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Abstract. We define and study Hodge ideals associated to a coherent ideal sheaf
a on a smooth complex variety, via algebraic constructions based on the already
existing concept of Hodge ideals associated toQ-divisors. We also define the generic
minimal exponent of a, extending the standard invariant for hypersurfaces. We
relate it to Hodge ideals, and show that it is a root of the Bernstein-Sato polynomial
of a.

1. Introduction

Let X be a smooth complex algebraic variety. If D is a reduced hypersurface in X

and OX(⇤D) is the sheaf of rational functions on X with poles along D, then Saito’s
theory of mixed Hodge modules [Sai90] endows OX(⇤D) with a Hodge filtration. This
filtration can be described via a sequence of Hodge ideals Ip(D), for p � 0, that were
systematically studied in [MP19]. More generally, it was shown in [MP19] that one
can attach Hodge ideals to arbitrary e↵ective Q-divisors on X. These invariants
provide “higher versions” of multiplier ideals, which have been playing an important
role in birational geometry (see [Laz04, Chapter 9]), and which essentially correspond
to the case p = 0 in the sequence above.

Our goal in this note is to attach similar invariants to (rational powers) of an
arbitrary coherent ideal a on X. To this end, there are two natural approaches.
The first is based on studying the Hodge filtration on the local cohomology sheaves
H

q

Z
(OX), where Z is the closed subscheme associated to a. In this approach one stays

close to Hodge theory, but the filtrations cannot be described anymore via ideals in
OX ; we plan to tackle this study in future work. Here we take an algebraic approach,
motivated by the theory of multiplier ideals, defining Hodge ideals for rational powers
of coherent ideals by making use of the existing notion for e↵ective Q-divisors.

After replacing X by the subsets in an a�ne open cover, we may assume that X

is a�ne and that the ideal a is generated by f1, . . . , fr 2 OX(X). A basic fact about
multiplier ideals is that if D is defined by f =

P
r

i=1 ↵ifi, with ↵i 2 C general, then
for every � < 1 we have

I(a�) = I(�D).
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However, for p � 1, it turns out that even in simple examples the ideal Ip(�D), with
D as above, might depend on D.

Instead, given a positive rational number �  1, we define Ip(a�) to be the ideal
generated by all Ip(�D), where D is the divisor defined by any f 2 a that satisfies a
mild condition (for example, if a is reduced in codimension 1, we may take all f 2 a
that define reduced divisors). We show that it is enough in fact to let D vary over the
divisors defined by general linear combinations of the generators of a. Yet another
equivalent description of Ip(a�) is the following: if y1, . . . , yr denote the coordinate
functions on Ar and we consider the regular function g =

P
r

i=1 yifi on X ⇥ Ar,
defining the divisor G, then Ip(a�) is generated by the coe�cients of all elements of
Ip(�G) ✓ OX(X)[y1, . . . , yr]. These equivalent descriptions of Ip(a�) are discussed in
Section 2. It is not hard to extend them to a definition in the global case.

In Section 3, we use the properties of Hodge ideals for Q-divisors proved in [MP19]
to show corresponding results in our more general context. For example, we derive
analogues of the Restriction Theorem and the Subadditivity Theorem in this setting.
Some examples of Hodge ideals associated to ideals are computed in Section 4.

We note that this theory of Hodge ideals associated to ideal sheaves is not yet
completely satisfactory, since some of the main tools from the study of Hodge ideals
of divisors are still missing. The main reason is the lack of a direct connection with
Hodge theory. For example, we don’t know whether on projective varieties there is a
vanishing theorem for Hodge ideals associated to an ideal a (see Question 3.21).

Finally, in Section 5 we define and study an extension of the notion of minimal
exponent to the case of ideals. Recall first that for a divisor D and x 2 Supp(D), the
minimal exponent e↵x(D) is the negative of the largest root of the reduced Bernstein-
Sato polynomial of D at x. This is a refined version of the log canonical threshold
lctx(D), which is equal to min{e↵x(D), 1}. It is intimately linked to Hodge ideals as
follows: by [MP18b, Corollary C], if D is a reduced divisor and � is a rational number
with 0 < �  1, then for every p we have Ip(�D)x = OX,x if and only if p+�  e↵x(D).

For an arbitrary ideal sheaf a, and a point x in the zero-locus of a, we define an
invariant, the generic minimal exponent ↵x(a), which is the minimal exponent at x of
a general hypersurface containing the subscheme defined by a. More precisely, if D is
the divisor defined by a general linear combination of generators of a in an a�ne open
neighborhood of x, then ↵x(a) = e↵x(D). As in the divisorial case, if � is a rational
number with 0 < �  1, and a is radical in codimension 1 around x, then

Ip(a
�)x = OX,x () p+ �  ↵x(a).

(If a is not radical in codimension 1 around x, then ↵a,x is equal to the log canonical
threshold lctx(a) of a at x.) We extend the basic properties of minimal exponents
of divisors to the case of arbitrary ideals. The main result we prove, Theorem 5.17,
states that ↵x(a) is a root of the Bernstein-Sato polynomial ba(s) defined in [BMS06].

1.1. Acknowledgments. We thank the anonymous referee for several comments
and suggestions.
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2. Equivalent definitions

Our goal in this section is to give the definition of Hodge ideals associated to
arbitrary nonzero ideals and provide some equivalent descriptions. Let X be a smooth
n-dimensional complex algebraic variety and a a nonzero coherent ideal sheaf (often
simply called ideal) on X.

Since X is smooth, it is easy to see, by taking a suitable a�ne open cover, that we
can uniquely write

a = OX

�
� div(a)

�
· b,

for an e↵ective divisor div(a) and an ideal b defining a closed subscheme of codi-
mension � 2. For our purpose, we may and will restrict to the open subsets in an
a�ne cover of X and thus assume that X is an a�ne variety and OX

�
� div(a)

�
is a

principal ideal. Let h1, . . . , hr 2 OX(X) be a system of generators for b. Note that
if ↵1, . . . ,↵r 2 C are general, then

P
i
↵ihi defines a reduced e↵ective divisor on X,

without any common components with div(a).

Definition 2.1. If X is a smooth a�ne variety and a = OX

�
� div(a)

�
· b as above,

with OX

�
� div(a)

�
principal, then for every p � 0 and � 2 (0, 1] \Q, the pth Hodge

ideal of a� is

Ip(a
�) :=

X

E

Ip

�
�(div(a) + E)

�
,

where the sum is over all reduced e↵ective divisors E, defined by elements h 2 b, and
which have no common components with div(a). Equivalently, we have

Ip(a
�) :=

X

D

Ip(�D),

where D varies over the divisors defined by elements of a, such that D � div(a) is
reduced, without common components with div(a).

This definition makes sense for � > 1 as well. However, we believe that from the
point of view we want to adopt it does not give the “correct” objects; see for instance
Remark 3.4 below. We prefer thus to restrict to � 2 (0, 1].

Remark 2.2 (Reduced subschemes). Note that if a defines a subscheme that is
reduced in codimension 1, then

Ip(a
�) :=

X

D

Ip(�D),

where the sum is over all reduced e↵ective divisors D defined by elements of a.

