10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Governing with Insights: Towards Profile-driven
Cache Management of Black-Box Applications
Golsana Ghaemi =

Boston University, USA

Dharmesh Tarapore &
Boston University, USA

Renato Mancuso &
Boston University, USA

—— Abstract

There exists a divide between the ever-increasing demand for high-performance embedded systems

and the availability of practical methodologies to understand the interplay of complex data-intensive
applications with hardware memory resources. On the one hand, traditional static analysis approaches
are seldomly applicable to latest-generation multi-core platforms due to a lack of accurate micro-
architectural models. On the other hand, measurement-based methods only provide coarse-grained
information about the end-to-end execution of a given real-time application.

In this paper, we describe a novel methodology, namely Black-Box Profiling (BBProf), to gather
fine-grained insights on the usage of cache resources in applications of realistic complexity. The goal
of our technique is to extract the relative importance of individual memory pages towards the overall
temporal behavior of a target application. Importantly, BBProf does not require the semantics of the
target application to be known — i.e., applications are treated as black-boxes — and it does not rely
on any platform-specific hardware support. We provide an open-source full-system implementation
and showcase how BBProf can be used to perform profile-driven cache management.

2012 ACM Subject Classification Computer systems organization — Real-time system architecture
Keywords and phrases Profiling, Cache Interference, Multi-core, C2IS

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.4

Funding Renato Mancuso: The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do

not necessarily reflect the views of the NSF.

1 Introduction

The evolution of multi-core architectures and the ever-widening gap between the performance
of processor and memory has rendered the adoption of system-level management strategies for
shared memory resources a must. Indeed, inter-core interference is a fundamental challenge
for the practical adoption of multi-core systems in safety-critical real-time applications, as
extensively surveyed in [26]. In a nutshell, the problem of inter-core interference arises due
to priority- and criticality-agnostic arbitration for the allocation of and access to shared
memory components of application workload deployed in parallel on multiple cores. Important
achievements have been accomplished by the research community in the design of practical
memory management techniques to mitigate inter-core interference.

Unfortunately, however, the most widely used techniques rely on the enforcement of
strict resource partitioning — e.g., shared cache space coloring [23], sustainable memory
bandwidth partitioning [39, 37]. Often times, the rigidity of strict resource partitioning results
in what is known as the one-out-of-m multi-core problem [20]. That is, the performance
loss resulting from enacting strict partitioning outweighs its benefits. We argue that at the
© Golsana Ghaemi, Dharmesh Tarapore, Renato Mancuso;

licensed under Creative Commons License CC-BY 4.0
33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg; Article No. 4; pp. 4:1-4:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

4:2

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Profile-driven Cache Management of Black-Box Appl.

core of the problem is a fundamental lack of methodologies to analyze exactly how realistic,
data-intensive applications interact with and benefit from the complex hierarchy of memory
resources in modern high-performance embedded systems.

The goal of this paper is to provide one such methodology that goes under the name of
Black-Boz Profiling, or BBProf for short. Specifically, we propose a profiling strategy that
can be used to accurately understand how an application’s temporal behavior is affected by
the presence/absence in the cache of individual memory pages. This sets our work apart
from other profiling strategies that compute only end-to-end metrics such as the total cache
hit/miss rate, number of bus accesses, resulting runtime when adopting a given resource
partitioning scheme, and so on. The BBProf methodology is designed to operate without
requiring a micro-architectural model, which is often unavailable (or just too complex) for
high-performance systems. The proposed BBProf adopts a measurement-based approach
that does not rely on any platform-specific hardware support, and can be ported to virtually
any platform.

With this paper, we make the following contributions. First, we propose a novel profiling
methodology that requires no special hardware support to produce insights about the relative
importance of each memory page towards the overall timing of a target application. Second,
we describe how said methodology can be applied to profile realistic, pre-compiled black-box
applications without requiring any source-level or compile-time modifications. Third, we
propose a proof-of-concept, open-source, full-system implementation and show its capability
of profiling real-world vision applications. Fourth, we demonstrate that profile-driven shared
cache management is enabled by our BBProf methodology and highlight its benefit in
two scenarios: (1) to enact flexible interference mitigation with absolute guarantees that
are comparable to strict partitioning; and (2) as an efficient solution to the previously
undocumented problem of Contention-Induced Instruction Stall (C2IS).

2 Related Work

Research interest for workload-aware cache management has been spurred a large body of
works targeting real-time systems and general-purpose systems alike. A number of works
have proposed techniques to estimate the working-set size (WSS) of applications for the
purpose of performing informed cache management. One such work is [8], where the WSS of
a periodic application is estimated by computing the average per-activation number of cache
misses. This information, albeit coarse, is proven useful to avoid concurrently scheduling
applications with incompatible WSS. In a spirit quite similar to our BBProf, the work in [40]
proposes a technique to detect hot memory pages and to dynamically perform re-coloring to
improve average performance. Hot pages detection is performed by periodically scanning
the accessed-bit in all the page-table entries that belong to the target application. This
methodology, however, only provides an indirect estimation of the importance of each page
that depends on the frequency of sampling. It also relies on the presence of the accessed-bit,
which is an Intel-specific hardware feature. The work in [32] uses a similar approach that
relies on PowerPC-specific sampled-address data registers (SDAR).

Several works [19, 17, 6] propose scheduling models where the balance between loss
of performance due to smaller cache partitions and performance improvements thanks to
reduced cache interference is studied. Generally, these model assume that certain intrinsic
properties — e.g. their characteristic miss rates — of the applications under analysis are
known. In this case, the BBProf methodology proposed hereby could be used to determine key
behavioral parameters required to instantiate such and similar analytical frameworks. More

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

G. Ghaemi, D. Tarapore, R. Mancuso

recently, a seminal piece of work has proposed an approach to jointly profile an application’s
sensitivity to cache size and resulting increase/decrease in the requirement for main memory
bandwidth [37]. In many ways, the information collected through the sensitivity study
represent an experimentally driven profile. Yet, the workload characterization is quite coarse
grained and cannot be directly used, for instance, to determine which specific pages of an
application need to be shielded from interference.

BBProf shares many similarities, at least in terms of the end goal, with a number of
well-established performance analysis toolkits. The survey in [5] provides a good overview of
popular toolkits such as Oprofile [9], Dprof [30], Zoom [1], DynamoRIO [7], Valgrind [28],
and Pin [24]. The latter three employ dynamic binary instrumentation (DBI), i.e. the ability
to translate and instrument on the fly a target binary. DBI-based tools require extensive
platform-specific porting. Translation layers for multiple platforms are already provided in
Valgrind and DynamoRIO. DBI heavily impacts the timing of an application, so profiling of
memory pages has to be performed by instrumenting all the memory references and then
conducting a frequency analysis. To the best of our knowledge, the only work that uses one
of these tools — the Lackey sub-tool in Valgrind — in this manner is [25]. In [25], a list of
hot memory pages to be locked in cache is constructed via meomory tracing, but due to

extreme performance degradation incurred, the evaluation is limited to small benchmarks.

Lastly, DBI frameworks meant for general-purpose systems seldomly work out of the box
on embedded systems due to the complex tree of library dependencies that they rely on, as
also reported in [22]. Oprofile, Dprof, and Zoom rely on hardware performance counters to
collect information. Oprofile records a variety of statistics such as the mix of hit/miss for
L1/L2 caches. It relies on runtime sampling and provides a configurable trade-off between
accuracy and overhead. Zoom and Dprof operate on similar principles but the development

of Zoom has been discontinued in 2015, while Dprof relies on AMD-specific debug registers.

Similarly, the profiling approach proposed in the recently published CacheFlow toolkit [34]
relies on the hardware-specific ability, available in a subset of Aarch64 CPUs, to snapshot
the full content of CPU caches.

Since BBProf follows a measurement-based approach, it shares some similarities with the
vast literature on measurement-based WCET estimation tools. For instance, the work in [31]
aims at producing more accurate WCET estimates by designing synthetic benchmarks that
stress different hardware resources in the target system. The purpose of BBProf is not to
construct WCET estimates, but rather to extract the importance of each page for the timing
of an application. This information can then be used to perform more fine-grained cache
management. WCET analysis should be performed after a given management strategy has
been applied, and it thus represents an orthogonal goal.

In light of the discussion above, what sets the proposed BBProf methodology apart is its
unique capability of extracting fine-grained statistics on the contribution of each memory
page to the overall runtime of an application under analysis. It does so without leveraging
any hardware-specific support, by requiring no source- or compiler-level manipulation, and
by operating directly on the black-box binary of the target application. Moreover, we
demonstrate that the profile acquired through our BBProf can be used to enact advanced
cache management techniques beyond strict task-level or core-level cache partitioning.

3 Background

In this section, we summarize the inner workings of the system components utilized by our
tool for unfamiliar readers. We first present a brief overview of multi-level set-associative

4:3

ECRTS 2021

4:4

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Profile-driven Cache Management of Black-Box Appl.

caches. Next, we review the notion of cache coloring, before concluding with a conspectus on
memory representation and management in modern computing architectures.

Multi-Level Set-Associative Caches: Modern computing architectures implement
several levels of caching. The L1 cache resides closest to the CPU and is private to a specific
core. A cache miss in L1 triggers a lookup in the level below (L2, in this instance). Some
architectures restrict the L2 cache to specific cores, making them private similar to the L1.
A miss in the L2 cache may trigger a lookup in the level below (L3 and subsequently, L4) if
it exists or failing that, a memory lookup. We constrain our discussion here to a normative
ARM-based cache, with private L1 caches and a globally shared, last-level L2 cache.

