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Abstract—Implementation cost and power consumption are
two important considerations in large-scale multi-antenna sys-
tems where the number of individual radio-frequency (RF)
chains may be significantly larger than before. In this work,
we propose to deploy a single low-noise amplifier (LNA) on
the uplink multiple-input-multiple-output (MIMO) receiver to
cover all antennas. This architecture, although favorable from the
perspective of cost and power consumption, introduces challenges
in the LNA gain control and user transmit power control. We
formulate an energy efficiency maximization problem under prac-
tical system constraints, and prove that it is a constrained quasi-
concave optimization problem. An efficient algorithm, Bisection
– Gradient Assisted Interior Point (B-GAIP), is proposed to solve
this optimization problem. The optimality and complexity of
B-GAIP are analyzed, and further corroborated via numerical
simulations. In particular, the performance loss due to using
a shared LNA as opposed to separate LNAs in each RF chain,
when using B-GAIP to determine the LNA gain and user transmit
power, is very small in both centralized and distributed MIMO
systems.

I. INTRODUCTION

Energy efficiency of communication systems is of signifi-
cantly practical importance. From the operators’ perspective,
reducing both the operation cost and carbon dioxide emissions
is becoming essential to their business bottom line. This is
especially important with the commercialization of massive
multiple-input-multiple-output (MIMO) [1] in 5G standards.
When the number of antennas is large, hardware cost and
power consumption increase substantially, which has mo-
tivated extensive studies on massive MIMO with inexpen-
sive hardware components such as low-resolution Analog-
to-Digital Converter (ADC) [2], Digital-to-Analog Converter
(DAC) [3], mixers and oscillators [4].

In this paper, we follow the same design philosophy and
study an attractive low-complexity MIMO receiver structure,
where a single low-noise amplifier (LNA) [5] is used for all
receive RF chains at the base station (BS). This is followed by
low-resolution ADCs for each RF chain, as is typically done
in massive MIMO [6]. This architecture has the benefits of
reduced implementation cost and lower power consumption,
compared to the separate LNA approach where each RF
chain uses an independent LNA for gain control. Previously,
this shared-LNA structure has been used in multi-channel
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communications [5] where signals from different channels are
non-overlapping in the frequency domain. This feature mostly
relies on LNA’s wider bandwidth and more relaxed saturation
point compared to other RF components like Analog-to-Digital
Converter (ADC). However, we will show in this work that
the shared-LNA structure can also be adopted in MIMO even
when signals are mixed in the same spectrum.

The challenge, however, comes from the single LNA op-
erating point for multiple RF chains. For the separate LNA
structure, each antenna will have an independent LNA to
adjust the power of the received signal. This gain can be
optimized based on the individual receive power of the RF
chain, resulting in maximum flexibility. For the shared LNA
structure, however, the single LNA gain control must accom-
modate all receive antennas. Hence, performance may degrade
if this single gain control cannot meet the requirements for all
RF chains. Intuitively, such loss can be significant when the
dynamic power range across all antennas is large.

In this paper, we address this challenge by focusing on the
joint design of shared LNA gain control and user transmit
power control. We formulate this problem as maximizing the
overall system energy efficiency subject to several engineering
constraints that arise from practical multi-user MIMO sys-
tems, and then prove that this is a constrained quasi-concave
optimization problem. An efficient algorithm, Bisection –
Gradient Assisted Interior Point (B-GAIP), is proposed and its
optimality is studied. Furthermore, we analyze its convergence
and complexity with the help of an equivalent interpretation of
B-GAIP. Numerical simulation results are provided to evaluate
the benefits of shared LNA.

The rest of this paper is organized as follows. Section II
presents the system model, and the implementation is given in
Section III. We formulate the energy efficiency optimization
problem in Section IV. In Section V we give details of the
proposed B-GAIP algorithm. Section VI presents numerical
simulations, and Section VII concludes the paper.

II. SYSTEM MODEL

Consider an uplink single-cell MU-MIMO system with a
circular coverage area centered around the BS, where the
radius is R0. In the system, K user equipments (UEs) are
randomly and uniformly distributed in the coverage area, and
each UE is equipped with a single antenna. The BS deploys
M antennas which are located entirely at the cell center. We



Shared 

 

LNA 

ADC 1 

ADC 2 

ADC M 

Transmitters Receivers 

. 

