the trained inverse-range prediction
network on full images. These images were not included when generating patch data to train
and test the network. We also list in Table 1 a few database features and processing choices.
The variable Cir represents the normalization constant used in (1) for inverse-range images,
which is required to build the inverse-range dictionary specific to each dataset and to extract
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Table 1 Database Features and
Processing

DB Res. Scales Cir Depths

LIVE SV 720 × 1280 7 0.1 <50m

LIVE Color+3D 1080 × 1920 7 0.0001 –

NYU Depth V2 480 × 640 5 0.001 –

the sparse code for generating the training and testing data. The choice of Cir is different
for each database, because it depends on the variances of the luminance patches within the
databases, which arises from various factors, such as the precision of the data, the complexity
of the scenes, and any inherent noise in the data. We manually chose Cir for each database
to not overpower the variance in the DNT equation denominator.

Additionally, because we aim to build a scale-agnostic model, we extracted a range of
scales of images within each database depending on the original resolution of images in that
database. The images in the NYU dataset [46], for instance, are native 480 × 640, which is
much smaller than the native images in both the LIVE SV [37] and LIVE Color+3D [56]
databases, so we only extract five scales (including the original) on NYU, as opposed to the
seven which we extract from the others.

LIVE SV Database The LIVE SV Database [37] is a large synthetic database with over
130,000 co-registered pairs of color images and ground-truth depth maps. Although all of
the images in the database were captured with a fisheye lens, the intrinsic camera parameters
are known, so we transformed all the images and depth maps to their rectilinear forms. To
generate the training and testing data, we randomly sampled patches from 500 luminance-
depth image pairs. In this database, some pixels in the sky or on complex object surfaces
(e.g., tree leaves) have infinite ground-truth depth recorded, so they were excluded from the
training and testing sets, and only depths less than 50 meters were estimated.

LIVE Color+3D Database Release 2 The LIVE Color+3D Database Release 2 [56] contains
98 sets of stereo color image pairs with co-registered depth maps of outdoor scenes. Because
the left and right images and depths in each stereo pair are quite similar in nature,we randomly
selected 20 left images for final evaluation and excluded their corresponding right images
from both the training and testing data.

NYU Depth Dataset V2 The NYU Depth Dataset V2 [46] contains 1449 pairs of aligned
color and depth maps of indoor scenes. Due to occlusions and measurement limitations, the
raw depth maps contain missing values. These missing depth measurements are often in key
spatial locations, as they correspond to changes in object boundaries and sharp changes in
depth. The authors provide interpolated measurements for missing values, and because it is
important that our model be able to learn such geometries in a scene, we used these dense
maps to extract training and testing data.

5.3 NN Architecture

In order to optimize our predictions of inverse-range using NSS features, we built a modular
network, motivated by our normalization transformation of the inverse-range images and
NSS. If we consider any inverse-range map as being a reconstruction from its DNT form, as
in (10), thenwemay formulate the inverse-range-prediction problem as a combination of four
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Fig. 8 a Network flow diagram, in which the four-layer fully-connected architecture shown on the left in
(b) is used in the code-prediction, mean-prediction, and variance-prediction modules, and the four-layer
convolutional architecture shown on the right in (b) is used in the combination module as well as to extract
luminance features to input into the code-, mean-, and variance-prediction modules. The two blocks labeled
NS module in (a) are the mean- and variance-prediction modules.

smaller problems: first, predicting the DNT patch, the patch mean, and the patch variance,
and then combining those three predictions in a reverse divisive-normalization transformation
step. We model our network on this formulation, as depicted in the network flow diagram
in Fig. 8a. One module, the ‘code’ block, is designed to predict a 64-length feature vector,
which is intended to represent the code used to reconstruct the DNT inverse-range patch
from dictionary patch elements. To obtain the inverse-range values from the DNT patch, we
also require the patch mean and variance. However, instead of training separate networks
to predict mean and variance separately, we use two normalizing scalar (NS) blocks in our
network to predict scalar features to be passed to the combination module to predict the final
inverse-range patch.