Remark 2.3 (Principal ideals). If the ideal a is principal, defining a divisor D, then
Ip(a�) = Ip(�D) (in case D = div(g), we also denote this by Ip(g�)). This follows
from the fact that if E is an e↵ective divisor, with Supp(D) and Supp(E) having no
common components, then Ip

�
�(D + E)

�
✓ Ip(�D). This is a consequence of the

Subadditivity Theorem for Hodge ideals (see [MP19, Theorem 15.1]).
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Before giving other equivalent descriptions of Ip(a�), we introduce some notation.
Suppose that X = Spec(R) is a�ne and J ✓ R[y1, . . . , yr], for some r � 1, is an ideal.
We define the ideal Coe↵(J) of R as follows. Choose generators Q1, . . . , Qs for J and
write each of them as

Qi =
X

u2Nr

Pu,iy
u
,

with Pu,i 2 R and y
u = y

u1
1 · · · y

ur
r for every u = (u1, . . . , ur) 2 Nr (here N is the set

of nonnegative integers). We then put

Coe↵(J) := (Pu,i | u 2 Nr
, 1  i  s) ✓ R.

Note that if Q =
P

s

i=1 hiQi is in J , and if

hi =
X

u2Nr

cu,iy
u
,

then

Q =
X

u2Nr

 
sX

i=1

X

v+w=u

cv,iPw,i

!
y
u

and
sX

i=1

X

v+w=u

cv,iPw,i 2 (Pu,j | u 2 Nr
, 1  j  s).

Therefore the definition of Coe↵(J) is independent of the choice of generators for J .

Lemma 2.4. If J = (Q1, . . . , Qs) is an ideal in R[y1, . . . , yr], then the ideal Coe↵(J)
is generated by {Q1(↵), . . . , Qs(↵) | ↵ 2 Cr

}. Moreover, given any non-empty open
subset U ✓ Cr, it is enough to only consider those ↵ 2 U .

Proof. Note that if P 2 R[y1, . . . , yr] has degree d and for j 2 �, with |�| � d+1, we
consider

↵
(j) = (↵(j)

1 , . . . ,↵
(j)
r ) 2 Cr

such that ↵(j)
i

6= ↵
(j0)
i

for all i and all j 6= j
0 in �, then the coe�cients of P lie in the

ideal generated by {P (↵(j)) | j 2 �}. (This follows by induction on r from the formula
for the determinant of the Vandermonde matrix.) The assertions in the lemma are
an immediate consequence. ⇤

We can now give two other descriptions of Ip(a�). As before, we assume that
X = Spec(R) is smooth and a�ne and we write a = OX

�
�div(a)

�
·b, with b defining

a subscheme of codimension � 2. We further assume that OX

�
� div(a)

�
is principal.

Theorem 2.5. With the above notation, if f1, . . . , fr are generators of a, then for
every p � 0 and � 2 (0, 1] \Q the following hold:

i) Ip(a�) is generated by the ideals Ip(�D), where D is the divisor of a general
linear combination

P
i
↵ifi, with ↵i 2 C.
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ii) We have

Ip(a
�) = Coe↵

�
Ip(�G)

�
,

with G being the divisor on X⇥Ar defined by
P

r

i=1 yifi, where y1, . . . , yn are
the coordinates on Ar.

Remark 2.6. By assumption, we can write fi = ghi, where g defines div(a) and
h1, . . . , hr are generators for the ideal b. Note that the divisor G in ii) can be written
as pr⇤1

�
div(a)

�
+ G

0, where pr1 : X ⇥Ar
! X is the projection and G

0 is a reduced
divisor having no common components with pr⇤1

�
div(a)

�
. Indeed, G is defined by

g ·
P

r

i=1 yihi and we let G0 be the divisor defined by
P

r

i=1 yihi. If T is an irreducible
component of G

0, which either appears with multiplicity � 2 in G
0, or is also a

component of pr⇤1
�
div(a)

�
, then T is the pull-back of a prime divisor on X. (In the

first case, this follows from the fact that for general ↵1, . . . ,↵r 2 C, the elementP
i
�ihi 2 R defines a reduced divisor on X.) After replacing X by a suitable a�ne

open subset, we may assume that T is defined by h 2 R such that h divides hi for all
i. This contradicts the fact that b defines a subscheme of codimension � 2.

Proof of Theorem 2.5. Let us denote by I
0
p(a

�) the ideal generated by the Ip(�D),
whereD is the divisor defined by a general linear combination

P
i
↵ifi. LetQ1, . . . , Qs 2

R[y1, . . . , yr] be generators for Ip(�G). We write G = pr⇤1
�
div(a)

�
+ G

0 as in Re-
mark 2.6. For every ↵ = (↵1, . . . ,↵r) 2 Cr, the restriction G↵ of G to

X ' X ⇥ {↵} ,! X ⇥Ar

is equal to the sum of div(a) and the divisor G
0
↵ defined on X by

P
r

i=1 ↵ihi. Note
that we have Gred = pr⇤1

�
div(a)

�
red

+ G
0. If G

0
↵ is reduced, having no common

components with div(a), then the restriction of Gred to X ' X ⇥ {↵} is equal to
div(a)red + G

0
↵ = (G↵)red. In this case we can apply the Restriction Theorem for

Hodge ideals (see [MP19, Theorem 13.1]) to deduce that for such ↵, we have

Ip

�
� · div(a) + � ·G

0
↵

�
✓ Ip(�G) · OX =

�
Q1(↵), . . . , Qr(↵)

�
.

Moreover, this is an equality for general ↵.

The fact that Coe↵
�
Ip(�G)

�
= I

0
p(a

�) now follows from Lemma 2.4. Moreover, it

is clear by definition that I 0p(a
�) ✓ Ip(a�). The above consequence of the Restriction

Theorem gives the inclusion Ip(a�) ✓ Coe↵
�
Ip(�G)

�
, completing the proof of the

result. ⇤
Remark 2.7. If X and a are as in Theorem 2.5 and U is an a�ne open subset of
X, then it follows from either of the two descriptions of Ip(a�) in the theorem that
the restriction of Ip(a�) to U is Ip

�
(a|U )�

�
. We may thus define Ip(a�) by gluing the

objects defined locally in a suitable a�ne open cover.

Definition 2.8 (Global definition). If X is a smooth variety, a is a nonzero ideal on
X, and � 2 (0, 1] \Q, we choose an a�ne open cover of X such that on each open
subset U belonging to the cover, the ideal OX

�
� div(a)

�
|U is principal. For every

such U we may thus define Ip

�
(a|U )�

�
, and it follows from Remark 2.7 that these
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ideals glue to give an ideal Ip(a�) on X. This is clearly independent of the choice of
cover.

Remark 2.9. We note that once the ideals Ip(a�) are defined in general, the assertions
in Theorem 2.5 extend to arbitrary a�ne open subsets (it is straightforward to reduce
to the case when the ideal OX

�
� div(a)

�
is principal).

Remark 2.10 (Hodge ideals associated to several ideals). Suppose that we have
nonzero ideals a1, . . . , ar on X. We may assume that X is a�ne, and for each i,
the ideal OX

�
� div(ai)

�
is principal. For rational numbers �1, . . . ,�r 2 (0, 1], we

consider divisors D =
P

r

i=1 �i
�
div(ai) +Ei

�
, where each Ei is defined by an element

of bi, such that
P

i
Ei is a reduced divisor that has no common components withP

i
div(ai). This allows us, as in Definition 2.1, to define an ideal

Ip(a
�1
1 · · · a�r

r ) ✓ OX .

There is an analogue of Theorem 2.5 in this more general setting and the interested
reader will have no trouble stating and proving it.

3. Basic properties

In this section we extend some basic properties of Hodge ideals from the case of
divisors to that of ideals.

Proposition 3.1. If a ✓ b are nonzero ideals on the smooth variety X, such that
the divisors div(a) � div(b) and div(b) have no common components, then for every
p � 0 and � 2 (0, 1] \Q we have

Ip(a
�) ✓ Ip(b

�).