. 

. 

. 

. 

. 

1 

2 

K 

. 

. 

. 

1 

2 

M 

Joint 

Baseband 

Processor 

Output 

Signal 

Vector 

Fig. 1. The receiver uplink MU-MIMO structure with shared LNA control.

denote the set of all BS antennas as M and the set of UEs as
K, with cardinality |M| = M and |K| = K, respectively.

Assume that all UEs simultaneously transmit data to the
base station, the received singal at the BS can be written as

y = GPx + z, (1)

where y ∈ CM×1 is the signal vector at the BS receive
antennas and z ∼ CN (0, σ2

NIM ) ∈ CM×1 is an additive white
Gaussian noise (AWGN) vector with mean 0 and covariance
σ2
NIM , with IM denoting the identity matrix with dimension
M . P = diag(

√
p1 , . . . ,

√
pK) is the real-valued diagonal

transmit amplitude matrix, and x ∈ CK×1 is the power-
normalized transmitted vector of K UEs. G ∈ CM×K is the
channel matrix between K UEs and M BS antennas, whose
elements is gmk , [G]mk. The channel matrix G models the
independent fast fading, geometric attenuation, and log-normal
shadow fading. As a result, element gmk is given by

gmk = hmk
√
βmk, (2)

where hmk is the fast fading coefficient which follows a circu-
larly symmetric complex Gaussian distribution with zero mean
and unit variance;

√
βmk represents the geometric attenuation

and shadow fading which are assumed to be independent and
constant over the coherent intervals. We adopt the WINNER
II path loss model [7], where the path loss in dB domain is

βdB
mk = 46 + 20 log 10(dmk) + Vmk. (3)

In model (3), dmk is the distance from UE k to BS antenna
m and Vmk denotes the shadow fading which follows the log-
normal distribution. Note that βmk = 10(−βdB

mk/10).
The proposed receiver structure of a single LNA is illus-

trated in Fig. 1, where a common LNA is applied to amplify
the signals of all receive antennas. The gain of this common
LNA is denoted as ΩdB in the dB domain and Ω = 10(ΩdB/10).
The amplified received signal vector can be written as

ỹ =
√

Ωy. (4)

We consider a finite range with discrete values for parameter
ΩdB, i.e., ΩdB

min 6 ΩdB 6 ΩdB
max and ΩdB is an integer.

Following the shared LNA, each component of the signal
vector will pass through an individual low-resolution ADC.
We adopt the fixed ADC noise model1 as in [8]:

ŷ = ỹ + nq, (5)

where the additive noise vector nq ∈ CM×1 is uncorrelated
with the ADC input ỹ, and its elements are modeled as
independent complex Gaussian random variables with zero
mean and variance σ2

ADC.
We assume BS has perfect knowledge of CSI. By using

a zero-forcing (ZF) detector F , (GHG)−1GH where GH

denotes the Hermitian of G, ŷ is processed as follows:

r = Fŷ = (GHG)−1GH ŷ. (6)

Since we have FG = IK , r is given by

r =
√

ΩPx +
√

ΩFz + Fnq. (7)

Take the kth component as an example, we have

rk =
√

Ωpkxk +
√

Ωfkz + fknq, (8)

where fk denotes the kth row of matrix F. As a result, the
signal-to-noise ratio (SNR) of the kth UE at the output of the
BS receiver can be calculated as

Γk =
Ωpk

(Ωσ2
N + σ2

ADC)‖fk‖2
, (9)

where || · || denotes the l2 norm. By using SNR Γk, we define
the spectral efficiency (SE) via modified Shannon capacity:

Rk =

{
log2(1 +Ad ∗ Γk), Γk < Γmax
log2(1 +Ad ∗ Γmax), Γk > Γmax

(10)

where Ad denotes the coding gain and possibly multi-antenna
diversity gain, which in practice is obtained via off-line
fitting via link adaptation simulations. Γmax is the maximum
achievable SNR at the receiver, which is often dominated by
phase noise and IQ mismatch.