We show the specific architectures of the modules in Fig. 8b. The code and NS modules
use the four fully-connected layers, while the combination module uses the four convolu-
tional layers. The luminance blocks also use the four convolutional layers with an additional
fully-connected layer to obtain the intermediate code and scalar features of the appropriate
dimensions. We provide details of all layer dimensions for our highest-performing network
in Table 2, and note that our network contains approximately 880K parameters, which is
orders of magnitude smaller than other high-performing models [11,28,30].

We tested module architectures of different depths and widths and tried extracting lumi-
nance feature vectors of different lengths. We also tested fully-connected architectures,
fully/convolutional architectures, and other combinations besides the one represented in
Table 2, along with options of including residual connections. The chosen output length of
the luminance feature/extraction block is 961, as displayed in Fig. 8a, which indicates that
the luminance CNN extracts a feature vector of the same dimensions as the input patch.
We found that extracting shorter feature vectors compromised performance. Our final net-
work also does not use any skip or residual connections. We did not find that adding them
between fully-connected layers improved performance, and we obtained similar results using
an adapted version of ResNet [19] as the combination module, however that network is more
complex and takes much longer to train and execute on test data. Importantly, our proposed
network requires far fewer parameters than previous high-performing networks designed and
trained for monocular depth estimation. Much of the predictive power of the system lies in
the use of perceptually relevant features.

If the features listed in Sect. 5.1 are denoted as F , then Fs is a subset of F that excludes
the DNT luminance coefficients. For the NS blocks, the only inputs are Fs , whereas, for the
‘code’-predictionmodule, theDNT luminance patch is first passed through four convolutional
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Table 2 Network Architecture Details

Module Input Dimensions Output Dimensions Layer Dimensions
FC1 FC2 FC3 FC4

Code (982,) (64,) 524 262 131 131

NS ‘mean’ (21,) (1,) 11 6 3 3

NS ‘variance’ (21,) (1,) 11 6 3 3

Conv1 Conv2 Conv3 Conv4

Luminance (31,31,1) (961,) (3,3,4) (3,3,8) (3,3,16) (3,3,32)

Combination (31,31,4) (31,31,1)

layers to extract a 961-length feature vector before being concatenated with Fs to form the
input feature vector of length 982. We also conducted experiments where we excluded the
NSS features and only trained on luminance patches. In these experiments, the input to each
of the three modules was a 961-length luminance feature vector, extracted using a separate
CNN (each having the same architecture as the luminance CNN detailed in Table 2) for each
module. We found that the results suffered significantly without including any NSS features
in the model.

The network begins with these three independent branches to represent the components in
the reverse divisive normalization process (10), because any image patch can be reconstructed
from its DNT, mean, and variance. The 64-length vector resulting from the code-prediction
module represents the sparse code, which is used to reconstruct the DNT patch from the
dictionary elements. This step is represented by the ‘decode’ block in Fig. 8a, which takes a
64-length inverse-range patch code as input and reconstructs an estimate of the DNT inverse-
range patch, which is then combined with the outputs of the NS modules in a combination
module, yielding the estimate of the final inverse-range patch.

5.4 Training

To train the network, which we did for each database separately, we randomly sampled
625,000 luminance-depth patch pairs. We reserved 20% (125,000 pairs) for testing, and used
the remaining 80% (500,000 pairs) for training. During the training process, 10% of the
training patches were reserved for validation.

We evaluated a number of loss functions, including the mean squared error (MSE), mean
absolute error (MAE), difference of structural similarity (DSSIM), Wang et al. [62]; Keras-
contrib [23], and weighted combinations of the three. The non/traditional loss, DSSIM, is
based on the Structural SIMilarity index (SSIM), which considers luminance, contrast, and
structural similarities between two images, taking a maximum of 1 when the images being
compared are identical. To use this index in a loss function, we therefore subtract its value
from 1, and in the Keras implementation we used, the DSSIM loss is clipped at 0.5. We
found that the MAE preserved finer details, which is to be expected, while a combination
loss (MAE-DSSIM) equally weighing MAE and DSSIM produced the best results.