Proof. We may assume that X is a�ne and that a is generated by f1, . . . , fr and b
is generated by f1, . . . , fr, fr+1, . . . , fr+s. Furthermore, we may assume that for i  r

we can write fi = ghi such that h1, . . . , hr define a subscheme of codimension � 2
and similarly, for i  r + s we can write fi = g

0
h
0
i
such that h

0
1, . . . , h

0
r+s define a

subscheme of codimension � 2. We can then write g = g
0
u, for some u 2 OX(X).

Consider f = gh, where h 2 (h1, . . . , hr) defines a reduced divisor without common
components with the divisor div(a) defined by g. Since we can write f = g

0(uh),
and div(uh) = div(u) + div(h) has no common components with div(g0) (note that
by hypothesis, div(u) and div(g0) have no common components), it follows from the
definition that

Ip

�
� · div(f)

�
✓ Ip(b

�).

Since this holds for all f as above, we obtain the assertion in the proposition. ⇤
Remark 3.2. The condition on div(a) and div(b) in Proposition 3.1 cannot be
dropped: if D and E are e↵ective Q-divisors such that D � E is e↵ective, it is
not the case that we always have Ip(D) ✓ Ip(E). In fact, this can fail even when D

and E are rational multiples of the same integral divisor, see [MP19, Example 10.5].

We next show that I0 coincides with a multiplier ideal.
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Proposition 3.3. If X is a smooth variety and a is a nonzero ideal on X, then for
every � 2 (0, 1] \Q we have

I0(a
�) = I

�
a��✏

�
for 0 < ✏⌧ 1.

Proof. It is enough to check this when X is a�ne. If h is a general linear combination
of a system of generators of a, then it follows from [Laz04, Proposition 9.2.28] that

I
�
h
��✏
�
= I

�
a��✏

�
.

If D is the divisor defined by h, then

I
�
h
��✏
�
= I0(�D)

by [MP19, Proposition 9.1]. The assertion now follows from Theorem 2.5i). ⇤
Remark 3.4. Note that if we also allowed � > 1 in Definition 2.1 and Theorem 2.5,
using the fact that I0

�
(↵+ 1)D

�
= OX(�D) · I0(↵D) for every ↵ 2 Q, we would get

I0(a↵+1) = a · I0(a↵), and not I
�
a↵+1�✏

�
.

Proposition 3.5. If a is a nonzero ideal on the smooth variety X and ' : Y ! X is
a smooth morphism, then for every � 2 (0, 1] \Q and every p � 0, we have

Ip(a
�) · OY = Ip

�
(a · OY )

�
�
.

Proof. We may clearly assume that both X and Y are a�ne, and let f1, . . . , fr be
generators of a. This implies that f1�', . . . , fr�' generate a·OY . If ↵ = (↵1, . . . ,↵r) 2
Cr is general and D↵ is defined by

P
i
↵ifi, then '⇤

D↵ is defined by
P

i
↵i(fi � ').

Since Ip(a�) is generated by such Ip(�D↵) and Ip

�
(a · OY )�

�
is generated by such

Ik(�'⇤
D↵), we obtain the assertion in the proposition thanks to the lemma below. ⇤

The following is the extension of [MP19, Proposition 15.1] to the case of Q-divisors;
it is stated only implicitly in [MP19].

Lemma 3.6. If ' : Y ! X is a smooth morphism of smooth varieties, and D is an
e↵ective Q-divisor on X, then for every p � 0 we have

Ip('
⇤
D) = Ip(D) · OY .

Proof. By possibly shrinking X, we may assume that D = ↵H, where ↵ is a positive
rational number and H is the e↵ective Cartier divisor defined by a function h 2

OX(X). We denote by Z the support of D. We then have that '⇤
D = ↵'

⇤
H, and

'
⇤
H is defined by h

0 = h � '. Moreover, since ' is smooth, the divisor Z
0 = '

⇤
Z is

reduced, and is therefore equal to the support of '⇤
D.

Note now that, in the notation of [MP19, §2 and §4], the Hodge ideal Ip(D) is
defined by the Hodge filtration on the DX -module M(h�↵), in the sense that

FpM(h�↵) = Ip(D)⌦ OX(pZ) · h�↵
.

(Cf. more precisely [MP19, Remark 4.3].) Analogously, we have

FpM(h0�↵) = Ip('
⇤
D)⌦ OX(pZ 0) · h0�↵

.
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It su�ces then to have
FpM(h0�↵) = '

⇤
FpM(h�↵),

which is deduced in [MP19, Remark 2.15] as a consequence of the behavior of mixed
Hodge modules under smooth morphisms and base-change. ⇤

Proposition 3.7. Let X be a smooth complex variety and a, b nonzero ideals on X.

i) For every p � 0 and every � 2 (0, 1] \Q, we have

ap · I0(a
�) ✓ Ip(a

�).

ii) For every p � 0 and every � 2 (0, 1] \Q, we have

ap+1
· Ip(b

�) ✓ Ip(ab
�).

Proof. In order to prove the inclusion in i), we may assume that X is a�ne. Let
h1, . . . , hr be generators of a. If h =

P
r

j=1 ↵jhj , with ↵1, . . . ,↵r 2 C general, then as

in the proof of Proposition 3.3 we have I0(h�) = I0(a�). Using [MP19, Remark 4.2],
we have

h
p
· I0(a

�) = h
p
· I0(h

�) ✓ Ip(h
�) ✓ Ip(a

�).

Since this holds for every �1, . . . ,�r 2 C general, and we are in characteristic 0, we
conclude that

ap · I0(a
�) ✓ Ip(a

�).

We next prove ii). Consider first the case when a = (f) and b = (g) are principal
ideals. In this case we have an inclusion of filtered DX -modules

(3.8) OX [1/g]g��
✓ OX [1/fg]g��

.

For the definition of these DX -modules, which play an important role in defining
Hodge ideals of Q-divisors, we refer to [MP19, §2]. Recall from [MP19, §4] that by
the definition of Hodge ideals, we have

FpOX [1/g]g�� = Ip(g
�) · OX

�
p · div(g)red

�
g
��

and
FpOX [1/fg]g�� = Ip(fg

�) · OX

�
p · div(fg)red

�
f
�1

g
��

.

By passing to filtered pieces, the inclusion (3.8) thus gives

OX

�
p · div(g)red

�
· Ip(g

�)g��
✓ OX

�
p · div(fg)red

�
· Ip(fg

�)f�1
g
��

,

hence
f
p+1

Ip(g
�) ✓ Ip(fg

�).

We now turn to the case of arbitrary ideals. We may and will assume that X is
a�ne, with R = OX(X), and that we have factorizations a = ' · a0 and b =  · b0,
with a0 and b0 defining subschemes of codimension � 2. Consider a general linear
combination g of generators of b, that defines a divisor E. By the generality condition,
we may assume that E � div(b) is reduced, without any common components with
div(a) + div(b). In this case the divisors

div(ag)� div(ab) = E � div(b)
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and div(ab) have no components in common, hence the obvious analogue of Proposi-
tion 3.1 for Hodge ideals associated to several ideals (see Remark 2.10) gives

Ip(ag
�) ✓ Ip(ab

�).

Using the characterization of Ip(b�) in Theorem 2.5i), it then su�ces to show that
for every g as above we have

(3.9) ap+1
· Ip(g

�) ✓ Ip(ag
�).

Let f1, . . . , fr be generators of a and consider h =
P

r

i=1 fiyi 2 R[y1, . . . , yr]. It follows
from the case of principal ideals that

h
p+1

Ip(g
�) ✓ Ip(hg

�).