Finally, the energy efficiency is defined as the ratio between
spectral efficiency and consumed power of the system [10]:

U(p,Ω) =

∑K
k=1Rk

Pc +
∑K
k=1 pk/η

, (11)

where Pc denotes the circuit power of both the transmitters
and the receivers, η is the power amplifier efficiency, and
p = [p1, p2, ..., pK ] is the power allocation vector. More-
over, we define SE vector under configuration p and Ω as
R = [R1, R2, ..., RK ]. We further use U(Ω) to denote the
maximum energy efficiency under all feasible power vectors.

III. IMPLEMENTATION CONSIDERATIONS

It is not straightforward to determine how the shared LNA
structure in Fig. 1 can be used in multi-antenna receivers,

1Note that under most of the ADC models, such as the additive quantization
noise model (AQNM), the power of quantization noise changes with the power
of ADC input signals. However, since LNA is used to control the power gain,
it is convenient and appropriate to assume a fixed ADC noise [5], [8], [9].
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Fig. 2. Two possible shared amplifier implementation structures.

where signals from different antennas are on the same fre-
quency. We hereby discuss two possible implementations that
can effectively and efficiently realize a shared LNA for a multi-
antenna receiver.

The first implementation is to leverage the RF framework
proposed in [11], which is built on a super-heterodyne receiver.
The detail of this implementation is depicted in Fig. 2(a). In
this structure, by programming the frond-end mixers and fil-
ters, these receive (Rx) paths can be tuned as non-overlapping
in the frequency domain at the input of the shared amplifier.
In addition, mixers and filters after the amplifier can further
isolate the shared-amplifier output from each baseband path.

An alternative implementation is shown in Fig. 2(b), where a
direct-conversion receiver is used and synchronized switches at
the input and output of shared amplifier are applied. Assuming
sample-and-hold type ADCs and power amplifiers, if the
switches at the input and output of shared amplifier have well
synchronized timing to ensure the same Rx path, and switching
periodicity is aligned with the ADC sampling rate, then the
baseband processor can collect the right digital samples from
different Rx paths using one amplifier.

A final comment is that although we focus on LNA in
this paper, our work can be directly extended to any power
amplifiers in the Rx path of the receiver, such as Intermediate
Frequency (IF) amplifier or baseband amplifier. Besides these
two possible implementations, other novel RF structures for
shared power amplifiers can be further developed, which is an
open topic in the (beyond) 5G RF research.

IV. PROBLEM FORMULATION AND ANALYSIS

The following engineering limitations in practical systems
are captured in the problem formulation.

1) Each UE’s transmit power pk is subject to a maximum
power value, and is non-negative:

0 6 pk 6 Pmax, k ∈ K. (12)

2) To avoid ADC saturation, each ADC’s input power is
capped by a maximum value PADC

max :

Ω(gmP2gHm + σ2
N ) 6 PADC

max , m ∈M, (13)

where gm denotes the mth row of matrix G.
3) Since the effective SNR and SE at the receiver are capped,

the limitation on transmit power can be presented as

Ωpk
(Ωσ2

N + σ2
ADC)‖fk‖2

6 Γmax, k ∈ K, (14)

which is an equivalent interpretation of (10).

With these practical limitations, the joint power and shared
LNA optimization problem can be formally presented as

maximize
p,Ω

U(p,Ω)

subject to (12), (13), (14). (15)

Note that for Ω, since only a finite set of values can be used,
we always have

maximize
p,Ω

U(p,Ω) = maximize
Ω

{maximize
p

U(p,Ω)}.
(16)

We first analyze the properties of the three constraints. Due
to space limitation, the proofs are omitted and are reported in
the journal version.

Lemma 1. Under a fixed LNA gain Ω, (12), (13) and (14)
are all linear constraints on the power vector p, and therefore
form a convex set with respect to p.

Then, Theorem 1 below states that U(p,Ω) is a strictly
quasi-concave function under a fixed LNA gain Ω, and we
immediately have that the local maximum of U(p,Ω) is also
the global maximum. Finally, Proposition 1 shows that the
objective function is concave in Ω. These results lay the
theoretical foundation of the proposed algorithm in Section V.

