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Abstract—We present an enhancement to the problem of
beam alignment in millimeter wave (mmWave) multiple-input
multiple-output (MIMO) systems, based on a modification of
the machine learning-based approach, called Kolmogorov model
(KM). Unlike the previous KM, whose computational complexity
is not scalable with the size of the problem, a new approach,
centered on discrete monotonic optimization (DMO), is proposed,
leading to significantly reduced complexity. We also present a
Kolmogorov-Smirnov (KS) criterion for the advanced hypothesis
testing, which does not require any subjective threshold setting
compared to the frequency estimation (FE) method developed
for the conventional KM. Simulation results that demonstrate
the efficacy of the proposed KM learning for mmWave MIMO
beam alignment are presented.

I. INTRODUCTION

A fundamental bottleneck in operating large-dimensional
millimeter wave (mmWave) array antenna systems is how to
accurately align beams between the transmitter and receiver in
low latency [1], [2]. The use of directional narrow beams for
searching the entire beam space (also called exhaustive beam
search) is an extremely time-consuming operation; the exhaus-
tive beam search has been used in existing mmWave WiFi
standards including IEEE 802.15.3c [3] and IEEE 802.11ad
[4], for example. For reduced overhead beam alignment,
hierarchical codebooks [2], [5], compressed sensing-based
algorithms [6], [7], overlapped beam pattern [8] and beam
coding [9] have been proposed over the years, establishing a
“structured beam alignment” paradigm. Despite a plethora of
such beam alignment methods, the overhead issue still remains
a critical challenge in mmWave communications.

Recently, the beam alignment problem has been approached
in a statistical-machine-learning point-of-view [10], with a pri-
mary focus on an application of the Kolmogorov model (KM)
[11]. In [10], Kolmogorov elementary representations (KERs)
of the received signal power values that are associated with the
beam pairs in a training beam codebook are learned by solving
a constrained error minimization problem. In doing so, the
KERs of unsounded beam pairs are predicted by exploiting the
predictive power of the KM, leading to a significantly reduced
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beam alignment overhead. However, there are two fundamen-
tal limitations to the conventional KM learning in the beam
alignment context. First, the computational complexity of the
KM training algorithm in [10], [11] is prohibitively high;
the complexity is not scalable with the number of antennas
and the size of codebooks. Second, the initial work in [10]
centers on a frequency estimation (FE) method to estimate
empirical probabilities of the training set, which has to rely on
a threshold setting for hypothesis testing; the threshold value
is treated as a hyper-parameter, which is determined based
on numerical simulations. Ultimately, the desired threshold
setting must account for a specific performance criterion so
as to improve the predictive power of KM.

In fact, in mmWave-based systems, quality of service is
primarily dominated by latency [12]. In particular, the re-
quirements of low latency and overhead are perhaps even
more critical than those for high throughput. Motivated by
this, we propose an enhancement to the problem of mmWave
multiple-input multiple-output (MIMO) beam alignment by
leveraging discrete monotonic optimization (DMO) frame-
works [13], [14], leading to a significantly reduced amount
of computational complexity compare to the previous KM
[10]. We also propose a new threshold approach to obtaining
empirical probabilities of the training set, which improves the
performance of hypothesis testing for the FE of KM. Our
approach is based on utilizing the Kolmogorov-Smirnov (KS)
test criterion [15], [16], which is desired because it can set a
detection threshold without access to a priori knowledge.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model and briefly review
the related work on the KM-based beam alignment. In Section
III, we propose the DMO algorithm to solve the KM learning
optimization problem and provide a new method building
the empirical training statistics via the KS test. In Section
IV, simulation results are presented to illustrate the superior
performance of the proposed algorithm. Finally, we conclude
the paper in Section V.

II. SYSTEM MODEL AND PREVIOUS WORK

We present the beam alignment system model and provide
an overview of the previous work under consideration.



A. System Model

Suppose a point-to-point mmWave MIMO system where
an independent block fading channel with a coherence block
length T's (channel uses) is assumed. The transmitter and
receiver are equipped with N; and N, antennas, respectively.
For simplicity, we adopt a low-complexity architecture where
only one radio-frequency (RF) chain is employed at both the
transmitter and receiver sides.