(Note that Ip(g�) ·R[y1, . . . , yr] is the p
th Hodge ideal with exponent � for the image

of g in R[y1, . . . , yr], by Proposition 3.5.) This implies

Coe↵(hp+1) · Ip(g
�) = Coe↵

�
h
p+1

Ip(g
�)
�
✓ Coe↵

�
Ip(hg

�)
�
= Ip(ag

�),

where the last equality follows from the analogue of Theorem 2.5ii) for Hodge ideals
associated to several ideals. On the other hand, it follows from the definition that

Coe↵(hp+1) = ap+1
,

and we obtain the inclusion in (3.9). ⇤

For exponent � = 1, Hodge ideals become deeper as p increases:

Proposition 3.10. If X is a smooth variety and a is a nonzero ideal, then

Ip+1(a) ✓ Ip(a)

for every nonnegative integer p.

Proof. We may assume that X is a�ne and a is generated by h1, . . . , hr. If D is
a divisor defined by a linear combination

P
r

i=1 ↵ihi and if we write D = Dred + B,
where Dred is the e↵ective reduced divisor with the same support as D, then it follows
from [MP19, Lemma 4.4] that

Ip+1(D) = Ip+1(Dred) · OX(�B) and Ip(D) = Ip(Dred) · OX(�B).

On the other hand, since Dred is reduced, we have

Ip+1(Dred) ✓ Ip(Dred)

by [MP19, Proposition 13.1]. We thus conclude that Ip+1(D) ✓ Ip(D) and the asser-
tion in the proposition now follows from the definition of Ip(a) and Ip+1(a). ⇤

For arbitrary � we only have the following:

Proposition 3.11. Let X be a smooth variety and consider a nonzero ideal a on X

which is radical in codimension 1. If p and p
0 are nonnegative integers and �,�0 2

Q \ (0, 1] are such that p+ �  p
0 + �

0, then

Ip0(a
�
0
) ✓ Ip(a

�) mod a,

i.e. the inclusion holds in the quotient OX/a.
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Proof. We may assume that X is a�ne, and let D be the divisor corresponding to a
general linear combination f of generators of a. By [MP18b, Theorem A’ and Remark
4.8], we have

Ip0(�
0
D) ✓ Ip(�D) mod f,

and hence also mod a. Indeed, mod f these statements say that Ip(�D) coincides with
eV p+�

OX , Saito’s microlocal V -filtration on OX along f ; this is a decreasing filtration.
We can then use Theorem 2.5i) to conclude. ⇤

We now turn to the analogue of the Restriction Theorem for multiplier ideals
(cf. [Laz04, Theorem 9.5.1 and Example 9.5.4]) and for Hodge ideals of divisors (cf.
[MP18, Theorem A] and [MP19, Theorem 13.1]). Let X be a smooth complex variety
and H ✓ X a smooth, irreducible hypersurface. Consider an ideal a on X such that
aH := a · OH is nonzero. We define on H the divisor F =

P
T
aTT , where T varies

over the components of div(aH) and

aT := ordT
�
div(a)red|H

�
+ ordT (aH)� ordT

�
div(a)|H

�
� 1.

It is easy to see that aT � 0, but this will also be clear from the proof of the next
theorem.

Theorem 3.12. With the above notation, for every p � 0 and every � 2 (0, 1] \Q,
we have

(3.13) OH

�
� pF ) · Ip(a

�

H) ✓ Ip(a
�) · OH .

Moreover, if H is su�ciently general (for example, a general member of a basepoint-
free linear system), then F = 0 and the inclusion in (3.13) is an equality.

Proof. We may assume that X is a�ne, OX

�
�div(a)

�
is principal, and a is generated

by h1, . . . , hr. If ↵1, . . . ,↵r 2 C are general and D is defined by
P

i
↵ihi, then D|H is

defined by a general linear combination of a system of generators of aH . We can write
D = div(a) + B, with B reduced and having no common components with div(a).
Therefore we have

Z := Dred = div(a)red +B.

If ZH = Z|H and Z
0
H

= (ZH)red, it follows from [MP19, Theorem 13.1] that we have

(3.14) OH

�
� p(ZH � Z

0
H)
�
· Ip(�D|H) ✓ Ip(�D) · OH .

Moreover, if H is su�ciently general (depending on D), then ZH = Z
0
H

and we have
equality in (3.14).

Note now that if T is a prime divisor on H such that ordT (ZH) � 2, then
ordT (D|H) � 2, hence T is a component of div(aH). In particular, there are only
finitely many such T , independently of our choice of D. Since D is general, for every
component T of div(aH), we have ordT (D|H) = ordT (aH), hence

ordT (ZH � Z
0
H) = ordT

�
div(a)red|H

�
+ ordT (B|H)� 1

= ordT
�
div(a)red|H

�
+ ordT (D|H)� ordT

�
div(a)|H

�
� 1

= ordT
�
div(a)red|H

�
+ ordT (aH)� ordT

�
div(a)|H

�
� 1.
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This shows that ZH � Z
0
H

= F . By letting D vary and using Theorem 2.5i), we
deduce from (3.14) the first assertion of the proposition.

Let us now choose divisors D1, . . . , Ds as above such that

Ip(a
�) =

sX

i=1

Ip(�Di) and Ip(a
�

H) =
sX

i=1

Ip(�Di|H).

If we take H general with respect to all Di, then we see that

Ip(�Di|H) = Ip(�Di) · OH for 1  i  s.

We thus obtain the second assertion of the proposition. ⇤

Suppose now that a is a nonzero ideal on X and let us put

(3.15) a0 := OX

�
� div(a)red

�
· b,

where a = OX(�div(a)
�
·b and div(a)red is the reduced e↵ective divisor with the same

support as div(a). Note that a is reduced in codimension 1 if and only if a = a0.

Remark 3.16. With the notation in Theorem 3.12, if a0 ·OH is radical in codimension
1, then F = 0, and we get

Ip(a
�

H) ✓ Ip(a
�) · OH for every p � 0.

Indeed, if X is a�ne and Z is as in the proof of the theorem, then the hypothesis
implies that Z|H is reduced. Therefore ZH = Z

0
H
, hence F = 0. Note also that in

this case we have by assumption a0 · OH = (a · OH)0.

Corollary 3.17. Let ' : W ! X be any morphism of smooth complex varieties. If a
is an ideal on X such that aW := a·OW is nonzero and a0·OW is radical in codimension
1, where a0 is defined in (3.15), then for every p � 0 and every � 2 Q\ (0, 1] we have

Ip(a
�

W ) ✓ Ip(a
�) · OW .

Proof. We can factor ' as

W
j

,! W ⇥X
p

�! X,

where p is the projection and j is a closed embedding. Since p is smooth, we have

Ip

�
(a · OW⇥X)�

�
= Ip(a

�) · OW⇥X

by Proposition 3.5, hence in order to prove the corollary it is enough to treat the case
when ' is a closed embedding. In this case the statement follows by an easy induction
on the codimension of W , using Theorem 3.12 (see also Remark 3.16). ⇤

We deduce the following analogue of the Subadditivity Theorem for multiplier ideals
(cf. [Laz04, Theorem 9.5.20]) and for Hodge ideals of divisors (cf. [MP18, Theorem B]
and [MP19, Theorem 15.1]).

Proposition 3.18. If X is a smooth, complex algebraic variety, and a and b are
nonzero ideals on X such that div(a) and div(b) have no common components, then
for every nonnegative integer p and every � 2 Q \ (0, 1], we have

Ip

�
(a · b)�

�
✓ Ip(a

�) · Ip(b
�).
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Proof. Consider the diagonal embedding � : X ,! X ⇥ X. If the assertion in the
proposition holds for the ideals ea and eb on X ⇥ X given by pulling back a and b
respectively, via the first and second projections, then it follows from Corollary 3.17
and Proposition 3.5 that if c = ea · eb, then

Ip

�
(a · b)�

�
= Ip

�
(c · OX)�

�
✓ Ip(c

�) · OX

✓
�
Ip(ea�) · OX

�
·
�
Ip(eb�) · OX

�
= Ip(a

�) · Ip(b
�).