We trained the network end-to-end, while also utilizing losses at the outputs of the ‘code’
and NS modules. For the first half of training, we used a combination loss comprising the
overall MAE-DSSIM inverse-range loss as well as three intermediate layer MAE losses:

• the MAE loss between the output of the ‘code’-prediction block and the ground-truth
sparse code of the DNT inverse-range patch;
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• the MAE loss between the output of one of the NSmodules and the ground-truth inverse-
range patch mean;

• and the MAE loss between the output of the other NS module and the ground-truth
inverse-range patch variance.

The weight ratio between the overall loss and each of the three intermediate losses was
1 : 0.01. The validation loss was computed at the end of each epoch. We used a patience
threshold of 10 epochs to determine when to change or stop training, meaning that we
monitor the validation loss to determine when it no longer improved (i.e., the validation loss
decreased) for 10 consecutive epochs. The first time this event happened, the weights for the
intermediate losses were dropped, and only the overall MAE-DSSIM inverse-range patch
loss was used for the rest of training, which stopped when we no longer saw improvement
in the validation loss for another 10 consecutive epochs. The final model was taken to be the
one having the lowest validation loss.

We used this two-tier training scheme to initially gently guide the ‘code’ and NS modules
to predict the quantities required for patch reconstruction from DNT components (10). We
removed these guiding losses before finishing training, which we noticed had a small impact
on the visual results, but systematically improved the quantitative results. We also tried
training end-to-end with only the MAE-DSSIM loss, and found that the network sometimes
struggled more to accurately predict the inverse-range values of object interiors.

5.4.1 Data Augmentation

We also observed that the inverse-range patch variances of natural images are heavily skewed
toward zero, because scene depths are predominantly smooth and continuous with discon-
tinuities mainly corresponding to object edges. To avoid biasing our model to predicting
inverse-range patches having zero variance, we augmented the training data by sampling the
patches based on their variances, and by combining these samples with the training samples.
Specifically, we computed a sample weight for each training patch to be its variance over the
sum of all training patch variances. We then sampled, with replacement, 500,000 patches,
i.e., the same number of patches as in the training set, appended these patches to the original
training data, and randomly selected 500,000 patches from this augmented set for training.

In Fig. 9, we show, for a random sample of LIVE SV patches, the histogram of inverse-
range patch variances on the left, where the severity of the bias toward zero is apparent. After
resampling, the distribution is still skewed toward zero, but the bias is not as severe, as seen in
the histogram on the right in Fig. 9. By implementing this resampling approach, our training
data distribution is still significantly representative of the true data distribution, but we place
a greater emphasis on learning inverse-range values on patches having higher inverse-range
variance, which are more likely to correspond to points of interest or object edges.We trained
networks with and without this resampling step and found that the predictions resulting from
using the resampled training data to be both quantitatively and qualitatively better.

6 Results

While the final models are trained to predict inverse-range in a patchwise manner, the true
test of each model is how well it can predict dense inverse-range maps on entire images.
To evaluate the final models, we used the 20 randomly-selected evaluation images from
each database that did not contribute any training or testing patches to build the model.
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Fig. 9 Histograms of inverse-range patch variances: (left) before resampling and (right) after resampling using
the method detailed in Sect. 5.4.1. Plots are shown for a randomly sampled 100,000 patches from the LIVE
SV data, but we observed similar trends on the other databases as well.

As previously mentioned, if the evaluation image was part of a stereo pair from the LIVE
Color+3D database, the corresponding image alsomade no contribution to the sets of training
and testing patches, because the image content between stereo image pairs is almost always
nearly identical.