At all levels, caches adhere to a set-associative modality where a set-associative cache
with associativity W consists of W identically-structured ways. Blocks of consecutive bytes
are stored in lines referred to as cache blocks. The constant Lg denotes the number of bytes
in a cache line, with most line sizes being 32 or 64 bytes. Memory addresses in the cache are
divided into three groups of bits: the offset, index, and tag bits that affect the specifics of
a cache lookup. Shared cache levels are physically indexed and physically tagged (PIPT),
meaning all addresses used for cache lookups must be physical addresses.

Memory Abstractions in Operating Systems: Most modern operating systems
employ a combination of hardware and software features to effectively encapsulate physical
addresses into virtual addresses. Virtual addressing allows each process an exclusive view
of the system’s memory, alleviating problems such as memory fragmentation or the limited
availability of physical memory. The OS maps virtual and physical addresses using page tables.
When a process references a virtual address, the Memory Management Unit (MMU) performs
a page table walk to locate the entry (PTE) — if any — that points to the corresponding
physical memory page. If the walk is successful, the accessed virtual address is resolved into
a physical address and the result of the translation is stored in the Translation Lookaside
Buffer (TLB). If the address is not found, a page fault is triggered by the MMU and handled
by the OS. If the access is legitimate, a new physical memory page is allocated and mapped
to the process (demand paging); if it falls outside any valid range of virtual addresses, a
segmentation fault (SIGSEGV) signal is delivered to the offending application.

Linux defines and manages the layout of legitimate contiguous regions of virtual memory
by representing them as virtual memory areas or VMAs. VMAs consist of a range of start
and end addresses, allowing for fine-grained control of virtual memory regions on a per-VMA
basis. They have been a part of the Linux kernel since version 2.6 [10].

Cache Coloring: A major source of interference in multicore systems is LLC contention.
One of the solutions to this problem is cache coloring, a purely software-based partitioning
technique. With cache coloring, memory pages are assigned “colors” based on the cache sets
they map to, which is determined by the value of the index bits. It is possible to allocate
virtually-contiguous memory pages to physically discontiguous pages that have the same color.
By doing this on a per-application or per-core basis, one can achieve strict cache partitioning,
which is a well-known mitigation strategy for cache interference [14]. In multicore embedded
SoCs that support two-stage address translations, the OS entirely manages the translation of
the first layer address (user virtual address) into the intermediate physical address (IPA).
The second stage of translation, however, is controlled by the hypervisor [29, 11] which maps
IPAs to physical addresses. Hypervisor-level coloring is advantageous to transparently color
entire guest OS’s, as demonstrated in [27, 21, 15].

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

G. Ghaemi, D. Tarapore, R. Mancuso

4 Design

In this section, we describe the main principles that comprise the design of the proposed
BBProf. We describe the operational approach and functional components that allow it to
carry out a fine-grained experiment-driven memory analysis of generic applications. While
we advocate for the benefits of the proposed BBProf as a methodology for memory analysis,
we have also carried out a proof-of-concept open-source implementation [13]. As we show in
Section 7, the information extracted by our BBProf toolkit opens new avenues to perform
fine-tuned management of shared memory resources.

In a nutshell, the main goal of the proposed BBProf toolkit can be formulated as follows.

To consider a target application’s memory footprint decomposed into its smallest manageable
entities — individual memory pages. And with that, to produce a ranking that captures and
quantifies how crucial is each page for the temporal behavior of the application. In other
words, BBProf allows extracting the relative importance of memory pages towards the overall
temporal behavior of a target application. Importantly, our BBProf should be able to handle
applications of realistic complexity, while requiring minimum knowledge and understanding
of the application itself — i.e., by largely treating the application as a black-box.

4.1 Core Principles

The core principles that have driven the design of the BBProf methodology can be summarized
as follows.

Model-free Operation: Modern high-performance embedded systems are soaring in
complexity. Additionally, manufacturers are often wary of providing exhaustive platform
implementation details, as many of them constitute corporate intellectual property. Even if
a formal micro-architectural model can be constructed, the high degree of complexity — in
both software and hardware layers — can result in a state-space explosion even with simple
workloads. It follows that, unfortunately, traditional static analysis methods might not be
easily applicable to the considered class of embedded systems. In light of this, we aim to
design a methodology that can be used in an arbitrarily complex system without the need
for a micro-architectural model.

Platform Independence: A key design-time constraint we impose is for our BBProf
methodology to be feasible regardless of the specific target platform. In other words, our
BBProf should not rely on hardware support that exists only in a fraction of existing and
future platforms. Instead, it should leverage widely available hardware features that are
exposed by embedded and general-purpose platforms alike, and that are unlikely to be phased
out in future generations.

Usable for Realistic, Unknown Workload: There exists a fundamental lack of
practically viable toolkits that are industry-ready and capable of carrying out the memory
analysis of complex applications in complex embedded platforms. The proposed BBProf
aims that bridging such a gap with a solution that can be immediately adopted to better
characterize the behavior of realistic applications. This implies that not only a minimal
understanding of the target application should be required to perform profiling; but also that
BBProf should be capable of handling widely used system-level features such as dynamically
linked libraries and dynamic virtual memory allocation.

Linear-time Profiling: To be practically useful, we impose our BBProf methodology
to be able to operate in linear time with respect to the memory footprint of the application
under analysis. Because our strategy is centered around a runtime measurement-based
approach, we deem as viable an analysis strategy with a linear time complexity that is

4:5

ECRTS 2021

4:6

228

229

230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257

Profile-driven Cache Management of Black-Box Appl.

mode: mode:
l [profilel l [rankingl

profile (binary) ranking (text)
Time

100000
80000
70000
65000
62500
61250
60625

[VMA #1: 5 pages]
#| offset| time min,max,avg
1)+ 100,200, 150
2| +3 150,250,200
3| +0 300,400,350

Yy v b vvg
oubwNn—=o”

EVMA #2: 4 pages]
offset time min,max,avg
1| +3 50 ,100,75

i coocococoomw

2l 90 ,120,110
3| +2 100,150,120
4l +0 120,190, 140

.prof,

(a) Profiling mode workflow. (b) Ranking mode workflow.

Figure 1 High-level workflow of BBProf in two of the main modes of operation.

impacted by (1) the runtime of the core logic of the application under analysis; and (2) the
size of the memory footprint of the target application.

4.2 High-level BBProf Workflow

The proposed BBProf methodology pivots around the idea that it is possible to manipulate
the memory allocation policy on a per-memory page basis. Thus, for a target application, it
is possible to understand the importance of individual pages towards application timing by
changing the allocation policy one page at a time. Albeit this idea is generic, the specific
set of memory allocation policies depends on the type of analysis to be conducted. For the
remainder of this paper we direct our focus to shared CPU cache analysis, which is a primary
target of this work. Therefore, cacheability is the memory policy of choice to isolate the
impact of a single memory page on the timing of an application.

Figure 1 provides a high-level overview of the logical workflow of BBProf in its two
main modes of operation. In the profile mode described in greater detail in Section 4.3 and
depicted in Figure la, the required inputs to BBProf are (1) the path to the binary of the
ELF executable to be profiled; and (2) the name of the C function whose timing needs to be
profiled. This function corresponds to the observation segment defined below. The full list of
optional operational parameters are described in [13]. The output produced in this mode is a
binary file! encoding the relative importance recorded for each page of each considered VMA.
BBProf allows performing multiple profiling runs and will aggregate the result of all the
runs into the same file keeping track of max, min, and average statistics on a per-page basis.
BBProf includes a number of other analysis modes described in Section 4.4. These modes
require a profile file previously obtained on the target application. For instance, Figure 1b
depicts the high-level workflow of the ranking mode which produces a human-readable output
describing the runtime of the target function as an increasing number of most important
pages are made cacheable.

We base our analysis on the presence of a single aforementioned observation segment,
which represents a segment of logic whose temporal behavior is of interest. Although the
observation segment can be extended to cover the entire application’s logic, in practice this is
often not the case. Realistic applications are typically characterized into three main phases:
(1) an initialization phase where parameters and inputs are parsed and pre-processed; (2) the

L The binary profile can be translated into human-readable format using the -t parameter as described
in [13].

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

G. Ghaemi, D. Tarapore, R. Mancuso

[T}
oo
Kprofiler g:] Uprofiler 0. Detect VMAs & find M ed _. Targetprocess
= hild
(loadable module) 2 I [l 1.Spawn target & wait it (child)
gla". . “main (...) {
“ : AR
g3 | Resume target & wait HINEQE
e 3. I target_func() {
A. Resolve pages list of make n e [timed
B. Modify cacheability | observation
| Resume target & wait segment
 Get end time sample g==--—---——oc—=o—"~ (5|
breakpoint reached de_init():

| Resume (or kill) target

Figure 2 Logical interplay between modules of BBProf in profile mode.

main computational payload, which might be executed multiple times in a periodic fashion;
and (3) a teardown phase where any acquired resource is released. The observation segment
corresponds to the main computational payload of the target application. For the sake of
simplicity, we assume that such a phase is encapsulated into a single function called the
target_func, and hence that the target application has a structure similar to what depicted
in the right-hand side of Figure 2. Any initialization and de-initialization logic is excluded
from the analysis.