Therefore we may assume that X = X1⇥X2 and that a = a1 ·OX and b = a2 ·OX ,
where ai are ideals on Xi. In this case, by combining Propositions 3.1 and 3.5, we see
that

Ip

�
(a · b)�

�
✓ Ip(a

�) \ Ip(b
�) =

�
Ip(a

�

1) · OX

�
\
�
Ip(a

�

2) · OX

�

= Ip(a
�

1)⌦C Ip(a
�

2) = Ip(a
�) · Ip(b

�).

⇤
Remark 3.19. A similar argument shows that under the assumptions of Proposi-
tion 3.18, for every �, µ 2 Q \ (0, 1] and every p � 0, we have

Ip(a
�bµ) ✓ Ip(a

�) · Ip(b
µ).

We end this section with a triviality criterion for all Hodge ideals Ip(a�), where a
is any nonzero ideal on X. Given a point x 2 X, defined by the ideal mx, we denote
by ordx(a) the largest nonnegative integer q such that a ✓ mq

x.

Proposition 3.20. If X is a smooth n-dimensional variety, x 2 X is a point in
the support of the subscheme defined by the ideal a ✓ OX , and � 2 (0, 1], then the
following are equivalent:

i) For all p � 0, we have Ip(a�)x = OX,x.
ii) There is p � n such that Ip(a�)x = OX,x.
iii) We are in one of the following two situations: either ordx(a) = 1, or in a

suitable neighborhood of x, we have a = OX(�mZ) for some smooth divisor
Z, and 2  m 

1
�
.

Proof. We may assume that X is a�ne, and we let D be the divisor defined by
a general linear combination of some generators of a. Given p � 0, it follows from
Theorem 2.5 that Ip(a�)x = OX,x if and only if there is such aD with Ip(�D)x = OX,x.
In fact, in this case the same equality holds for all general D; this is a consequence
of the Semicontinuity Theorem for Hodge ideals (see [MP19, Theorem 14.1]).

On the other hand, if Ip(�D)x = OX,x for some p � n, then Dred is smooth at
x (see [MP19, Corollary 10.7]). If this is the case, after replacing X by a suitable
neighborhood of x, we may assume that Z = Dred is smooth and D = mZ. If m = 1,
then we clearly have ordx(a) = 1. On the other hand, if m � 2, then D being general
implies that D = div(a), hence a = OX(�mZ). The inequality �m  1 follows from
the fact that, since Z is smooth, we have

Ip(�mZ) = OX

�
(1� d�me)Z)
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(see [MP19, §3,4]). This proves the implication ii))iii).

The implication iii))i) follows immediately from the fact that, as we have already
seen, for a smooth divisor Z we have Ip(�Z) = OX for all p � 0 and � 2 (0, 1]. Since
the implication i))ii) is trivial, this completes the proof of the proposition. ⇤

As mentioned in the Introduction, further tools from the study of Hodge ideals of
divisors are still missing, mainly due to the lack of a direct connection with Hodge
theory. For example, at least at the moment, there is no DX -module (of Hodge
theoretic origin) associated naturally to the ideals Ip(a). A natural question is the
following:

Question 3.21. Is there a vanishing theorem for Hodge ideals associated to ideals?
More precisely, assuming that X is a smooth projective variety, a is a nonzero ideal
on X and A is a line bundle on X, what are the conditions a, A and p must satisfy
in order to have

H
i
�
X,!X ⌦A⌦ Ip(a)

�
= 0, for all i > 0.

Here one is looking for a statement in analogy with the vanishing theorem for
Hodge ideals of divisors, see [MP19, Theorem F] and [MP18b, Theorem 12.1], and
with that for multiplier ideals associated to ideals, see [Laz04, Corollary 9.4.15].

4. Examples

In this section we provide a few concrete calculations of Hodge ideals associated to
ideals; note that even in the case of powers of the maximal ideal this is quite involved.
We also give some examples of pathological behavior of higher Hodge ideals, compared
to the case of multiplier ideals.

First, in light of the Proposition 3.3, we see that if X is a�ne and h is a general
linear combination of a system of generators of a, then

I0(h
�) = I0(a

�) for all � 2 (0, 1] \Q.

We give two examples showing that the corresponding assertion can fail for p > 0,
even when � = 1.

Example 4.1. Let a = (xy, xz) ✓ C[x, y, z]. Note that for every (a, b) 2 C2r{(0, 0)},
the divisor Da,b in A3 defined by axy+ bxz is reduced, with simple normal crossings,
and so by [MP19, Proposition 8.2] we have

I1(Da,b) = (x, ay + bz).

We thus see that I1(a) = (x, y, z), but I1(Da,b) 6= (x, y, z) for any (a, b) 6= (0, 0).

Example 4.2. Let a = (x2, y3) ✓ C[x, y]. If Da,b is the divisor in A2 defined by
h = ax

2 + by
3, with a, b 6= 0, an easy computation based on [MP19, Corollary 17.8]

gives
I2(Da,b) = (x3, x2y2, xy3, 3ax2y � by

4).

We deduce from Theorem 2.5i) that

I2(a) = (x3, x2y, xy3, y4) 6= I2(Da,b) for all a, b 6= 0.
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We now give an example in which we can compute the Hodge ideal of an ideal,
while we do not have a closed formula for the corresponding Hodge ideal of a general
member of the ideal.

Example 4.3. We compute the Hodge ideals associate to powers of maximal ideals.
Let mx be the ideal defining the point x on a smooth variety X of dimension n � 2.
We will show that if N � 1 and µ(N, p, n) = (p+ 1)(N � 1)� n+ dn/Ne, then

(4.4) Ip(m
N

x ) =

(
OX , if p+ 1 

n

N
;

mµ(N,p,n)
x , if p+ 1 >

n

N
.

Note that if p+ 1 �
n

N
, then µ(N, p, n) � 0.

For N = 1, the above formula says that Ip(mx) = OX for all p, which is clear (see
Proposition 3.20). From now on we assume N � 2. By taking an étale map U ! An

that maps x to 0, where U is an open neighborhood of x, using Proposition 3.5 we
may assume that X = An and mx = (x1, . . . , xn). In this case, since mN

x is preserved
by all linear changes of variables, every Ip(mN

x ) has the same property, hence it is a
power of mx. It follows that given a system of homogeneous generators of Ip(mN

x ), we
only need to determine the minimal degree of these generators.

Let D be the divisor in An defined by a general linear combination f of the mono-
mials of degree N . In particular f is a homogeneous polynomial, with an isolated
singularity at 0. Note that Ip(D) is a homogeneous ideal, but might not be monomial.
We need to show that if ⌫(N, p, n) is the minimal degree of a homogeneous element
of Ip(D), then ⌫(N, p, n) = µ(N, p, n) if p+ 1 >

n

N
and ⌫(N, p, n) = 0, otherwise.

The key ingredient is an inductive formula for computing the Hodge ideals of such
a polynomial f ; according to [Zha18, Corollary B], inspired in turn by a result in
[Sai09], for every p � 1 we have

(4.5) Ip(D) =
X

deg(vj)�(p+1)N�n

OX · vj +
X

1in, g2Ip�1(D)

OX · (f@ig � pg@if),

where the first sum is taken over those vj in a basis of monomials for the Milnor
algebra

S = C[X1, . . . , Xn]/(@1f, . . . , @nf),

whose degree is at least (p+ 1)N � n.