To evaluate performance, we compute the mean absolute error (MAE) and the normalized
mean absolute error (nMAE), which is the MAE divided by the ground truth values:

nMAE(G, P) = |G − P|
|G| , (12)

where G and P are the ground-truth and predicted inverse-range maps, respectively.
In Table 3, we show the average and median of each error metric across the 20 evaluation

images for each database when the model was trained on patches extracted from images of
the same resolution. In other words, for each scale, 650,000 training and testing patches were
extracted only from images of that scale. Thus, the scales and image resolutions listed in Table
3 correspond to both the model and evaluation data, and the model trained for each scale can
be considered to be scale-aware. The results in Table 4, on the other hand, were obtained
from models trained on patches extracted across all scales, i.e., 7 scales on both of the LIVE
databases and 5 scales on the NYU dataset. These models can therefore be considered as
scale-agnostic, and the scale and image resolutions listed in Table 4 correspond only to the
evaluation data for which the results are listed, because a singlemulti-scalemodel was trained
for each database.

The results reported in Tables 3 and 4 are errors, so smaller numbers indicate better
performance. We considered the normalized MAE when comparing model performances,
since it weighs errors based on the ground truth values. Therefore, major differences between
depth distributions in scenes from different databases are normalized. Generally, the multi-
scale models, which were trained on data across all scales, performed slightly worse than
scale-specific models trained on scale-specific data. However, the difference was small, and
the multi-scale results strongly support efficacy of using the scale invariant NSS to learn
scale-agnostic networks. We also observed that for any given database, models trained on
higher resolution data did not necessarily perform better in terms of nMAE. Similarly, models
trained on data at different scales also did not necessarily perform better on higher resolution
data. In fact, there was no obvious relationship between resolution and performance, which
supports the generalizability of the model and features.
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Table 3 Results from Single-Scale Models

Database Scale Index ImageRes-
olution

Average
MAE

Median
MAE

Average
nMAE

Median
nMAE

LIVE SV 0 720 × 1280 0.4251 0.3736 0.3347 0.3221

1 509 × 905 0.4166 0.4050 0.3176 0.3014

2 360 × 640 0.3986 0.3739 0.3204 0.3174

3 255 × 453 0.4094 0.3750 0.3431 0.3470

4 180 × 320 0.3820 0.3559 0.3096 0.3190

5 127 × 226 0.4016 0.3543 0.3328 0.3191

6 90 × 160 0.3804 0.3610 0.2934 0.2941

LIVE Color+3D 0 1080 × 1920 0.0432 0.0394 0.6060 0.5207

1 764 × 1358 0.0414 0.0352 0.5470 0.4916

2 540 × 960 0.0379 0.0314 0.5277 0.4627

3 382 × 678 0.0396 0.0319 0.5394 0.4186

4 270 × 480 0.0439 0.0310 0.5309 0.4693

5 191 × 339 0.0453 0.0308 0.5489 0.4809

6 135 × 240 0.0453 0.0342 0.5304 0.4553

NYU Depth V2 0 460 × 620 0.1500 0.1085 0.3094 0.3083

1 325 × 438 0.1460 0.1074 0.3002 0.2951

2 230 × 310 0.1402 0.1061 0.2894 0.2898

3 163 × 219 0.1343 0.1033 0.2814 0.2810

4 115 × 155 0.1260 0.1035 0.2697 0.2790

We also compared our model’s performance on the test images of each database with the
performance of the models presented by Laina et. al [28] and Godard et. al [15]. Although
another model [11] has been reported to provide better performance than the Laina model,
we could not reproduce the reported results, and the authors of Fu et al. [11] do not provide
training code to do so. In Fu et al., [11], the second best performance on the NYU dataset was
obtained using Laina, and since the work in Fu et al. [11] was published, Godard et al. [15]
has been reported to outperform other models, so we used Laina and Godard as benchmarks
to evaluate our model’s performance. Both the Laina and Godard models are trained on full
images and predicts complete depth maps, although Laina’s predicted depth maps are at a
lower resolution. Thus, for each database, we formed the training data using the images from
which we extracted patches to train our patch-based model.