During a coherence block Tz, the transmitter and receiver
intend to spend K (K < Tpg) channel uses to align the
best transmit and receive beam pair for data transmission.
To be specific, the transmitter and receiver choose an analog
beamformer f, € CV*1 and combiner w,, € CN**1 from the
pre-designed beam sounding codebooks F and W such that
f, € F and w, € W, respectively. We denote the index sets
of F and W as Zr and Zyy, respectively, with cardinalities
|Zx| and |Zyy|. Assume that f; and w, are unit-norm, i.e.,
IIf:|l2 = ||w.||]2 = 1. The received signal associated with the
beam pair (f;, w,.) is therefore given by

yrr=wr(Hfisi+n)=wrHf;s,+n,,V(t,7) €L x Ty, (1)

where H € CN~*Nt ig the channel matrix and s, € C is
the training symbol satisfying ||f;s;||3 = 1. n € CNr*! s
the additive complex white Gaussian noise vector with each
entry independently and identically distributed (i.i.d.) as zero
mean and o2 variance according to CN(0,02). n, = win ~
CN(0,02) is the effective additive noise, and thus, the signal-
to-noise ratio (SNR) is 1/02.

Exhaustive beam alignment is a widely used method: the
transmitter and receiver jointly sound all the beams in F and
W to find the optimal beam pair that maximizes the received
signal power as (fix,w,«) = argmax {r =

(fe,wy),(t,r)ELTF X Ty

lye.»|*}. In fact, the training overhead for the exhaustive
method is |Zx X Zyy|. Since the size of the codebooks |Zx|
and |Zyy| is large in mmWave cellular networks, the drastic
training overhead of exhaustive beam alignment overwhelms
the available coherent channel resources. To tackle this issue,
a learning-based approach, KM, was proposed to reduce the
beam alignment overhead while maintaining appreciable beam
alignment performance [10].

B. Previous Work: KM-Based Beam Alignment

A binary random variable X;, € {0,1} is introduced
to indicate the “good” and “poor” quality of the beam pair
(fi,w,) for (t,r) € Ir x Iyy as

Pr(n,, > 1) =Pr(X;, =1)
Pr(n, < 7)=Pr(X;, =0) ’

where Pr(€) € [0,1] denotes the probability of the event £
and 7 is a pre-designed threshold value for the received signal
power. We say that the beam pair (f;, w,.) has a “good” SNR,
if ¢, > 7. Because Pr(X;, = 1) + Pr(X;, = 0) = 1,

it suffices to focus on the case when X;, = 1. The D-
dimensional KER of X} , is then defined by [11]
Pr(X;, =1)=07,, Y(t,r) € Ir x Ty, )

Original codebooks:
Tr ={1,2,3,4} Ty = {1,2,3,4}
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Fig. 1. Diagram of the KM-based beam alignment (a toy example where
|I]:| = ‘Iw‘ =4 and |I‘U'7-:"1m X Illﬁ\ajml =4< ‘I]: X Iw‘ = 16).

where the probability mass function vector 6, is on the unit
probability simplex P, i.e., 8; € Rf and 170, = 1, 1 is the
all-one vector with dimension D, and v, € BP denotes the
binary indicator vector of dimension D such that the dth entry
of ¥, is ¢, q € {0,1}.

The beam alignment using KM relies on the subsampled
codebooks with index sets " and Z{&", such that TR x
T8 © I x Ty and T80 x 7| < |Tx x Tyy| [10].
We let the empirical probability that beam pair (f;, w,.) has a
“good” SNR be p;,. In [10], a FE method was proposed to
build the training set of empirical probabilities of beam pairs
in the subsampled codebooks for the KM learning algorithm,
ie., {pir}, V(t,r) € Z}r_-ai" X I{f{}i“. Given the FE interval Tg,

the estimate of p, , at time-slot ¢, i.e., p&i), is provided by

1 2
P = " STu) = 1), g e {1, Tre}, 3)
=1

where nt(ll is the received signal power obtained by sounding

the beam pair (f;, w,) at time-slot [ € {1,...,¢} and I(-)
denotes the indicator function. The best FE estimate comes
from pg?;FF‘), which is carried out at the end of the estimation
interval.