4.3 Profiling Strategy

When operating in profiling mode, the adopted strategy is visualized in Figure 2 and described
in the following. (1) Perform a first run of the target application to identify its virtual memory
layout; (2) re-execute the target application as many times as the number of memory pages
M that comprise its memory footprint; (3) at each re-execution and before the invocation of
the target_func, switch memory allocation policy for all the pages except the one under
analysis; and (4) collect the impact of the selected policy over the execution time of the
target_func. It is crucial that the profiling of an application is conducted in isolation, i.e.,
with the lowest possible amount of noise in the target system.

For instance, consider an application whose memory footprint is comprised of 4 pages
and assume that its runtime when all the pages are marked as non-cacheable is some time
T,.. BBProf first detects the footprint of the application. Next, it performs 4 iterations. In
the first iteration, only the first page is marked as cacheable, while all the others are marked
as non-cacheable. Then, it measures the runtime of the target_func which will be of the
form (T — 1), with z; being the performance gain that arises from having the first page
in cache. We then repeat the same steps for the remaining three pages to extract the terms
T9, 3, and x4 in the same way.

To accomplish the strategy outlined above, our methodology relies on the definition
of two components, as also depicted in Figure 1: a user-space driver and a kernel-space
driver, which we refer to as UProfiler and KProfiler, respectively. Intuitively, the UProfiler
is responsible for launching and collecting data about the temporal behavior of the target
application, while the KProfiler is used to enforce the selected memory allocation policy. The
main key design principles for the two components are reviewed in the following.

4.3.1 User-Space Driver (UProfiler)

The design of the UProfiler component shares a number of similarities with a typical debugger.

Indeed, it operates by taking in two pieces of information — which are the only ones strictly

4:7

ECRTS 2021

4:8

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Profile-driven Cache Management of Black-Box Appl.

required to launch profiling. These are (1) the location of the executable binary (and any
parameters it requires) of the target application; and (2) the name of the target function
that corresponds to the observation segment.

First, UProfiler parses the provided binary executable to translate the name of the
function into the address that corresponds to the first instruction of the target function —
i.e., the beginning of the observation segment. With this information at hand, UProfiler can
launch the target application and set a breakpoint, called the entry breakpoint right at the
beginning of its computational payload (Figure 2, step 1). As soon as the entry breakpoint
is reached, UProfiler pauses the target application and performs a sequence of preparatory
actions, called the entry sequence. The actions performed in the entry sequence depend on
the type of analysis being carried out.

As part of the entry sequence, UProfiler always detects the end of the observation segment.
This is done by inspecting the return address of the target function. With this information,
an ezxit breakpoint is installed by UProfiler (Figure 2, step 2). Before resuming the execution
of the target application, UProfiler removes the entry breakpoint and snapshots the current
start timestamp (Figure 2, step 3). In a similar way, as soon as the exit breakpoint is
reached, UProfiler immediately snapshots the current end timestamp (Figure 2, step 4);
removes the exit breakpoint, and performs a variable sequence of actions — the exit sequence.

During the very first run of the target application (iteration 0), UProfiler detects its
layout and the number of memory pages M that comprise its footprint. This information is
collected during the entry sequence and double-checked during the exit sequence. Additional
implementation-specific details about this step are provided in Section 5.

In the generic profiling iteration ¢, the entry sequence is used by UProfiler to prepare
a descriptor that determines the memory policy to be applied to each of the pages subject
to profiling. Given the current focus on cache analysis, the descriptor prepared at profiling
iteration ¢ instructs the KProfiler to turn all the considered pages non-cacheable except for
the i-th page. In the exit sequence, the difference between start and end timestamp is
recorded and associated to page i.

Here, the use of timestamps represents the preferred metric for two main reasons. First,
it allows UProfiler to be a valid methodology regardless of the target platform, since time
sampling primitives are commonplace in (modern) hardware platforms. Second, it allows
UProfiler to directly correlate the impact of the selected memory policy on the timing of the
observation segment. Nonetheless, UProfiler can be easily extended to capture additional
platform-specific performance metrics such as number of cache references, hits, misses, number
of retired instructions, instructions-per-cycles, and so on.

4.3.2 Kernel-side Driver (KProfiler)

The KProfiler encapsulates all the logic that requires elevated kernel-level privileges to
manipulate the properties of the memory pages mapped to the target application.

Following the proposed design, the KProfiler defines a communication interface exposed
to the UProfiler (Figure 2, step 3). As needed — usually during the entry sequence — the
interface is used to pass a descriptor with the list of changes to be applied to the target
memory pages. Because absolute memory addresses change from run to run, UProfiler and
KProfiler use relative addressing to uniquely identify memory pages across runs. Pages are
grouped by the memory policy modification to be carried out over them.

It is responsibility of the KProfiler module to leverage appropriate kernel-level APIs to
apply the requested memory policy modifications for the target pages. So far we have only
discussed the most basic operation mode of the proposed BBProf. In this case, the descriptor

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

G. Ghaemi, D. Tarapore, R. Mancuso

passed by the UProfiler always follows the same structure. Only one page is selected to be
kept cacheable, while all the others are requested to be made uncacheable.

4.4 Additional Operational Modes

So far we have described the design of UProfiler and KProfiler with respect to the main
operational mode, which is page-level cache profiling. Our current design includes two
additional modes that are briefly described in the following.

Page Ranking Analysis: Once per-page statistics have been extracted, it is possible
to globally rank all the memory pages that comprise an application’s footprint. Intuitively,
those pages that led to the best time improvements will be ranked as more important towards
the temporal behavior of our target. The page ranking analysis allows to understand the
cumulative benefit of selecting the top-ranked k pages to be cacheable, where 0 < k < M.
Notably, the case k = M corresponds to the default case where all the memory pages are
considered cacheable. Expectedly, as we increase k, the observed runtime of the observed
segment will generally decrease. Importantly, however, if a threshold of k* < M is found
where the resulting runtime already approaches the case k = M, then k* corresponds to the
working-set size (WSS) of the target application.

Page Migration Analysis: A final useful operation provided in our design is the
possibility of changing the physical location of a group of pages based on the information
collected during profiling and ranking. For instance, consider a platform that includes a block
of scratchpad memory. First profiling and ranking is performed to identify the pages that
comprise the working-set of the target application. Next, our BBProf toolkit can be used to
test what-if scenarios where all or a part of this group of pages is migrated to scratchpad
memory. We will demonstrate two concrete use-cases where page migration can be used to
efficiently mitigate inter-core cache interference.

5 Implementation

We hereby review the main details concerning a proof-of-concept Linux implementation of
the proposed BBProf toolkit.

5.1 UProfiler Implementation

As we mentioned in Section 4, the UProfiler component is designed to act akin to a de-
bugger. For this purpose, it leverages the ptrace family of system calls to manipulate
the flow of a child process. Indeed, launch a new run of the target application, UProfiler
performs the following sequence: (1) a fork system call to spawn a new child process, (2)
a ptrace (PTRACE_TRACEME) in the spawned child allowing the parent to trace the child’s
execution, (3) an exec system call to execute the target application under tracing.

The ptrace system call represents a standard Linux interface. Albeit it is Linux-specific,
it is possible to achieve a similar behavior even in a bare-metal system or RTOS by relying
on basic debugging features. Indeed, the only features used by UProfiler are (1) the ability
to set/remove breakpoints, and (2) the ability to read the content of CPU registers. These
capabilities are available even in simple microcontrollers.

Breakpoint Handling: To set a breakpoint in an architecture-independent way via
the ptrace interface, one can replace (PTRACE_POKETEXT) the instruction at the desired
breakpoint address with any illegal opcode. This way, when the execution of the tracee
reaches the modified instruction, the process is paused by a SIGILL POSIX signal and a

4:9

ECRTS 2021

4:10

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Profile-driven Cache Management of Black-Box Appl.

SIGCHLD signal is delivered to the parent process — i.e., to our UProfiler. Before setting the
breakpoint, UProfiler records the value of the instruction being replaced (PTRACE_PEEKTEXT)
so that it can be restored once the breakpoint is reached. As soon as the breakpoint is
hit, UProfiler records the value of the tracee’s program-counter (PC) register. To allow the
tracee to resume from the breakpoint, UProfiler (1) restores the original instruction at the
breakpoint address and (2) rewinds the PC of the tracee to the recorded address. Accessing the
tracee’s CPU registers can be done via a combination of PTRACE_GETREGS/PTRACE_SETREGS
operations?.

As discussed in Section 4, UProfiler only sets two breakpoints. The entry breakpoint is
set upon launching the target application and at the first instruction of the target function.
The exit breakpoint is installed at the address to which the target function is set to return.
To find the address of the entry breakpoint, UProfiler accepts as a command-line parameter
the name of the target function whose body corresponds to the observation segment. It then
uses the LibELF? library to translate the provided function name into the corresponding
instruction address by performing a lookup in the target ELF’s symbols table (SHT_SYMTAB).
The address of the exit breakpoint is only known once the tracee hits the entry breakpoints.
In ARM32 and ARM64, it is enough to read the content of the link register (LR) to retrieve the
return address of the target function.