Theorem 1. The objective function U(p,Ω) is strictly quasi-
concave with respect to p. Thus, for a given LNA gain Ω,
problem (15) is equivalent to the following constrained quasi-
concave optimization problem:

maximize
p

U(p,Ω)

subject to (12), (13), (14). (17)

Proposition 1. U(Ω) is concave in the LNA gain Ω.



V. THE B-GAIP ALGORITHM

We propose the Bisection – Gradient Assisted Interior Point
(B-GAIP) algorithm that solves (15). It is essentially a two-
step implementation of (16) as follows. First, we fix the LNA
gain Ω and design a gradient assisted interior-point (GAIP)
algorithm to optimize the power vector, leveraging the strict
quasi-concavity property established in Theorem 1. On top of
GAIP, we use a bisection search method to find the optimal
LNA gain for the maximum energy efficiency, based on its
concavity in Ω as shown in Proposition 1.

A. GAIP: Optimizing Power Allocation under Fixed LNA Gain

The heuristic gradient-based optimization methods are com-
monly used in energy efficient power allocation problems
[5]. This method is well-known and widely-used due to
its effectiveness and succinctness. However, the optimization
objective is a strictly quasi-concave function with convex con-
straints. As the system dimension becomes large, so does the
number of constraints. Therefore, a straightforward adoption
of the gradient descent algorithm [12] will have very slow
convergence, or not converge at all within reasonable time.

To cope with this challenge, we resort to the interior-point
method [12], which transfers constrained optimization prob-
lems into unconstrained ones. The main idea is to construct a
penalty function which “punishes” the objective function when
it approaches or falls out of the boundary of the feasible set.
In particular, we chose a logarithmic penalty function, which
is concave. Since we consider a fixed LNA gain Ω in this
subsection, we simply write U(p,Ω) as U(p) for convenience.
The penalty function can then be written as

ϕ(p, ξ) = U(p) + ξ

K∑
k=1

[
ln pk + ln(Pmax − pk)

+ ln

(
Γmax −

Ωpk
(Ωσ2

N + σ2
ADC)‖fk‖2

)]
+ ξ

M∑
m=1

ln

[
PADC

max − Ω

(
K∑
k=1

|gmk|2pk + σ2
N

)]
.

(18)

Note that B(p) represents the penalty for approaching the
boundaries, while ξ is the factor that decides the intensity of
penalty. Intuitively, as the penalty factor ξ approaches zero,
the penalty function ϕ(p, ξ) approaches U(p).

We then resort to the gradient descent method to find the
optimal value of the unconstrained optimization function in
(18). In particular, the partial derivative of the penalty function
with respect to pk can be derived as

∂ϕ(p, ξ)

∂pk
=
∂U(p)

∂pk
+ ξ

(
1

pk
− 1

Pmax − pk
− Tk

Γmax − Tkpk

)
+ ξ

M∑
m=1

−Ω|gmk|2

PADC
max − Ω

(∑K
k=1 |gmk|2pk + σ2

N

) ,
(19)

where we define Tk = Ω
(Ωσ2

N+σ2
ADC)‖fk‖2

, and the first term
∂U(p)
∂pk

in (19) is given by

∂U(p)

∂pk
=

AdTk
ln 2(1 +AdΓk)(Pc + Psum)

− Rsum

η(Pc + Psum)2
.

(20)
We further define the gradient metric over power vector p
as ∇ϕ(p, ξ) = [ ∂ϕ∂p1 , . . . ,

∂ϕ
∂pK

]. Finally, the proposed GAIP
algorithm is compactly presented in Algorithm 1.

B. B-GAIP: Optimizing Both LNA Gain and Power Allocation

The GAIP algorithm only optimizes the power values under
a fixed LNA gain. A naive approach is to apply Algorithm 1
to all possible values of Ω and obtain the optimal energy
efficiency. However, this approach may have high complexity
if the set of feasible Ω is large, and it does not utilize the
concavity of the objective function. Accordingly, we propose
to solve this problem using a bisection search method, which
has lower complexity than linear sweeping, achieves the
same optimal value, and leverages the concavity to guarantee
optimality (see Propsition 1). The overall algorithm that solves
(15) is presented in Algorithm 2.