Once the training set (of empirical probabilities) is con-
structed, the KM learning algorithm proceeds to optimize
the KM parameter vectors {6;} and {1),} by solving the
constrained error minimization problem:

{ét}v {qbr}:argmin Z (0?¢r 7pt,7‘)2

0eh A%}y 1y emin . @
s.t. 0, € PVt € TR o € BP vr ¢ T
In order to handle the coupled non-convex combinatorial
optimization in (4), a block-coordinate descent (BCD) method
[10], [11] was proposed by dividing the problem in (4) into
two subproblems: (i) linearly-constrained quadratic program
(LCQP):

;?61171) 07,0, — 207 v, + p;, 6))

T
where S; £ ZreI‘;ﬁj" WPl v 2 ZTEIW ¥,per, and py £



ZTEI‘;‘V‘“ pfr, and (ii) binary quadratic program (BQP):

mln 1,[: S,
¥, €B

Zfezmm 0,07, v, & Ztezm,n 0:p:. and p, =
> teumin pt,, The KM solves the two subproblems in (5)
and (6) in an alternative way and iteratively refines the KM
parameters {6:} and {4, }. More specifically, by exploiting
the fact that the optimization in (5) is carried out over the
unit probability simplex, a simple iterative Frank-Wolfe (FW)
algorithm [17] was proposed to optimally solve (5), while
the semi-definite relaxation with randomization (SDRwR) was
employed to optimally solve (6) asymptotically in D [18].

We let {6;,7,} be the learned KM parameters to the
problem in (4). The predictive power of KM is exploited to
infer the probabilities of the test set (i.e., beam pairs which
are not sounded) as

ﬁt,r é é?"}"ra V(t,T) €

Finally, the optimal beam pair with the highest probability
of having a “good” SNR is selected by evaluating both the
training and test sets as

AT ~
(t*,r*) = argmax {p, =0,,}. (8)
(t,r)ELZF XTIy

— v, + py, (6)

where S,

(Zr x Tw)\(ZE" x T8I, (7)

A diagram of the KM-based beam alignment, which concep-
tually visualizes the system model and the framework, can be
found in Fig. 1.

1) Desired Attributes of KM: There are three main advan-
tages of KM that make it superior to other data representations
such as matrix factorization (MF) [19], SVD-based represen-
tations [20], and nonnegative MF [21]: (i) the fact that the KM
in (2) represents an actual probability is exploited to model
the quality of beam pairs in terms of SNR, (ii)) KM offers
improved prediction performance over nonnegative MF [22],
and (iii) the interpretability of the KM in (2), namely, the
insight that it exhibits about the data, which is not possible
with other learning methods that fall under the black-box type.

2) Main Contribution of This Work: While the SDRwR
method in solving (6) is asymptotically optimal [10], [11]
it demands huge computational cost and thus violates the
low-latency requirement in the mmWave communications
[12]. Moreover, the lack of an appropriate threshold design
criterion of the FE method in [10] limits the beam align-
ment performance of the KM-based approach. To address the
above limitations, we first propose an enhanced KM learning
algorithm for beam alignment by leveraging DMO. A novel
empirical probability estimation method based on the KS test
is then provided with a proper threshold selection criteri-
on. The proposed algorithm exhibits better beam alignment
performance with a significantly reduced computational time
compared to the existing work.

III. PROPOSED ALGORITHM

To reduce the prohibitively high computational cost of
SDRwR, in this section, a DMO framework is proposed.
Moreover, a new method based on the KS test is presented.

A. Discrete Monotonic Optimization

Prior to delivering the proposed algorithm, we provide a
lemma showing an equivalent reformulation of the problem
in (6).

Lemma 1: The BQP problem in (6) is equivalent to the
maximization of a difference of two monotonically increasing
functions and the binary constraints v, € B in (6) is
equivalently transformed to continuous monotonic constraints:

max{f(’lb ) = f+(1/)r> _f_(’l/)r)} (9)
st g(,) —h(¥,) < 0,9, €[0,1]
where f*(1,) £ 2T f~(4,) £ YIS, g(,) &

S s h(p,) £ D g2 and 4, € [0,1] indicates

that 0 <. g <1foreveryd=1,...,D.

Proof: Given the definition of f* and f~ in (9), the
objective function f in (9) is attained by transforming the
minimization to the maximization and discarding the constant
pr in (6). Also, fT and f~ are both increasing functions with
respect to b, € [0, 1] because v, > 0 and S, is a positive
semi-definite matrix. The binary constraints ¥, 4 € {0,1},
d=1,...,D, can be equivalently rewritten as ZdD:l Yra(l—
1pr,d) < 0’ Qpr,d € [051]’ Vd’ i'e" g(wr) - h(w'r) < 0’
¥, € [0,1] in (9), where g and h are increasing on R?.
This completes the proof. [ |