Layout Detection and Enforcement: In a generic POSIX-compliant application,
there is a number of system calls that can dynamically modify the memory layout of an
application. Most notably, sbrk is internally used by the libc to implement functions
that perform dynamic memory (de)allocation, such as malloc and free. Calling the sbrk
can affect the size of the heap virtual memory area (VMA). Similarly, the mmap and unmap
system calls can cause the addition, deletion, or modification of VMAs in the tracee’s layout.
Importantly, the 1ibc uses mmap instead of performing a heap extension when applications
allocate large buffers. For the final output of our BBProf to be valid, it is crucial that no
memory layout changes occur during the execution of the observation segment. This is not
a concern with applications written for embedded /safety-critical systems where memory is
always statically allocated. Nonetheless, UProfiler includes logic to enforce a deterministic
memory layout even on applications that use dynamic memory allocation primitives.

To achieve that, when the tracee is spawned for the first time, UProfiler runs the tracee a
first time and records the peak amount (VmPeak) of data that was used during the target
function. Once the maximum amount of memory required by the observation segment
is known, all the subsequent runs of the target application are performed by setting two
environmental variables that modify the behavior of the 1ibc memory allocation routines.
These are (1) the MALLOC_TOP_PAD_ and (2) the MALLOC_MMAP_MAX_ variables. The former
allows setting an initial size for the heap and is set to the peak memory size detected by
UProfiler in the first run. The latter is set to 0 to disable the use of mmap to handle dynamic
memory allocations.

All the subsequent runs of the target application can be used to perform profiling. In the
first of such runs, UProfiler further detects the actual memory layout that results from setting
the aforementioned environmental variables. It does so by querying the /proc/PID/maps
interface as soon as the entry breakpoint is reached. Additional launch parameters are

2 Note: this is true for many platforms, including x86, x86_64 and ARM32. Equivalent operations can be
carried out in ARM64 through PTRACE_GETREGSET and PTRACE_SETREGSET.

3 LibELF is part of the elfutils open-source project which is a toolkit to read, create and modify
Executable and Linkable Format (ELF) binaries.

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

G. Ghaemi, D. Tarapore, R. Mancuso

accepted by UProfiler to include/exclude certain types of VMAs in the profiling. For instance,
in order to make profiling faster, one might want to exclude VMAs that belong to shared
libraries and that are not used during the observation segment.

Single-page Profiling: Once UProfiler has computed the number of pages M in the
target VM As, the single-page profiling phase can be initiated. Of course, the M pages can
be distributed across multiple VMAs (e.g. text, heap, stack). Moreover, their absolute
address will change from run to run due to address space layout randomization (ASLR). To
operate even with ASLR in place, UProfiler uses a run-independent relative encoding to
express the coordinate of memory pages. Specifically, we use two indices to identify each
page: (1) the index v of the VMA that contains the page; and (2) the offset o of the page
from the beginning of the VMA.

To profile a generic page i € {1,..., M} with coordinates (v, o), the UProfiler prepares a
descriptor to instruct the KProfiler module to modify the cacheability of the pages in the
target VMAs. In profiling mode, this descriptor contains the list of all the VMAs under
analysis. For each of them, a list of pages whose cacheability attributes need to be modified
is included, with an opcode field that determines how the cacheability attributes should be
altered. In this case, the cacheability of page i is unchanged, but that of all the other pages
is the target VMASs is set to become non-cacheable. The descriptor prepared as mentioned
above is then passed to KProfiler to apply the necessary changes once the entry breakpoint
is reached. The target application is resumed only once all the pending changes are effective.
Note that any timestamp acquisition is performed after the cacheability changes have been
applied, so that the overhead required to switch the cacheability attributes is excluded from
the time measurements.

Time Measurements: Albeit extensible, the current use of the BBProf toolkit is to
analyze the relative importance of individual memory pages toward the overall temporal
behavior of the observation segment. The most direct and platform-independent way to
extract this information is by acquiring timing samples of the target function as we vary
which page is allowed to be allocated in cache. In order to be as precise as possible, UProfiler
directly reads CPU cycle counters instead of relying on system primitives.

Time measurements are acquired right before resuming the application from the entry
breakpoint and right after it reaches the exit breakpoint. Moreover, since timestamps can
be affected by random system noise, UProfiler allows specifying an arbitrary number of
samples to be collected for the same profiled page. System noise originates from workload
on other cores, interrupt handlers, non-deterministic hardware behavior, and inaccuracy of
time sampling instructions. Various mitigations strategies can be adopted to reduce the
magnitude of system noise, such as turning off other cores and disabling peripherals. The
only mitigation strategy used by BBProf is running UProfiler and the target process with the
SCHED_FIF0 Linux policy and with a high real-time priority. As we evaluate in Section 7.2,
the observed degree of noise was negligible and did not impact the validity of our profiles.
The final profile stores, for each page, the maximum, minimum, and average runtime of
the observed segment across all the acquired samples. Note that with this infrastructure in
place, it is straightforward to extend UProfiler to collect additional metrics such as hardware
counters for micro-architectural events — e.g. cache references, misses, hits, bus accesses,
to name a few. This can be done in a platform-agnostic fashion by leveraging the perf
infrastructure [12].

Page Ranking and Migration: The implementation of the other two modes of oper-
ation is similar to what has been discussed above, hence much of the details are omitted.
To perform page ranking and migration, it is assumed that a profile has been previously

4:11

ECRTS 2021

4:12

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Profile-driven Cache Management of Black-Box Appl.

acquired for the target application. The pages in the profile are then arranged in a sorted
set in descending order of their impact on the timing of the target application. Examples of
the output produced by a ranking experiment are provided in Figure 8.

In the ranking phase, UProfiler performs M runs where in run k, the top k pages in the
sorted set are requested to be kept cacheable by the KProfiler, while all the remaining pages
in the set are turned non-cacheable. The timing of the M runs is collected and stored for
later analysis.

In a similar way, a page migration experiment requires a pre-acquired profile. The M
pages in the target VMAs are sorted according to the same criterion described above. In this
case, however, a single run is performed where the UProfiler instructs the KProfiler module to
migrate the top k pages in the sorted set to a new location in physical memory. The value of
k represents a parameter supplied by the user. The destination of the migration is determined
by the KProfiler, as we discuss below. The support to conduct page migration directly from
the profiler allows quick testing of what-if scenarios for the allocation of important pages.
As part of our future work, we plan to directly modify the way applications are launched to
take advantage of profiling information without the need to go through the profiler.

5.2 KProfiler Implementation

The KProfiler component is implemented as a Linux kernel module. Our current implementa-
tion targets Linux 5.4. At startup, a communication channel with the UProfiler is created in
the form of a file in the proc pseudo-file system. Whenever the UProfiler needs to trigger a
kernel-side operation, the write system call is used to pass the content of the aforementioned
operation descriptor. The descriptor also contains the PID of the tracee that will be targeted
for the current operation. A combination of find_get_pid and get_pid_task kernel APIs
is used to retrieve the descriptor of the tracee’s process given the provided PID. Moreover,
the descriptor contains redundant information about the structure of the memory layout of
the tracee as detected by UProfiler. This is used to perform a sanity-check in the KProfiler
and ensure that the desired operations are performed on the right VMAs and pages.

Cacheability Modification: For the profiling and ranking phases in which only the
cacheability of the target page(s) is changed, no changes to the source code of the Linux
kernel are required.

For each VMA in the passed descriptor, the KProfiler retrieves the corresponding
vm_area_struct descriptor by scanning the kernel-maintained linked list of tracee’s VMAs.
It then ensures that any page that will be affected by the current operation is present in
physical memory. This is done by faulting-in the target pages that can be achieved via
the kernel API revget_user_pages_remote and with flags FOLL_POPULATE, FOLL_TOUCH
and FOLL_MLOCK. Next, the kernel API apply_to_page_range is used to invoke a custom
function for each page on which a change in cacheability attributes needs to be carried out.
Such a function already invokes our custom routine with a pointer to the Page Table Entry
(PTE) that needs to be manipulated to change the cacheability attributes of the page.

Given a page that is set to be made non-cacheable, the following steps are performed.
First, a new PTE is prepared to mirror the same exact value of the existing PTE, but where
the page attributes have been switched to encode for normal, non-cacheable memory. Next,
we clean and invalidate data and instruction caches to make sure that any dirty line is written
back to main memory. Then, we install the newly created PTE to replace the previous entry.
Finally, we invalidate any TLB entry (if any) for the current page on all the online CPUs.

Page Migration: Being able to support page migration requires some changes to the

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

G. Ghaemi, D. Tarapore, R. Mancuso

kernel sources*. A total of around 200 lines have been modified to implement the required
changes. Specifically, we have generalized the existing support for the migration of physical
memory pages across NUMA nodes used to implement the move_pages system call. We have
introduced a new exported kernel API with the following prototype:

int move_pages_to_pvtpool(struct mm_struct *mm, unsigned long nr_pages,
unsigned long * vaddrs, new_page_t get_new_page,
unsigned long private);

Here mm is the virtual address space descriptor of the process targeted for page migration,
nr_pages is the number of pages to be migrated, vaddrs is an array of nr_pages virtual
addresses of pages to be migrated, get_new_page is a function pointer used by the internal
routines to allocate destination pages, and private is a parameter to be passed to the
allocation function.

At load time, the KProfiler module internally maps an area of memory reserved at boot
for page migration. The reservation is performed via a modified Device Tree Blob (DTB).
Here we use the reserved-memory attribute ® to exclude a given range of physical addresses
from the default Linux allocator — the Buddy System. We do not mark this region with the
no-map attribute to allow the kernel to initialize the necessary page descriptors to correctly
map kernel virtual addresses and physical addresses in the reserved region.