C. Complexity Analysis

From the procedure above, we can conclude that the two-
step algorithm has three main layers as follows.
• The outer layer: Optimize the LNA gain via the bisection

search method;
• The middle layer: Under a given LNA gain, transfer the

constrained problem into an unconstrained optimization
problem via the interior-point method;

• The inner layer: Find the optimal value of the uncon-
strained problem via the gradient descent method.

To analyze the complexity of Algorithm 1 and 2, we
individually analyze the complexity of each layer. For the inner
layer, we perform Lmax iterations and within each iteration, the
partial derivative of each UE is calculated separately, resulting
in a complexity scaling O(KLmax). For the middle layer, the
number of iterations will change according to the required
accuracy, and therefore, it is a function of the error limit
ε. We denote the number of iteration times as Tε and the
complexity scaling of this layer should be O(Tε). Finally, for
the outer layer, the complexity scaling of the bisection search
is O

(
log2

(
ΩdB

max − ΩdB
min

))
. Putting all three layers together,

the overall complexity of B-GAIP is of the order:

O
(
KLmaxTε log2

(
ΩdB

max − ΩdB
min

))
. (21)

Qualitatively, as discussed before, in the scenario with large
number of BS antennas and UEs, it becomes time-consuming
to determine whether the boundary limitations are violated.
Fortunately, this difficulty is circumvented in Algorithm 1 as
it converts the engineering constraints into penalty items and
therefore transfers a constrained optimization problem to an
unconstrained one, greatly reducing the complexity, especially
when the system dimension is large. In the meanwhile, Algo-
rithm 2 utilizes a bisection approach which reduces the search



Algorithm 1: Gradient Assisted Interior Point Method

Parameters: initial penalty factor ξ(0); coefficient c;
error limit ε; maximum loop count Lmax;
step size tl

Input: Ω, channel coefficients
Output: popt and Uopt = U(popt)

1 Randomly choose the initial p(0) from the feasible set;
2 Set initial penalty function value ϕ(p(0), ξ(0)) using (18);
3 Set iteration index i = 0;
4 do
5 pcurr = p(i); ϕopt = ϕ(p(i), ξ(i));
6 for l = 1 to Lmax do
7 Calculate gl = ∇ϕ(pcurr, ξ

(i))/||∇ϕ(pcurr, ξ
(i))||;

8 Update power vector as pnext = pcurr + tlgl;
9 if ϕ(pnext, ξ

(i)) > ϕopt then
10 Set pcurr = pnext;
11 Set ϕopt = ϕ(pnext, ξ

(i));
12 end
13 end
14 i++; ξ(i) = ξ(i−1) ∗ c;
15 p(i) = popt; ϕ(p(i), ξ(i)) = ϕopt;

16 while
∣∣∣ϕ(p(i),ξ(i))−ϕ(p(i−1),ξ(i−1))

ϕ(p(i−1),ξ(i−1))

∣∣∣ > ε;

time exponentially compared with the intuitive linear search
method. Accordingly, Algorithm 1 and 2 are more efficient
than heuristic solutions and applicable for large scale systems.

VI. SIMULATION RESULTS

We resort to system-level simulations of an uplink MIMO
system to numerically evaluate the B-GAIP algorithm. Com-
mon simulation parameters can be found in Table I.

A. Comparison between B-GAIP and Brute Force Search

It is crucial to verify whether the proposed B-GAIP algo-
rithm indeed converges to the globally optimal solution of
the original problem, which can be obtained by a brute force
search. We choose a small system dimension with 2 UEs and 4
BS antennas due to the high complexity of brute force search.
We try all possible transmit power values and the LNA gain
in dB domain with 0.1dB and 1dB step-size, respectively. We
perform 2000 realizations of the channel parameters including
UE positions, fast fading and shadow fading. Fig. 3 illustrates
the average maximum energy efficiency obtained by the B-
GAIP algorithm and the brute force search under different
cell radii. We can see that the B-GAIP algorithm has the
same energy efficiency as the brute force solution and therefore
converges to the optimal value.