We prove the formula for ⌫(N, p, n) by induction on p, the case p = 0 being clear, by
Proposition 3.3 and the well-known formula for I(m�

x) (see [Laz04, Example 9.2.14]):

I0(D) = I
�
(1� ✏)D

�
= I(mN(1�✏)

x ) = mN�n

x , where 0 < ✏⌧ 1,

with the convention that the last term is OX when N < n.

If p+ 1 
n

N
, then Ip(D) = OX by (4.5) since 1 is part of a monomial basis of the

Milnor algebra (recall that we assume N � 2) of degree 0 � (p + 1)N � n. Suppose
now that p is positive, with p+1 >

n

N
. Note that if g is a homogeneous polynomial of

degree q in Ip�1(D), then by (4.5) all f@ig � pg@if lie in Ip(D); if nonzero, these are
homogeneous of degree N + q � 1. If q = ⌫(N, p� 1, n), then not all these can be 0:
otherwise we have @i(g/fp) = 0 for all i, hence g/f

p is a constant, and thus q = pN ;
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however, using the formula for ⌫(N, p � 1, n) given by the induction hypothesis, we
see that ⌫(N, p� 1, n) < pN .

We also note that we get a contribution to Ip(D) from the first sum in (4.5) if
and only if (p + 1)N � n  n(N � 2), and in this case the contribution consists of
monomials of degree � (p + 1)N � n, with equality for some monomials. Indeed,
since @1f, . . . , @nf form a regular sequence of homogeneous forms of degree N � 1,
the Hilbert series of S is given by

(1� t
N�1)n

(1� t)n
= (1 + t+ · · ·+ t

N�2)n,

hence for a nonnegative integer d we have Sd 6= 0 if and only if d  n(N � 2). By
combining these observations, we conclude from (4.5) that
(4.6)

⌫(N, p, n) =

(
min{⌫(N, p� 1, n) +N � 1, (p+ 1)N � n}, if (p+ 1)N  n(N � 1);

⌫(N, p� 1, n) +N � 1 if (p+ 1)N > n(N � 1).

We distinguish two cases. If p >
n

N
, then we see using the induction hypothesis

and an easy computation that

⌫(N, p� 1, n) +N � 1 = µ(N, p� 1, n) +N � 1  (p+ 1)N � n,

hence we deduce using (4.6) that ⌫(N, p, n) = µ(N, p� 1, n) +N � 1 = µ(N, p, n).

Suppose now that p 
n

N
, hence by the induction hypothesis we have ⌫(N, p �

1, n) = 0. We further distinguish two possibilities. If pN 2 {n� 1, n}, then we again
have N � 1  (p+1)N �n, hence ⌫(N, p, n) = N � 1 by (4.6). Moreover, in this case
it is easy to see that µ(p,N, n) = N � 1, hence we are done.

On the other hand, if pN  n� 2, then (p+1)N  n(N � 1) (we use the fact that
N � 2) and (p + 1)N � n  N � 1, so that it follows from (4.6) that ⌫(N, p, n) =
(p+ 1)N � n. Note also that in this case we have dn/Ne = p+ 1, hence µ(N, p, n) =
(p+ 1)N � n. This completes the proof of (4.4).

Example 4.7. Let a = (xN1 , . . . , x
N
n ) ✓ C[x1, . . . , xn], with n,N � 2. We show that

if m = (x1, . . . , xn), then

(4.8) I1(a) =

8
>><

>>:

C[x1, . . . , xn], if N 
n

2 ;

(xN�1
1 , . . . , x

N�1
n ) +m2N�n

, if n

2  N  n;

(xN�1
1 , . . . , X

N�1
n ) ·mN�n +m2N�n

, if N � n.

Suppose that N > n. Let D be the divisor defined by a general linear combination

f =
nX

i=1

↵ix
N

i .

Again, f is homogeneous of degree N , having an isolated singularity at 0, hence we
can use the formula (4.5).
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In this case the Milnor algebra is given by

S = C[x1, . . . , xn]/(x
N�1
1 , . . . , x

N�1
n ),

hence the contribution of the first sum in (4.5) to I1(D) consists of

(xa11 · · ·x
an
n | ai  N � 2 for all i, a1 + · · ·+ an � 2N � n).

Note that since a is a monomial ideal, it is preserved by the standard action of
(C⇤)n on An, hence the same holds for I1(a). Therefore I1(a) is a monomial ideal as
well. It follows that I1(a) is generated by the monomials that appear with nonzero
coe�cient in the polynomials in I1(D), for D as above.

Since mN is the integral closure of a and since multiplier ideals do not change after
replacing an ideal by its integral closure (see [Laz04, Corollary 9.6.17]), we see as in
Example 4.3 that I0(D) = mN�n. Thus the contribution of the second sum in (4.5)
to I1(D) consists of the ideal generated by f@ig � Nx

N�1
i

g, where g varies over the
monomials in mN�n and 1  i  n. Since the coe�cients of f are general, it is
clear that the monomials that appear in f@ig �Nx

N�1
i

g are x
N�1
i

g and x
N

j
@ig, with

1  j  n. The ideal generated by these monomials is (xN�1
1 , . . . , x

N�1
n ) ·mN�n.

By combining the two contributions, we conclude that

I1(a) = (xN�1
1 , . . . , x

N�1
n ) ·mN�n +m2N�n

,

which proves our formula for N > n. The proofs in the other two cases are similar,
but easier.

Example 4.9 (Non-invariance under integral closure). Recall that if a and b are two
nonzero ideals on X, with the same integral closure, then

I(a�) = I(b�) for all � > 0

(see [Laz04, Corollary 9.6.17]). This property fails for Hodge ideals: consider, for
example, a = (xN , y

N
, z

N ) and b = (x, y, z)N in C[x, y, z], for N � 3. Note that b
is the integral closure of a, while it follows from Examples 4.3 and 4.7 that I1(a) is
strictly contained in I1(b).

Example 4.10 (Failure of the asymptotic property). For multiplier ideals, it follows
immediately from their definition that

I
�
(a`)

�
`
�
= I

�
(ak`)

�
k`
�

for all integers k, ` > 0. The inclusion “✓” is crucial for the construction of asymptotic
multiplier ideals; see [Laz04, §11.1]. This inclusion might not hold for higher Hodge
ideals. Consider for instance the maximal ideal a = (x1, . . . , xn) ⇢ C[x1, . . . , xn],
with n � 3, and fix an integer m > 0. Let D be the zero locus of a general linear
combination of monomials of degree m in the xi, so that D has an isolated ordinary
singularity of multiplicity m at the origin. An easy application of [Zha18, Corollary B]
(see also [MP19, Example 11.7]) gives I1

�
1
m
D
�
= mm+1�n

x for m � n� 1; in this case
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Theorem 2.5i) implies I1
�
(am)

1
m
�
= mm+1�n

x . This means that for ` > n � 1 and
k > 1 we have in fact the strict inclusion

I1
�
(ak`)

1
k`
�
( I1

�
(a`)

1
`
�
.

It is an interesting question if, or when, some type of asymptotic construction can be
performed in this context.

Example 4.11. For e↵ective divisors D and E on a smooth variety X, with D + E

reduced, it is shown in [MP18, Theorem B] that we have

Ip(D + E) ✓
X

i+j=p

Ii(D) · Ij(E) · OX(�jD � iE) for all p � 0.

We used this for instance to deduce the inclusion in Proposition 3.18 in the case of
locally principal ideals and � = 1. One could ask whether for arbitrary nonzero ideals
a and b such that div(a) and div(a) have no common components, we have

(4.12) Ip(a · b) ✓
X

i+j=p

Ii(a) · Ij(b) · a
j
· bi for all p � 0.