If a valid reservation is found by the KProfiler at load time, the module uses a combination
of memremap and gen_pool_create kernel APIs to instantiate a new general-purpose memory
allocator over the reserved memory region 6. The former produces a valid kernel virtual
address that can be used to access the reserved memory region, while the latter enables the
allocation of new pages from the region.

With our custom allocator in place, whenever UProfiler requests the migration of a set of
pages, a set of initial steps similar to those required to change the cacheability attributes is
performed. But instead of manipulating the cacheability attribute of the exiting pages, a
list of pages to be migrated is compiled and the newly introduced move_pages_to_pvtpool
API is invoked. When doing so, a wrapper to a gen_pool_alloc call is passed as the
get_new_page function pointer to allow internal book-keeping.

We describe in Section 7.4 how profile-driven page migration can be used to enact
advanced techniques to manage inter-core interference in the shared cache. Nonetheless, the
implications of profile-driven page migration are deeper than what presented in Section 7.4.
Indeed, this support allows defining a distinct memory pool for each heterogeneous memory
component available in the system, e.g. scratchpad memory, in-FPGA block RAM, non-
volatile memory, reduced-latency DRAM blocks (RL-DRAM) [16], to name a few. By
leveraging profiling information, one can then decide which pages need to be mapped to the
various memory resources.

6 System Instantiation

In this section, we review the full-system setup that was carried out to evaluate the potential
of the proposed BBProf approach and proof-of-concept implementation.We have deployed

4 The modified kernel sources are available at https://github.com/rntmancuso/linux-xlnx-prof.

5 See https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/
reserved-memory.txt.

5 See https://www.kernel.org/doc/html/v6.4/core-api/genalloc.html.

4:13

ECRTS 2021

4:14

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

Profile-driven Cache Management of Black-Box Appl.

the implemented UProfiler and KProfiler modules on an ARM64 platform that we also use for
all our experiments. Specifically, we use a Xilinx-ZCU102 development platform featuring
a Zynq UltraScale+ XCZUIEG MPSoC [36] with a quad-core ARM Cortex-A53 [4] 64-bit
CPU operating at 1.5 GHz and implementing the ARMv8-A [2] architecture profile. The L1
cache consists of a split cache with a 32 KB 2-way instruction (I) cache plus a 32 KB 4-way
data cache. The L2, which is also the last-level cache (LLC) is unified and 1 MB in size; it
has associativity 16, and it is shared among all the A53 cores. The cache line size is 64 bytes
for both L1 and L2.

Profiling and ranking analysis can be carried out directly under Linux. Conversely, to
evaluate the ability to enact advanced memory management via profile-driven page migration,
we additionally deploy a thin partitioning hypervisor, namely Jailhouse [3]. Jailhouse is
used to perform cache coloring [38, 19, 27, 21] in a way that remains transparent to the
Linux environment where we conduct our experiments. Our goal is to conduct a series of
experiments centered around the problem of shared cache management. To achieve this,
we have reproduced the setup described in [21] on the ZCU102 system, where dynamic
re-coloring of the Linux environment is available. We use coloring in two ways. First, in a
traditional way to statically restrict the applications running in the Linux environment to
only a subset of the available colors — we vary this amount from two to 15, with 16 being
the maximum value and corresponding to no partitioning. In this case, Linux is restricted to
use only one CPU. Moreover, when strict coloring is used, interfering workload (INTERF)
consists of bare-metal memory-intensive synthetic applications deployed on all the other
cores as stand-alone virtual machines (VM).

We then use Jailhouse and page coloring to illustrate a new technique enabled by the
profiler to mitigate the problem of shared cache interference. The setup, illustrated in
Figure 4, essentially defines two contiguous ranges of intermediate physical addresses (IPA).
The first corresponds to all the memory that Linux uses for legacy memory allocations
through the Buddy System and is mapped by Jailhouse to 12/16 = 3/4 of the available colors.
The second IPA range is mapped to pages with the remaining 4/16 = 1/4 of the available
colors. The latter is then used by the KProfiler to instantiate a privately managed allocation
pool. It follows that pages can be allocated in the pool only through explicit profiler-driven
page migration. We refer to this setup with the PVT+SH short-hand notation. Note also
that this setup provides page-level granularity over memory allocated in the private cache
pool. This sets this work apart from the large literature on colored page allocators proposed
in the past that assign colors at the process or core granularity [18, 20, 19, 23].

In terms of workload, apart from the aforementioned INTERF workload, an equivalent
synthetic memory-intensive application, namely bandwidth from the IsolBench suite’, is
used to generate cache contention when no other VMs are active in the system and Linux is
used in SMP mode on all the cores. For the purposes of building confidence in the ability of
the profiler to characterize the importance of memory pages, we use the STAIRCASE synthetic
benchmark described more in detail in Section 7.2. For our observed realistic workload,
we used the San Diego Vision Benchmark (SD-VBS) suite [35]. While we conducted all
our experiments on all the benchmarks, due to space constraints we only include a subset
of the results that capture the more interesting cases. We also limit our discussion to the
input sizes SQCIF, QCIF, Cir, and VGA. We exclude the FULLHD sizes as the runtime of
the benchmarks on the target platform is excessively high. As we mentioned in Section 5,
the observed system noise was quite negligible which resulted in the timing of the profiled

7 See https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth. c.

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

G. Ghaemi, D. Tarapore, R. Mancuso

—— Observed, Runtime —— Interfering, Bandwidth
Runtime max/min var. Bandwidth max/min var.
3.0 3.0
s
2,59 F2.5%
'g direction of migrations
X @
c 2.0 2.0 € Linux "
H 5 . Shared/Default (SH) Private (PVT)
3 View o
° = (IPAs) visible at boot . reserved
3 151 153
[0l N
E Stage-2
1.0 10E IPA>PA
2 Mapping
0.5 A Fo.5 Physical
=L -
0 200 400 600 800 1000 (PAS)
—
Interf. Task WSS (KB) 16 pages
Figure 3 Interference as a function of WSS. Figure 4 Overview of PVT+SH setup.

applications to be remarkably deterministic. Thus, five independent runs were sufficient to
acquire each profile. For production systems with worse signal-to-noise ratios, we expect that
a much larger number of runs might be needed to construct meaningful profiles.

7 Evaluation

In this section, we describe the evaluation that we have carried out on the system setup
described in the previous section. We focus our attention on four main aspects. First,
in Section 7.1 we evaluate the amount of shared cache contention that can be suffered by
applications in this platform and understand the ability of strict cache coloring to mitigate such
interference. Next, we show in Section 7.2 that our proof-of-concept BBProf implementation
is capable of extracting useful profiling information for the considered synthetic and real-world
applications. Third, we discuss how profile-driven migration can be used efficiently to solve
the problem of contention-induced instruction stall in Section 7.3. Finally, we evaluate in
Section 7.4 how profile-driven page migration can be used to controllably mitigate shared
cache contention in real-world applications.

7.1 Interference and Mitigation via Strict Partitioning

In the experiments presented in this section, we focus on cache contention. Generating
cache contention for an application under analysis is done by deploying a set of interfering
synthetic memory-intensive applications on all the other cores. In order to set the WSS of
the interfering workload with the goal of maximizing contention, we have conducted the
experiment depicted in Figure 3. In this experiment, the application under analysis is MSER
from the SD-VBS suite with input size SQCIF. Three interfering applications deployed on
the remaining cores continuously perform cache-allocate store operations over a buffer of
increasing size (z-axis). We plot on the left y-axis (red) the runtime normalized to the case in
which MSER runs in isolation (solo case) in the system. We display the memory bandwidth
observed by the interfering workload on the right y-axis (blue). A clear trend emerges that
highlights how the cache interference is maximized (both in average and maximum terms)
when each interfering application accesses a buffer of around 420 KB, i.e. access in a total of
about 1.23 MB.

In light of the results highlighted above, we have set our interfering tasks to have a
WSS of 420 KB. With this in mind, we want to understand how well strict coloring is able
to mitigate cache interference. We have conducted a study where all the strict coloring
configurations described in Section 6 are explored for all of our SD-VBS benchmarks and

4:15

ECRTS 2021

4:16

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

654

655

656
657

658

Profile-driven Cache Management of Black-Box Appl.

----- No Col. (max) ====== No Col. (min) —— No Col. (avg) mmm Solo + Col mm Interf. + Col
dispar [sqcif] dispar [qcif] dispar [cif] dispar [vgal
e 1.4
H
'8 12.
2 .
o
@ .)
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
mser [sqcif] mser [qcif] mser [cif] mser [vga]
% q e feeeieeeeerreaeeeeeeeeenns .
= 7 2.04
1.5 1.5
© 1.5+
o
@ 1.0MJM-LU 1.0 1.0 s 1.0
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
stitch [cif] stitch [vgal svm [cif] synth [sqcif]
X | feeeeeeien], T e L
N R e N L i M 124
o
e
H
o
“ 10 1.0 oddptpes. ool g,
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
of Cache Colors # of Cache Colors # of Cache Colors # of Cache Colors

Figure 5 Performance of SD-VBS benchmarks under strict partitioning with (orange) and without
(blue) cache contention.

considered input sizes. The most interesting nine cases are presented in Figure 5. In all
the sub-plots, the vertical bars represent the slowdown of the application under analysis
when no cache partitioning is performed. The blue bars (resp., orange) report the runtime
of the application under analysis in the solo case (resp., under interference). It emerges
that partitioning leads to significant improvements in certain circumstances, especially for
workload with L2-sensitive footprint such as DISPARITY and MSER with input sizes QCIF
and SQCIF, and for STITCH with input size CiF. However, the ability to mitigate cache
contention with coloring alone is limited in some cases. This is due to contention over memory
bandwidth which exacerbates as larger partitions are given to large-footprint applications
— see DISPARITY and MSER with input sizes CIF and VGA. Indeed, the stress over the
main memory subsystem placed by the interfering workload increases as it is confined to a
smaller cache partition. Traditionally, bandwidth throttling techniques are used to solve this
problem, such as MemGuard [39, 33].