For theLainamodel,we also resized theLIVESVandLIVEColor+3D images to 480×640
to avoidmodifying the originalmodel.Additionally, because themodelwas initially presented
to predict range, we trained and evaluated the Laina model on range images and took the
inverse of the predictions for the sake of comparison. We tried training the models to predict
inverse-range directly, but this approach yielded worse results. The Godard model requires
image dimensions to be multiples of 32, so we cropped the images in the LIVE SV, LIVE
Color+3D, and NYUDepth V2 datasets as minimally as possible to obtain valid dimensions.
We show the performance results of bothmodels alongwith those fromour own scale-agnostic
model in Table 5.

We show example predictions computed by both our scale-aware and scale-agnostic mod-
els, as well as the predictions produced by the Laina [28] and Godard [15] models in Figs. 10,
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Table 4 Results from Multi-Scale Models

Database Scale Index ImageRes-
olution

Average
MAE

Median
MAE

Average
nMAE

Median
nMAE

LIVE SV 0 720 × 1280 0.4642 0.4341 0.3745 0.3642

1 509 × 905 0.4471 0.4228 0.3757 0.3646

2 360 × 640 0.4423 0.4100 0.3663 0.3668

3 255 × 453 0.4474 0.4167 0.3537 0.3522

4 180 × 320 0.4439 0.4263 0.3345 0.3387

5 127 × 226 0.4643 0.4181 0.3228 0.3152

6 90 × 160 0.4669 0.4671 0.3093 0.2904

LIVE Color+3D 0 1080 × 1920 0.0497 0.0408 0.7224 0.6231

1 764 × 1358 0.0518 0.0387 0.6617 0.5737

2 540 × 960 0.0488 0.0340 0.6491 0.5653

3 382 × 678 0.0461 0.0321 0.6165 0.5274

4 270 × 480 0.0459 0.0323 0.5963 0.5042

5 191 × 339 0.0449 0.0341 0.5903 0.5150

6 135 × 240 0.0437 0.0337 0.5778 0.5050

NYU Depth V2 0 460 × 620 0.1510 0.1107 0.3029 0.3035

1 325 × 438 0.1464 0.1087 0.2967 0.2953

2 230 × 310 0.1433 0.1077 0.2948 0.2886

3 163 × 219 0.1383 0.1037 0.2877 0.2934

4 115 × 155 0.1328 0.0966 0.2773 0.2816

Table 5 Comparison with Previous Models

Database Model MSE MAE nMAE
Mean Median Mean Median Mean Median

LIVE SV Pan 0.554 0.349 0.464 0.434 0.375 0.364

Laina 5.868 5.337 1.938 1.914 0.677 0.667

Godard 2.038 0.460 0.590 0.203 0.587 0.545

LIVE Color+3D Pan 0.005 0.003 0.050 0.041 0.722 0.623

Laina 0.494 0.478 0.672 0.660 10.176 9.764

Godard 2.8395 0.633 0.997 0.658 0.724 0.672

NYU Depth V2 Pan 0.047 0.022 0.151 0.111 0.303 0.304

Laina 0.036 0.021 0.146 0.123 0.336 0.326

Godard 1.217 0.527 0.756 0.622 0.321 0.216

Bolded values indicate best performance

11, and 12. On each database, we chose predictions from two different scales of our models to
demonstrate the generalizability of our scale-specific models to be scale-agnostic. (Refer to
Table 3 or 4 for scale resolutions.) The Lainamodel performed quite well on theNYUdataset,
however, our models outperformed the Laina model with respect to normalized MAE. The
complexities contained in the LIVE SVDatabase and the insufficient amount of training data
in the LIVE Color+3D Database likely contributed to the poor visual results delivered by the
Laina model. The Godard model performed well, both qualitatively and in terms ofMAE and
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Fig. 10 Inverse-range prediction results on the LIVE SV Database.

Fig. 11 Inverse-range prediction results on the LIVE Color+3D Database.

nMAE, on all three datasets, and achieved the lowest median MAE and nMAE, however, out
models were comparable in both metrics and considerably outperformed the Godard model
in terms of MSE and average MAE and nMAE.

