HODGE IDEALS AND MINIMAL EXPONENTS OF IDEALS

MIRCEA MUSTATA AND MIHNEA POPA

Dedicated to Professor Vasile Brinzanescu on the occasion of his seventy-fifth birthday

ABSTRACT. We define and study Hodge ideals associated to a coherent ideal sheaf
a on a smooth complex variety, via algebraic constructions based on the already
existing concept of Hodge ideals associated to Q-divisors. We also define the generic
minimal exponent of a, extending the standard invariant for hypersurfaces. We
relate it to Hodge ideals, and show that it is a root of the Bernstein-Sato polynomial
of a.

1. INTRODUCTION

Let X be a smooth complex algebraic variety. If D is a reduced hypersurface in X
and Ox (xD) is the sheaf of rational functions on X with poles along D, then Saito’s
theory of mixed Hodge modules [Sai90] endows Ox (D) with a Hodge filtration. This
filtration can be described via a sequence of Hodge ideals I,(D), for p > 0, that were
systematically studied in [MP19]. More generally, it was shown in [MP19] that one
can attach Hodge ideals to arbitrary effective Q-divisors on X. These invariants
provide “higher versions” of multiplier ideals, which have been playing an important
role in birational geometry (see [Laz04, Chapter 9]), and which essentially correspond
to the case p = 0 in the sequence above.

Our goal in this note is to attach similar invariants to (rational powers) of an
arbitrary coherent ideal a on X. To this end, there are two natural approaches.
The first is based on studying the Hodge filtration on the local cohomology sheaves
H%(Ox), where Z is the closed subscheme associated to a. In this approach one stays
close to Hodge theory, but the filtrations cannot be described anymore via ideals in
C'x; we plan to tackle this study in future work. Here we take an algebraic approach,
motivated by the theory of multiplier ideals, defining Hodge ideals for rational powers
of coherent ideals by making use of the existing notion for effective Q-divisors.

After replacing X by the subsets in an affine open cover, we may assume that X
is affine and that the ideal a is generated by fi,..., fr € Ox(X). A basic fact about
multiplier ideals is that if D is defined by f = Y, a;fi, with o € C general, then
for every A < 1 we have

I(a*) = Z(AD).
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However, for p > 1, it turns out that even in simple examples the ideal I,,(AD), with
D as above, might depend on D.

Instead, given a positive rational number A < 1, we define Ip(a)‘) to be the ideal
generated by all I,(AD), where D is the divisor defined by any f € a that satisfies a
mild condition (for example, if a is reduced in codimension 1, we may take all f € a
that define reduced divisors). We show that it is enough in fact to let D vary over the
divisors defined by general linear combinations of the generators of a. Yet another
equivalent description of I,(a?) is the following: if y1,...,y, denote the coordinate
functions on A" and we consider the regular function g = 77, y;fi on X x A",
defining the divisor G, then Ip(a’\) is generated by the coefficients of all elements of
I,(AG) C Ox(X)[y1,---,yr]- These equivalent descriptions of I,(a*) are discussed in
Section 2. It is not hard to extend them to a definition in the global case.

In Section 3, we use the properties of Hodge ideals for Q-divisors proved in [MP19]
to show corresponding results in our more general context. For example, we derive
analogues of the Restriction Theorem and the Subadditivity Theorem in this setting.
Some examples of Hodge ideals associated to ideals are computed in Section 4.

We note that this theory of Hodge ideals associated to ideal sheaves is not yet
completely satisfactory, since some of the main tools from the study of Hodge ideals
of divisors are still missing. The main reason is the lack of a direct connection with
Hodge theory. For example, we don’t know whether on projective varieties there is a
vanishing theorem for Hodge ideals associated to an ideal a (see Question 3.21).

Finally, in Section 5 we define and study an extension of the notion of minimal
exponent to the case of ideals. Recall first that for a divisor D and = € Supp(D), the
minimal exponent a, (D) is the negative of the largest root of the reduced Bernstein-
Sato polynomial of D at z. This is a refined version of the log canonical threshold
let, (D), which is equal to min{a, (D), 1}. It is intimately linked to Hodge ideals as
follows: by [MP18b, Corollary CJ, if D is a reduced divisor and A is a rational number
with 0 < A <1, then for every p we have I,,(AD), = Ox if and only if p+X < a, (D).

For an arbitrary ideal sheaf a, and a point x in the zero-locus of a, we define an
invariant, the generic minimal exponent @, (a), which is the minimal exponent at x of
a general hypersurface containing the subscheme defined by a. More precisely, if D is
the divisor defined by a general linear combination of generators of a in an affine open
neighborhood of z, then @, (a) = a,(D). As in the divisorial case, if A is a rational
number with 0 < A < 1, and a is radical in codimension 1 around x, then

L(aY) = Oxp = p+ A < ayla).

(If a is not radical in codimension 1 around z, then @, , is equal to the log canonical
threshold lctz(a) of a at x.) We extend the basic properties of minimal exponents
of divisors to the case of arbitrary ideals. The main result we prove, Theorem 5.17,
states that & (a) is a root of the Bernstein-Sato polynomial b,(s) defined in [BMS06].

1.1. Acknowledgments. We thank the anonymous referee for several comments
and suggestions.
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2. EQUIVALENT DEFINITIONS

Our goal in this section is to give the definition of Hodge ideals associated to
arbitrary nonzero ideals and provide some equivalent descriptions. Let X be a smooth
n-dimensional complex algebraic variety and a a nonzero coherent ideal sheaf (often
simply called ideal) on X.