But an important takeaway from this study is that strict partitioning is just too rigid to
(1) be able to efficiently mitigate cache contention for a wide variety of tasks deployed on
the same core. And (2) that over-throttling of the interfering workload might be required to
compensate for the lack of flexibility in coloring-based cache partitioning. Conversely, as
shown in the following, the proposed BBProf toolkit can be used to strike a balance between
strict partitioning and unregulated interference.

7.2 Profiling of Staircase and SD-VBS benchmarks

The first step toward profile-driven cache management is to use the proposed BBProf toolkit
to acquire the page-level profile about the applications to be managed. As a first step to
build confidence on the correctness of BBProf, we have designed the STAIRCASE benchmark®

8 The code of the STAIRCASE benchmark is available in the project repository [13].

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

G. Ghaemi, D. Tarapore, R. Mancuso

Profile: staircase

0.00%

-0.20%

-0.40%

-0.60%

-0.80%

-1.00%

Runtime Reduction (%)

-1.20% max

min

-1.40% BN average heap

+0 +20 +40 +60 +80 +100
Ranked VMA Page

Figure 6 Profile of STAIRCASE benchmark.

to exhibit a well-recognizable behavior in terms of memory accesses that can serve as the
ground truth on the extracted profile. Specifically, the benchmark allocates a buffer of 100
heap memory pages. It then performs a total of 1000 iterations reading over the buffer. In
the first 200 iterations, the buffer is read entirely; in the next 200 iterations, the first 20 pages
are skipped; after 200 additional iterations, the first 40 pages are skipped and so on. The
result is that the second group of 20 pages is accessed 2x more than those at the beginning
of the buffer. The third 20-pages group 3x more, and so on. Thus if we were to plot the
importance of each page from beginning to end, the resulting plot would resemble a staircase,
hence the name. Figure 6 provides a visualization of the extracted profile focused on the
heap VMA. In the figure, the z-axis represents the index of the page under profiling. The
blue bars from the top of the plot visualize by how much (in percentage) the runtime of
the benchmark is reduced when each page is kept cacheable while all the others are not. A
taller bar signifies a page with relatively higher importance for the temporal behavior of the
application under analysis. For all the bars, the normalization baseline is always taken as the
application’s runtime when none of the pages in the target VMAs is made cacheable. The
pages are sorted based on their importance rather than their offset in the VMA. Because of
the by-importance sorting, the most-accessed pages appear to the left-hand side of the plot,
with the recognizable staircase characterization having been reconstructed by BBProf. One
can also note that the gap between min and max in each profile sample is quite small, thus
leading to the conclusion that the overall measurement noise is negligible.

Next, we have acquired a profile for all the benchmarks in the SD-VBS suite, one for
each of the considered input sizes. Due to space constraints we only visualize the three most
representative profiles, namely those for DISPARITY, MSER with input size QCIF, and for
SVM with input size CIiF. These are displayed in Figure 7, where we limit the plots only
to the heap and stack VMAs. The style of the sub-plots in Figure 7 is identical to that of
Figure 6, with the only difference that the bars of stack pages are color-coded in red and
that we have omitted max/min error bars to avoid over-plotting. From the figure it emerges
that in all the cases there exists a small group (1-3 pages) of heap pages that has a large
impact on the runtime of the application. From left to right, these alone cause a reduction
of around 1.8%, 69%, and 7.9% when kept cacheable. Moreover, the temporal behavior of
MSER and STITCH is more heavily impacted by stack pages; the DISPARITY benchmark has
a core set of around 65 heap pages that comprise its working-set. Taken individually, the
presence in cache of each of these pages alone contributes to a runtime reduction between
1.25% and 1.5%.

To further understand the relationship between important pages and overall application

4:17

ECRTS 2021

4:18

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

Profile-driven Cache Management of Black-Box Appl.

Profile: disparity [qcif] Profile: mser [qcif] Profile: stitch [cif]
0.00% 0.00% 0.00% 0.00%
-0.05% -10.00% -0.25%
-2.00%
~ - ~ . -0.50%
g- 0.10% R -20.00% g
5 5 5 -0.75%
s s s
g 0.15% 5 -30.00% 11.0% £ -4.00%
3 3 3 -1.00%
2 - € 4000% 2.00% 2
@ -0.20% Q" 5% -2 S e
£ g g oo s
Z - -50.00% -2.50% €
& -0.25% El 2 -1.50%
) -60.00% -8.00% -1.75%
-0.30% N
hea stack] % heap]| .. stack hea -2.00% stack
D D ool
+0 +50 +100 +150 +0 425 +0 +50 +100 0 +25 +0 4200 +400 +600 +800 +0 425
Ranked VMA Page Ranked VMA Page Ranked VMA Page

Figure 7 Profile of DISPARITY (left), MSER (center), and STITCH (right) — heap, stack pages

only.
Ranking: disparity Ranking: mser Ranking: localization Ranking: stitch
1.0 —— sqcif e cif —— sqcif e cif 1.01 —— sqcif oo cif 10 —— sqcif e cif
=== qcif —:= vga 1.0 4 === qcif —-= vga === qcif —-= vga === qcif

0.8 1 0.8

0.8 0.6

0.6 q

0.4

Normalized Runtime
o
o
L

0.4 0.6 1 0.4 S--e
i 0.2
0.2 0.4 024 T N
———
0 200 400 600 800 0 200 400 600 0 25 50 75 100 0 200 400 600 800
of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages

Figure 8 From left to right, ranking analysis of DISPARITY, MSER, LOCALIZATION, and STITCH.

runtime, we conduct a ranking analysis (see Section 4.4) given the profiles obtained at
the previous step. In Figure 8 we depict the result of the ranking analysis conducted on
DISPARITY, MSER, LOCALIZATION, and STITCH. In each subplot, the z-axis reports the
number of pages, sorted in order of importance, that are made cacheable. The y-axis reports
the resulting normalized runtime of the application under analysis. The normalization
baseline is the runtime when only the most important page is made cacheable. A stark
contrast emerged in the behavior of the considered applications. Specifically, DISPARITY
features a block of pages with comparable importance that produces a constant slope in
the runtime reduction as more pages are made cacheable. It is also possible to appreciate
how the WSS size increases as the input size goes from SQCIF to VGA. Conversely, the
WSS of MSER is concentrated in a very small set of pages for the SQCIF and QCIF case,
and increases rapidly for input sizes CIF and VGA. Next, LOCALIZATION is characterized
by quantized temporal improvements unlocked only when a certain threshold of pages is
allocated in cache. Finally, STITCH appears to be relatively insensitive to caching as long as
a core set of about 10 pages is allocated.

Once the profile has been acquired, it is important to understand if the set of memory
pages deemed important remains the same as when the content of the input images changes
while their size remains the same. In the general case, this might not be true while for some
applications the profile might transcend the specific data input. We hereby conduct a sample
evaluation to understand in which category the considered benchmarks fall. Note that this
is not meant to represent an exhaustive evaluation. For this experiment, we consider the
profiles acquired on the default (“def”) input images provided with the SD-VBS suite. In
terms of benchmarks, we limit ourselves to DISPARITY, MSER, TRACKING, and STITCH.
Compared to Figure 8, we have replaced LOCALIZATION with TRACKING because the latter
uses images as input while the former takes as input a text file with an unknown format.
The selected input size is VGA for DISPARITY, MSER, and TRACKING and CIF for STITCH

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

G. Ghaemi, D. Tarapore, R. Mancuso

1.75 1

w
wn

— def —-= degl
—== norl deg2

2.04

- e, 1.50 4

1e8 Ranking: disparity 1e7 Ranking: mser 1e9 Ranking: tracking 1e9 Ranking: stitch
)
i
'
'
'

w
S

1.254
154

1.004 |

N
w

0.75 101

050{ 5

~N
o

059 [

Runtime, CPU Cycles

0.25 4

4 0.04
0 200 400 600 800 0 200 400 600 0 500 1000 0 200 400 600 800
of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages

-
wn

Figure 9 From left to right, ranking analysis of DISPARITY, MSER, TRACKING, and STITCH with
profiles acquired under “def” and varying input images.

because the latter runs for too long over the VGA input size. For each benchmark, we have
produced four additional input images. The first two called “norl” and “nor2” are meaningful
(normal) scenes, while the last two, namely “degl” and “deg2” are scenes that correspond to
corner (degenerative) cases. Specifically, “degl” corresponds to random noise while “deg2” to
a solid-color frame. Due to space contraints, we refer the reader to the project repository [13]
for the full list of images used in this experiment.