6.1 Module Outputs

Asmentioned, themodular designof the networkwasmotivatedby theDNTdeconstructionof
the inverse-range map. The three components needed to reconstruct any inverse-range patch
are the divisively-normalized patch, which can be reconstructed from the 64-length code,
along with the patch mean and variance. The latter two are represented in the network by the
NS blocks, which predict scalar outputs. Though training begins with weakly biasing these
two NS modules to predict the inverse-range patch mean and variance, this bias is removed
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Fig. 12 Inverse-range prediction results on the NYU Depth Database.

Fig. 13 Intermediate model outputs. From left to right: the ground-truth inverse-range image; the predicted
inverse-range image; the ground-truth divisively-normalized inverse-range image; the predicted divisively-
normalized inverse-range image; the ground-truth inverse-range mean image; the predicted inverse-range
mean image; the ground-truth variance image; and the predicted variance image.

to finish training. We are still, however, able to demonstrate that the values predicted by these
intermediate network layers closely resemble the intended mean and variances scalars. In
Fig. 13, we show all three intermediate network outputs from the model trained on scale-2
data for all the LIVE SV images displayed in Fig. 10. The predicted DNT,mean, and variance
images all display similar characteristics to their ground-truth maps, which further supports
the HVS motivation behind the design of our network.
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Fig. 14 Comparison of results for models trained on single-scale (scale 2) data for the SV database, both with
(middle column) and without (last column) using NSS features as inputs.
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Table 6 With and Without NSS

Database Model MSE MAE nMAE
Mean Median Mean Median Mean Median

LIVE SV With NSS 0.427 0.332 0.399 0.374 0.320 0.317

Without NSS 1.016 0.821 0.709 0.655 0.631 0.651

Bolded values indicate best performance

6.2 TheValue of NSS Features

As mentioned in Sect. 5.3, we also trained models without using the NSS features (Fs) as
inputs to the model, as a way of probing the efficacy of these features. In these experiments,
we excluded theNSS features and trained themodels using only the luminance patches,which
were fed into three separate CNNmodules, each configured according to the luminance CNN
described in Table 2. These luminance feature vectors were then separately fed into the same
‘code’ and ‘NS’ blocks shown in Fig. 8a. For the SV examples shown in Fig. 10, we also
show, in Fig. 14, the difference between the predictions when NSS features were included as
input features (middle column) and excluded entirely from the network (last column). These
examples clearly illustrate the enhanced performance afforded by including NSS features in
the monocular depth estimation training process. A quantitative comparison is also provided
in Table 6 for the scale-specific models (trained on 1/4-resolution SV data) that produced
the results in Fig. 14. Both the visual and numeric results strongly support the use of NSS
features as inputs to the model, and the idea that these kinds of fundamental, perceptually
relevant statistical features can be used to significantly improve learned MDE models.

7 Conclusion

In thiswork,we presented a newbivariate correlationmodel for image luminance coefficients,
which we use to devise features extracted from it, along with other univariate and bivariate
NSS features, in a modular patch-based network that is trained to predict inverse-range
patches from a single luminance patch. We also utilized a learned dictionary to enable the
representation of DNT inverse-range patches by sparse codes, which served as intermediary
features within the predictive model. Our use of DNT inverse-range patches (as well as
DNT luminance patches) was motivated by the low-level visual processing in the HVS,
and representing inverse-range patches in such a way significantly reduced the required
complexity of our network.

We trained our network on patches extracted from images of the same scale as well as
on patches extracted from images across multiple scales to see how well our models could
generalize. We found that our scale/agnostic models performed comparably to the scale-
/specific models, likely because the features that are input to the model are based on NSS
models,which are scale/invariant.Wepresented anovel perceptually/motivateddeep-learning
approach to densely estimating inverse-range maps, and showed that it can perform well on
complicated scenes, as well as on databases lacking a sufficient number co-registered image/
depth pairs to train deep full-image models. Our model is able to produce results competitive
with current state-of-the-art monocular depth-estimation models and is the first approach
to explicitly use perceptually-relevant features in a solution to the challenging problem of
predicting depth from monocular images.
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