The BQP problem in (6) cannot be directly handled due
to the discrete constraints. In [10], this nuisance has been
tackled by using SDRwR, which incurs impractical compu-
tational complexity. Unlike SDRwR, the equivalent problem
formulation leveraging the difference of monotonic functions
(DMF) in (9) disinvolves the intractable discrete constraints
without any relaxation. Motivated by Lemma 1, we propose to
use a branch-reduce-and-bound (BRB) method [13] to directly
solves (9) without any relaxation and/or randomization. As
will be seen in Fig. 2 in Section IV, the proposed DMO algo-
rithm can substantially reduce the computational complexity
(two-orders-of-magnitude improvement in time complexity).
We introduce the following three main steps at each iteration
in the proposed DMO algorithm, where the overall procedure
is presented in detail in Algorithm 1.

1) Reduction: We let M = [a, b] be one of the boxes that
contain feasible solutions to (9) and v be the current maximum
value of the objective function f in (9). The reduced box
M’ = [a’,b] C [a,b] can be defined by new lower and
upper vertices a’ and b/, respectively, without excluding any
feasible solution %, € [a, b], while maintaining f(¢,) > v
[13] as

(10)

D
=b - Z agq(bg — aq)eq,
d=1

D
d=1

where ag = sup{aja € [0,1],g(a) — h(b — a(bg — ag)eq) <
0, f+ (b — Oé(bd — ad)ed) — f_(a > V} and Bd = SUp{ﬁ‘B €



Algorithm 1 DMO Algorithm

Algorithm 2 Enhanced KM Learning for Beam Alignment

Input: S,., v,., and D.
Output: .

1: Initialization: Set iteration number ¢ = 1. Let P; = {M },
M =10,1], R; = ¢, and v = f(0) = 0.

2: Reduction: Reduce each box in P; according to (10) and
(11) to obtain P! = {[a’, b']|[a, b] € P;}.

3: Bounding: Calculate ;(M’) in (12) for each M’ € M; £
PIUR,.

4: Find the feasible solution: ¥ = argmaxy, {f(t,) >
viy, = [(@ +b’)/2],M' =[a’,b'] € M;}.

5. Update current best value: If 1/)9 in Step 4 exists, update
vasv = f(pV); otherwise, 1Y = 4~ and v doesn’t
change.

6: Discarding: Delete every M’ € M, such that u(M') < v
and let R; 41 be the collection of remaining boxes.

7. if R;y1 = ¢ then terminate and return 1) = 1/15,”.

8: else

9:  Let M) = argmax,, {u(M')|M' € Ri1}.

10: if v > eu(M®) then c-accuracy is reached and
return " = 9.

11: else ‘ ‘

12: Branching: Divide M@ into M(" and M." ac-
cording to (13) and (14).

13: Update Ri+1 and PZ‘+1Z Ri+1 = ’R,H_l\M(Z) and
Pipr = {07, M3},

14: end if

15: end if

16: © =1+ 1 and return to Step 2.

0, 1], g(a’ + B(ba — aj)ea) — h(b) < 0, f*(b) — f~(a’ +
B(bg — al))eq) > v} for d = 1,...,D, where e, is the dth
column of the D-dimensional identity matrix Ip. Note that the
optimal values of oy and 34 can be found by referring to the
compactness of «, 5 € [0, 1] and utilizing the monotonicity of
fT. f~, g, and h (for instance, by using a bisection method)
[14].

2) Bounding: For every reduced box M’, an upper bound
of v(M') 2 max{f(s,)] g(w,) — h(th,) < 0,3, € M’
[0,1]} is calculated such that

v(M') < p(M') = fH(b') — f~(a"). (12)

The upper bound p(M’) in (12) holds because f* and f~
are monotonically increasing functions. Furthermore, (M)
ensure limy_ oo p(M}) = f(vp)), where {M]} stands for
any infinite nested sequence of boxes and 1y is the optimal
solution to (9). At each iteration, any box M’ with p(M') < v
is deleted because such a box does not contain 1)) anymore.

3) Branching: At the end of each iteration, the box with
the maximum upper bound, denoted by M* = [a*,b*], is
selected and branched to accelerate the convergence of the
algorithm. The box M™ is divided into two boxes

MY = {4, € M"[¢r; < |1},
M3 ={, € M*[¢r; = [},

13)
(14)

Input: 7, W, 7 T D [, o, Tks, and I.
Output: (t*, 7).