Figure 9 provides the same type of analysis used to construct Figure 8. The key difference
here is that for each of the considered benchmarks we construct the displayed ranking curves
using the profile originally acquired with the “def” input images. To more clearly appreciate
the difference in absolute runtimes as we vary the images supplied in input, the runtimes
are not normalized and are instead expressed in CPU cycles. Among the four considered
benchmarks, the runtime of MSER is the most heavily affected by the content of the input
data. Nonetheless, the general trend in terms of runtime reduction as an increasing number
of ranked pages is made cacheable is consistent across experiments. In the DISPARITY case,
all the curves remain quite consistent. This suggests that the benchmark remains quite
insensitive to the input image and that the profile acquired with the default input captures
well the relative importance of individual memory pages regardless of the supplied input
images. The TRACKING case is quite similar to the DISPARITY case, with the trend of the
curve remaining consistent across experiments. Conversely, STITCH shows visible variations
in the relative importance of memory pages, especially when comparing between the “degl”
and “deg2” cases. In this case, the profile obtained with the “def” input images does not
generalize well. We can conclude that what captured by BBProf remains mostly accurate for
three out of the four benchmarks considered in this experiment. The fourth case (STITCH)
displays important dependencies between input images and memory usage, in which case the
profile constructed by BBProf does not generalize.

7.3 Mitigation of Contention-induced Instruction Stall

We hereby want to bring to the attention of the community a previously understudied
problem, namely the problem of contention-induced instruction stall, or C2IS, for short.
We also demonstrate that profile-driven page migration represents an effective strategy to
mitigate the problem.

In a nutshell, C2IS can occur in platforms with small L1 caches and shared, unified
L2/LLC caches. The problem manifests itself when a process operates in a periodic fashion
over a large block of instructions (e.g. a long function) that spans more pages than the size
of the L1 instruction cache. For instance, in the target ZCU102 platform, the size of the
L1 cache can hold up to eight pages. When such a threshold is crossed, instruction pages

4:19

ECRTS 2021

4:20

Profile-driven Cache Management of Black-Box Appl.

Normalized Runtime (min/avg/max)
N

-
©
L

=== LLC Size Threshold === LLC Size Threshold

=
o
L

=
IS
L

=
[N}
L

=
o
)

Normalized Runtime (min/avg/max)

10 20 30 40 50 60 0 20 40 60 80 100

of Migrated Text Pages # of Migrated Interf. Pages
Figure 10 Inteference mitigation via migration Figure 11 Interference mitigation via migration
of instruction pages. of data pages.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

spill over L1 and are allocated in L2. But when the L2 is shared, these instruction pages
are subject to be evicted by data fetched by any interfering workload. Unlike with missed
over data items, an L1 and L2 miss during an instruction fetch cannot be hidden by the
micro-architecture, which causes an immediate pipeline stall. The resulting impact on the
runtime of the application under analysis can be dramatic.

We observed this effect in the wild and created a synthetic benchmark, namely C2ISBM,
to isolate and study the C2IS problem. Our C2ISBM is a process that invokes a long function
that spans through 65 text pages — i.e., it performs around 64,000 nops. Using as a baseline
its solo performance, the runtime increases by a factor of 6.5x when INTERF workload is
activated on all the other cores. We extract a profile of the C2ISBM benchmark, where the
instruction pages are identified as important. We then configure our system in the PVT+SH
mode (see Section 6), and progressively select the instruction pages to be migrated to the
PVT pool. Recall that in the PVT+SH configuration, the PVT pool is exclusively allocated
to 1/4 of the L2 cache. Gradually migrating the profiled instruction pages to the private
pool allows us to gradually de-conflict these pages and to create an equivalent L2 instruction
cache with a size that is proportional to the number of migrated pages. The resulting impact
on the runtime of the C2ISBM process is plotted in Figure 10. A sharp improvement in
runtime can be observed until around 43 pages are migrated. After that, the benchmark
becomes unaffected by the interfering workload as around 51 (43 + 8 in the I-cache) of the
65 instruction pages are deterministically present in the cache. It can be noted that a slight
runtime increase is visible when more than 64 pages are migrated because the private pool
can hold up to 1/4 of the L2 cache size, i.e. 64 pages.

In the presented use-case, being able to identify those pages that are crucial for the
application’s performance and selectively migrate them to a reserved portion of the cache,
space is an efficient solution to the C2IS problem. By contrast, strict coloring would force all
the pages of the application to share the same color, which would require the allocation of a
much larger cache partition to achieve the same degree of interference mitigation.

7.4 Controllable Mitigation of Cache Interference

In the last set of experiments, we use our BBProf toolkit and PVT+SH setup to demonstrate
that (1) profile-driven interference mitigation is effective for real-world applications, and
(2) that, albeit more flexible, its effectiveness is comparable to strict partitioning. For this
experiment, we leverage the fact that we can profile the interfering workload and progressively

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

G. Ghaemi, D. Tarapore, R. Mancuso

mmm Solo mmm Solo+Col.12 mm Interf.+Col.4 Interf.+Migration
W 20 EEm Solo+Col.4 WEE Interf.+No Col WEm Interf.+Col.12
=
€15
3
o
e
[}
N10
©
E
o
Z 0.5
0.0
SN PP CH P EFELHN L FES ST SN PSS S &
K LN EE & NAF L IETFTEE T ST FELE
qu&ee,&e&@ & e S \(.j&«,}‘)(;, ‘}{&»(}6&},6‘7 é«\,;\«’od

Figure 12 Mitigation of cache interference with profile-driven migration of interfering data pages.

migrate to the private pool the pages that are responsible for the generated cache contention,
while we keep the pages of the application under analysis in their original location. Doing
this allows cache-sensitive applications to benefit from 12/16 of the LLC space. First, we

study the temporal behavior of the MSER benchmark with input size SQCIF in Figure 11.

On the z-axis we track the number of pages migrated to the private pool for each of the three
INTERF benchmarks — hence the total size of migrated pages is three times this value. The
timing behavior of MSER starts to improve after 123 pages from the INTERF benchmarks are
migrated away. That is because each INTERF process accesses a total of 315 pages (420 KB
each, see Section 7.1), meaning that only 192 pages are left to migrate, which is exactly
12/16 of the total LLC size.

Lastly, Figure 12 summarizes the behavior of the most interesting benchmarks when a full
migration of interfering pages is performed — see last bar of each cluster (“Interf.+Migration”).
The resulting runtime is compared against a number of notable cases: (1) the “Solo” case
where no INTERF is deployed and no cache partitioning is performed. This is also the
normalization baseline for all the other cases; (2) and (3) the solo runtime where only four
(“Solo+Col.4”) or 12 (“Solo+Col.12”) cache colors are assigned to the application under
analysis; (4) the “Interf.+No Col” case where INTERF is deployed on all the other cores
and no partitioning is enforced; (5) and (6) the cases “Interf.4+-Col.4” and “Interf.4+-Col.12”
that correspond to (2) and (3) but with INTERF active on all the other cores. Profile-driven
migration has comparable performance to the case where 12 page colors are dedicated to
the application under analysis. In a few cases (see MSER with input sizes SQCIF and QCIF)
migration does worse. The reason is likely interference over shared Linux meta-data (e.g.
page tables, kernel code and data structures). This kind of contention does not occur with
strict partitioning because the INTERF workload operates in a different, fully colored VM.

8 Known Limitations

The proposed method and current implementation present a number of limitations. First (i),
BBProf is not designed to handle multithreaded applications, or applications comprised by
multiple processes with complex data sharing, synchronization and dependencies. Second
(ii), for applications that that exhibit strong dependencies between inputs and memory
usage, the profile produced by BBProf on a given input might not generalize well to the
entire input space. Third (iii), the only piece of information used by BBProf to construct
profiles is timing. While this is a deliberate choice that allows BBProf to better generalize
on many COTS platforms, we envision that being able to integrate additional metrics (e.g.

4:21

ECRTS 2021

4:22

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Profile-driven Cache Management of Black-Box Appl.

L1/L2 cache/miss count, consumed main memory bandwidth, energy consumption) might
be useful to characterize page importance along additional dimensions beyond timing. In
our current implementation, we only provide sample code to integrate calls to Perf [12]
APIs during the entry/exit protocols, but more comprehensive handling of the additional
metrics that can be collected is required. Fourth (iv), our current implementation relies on a
number of Linux-specific features, such as PTRACE and the proc filesystem. Thus, while
porting to other non-Linux OS’s or even bare-metal environments is possible, some heavy
re-engineering is required. We expect that PTRACE might need to be replaced with direct
interaction with platform-specific debug registers, while memory layout information currently
collected via proc interfaces might need to be exported at compile-time. Next (v), BBProf
does not rely on any hardware features that are not widely available. Nonetheless, a few
architecture-dependent features are leveraged, requiring some porting effort when moving
to different architectures. These are (1) cacheability manipulation, (2) sampling of CPU
clock cycles, and (3) cache maintenance operations. Lastly (vi), the time required to carry
out profiling is strictly dependent on the WSS of the target application and on the runtime
of the observation segment. Thus, BBProf might become impractically slow at profiling
large-footprint and/or long-running applications. Operating on groups of adjacent pages
instead of individual pages might mitigate this problem, but the trade-off between loss in
granularity and speed-up needs to be investigated.