B. Comparison to Heuristic Algorithms

In addition, we compare B-GAIP with two commonly
adopted heuristic algorithms [5]. Intuitively, higher transmit
power and LNA gain shall result in higher SNR, and therefore
higher energy efficiency performance. Correspondingly, we
consider the following two heuristic algorithms: (1) use the

Algorithm 2: The B-GAIP Algorithm

Input: ΩdB
min, ΩdB

max and channel coefficients
Output: optimal power allocation vector popt; optimal

LNA gain ΩdB
opt; global maximum energy

efficiency Umax
1 Set ΩdB

left = ΩdB
min and ΩdB

right = ΩdB
max;

2 while ΩdB
left 6= ΩdB

right do
3 LB = b(ΩdB

left + ΩdB
right)/2c;

4 UB = d(ΩdB
left + ΩdB

right)/2e;
5 if LB == UB then
6 Set UB = UB + 1;
7 end
8 (popt1, Uopt1)← Algorithm 1 with input ΩdB = LB

and channel coefficients;
9 (popt2, Uopt2)← Algorithm 1 with input ΩdB = UB

and channel coefficients;
10 if Uopt1 > Uopt2 then
11 Set ΩdB

right = LB;
12 else
13 Set ΩdB

left = UB;
14 end
15 if ΩdB

left == ΩdB
right then

16 Set ΩdB
opt = ΩdB

left; Umax = max{Uopt1, Uopt2};
17 Choose popt according to Umax;
18 end
19 end

TABLE I
SIMULATION PARAMETERS

Background noise σ2
N -104 dBm

Shadowing V Log-normal with
8dB standard deviation

ADC noise σ2
ADC -60 dBm

LNA gain range [ΩdB
min,Ω

dB
max] [1, 70] dB

Diversity gain Ad 1
Circuit power Pc 0.1 W

Power amplifier efficiency η 50%
Maximal transmit power Pmax 20 dBm

Maximal ADC input power PADC
max -20 dBm

Maximal SNR Γmax 35 dB
Step size tl 0.01/l

maximal LNA gain combined with the corresponding optimal
transmit power vector; and (2) use the maximal transmit power
vector combined with the corresponding optimal LNA gain.
Note that the engineering constraints in (12), (13), and (14)
are still enforced when using these heuristic algorithms.

Fig. 4 illustrates the energy efficiency performance of three
algorithms under small system dimensions with K = 2,
M = 4. The performance gap is significant, suggesting that
invoking B-GAIP to solve the original optimization problem
is necessary. Statistically, at the maximum point, the average
maximum energy efficiency value achieved by B-GAIP is
158% higher than that of the heuristic algorithm; while at the
minimum point, the advantage is still 40%.
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C. Comparison between Shared LNA and Separate LNA

Our system model uses one shared LNA to amplify the
BS received signals in order to save both implementation cost
and power consumption. One natural question is how much
performance sacrifice we are incurring compared with using a
separate LNA for each RF chain. In this subsection, we aim to
address this question via system simulations. In particular, we
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Fig. 5. Comparison between shared LNA and separate LNA structures.

adopt a small system dimension where the numbers of UEs
and the BS antennas are set to 2, and the optimal gain values
for all separate LNAs are chosen by brute force algorithm.

Fig. 5 reports the comparison of energy efficiency with
separate and shared LNA structures. We conclude from the
figure that while the separate LNA structure achieves a better
performance, using a shared LNA structure can very closely
approach the performance of the separate LNA. Taking a
deeper look at the statistics, we have that the maximum
performance loss is only 3.21. It is worth noting that we
use the same circuit power, i.e., Pc = 0.1 W, in both LNA
structures, while in reality the separate LNA structure should
have more power consumption than the shared LNA structure,
which may further degrade its energy efficiency. As a result,
using a shared LNA can significantly reduce the hardware cost
and power consumption, while sacrificing very little energy
efficiency. This result sheds important light on the design of
RF front-end power amplifiers in practical MIMO systems.

VII. CONCLUSIONS

In this paper, we have proposed a shared LNA structure and
showed that combined with low-resolution ADCs, this archi-
tecture saves hardware costs and reduces power consumption,
while achieving near-optimal performance. In particular, we
formulated the energy efficiency maximization problem under
practical constraints, and proposed the Bisection – Gradient
Assisted Interior Point (B-GAIP) algorithm that solves the
optimization problem precisely and efficiently. Simulation
results validated the convergence and effectiveness of B-GAIP.
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