It is easy to deduce that this still holds if either a or b is locally principal. However,
it does not hold in general. Suppose, for example, that X = A2n with coordinates
x1, . . . , xn, y1, . . . , yn, while a = (x1, . . . , xn) and b = (y1, . . . , yn). Note that Ii(a) =
Ii(b) = OX (see Proposition 3.20), hence (4.12) says in this case that

Ip(a · b) ✓
X

i+j=p

(x1, . . . , xn)
j
· (y1, . . . , yn)

i = (x1, . . . , xn, y1, . . . , yn)
p
.

However, it follows from [MP18, Corollary D] that if f =
P

n

i=1 xiyi, then Ik(f) = OX

for p  n� 1. Therefore (4.12) fails for n � 2.

5. Generic minimal exponent

In this section we define and study an extension of the concept of minimal exponent
of a hypersurface [Sai93], [Sai16] (see also [MP18b], [MP19b] for a recent study and
applications) to the case of arbitrary subschemes. As always, we work on a smooth
variety X of dimension n.

Recall first that an important invariant of the singularities of a nonzero f 2 OX(X)
is the Bernstein-Sato polynomial bf (s) 2 C[s] of f . The roots of bf are negative
rational numbers by a theorem of Kashiwara [Kas76]. From now on we assume that
f is not invertible, in which case bf (�1) = 0. The negative of the greatest root
of bf (s)/(s + 1) is the minimal exponent e↵(f) of f (with the convention that if
bf (s) = s + 1, which is the case if and only if f defines a smooth hypersurface,
then e↵(f) = 1). By a result of Lichtin and Kollár (see [Kol97, Theorem 10.6]),
the negative of the greatest root of bf (s) is the log canonical threshold lct(f), hence
lct(f) = min{1, e↵(f)}. For an introduction to the log canonical threshold and its
relation to multiplier ideals, we refer to [Laz04, Chapter 9].

We will be mostly using a local version of the minimal exponent: given x in the
zero-locus of f , if U is an open neighborhood of x, then e↵(f |U ) � e↵(f). Moreover, if
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U is small enough, then e↵(f |U ) is independent of U ; the common value is the minimal
exponent e↵x(f) of f at x.

Remark 5.1. The global and local minimal exponents of f were denoted in [MP18b]
by e↵f and e↵f,x, respectively, in line with the notation from [Sai93], [Sai16]. However,
for what follows below we found the present notation more convenient.

The minimal exponent is related to Hodge ideals as follows: if f defines a divisor
D which is reduced in a neighborhood of x, then

(5.2) Ip(�D)x = OX,x () p+ �  e↵x(f)

(see [MP18b, Corollary C]). Note that from the point of view of the minimal exponent,
the interesting case is that when D is reduced in some neighborhood of x; otherwise
lctx(f) < 1 and e↵x(f) = lctx(f).

We will make use of the following semicontinuity property of minimal exponents
for hypersurfaces. Suppose that we have a smooth morphism of complex algebraic
varieties ⇡ : W ! T , with a section s : T ! W . Given f 2 OW (W ) such that the
restriction ft to the fiber ⇡�1(t) is nonzero for every t 2 T , the function

T 3 t ! e↵s(t)(ft) 2 R>0 [ {1}

is lower semicontinuous (see [MP18b, Theorem E(2)]). In fact, the proof in loc. cit.
shows something stronger: for every ↵ > 0, the set {t 2 T | e↵s(t)(ft) � ↵} is open
in T . Since a countable intersection of nonempty open subsets of T is nonempty, it
follows that the set {e↵s(t)(ft) | t 2 T} has a maximum, which is achieved on an open
subset of T . Arguing by Noetherian induction, we deduce that this set is in fact finite.

We now turn to the case of ideals. Consider a nonzero ideal a ✓ OX and a point
x in the zero-locus of a; since we are interested in a local study around x, we assume
that X is a�ne, and a is generated by f1, . . . , fr in OX(X).

Definition 5.3. The generic minimal exponent of a at x is defined as

↵x(a) := e↵x(f),

where f =
P

r

i=1 �ifi is a general linear combination of the generators of a.

Remark 5.4. The fact that for a general combination f as above the value of e↵x(f)
is constant follows from the above discussion about the semicontinuity of the minimal
exponent. Furthermore, it is straightforward to see that this value is independent of
the choice of generators of a.

Remark 5.5. A priori it would make sense to simply call ↵x(a) the minimal exponent
of a and denote it by e↵x(a), extending the terminology and notation from the case of
hypersurfaces. However, we prefer to keep these for a di↵erent invariant, defined in
terms of the Bernstein-Sato polynomial ba,x(s) in the sense of [BMS06]. If a defines a
closed subscheme Z of codimension r at x, reduced in some neighborhood of x, then
one can deduce from [BMS06, Theorem 2] that ba,x(�r) = 0; we define the minimal
exponent e↵x(a) as the negative of the largest root of ba,x(s)/(s+ r). This is in general
di↵erent from ↵x(a), and seems to be related more naturally to the Hodge filtration
on local cohomology. We hope to study this relationship in future work.
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Proposition 5.6. If a is not radical in codimension 1 around x, then ↵x(a) is equal
to the log canonical threshold lctx(a) of a at x. On the other hand, if a is radical in
codimension 1 around x, then

(5.7) Ip(a
�)x = OX,x () p+ �  ↵x(a).

Proof. If a is not radical in codimension 1 around x and f is a general linear combi-
nation of generators of a, then f defines a divisor having a non-reduced component
containing x. We therefore have lctx(f) < 1, and thus

lctx(a) = lctx(f) = e↵x(f),

where the first equality follows from [Laz04, Proposition 9.2.28] and the description
of the log canonical threshold via multiplier ideals.

Suppose now that a is reduced in codimension 1 around x. If � > 0 is a rational
number and f is a general linear combination of generators of a, defining a divisor D
which is reduced in some neighborhood of x, then ↵x(a) = e↵x(f). Moreover, we have
Ip(a�)x = OX,x if and only if Ip(�D)x = OX,x (for the “only if” part, we use that
OX,x is a local ring). The equivalence in (5.7) then follows from (5.2). ⇤

Remark 5.8. If p = 0, then the equivalence in (5.7) also holds when a is not radical
in codimension 1 around x. Indeed, this follows from the description of I0(a�) as a
multiplier ideal in Proposition 3.3 and the characterization of lctx(a) via multiplier
ideals.

Example 5.9. We collect a first few examples here. The case of general monomial
ideals is discussed in Example 5.13 below.

(1) We have ↵x(a) = 1 if and only if ordx(a) = 1, meaning a 6✓ m2
x.

(2) If N � 2, then ↵x(mN
x ) = n

N
, since the same is true for a hypersurface having

multiplicity N at x and whose projectivized tangent cone at x is smooth; see [Sai09,
(4.1.5)] (cf. also [MP18b, Theorem E(3)]).

(3) In general, if ordx(a) = N � 2, then ↵x(a) 
n

N
. This follows using [MP18b,

Theorem E(3)].

As in the case of hypersurfaces, we have:

Proposition 5.10. For every ideal a, we have

↵x(a) � lctx(a).

Moreover, this is an equality if lctx(a) < 1.

Proof. It is shown in [CM19, Proposition 2.1] that if f is a general linear combination
of generators of a, then e↵x(f) � lctx(a). The argument uses [MP18b, Corollary D],
which gives a lower bound for e↵x(f) in terms of discrepancies on a log resolution.
This implies the first assertion. Another proof follows from Proposition 5.15 below;
see Remark 5.16. The second assertion follows as in the proof of Proposition 5.6. ⇤
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Proposition 5.11. If a ✓ b are nonzero ideals on X and x lies in the zero-locus of
b, then

↵x(a)  ↵x(b).