1: Estimate the empirical probabilities via KS test:

2: for each p =1,...,Tks do

3: for each beam-index pair (¢,r) € Z%" x Z" do

4 Train the beam pair (f;, w,.) and obtain Zt(fr), le
{1,...,¢} as in (15) based on [nflr), e ,nfﬁ)}.

Compute the empirical probabilities according to

W

(16).

6: end for

7: end for

8: Learn the KM parameters:

9: fori=1,...,1 do

10: 1) Update 6" via the FW algorithm [17];

11 2) Update " via Algorithm 1.

12: end for

13: Obtain the final estimate {0, = 8", =1},

14: Compute the predicted probability for the beam pairs
which are not trained yet based on (7).

15: Determine the optimal beam index pair as in (8).

16: return (t*,r*).

where j = argmax,_; _p(bj—a}), c; = (aj+b5)/2, |-] and
[] represent the element-wise floor and ceiling operations,
respectively.

The DMF optimization problem in (9) is solved by itera-
tively executing the latter three procedures until it converges
within e-accuracy as shown in Algorithm 1.

B. Kolmogorov-Smirnov Test

The choice of 7 in (3) has a profound impact on the
beam alignment performance of the KM-based approach.
The threshold value 7 has been chosen subjectively based
on numerical simulations [10], which can substantially vary
depending on the channel conditions and operating SNR.
There lacks an appropriate selection criterion due in part to
the fact that the statistics of 7, are unknown in practice.
We overcome this difficulty by proposing, in this subsection,
to estimate the trained empirical probabilities {p:,} by ap-
plying the detection-theoretic criterion for threshold setting
introduced by Kolmogorov and Smirnov [15], [23].

We first define the binary hypotheses of a beam pair
(£, w,), V(t,r) € Tk x T according to the signal
model in (1) as

Ho: ner = |nr|2
Hi: ney = |wiHE s, +n, |,

where the null hypothesis H is declared when 7, , relies on
noise only and the alternative hypothesis H; is true when 7,
is a function of both the signal and noise. While, under H,,
given n,. ~ CN(0,02), the theoretical cumulative distribu}fion

2

function (CDF) of 7, is given by F(n,.|Ho) =1—¢ %,
the test statistics under 77 is unknown. To circumvent this



difficulty, the KS test forms the empirical CDF of 7,

from the observed data samples 77,571,?, - ,ngﬁ), as Fi(z) =

7 Lyl —1 (nt . < ), where L denotes the number of the data
samples in the KS test, which is distinguished from the time
interval Tgg in (3).

The KS criterion to estimate the best sample point is given
by

Zy, = max|F
tr = max |Fp(z) —

F(z[Ho)l- (15)

’H
The binary hypothesis test is then Z; , 2 €, where € is the KS

threshold value. Similar to conventional Neyman-Pearson, the
threshold e is chosen to meet the target false alarm rate o
such that

a2 Pr(Z, > e|Ho) ~ 2¢2L<"

where the last step is due to the Kolmogorov approxima-
tion [24]. The approximation becomes tight as L tends to
large such that the KS threshold can be determined by

€ = ln(("/ 2 Finally, similar to (3), the KS-estimated

empirical probabllley at time-slot ¢ for any beam index pair
(t,r) € %™ x I;5™ is, therefore, given by

pf) == ZHZ”’>e ), pe{l,.. Tks},  (16)

where Zt(lr) is the detection statistic obtained by (15) at time-
slot [ € {1,...,¢} and Txs denotes the KS estimation
interval.

Remark 1: The key implication of the KS criterion in (15)
is three folds: (i) the maximum value Z;, converges to 0
almost surely when L tends to infinity if the data samples
follows the distribution F'(n; | Ho), (i) the distribution of Z; ,.
does not depend on the underlying CDF being tested, and
(iii) the maximum of difference between the CDFs stands for
a jump/concentration in probability and thus becomes more
representative to tell the difference of distribution compared
to other statistics such as minimum and median.

Incorporating Algorithm 1 to solve the BQP in (6) and the
KS test in (16) to estimate the empirical probabilities in (3)
instead of FE, we are ready to elucidate the overall proposed
beam alignment procedure in Algorithm 2.