9 Concluding Remarks

In this work, we introduced BBProf, a methodology and toolkit to extract the importance of
individual memory pages towards the runtime of a target application. The proposed BBProf
does not rely by design on any hardware-specific feature, and thus it can be implemented
on any platform where (1) it is possible to change cacheability attributes at a single-page
granularity; and (2) it is possible to acquire time samples. Additionally, BBProf can operate
on the unmodified, pre-compiled binaries of complex applications, and includes strategies
to cope with the use of dynamic memory allocation primitives. We have performed and
described an open-source full system implementation and setup on a state-of-the-art high-
performance embedded platform. With this setup, we have shown three main aspects. First,
that BBProf is capable of extracting the profile of real-world complex vision applications.
Second, that the extracted page-level profiles can be used to enact fine-grained shared cache
management. Third, that a previously undocumented variant of inter-core interference,
namely contention-induced instruction stall can arise in multi-core embedded platforms; in
which case profile-driven selective page migration represents an efficient mitigation strategy.

As part of our future work, we intend to relax some of the limitations described above.
For instance, we aim at expanding the capabilities of BBProf to capture additional per-page
properties. Moreover, we plan to develop strategies to use profiling information for OS-driven
mapping of pages to heterogeneous memory resources — e.g., scratchpad memory, FPGA
BRAM. Finally, we plan to further improve the level of detail of the collected information by
identifying how each page impacts the runtime of multiple code sub-segments.

—— References

1 Zoom by Rotate Right. URL: http://www.rotateright.com/.
Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile (version G.a),
author=ARM Holdings, 2011.

3 Siemens AG. Jailhouse, 2014. URL: https://github.com/siemens/jailhouse.

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

G. Ghaemi, D. Tarapore, R. Mancuso

10

11

12

13

14

15

16

17

18

19

20

ARM Holdings. Cortex-A53 MPCore technical reference manual (rOp4), 2018. URL: https:
//developer.arm.com/documentation/ddi0500/j/.

I. Ashraf, M. Taouil, and K. Bertels. Memory profiling for intra-application data-communication
quantification: A survey. In 2015 10th International Design Test Symposium (IDT), pages
32-37, 2015. doi:10.1109/IDT.2015.7396732.

F. Bouquillon, C. Ballabriga, G. Lipari, and S. Niar. A wcet-aware cache coloring technique
for reducing interference in real-time systems. CoRR, abs/1903.09310, 2019. URL: http:
//arxiv.org/abs/1903.09310, arXiv:1903.09310.

D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In Proceedings of the International Symposium on Code Generation and Opti-
mization: Feedback-Directed and Runtime Optimization, CGO ’03, page 265-275, USA, 2003.
IEEE Computer Society.

J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In 2009 21st Euromicro Conference on Real-Time Systems,
pages 194-204, 2009. doi:10.1109/ECRTS.2009.13.

W. Cohen. Multiple Architecture Characterization of the Build Process with OProfile, 2003.
URL: http://oprofile.sourceforge.net.

J. Corbet, J. Edge, and R. Sobol. Kernel Development. Linux Weekly News — https:
//lwn.net/Articles/74295/, 2004. [Online; accessed 7-May-2019].

C. Dall and J. Nieh. Kvm/arm: The design and implementation of the linux arm hypervisor.
In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 14, page 333-348, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2541940.2541946.

The Linux Foundation. perf: Linux profiling with performance counters. URL: https:
//perf .wiki.kernel.org/index.php/Main_Page.

R. Mancuso G. Ghaemi, D. Tarapore. BU Black-box Profiler. https://github.com/
rntmancuso/black-box-profiler, 2021.

G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frohlich, and R. Pellizzoni. A survey on
cache management mechanisms for real-time embedded systems. ACM Comput. Surv., 48(2),
November 2015. doi:10.1145/2830555.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. Designing
Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In Sophie
Quinton, editor, 31th Euromicro Conference on Real-Time Systems (ECRTS 2019), volume
107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:25, Stuttgart,

Germany, July 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.

ECRTS.2019.27.
M. Hassan. On the off-chip memory latency of real-time systems: Is ddr dram really the

best option? In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 495-505, 2018.

do0i:10.1109/RTSS.2018.00062.

H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical os-level cache
management in multi-core real-time systems. In 2018 25th Euromicro Conference on Real-Time
Systems, pages 80—89, 2013. doi:10.1109/ECRTS.2013.19.

H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualization. In
2016 International Conference on Embedded Software (EMSOFT), pages 1-10, 2016. doi:
10.1145/2968478.2968480.

H. Kim and R. (Raj) Rajkumar. Predictable shared cache management for multi-core
real-time virtualization. ACM Trans. Embed. Comput. Syst., 17(1), December 2017. doi:
10.1145/3092946.

N. Kim, B. C. Ward, M. Chisholm, C. Fu, J. H. Anderson, and F. D. Smith. Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-criticality
provisioning. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1-12, 2016. doi:10.1109/RTAS.2016.7461323.

4:23

ECRTS 2021

4:24

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

Profile-driven Cache Management of Black-Box Appl.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
memory hierarchy and virtualization for modern multi-core embedded systems. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1-14, 2019.
doi:10.1109/RTAS.2019.00009.

Y. Kwon, X. Zhang, and D. Xu. Pietrace: Platform independent executable trace. In 2013
28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
48-58, 2013. doi:10.1109/ASE.2013.6693065.

J. Liedtke, H. Haertig, and M. Hohmuth. Os-controlled cache predictability for real-time
systems. In Proceedings of the 3rd IEEE Real-Time Technology and Applications Symposium
(RTAS ’97), RTAS ’97, page 213, USA, 1997. IEEE Computer Society.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi, and
K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumentation.
SIGPLAN Not., 40(6):190-200, June 2005. doi:10.1145/1064978.1065034.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time
cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 45-54, 2013. doi:
10.1109/RTAS.2013.6531078.

S. Mittal. A survey of techniques for cache partitioning in multicore processors. ACM Comput.
Surv., 50(2), May 2017. doi:10.1145/3062394.

P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and spatial isolation
in a hypervisor for arm multicore platforms. In 2018 IEEE International Conference on
Industrial Technology (ICIT), pages 1651-1657, 2018. doi:10.1109/ICIT.2018.8352429.

N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89-100, June 2007. doi:10.1145/1273442.1250746.
A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi. Embedded hypervisor xvisor: A
comparative analysis. In 2015 23rd Furomicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 682—691, 2015. doi:10.1109/PDP.2015.108.

A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache performance bottlenecks using
data profiling. In Proceedings of the 5th European Conference on Computer Systems, EuroSys
’10, page 335-348, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1755913.1755947.

P. Radojkovié, S. Girbal, A. Grasset, E. Quifiones, S. Yehia, and F.J. Cazorla. On the evaluation
of the impact of shared resources in multithreaded cots processors in time-critical environments.
ACM Trans. Archit. Code Optim., 8(4), January 2012. doi:10.1145/2086696.2086713.

L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of last-level cache pol-
luters with an os-level, software-only pollute buffer. In 2008 /1st IEEE/ACM International
Symposium on Microarchitecture, pages 258-269, 2008. doi:10.1109/MICR0.2008.4771796.
P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-warp: A system-wide framework
for memory bandwidth profiling and management. In 2020 IEEE Real-Time Systems
Symposium (RTSS), pages 345-357, Los Alamitos, CA, USA, dec 2020. IEEE Computer
Society. URL: https://doi.ieeecomputersociety.org/10.1109/RTSS49844.2020.00039,
doi:10.1109/RTSS49844.2020.00039.

D. Tarapore, S. Roozkhosh, S. Brzozowski, and R. Mancuso. Observing the invisible: Live
cache inspection for high-performance embedded systems. IEEE Transactions on Computers,
pages 1-1, 2021. doi:10.1109/TC.2021.3060650.

S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.
SD-VBS: The san diego vision benchmark suite. In 2009 IEEE International Symposium
on Workload Characterization (IISWC), pages 55-64, Oct 2009. doi:10.1109/IISWC.2009.
5306794.

Xilinx, Inc. Zynq ultrascale+ mpsoc data sheet: Overview (v1.8),
2019. URL: https://www.xilinx.com/support/documentation/data_sheets/
ds891-zyng-ultrascale-plus-overview.pdf.

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

G. Ghaemi, D. Tarapore, R. Mancuso

37

38

39

40

M. Xu, R. Gifford, and L.T. Xuan Phan. Holistic multi-resource allocation for multicore
real-time virtualization. In Proceedings of the 56th Annual Design Automation Conference
2019, DAC ’19, New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3316781.3317840.

Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache partitioning system using page
coloring. In 2014 23rd International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 381-392, 2014. doi:10.1145/2628071.2628104.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2018 IEFEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55-64,
2013. doi:10.1109/RTAS.2013.6531079.

X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM Furopean Conference on Computer Systems,
EuroSys '09, page 89-102, New York, NY, USA, 2009. Association for Computing Machinery.
d0i:10.1145/1519065.1519076.

4:25

ECRTS 2021

	1 Introduction
	2 Related Work
	3 Background
	4 Design
	4.1 Core Principles
	4.2 High-level BBProf Workflow
	4.3 Profiling Strategy
	4.3.1 User-Space Driver (UProfiler)
	4.3.2 Kernel-side Driver (KProfiler)

	4.4 Additional Operational Modes

	5 Implementation
	5.1 UProfiler Implementation
	5.2 KProfiler Implementation

	6 System Instantiation
	7 Evaluation
	7.1 Interference and Mitigation via Strict Partitioning
	7.2 Profiling of Staircase and SD-VBS benchmarks
	7.3 Mitigation of Contention-induced Instruction Stall
	7.4 Controllable Mitigation of Cache Interference

	8 Known Limitations
	9 Concluding Remarks