Proof. Let f be a general linear combination of generators of a and g a general linear
combination of generators of b, so that

↵x(a) = e↵x(f) and ↵x(b) = e↵x(g).

Since f 2 b, it follows from the semicontinuity property of the minimal exponents for
hypersurfaces that e↵x(f)  e↵x(g), which gives the assertion in the proposition. ⇤

The following series of properties of the minimal exponent of an ideal follows
without much e↵ort from the analogous properties proved in the case of divisors
in [MP18b, Theorem E and §6].

Proposition 5.12. (1) For every smooth subvariety Y ✓ X, every ideal a on X such
that a · OY 6= 0, and every x in the zero-locus of a · OY , we have

↵x(a · OY )  ↵x(a).

(2) For every ideal a and every ↵ > 0, the set

{x 2 V (a) | ↵x(a) � ↵}

is open in X.

(3) More generally, let f : X ! T be a smooth morphism and s : T ! X a section of
f . If a is a nonzero ideal on X that vanishes on s(T ) and such that a · OXt is not
zero for any fiber Xt of f over t 2 T , then for every ↵ > 0, the set

{t 2 T | ↵s(t)(a · OXt) � ↵}

is open in T .

(4) If a and b are nonzero ideals vanishing at x 2 X, then

↵x(a+ b)  e↵x(a) + e↵x(b).

Example 5.13. We show that if a is a monomial ideal inC[x1, . . . , xn], with ord0(a) >
1, then ↵0(a) = lct0(a). Recall that in this case, by a result of Howald [How01] we
have lct0(a) = 1/c, where if Pa is the Newton polyhedron of a (that is, Pa is the convex
hull of u+Rn

�0, for the monomials xu 2 a), we have c = min{t > 0 | (t, . . . , t) 2 Pa}.

Note now that if m = (x1, . . . , xn), then

0  ↵0(a+mN )� ↵0(a) 
n

N
.

Indeed, the first inequality follows from Proposition 5.11, while the second follows
from Proposition 5.12(4) and Example 5.9(2). We similarly have

0  lct0(a+mN )� lct0(a) 
n

N

(see [Laz04, Corollary 9.5.28]). By letting N go to infinity, we see that it is enough
to show that ↵0(a) = lct0(a) when a is a monomial ideal defining a scheme supported
at 0 and such that ord0(a) > 1. If f is a general linear combination of monomial
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generators of a, then the hypersurface defined by f has an isolated singular point at
0. Moreover, it is nondegenerate with respect to its Newton polyhedron, in which
case it is well-known that e↵0(f) = 1/c (see [Var81], [EL82], or [Sai88]).

We can define a global version of the generic minimal exponent, as follows. For
any proper nonzero ideal a on X, we put

(5.14) ↵(a) := min
x2V (a)

↵x(a).

Note that since we work over C, a countable intersection of Zariski open subsets of an
irreducible algebraic variety has nonempty intersection. Using this, it follows easily
from Proposition 5.12(2) that the set {↵x(a) | x 2 V (a)} is a finite set. In particular,
the minimum in (5.14) makes sense and the set of those x 2 V (a) for which the
minimum is achieved is a closed subset of V (a). We also see that for every x 2 V (a),
we have

↵x(a) = max
U3x

↵(a · OU ),

where the maximum is over the open neighborhoods of x.

Another useful description of ↵x(a) in terms of minimal exponents of hypersurfaces
is facilitated by Theorem 2.5. Suppose that a is generated by f1, . . . , fr 2 OX(X)
and consider in X ⇥Ar the hypersurface given by the function g =

P
r

i=1 yifi, where
y1, . . . , yr are the coordinates on Ar.

Proposition 5.15. Given x 2 V (a), for � = (�1, . . . ,�r) 2 Ar general, we have

↵x(a) = e↵(x,�)(g).

Proof. If � is such that f� =
P

r

i=1 �ifi is nonzero, then

e↵(x,�)(g) � e↵x(f�).

This follows from the behavior of minimal exponents under restriction (in this case
to a fiber of the projection X ⇥Ar

! Ar) described in [MP18b, Theorem E(1)]. We
thus deduce from the definition of ↵x(a) that for � general, we have

e↵(x,�)(g) � ↵x(a).

We next show that the opposite inequality holds for every � 2 Ar. If ord(x,�)(g) =
1, then ordx(a) = 1, and the inequality holds since both sides are infinite. Suppose
now that ord(x,�)(g) � 2 and consider first the case when a is radical in codimension
1 in a neighborhood of x (in which case the divisor defined by g is reduced in a
neighborhood of {x}⇥Ar). Let’s write

e↵(x,�)(g) = p+ ↵,

with p an integer and ↵ 2 (0, 1]. We deduce from the description of the minimal
exponent of g in terms of Hodge ideals that

Ip(g
↵)(x,�) = OX⇥Ar,(x,�).
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By Proposition 5.6, it is enough to show that Ip(a↵) is trivial at x as well. However,
by Theorem 2.5(ii) we know that

Ip(a
↵) = Coe↵

�
Ip(g

↵)
�
,

so the result follows from the general (and easy to check) fact that if I ⇢ OX [y1, . . . , yr]
is an ideal which is not contained in the maximal ideal m(x,�), then Coe↵(I) is not
contained in mx.

If a is not radical in codimension 1 around x, then the divisor defined by g is not
reduced around (x,�) and we have

↵x(a) = lctx(a) and e↵(x,�)(g) = lct(x,�)(g)

by Proposition 5.6. We then argue as above, with p = 0, using Remark 5.8. ⇤
Remark 5.16. The above result leads to another proof of Proposition 5.10. Indeed,
after possibly restricting to a neighborhood of x, we may assume that lctx(a) = lct(a).
Now by [Mus19, Corollary 1.2] we know that e↵(g) = lct(a). On the other hand,
Proposition 5.15 says that for � 2 Ar general, we have

↵x(a) = e↵(x,�)(g) � e↵(g).
See also Theorem 5.17 below and its proof for more general statements.

Recall that for any nonzero ideal a in X, a Bernstein-Sato polynomial ba(s) was
defined in [BMS06], extending the classical invariant associated to a hypersurface.
For every x 2 V (a), we have a local version ba,x(s). By Theorem 2 in loc. cit. the
greatest root of ba,x(s) is again �lctx(a), as in the case of hypersurfaces. We conclude
by showing that the generic minimal exponent continues to be a root as well.

Theorem 5.17. For every x 2 V (a), the negative of ↵x(a) is a root of the Bernstein-
Sato polynomial ba,x(s).

Proof. This is now a simple consequence of results obtained above and in [Mus19].
Using the notation and statement of Proposition 5.15, we have

↵x(a) = e↵(x,�)(g),

where � = (�1, . . . ,�r) 2 Ar is general. By the definition of the minimal exponent
of g, it follows that �↵x(a) is the greatest root of bg,(x,�)(s)/(s+ 1). By replacing X

with an open neighborhood of x we may assume that ba,x(s) = ba(s). On the other
hand, it is shown in [Mus19, Theorem 1.1] that

ba(s) = bg(s)/(s+ 1).

Since bg,(x,�)(s) divides bg(s) (see e.g. the discussion at the beginning of [MP18b, §6]),
we obtain the desired result. ⇤

We recall that in the case of hypersurfaces, there exists also a close relationship
between minimal exponents and the V -filtration (see e.g. [Sai16], and also [MP18b]).
On the other hand, for subschemes of higher codimension, as in Remark 5.5 a connec-
tion with (the several functions version of) the V -filtration seems to be more suitable
in the alternative context of the Hodge filtration on local cohomology.
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