IV. SIMULATION RESULTS

In this section, we provide the numerical results of the
proposed beam alignment approach in mmWave MIMO chan-
nels. We adopt the physical representation of sparse mmWave
MIMO channels [1], [5] and assume that the rank of the
channel matrix is 1. We set N, = N, = |Zx| = |Zw|,
Trg = Txs = 8, and L = 5 throughout the simulation.
The sampling rate, defined as the ratio of the number of
beam pairs in the subsampled training codebook to the total
number of the beam pairs in the original codebook, is given
by SR = |Z'fin x ZUan| /|Zx x Tyy|. We obtain the numerical
results by conducting 100 Monte Carlo simulations.

4
10 Il KM learning with SDRwR [10, Algorithm1] (D=4)
[ KM learning with SDRwR [10, Algorithm1] (D=8)
Il KM learning with DMO (Algorithm 2) (D=4)
5 [ KM learning with DMO (Algorithm 2) (D=8)
10

Time Consumption (s)
2

o
o_‘

10°

SR =25% SR =10%

Fig. 2. Time consumption comparison between the conventional KM learning
with SDRwR [10, Algorithm 1] and the proposed KM learning with DMO
(i.e., Algorithm 2) (Nt = N, = |I]:| = |Iw| = 16, Trg = Txs = 8,
L =05,a=0.05and 7 = 12 dB).

Beamforming Gain (dB)
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Conventional KM learning [10, Algorithm 1] (r = 6 dB)
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Fig. 3. Beamforming gain comparison between the conventional KM learn-
ing [10, Algorithm 1] and Algorithm 2 (Ny = N, = |Zx| = |Zyy| = 16,
D =8, Tyg = Tks = 8, L = 5, and SR = 25%).

In Fig. 2, the average time (in seconds) consumed to execute
Algorithm 2 (i.e., the proposed KM learning with DMO) is
compared with the conventional KM learning with SDRwR
(i.e., Algorithm 1 in [10]) for SR = 25%, 10% and D = 4, 8,
respectively. Notice that we measure the running time by
using “cputime” function in MATLAB. We set the target false
alarm rate = 0.05 for the KS test in Algorithm 2 and

= 12 dB for the FE in [10, Algorithm 1] to obtain the
empirical probabilities for the training set. We further assume
N; = N, = |Z#| |Zyy| = 16 here. It is clear from
Fig. 2 that the proposed Algorithm 2 substantially accelerates
the computational speed compared to the conventional KM
learning with SDRwR [10, Algorithm 1]; more than 100 times
of improvement is observed.

In Fig. 3, the average beamforming gains of the convention-
al KM learning algorithm [10, Algorithm 1] and the proposed
Algorithm 2 are evaluated for N; = N, = |Z£| = |Tyy| = 16,
D = 8, and SR = 25%, where given the selected beam pair
(fi+, W+ ), based on each algorithm, the beamforming gain is
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Fig. 4. Beamforming gain comparison between Algorithm 2 and the KM
learning with FE (Nt =N, = |I}“ = |Iw| =64, D =8, Tgg = Tks =
8, L =5, and SR = 25%).

calculated from (1) by Gy« .« = |w}. Hf;+||3/02. In Fig. 3,
the curves of the conventional KM learning are evaluated for
different threshold values 7 = 6, 12 dB, while the curve
of Algorithm 2 is evaluated for « = 0.05. Moreover, the
performance of the exhaustive search, a benchmark, consum-
ing |Zx x Zyy| channel uses for the beam alignment, is also
presented. As can be seen from Fig. 3, Algorithm 2 shows an
improvement compared to the conventional KM learning with
substantially reduced complexity.

The efficacy of the proposed KS test in improving the
proposed KM learning capability is further evaluated. In Fig.
4, we show the beamforming gain of Algorithm 2 and the
one by replacing the KS test in Algorithm 2 with the FE as
shown in (3) for N, = N, = |Zr| = |Zy| = 64, D = 8,
and SR = 25%. Fig. 4 illustrates that, with a false alarm rate
guarantee, the proposed KS test substantially improves the
learning capability of the KM.

V. CONCLUSIONS

In this paper, we proposed an enhanced KM learning
algorithm for beam alignment in mmWave MIMO channels.
Based on DMO, one key step in learning the KM parameters,
i.e., the BQP, was substantially accelerated. By considering the
uncertainty brought by FE due to subjective threshold setting,
the KS test was proposed to obtain the empirical probabilities
of the training set, based on the detection-theoretic criterion.
The simulation results demonstrate that the proposed KM
learning with DMO and KS shows better beam alignment
performance with a substantially reduced computational com-
plexity compared to the conventional KM algorithm.
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