Since X is smooth, it is easy to see, by taking a suitable affine open cover, that we
can uniquely write

a= Ox(—div(a)) - b,

for an effective divisor div(a) and an ideal b defining a closed subscheme of codi-
mension > 2. For our purpose, we may and will restrict to the open subsets in an
affine cover of X and thus assume that X is an affine variety and Ox ( — div(a)) is a
principal ideal. Let hq,...,h, € Ox(X) be a system of generators for b. Note that
if aq,..., 0 € C are general, then ) . «;h; defines a reduced effective divisor on X,
without any common components with div(a).

Definition 2.1. If X is a smooth affine variety and a = Ox ( — div(a)) - b as above,
with ﬁX( — div(a)) principal, then for every p > 0 and A € (0, 1] N Q, the pth Hodge
ideal of a* is

I(a) =Y L(Adiv(a) + E)),
E

where the sum is over all reduced effective divisors F, defined by elements i € b, and
which have no common components with div(a). Equivalently, we have

Iy(a*) := ) I,(AD),
D

where D varies over the divisors defined by elements of a, such that D — div(a) is
reduced, without common components with div(a).

This definition makes sense for A > 1 as well. However, we believe that from the
point of view we want to adopt it does not give the “correct” objects; see for instance
Remark 3.4 below. We prefer thus to restrict to A € (0, 1].

Remark 2.2 (Reduced subschemes). Note that if a defines a subscheme that is
reduced in codimension 1, then

L(a*) =) 1,(\D),
D

where the sum is over all reduced effective divisors D defined by elements of a.

Remark 2.3 (Principal ideals). If the ideal a is principal, defining a divisor D, then
I,(a*) = I,(AD) (in case D = div(g), we also denote this by I,(¢g")). This follows
from the fact that if F is an effective divisor, with Supp(D) and Supp(F) having no
common components, then I,(A(D + E)) C I,(AD). This is a consequence of the
Subadditivity Theorem for Hodge ideals (see [MP19, Theorem 15.1]).
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Before giving other equivalent descriptions of Ip(a)‘), we introduce some notation.
Suppose that X = Spec(R) is affine and J C R[y1,...,y,], for some r > 1, is an ideal.
We define the ideal Coeff(J) of R as follows. Choose generators Q1, ..., Qs for J and

write each of them as

Qi = Z Pu,iyuv
uENT”

with P,; € R and y* = yi"* - - -y}~ for every u = (uy,...,u,) € N” (here N is the set
of nonnegative integers). We then put

Coeff(J) :== (P, Jue N",1<i<s)CR.
Note that if @ = >_7_; hiQ; is in J, and if

h; = Z Cu,iyua

u€ENT”
then
S
0= X (X3 il
weNT \i1=1 v+w=u
and

S
Z Z Co,iPuwi € (Pyj|ueN"1<j5<5s).
1=1 v+w=u

Therefore the definition of Coeff(.J) is independent of the choice of generators for J.

Lemma 2.4. If J = (Q1,...,Qs) is an ideal in R[y1,...,y,], then the ideal Coeff(J)
is generated by {Q1(c),...,Qs(c) | « € C"}. Moreover, given any non-empty open
subset U C C7, it is enough to only consider those o € U.

Proof. Note that if P € R[yi,...,y,] has degree d and for j € I, with |['| > d+ 1, we
consider

o) = (agj),...,ozgj)) eC’

such that 041(»]) =+ 041(‘7/) for all ¢ and all j # j’ in T", then the coefficients of P lie in the
ideal generated by { P(a!9)) | j € I'}. (This follows by induction on 7 from the formula
for the determinant of the Vandermonde matrix.) The assertions in the lemma are
an immediate consequence. ]

We can now give two other descriptions of I,(a*). As before, we assume that
X = Spec(R) is smooth and affine and we write a = Ox (—div(a)) - b, with b defining
a subscheme of codimension > 2. We further assume that Ox ( —div(a)) is principal.

Theorem 2.5. With the above notation, if fi,..., fr are generators of a, then for
every p > 0 and X € (0,1] N Q the following hold:

i) I,(a*) is generated by the ideals I,(AD), where D is the divisor of a general
linear combination ), o f;, with o; € C.
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it1) We have
I,(a*) = Coeff (I,(\G)),

with G being the divisor on X x A" defined by >, yi fi, where yi,...,yn are
the coordinates on A'.

Remark 2.6. By assumption, we can write f; = gh;, where g defines div(a) and
hi,...,h, are generators for the ideal b. Note that the divisor G in ii) can be written
as pri(div(a)) + G, where pry: X x A" — X is the projection and G’ is a reduced
divisor having no common components with prj (div(a)). Indeed, G is defined by
g-> i_1 yihi and we let G be the divisor defined by > 7_; y;h;. If T is an irreducible
component of G’, which either appears with multiplicity > 2 in G’, or is also a
component of prj (div(a)), then T is the pull-back of a prime divisor on X. (In the
first case, this follows from the fact that for general ai,...,a, € C, the element
> ; Aihi € R defines a reduced divisor on X.) After replacing X by a suitable affine
open subset, we may assume that T is defined by h € R such that h divides h; for all
7. This contradicts the fact that b defines a subscheme of codimension > 2.

Proof of Theorem 2.5. Let us denote by Il’,(a)‘) the ideal generated by the I,(AD),
where D is the divisor defined by a general linear combination ), o fi. Let Q1,..., Qs €
Rlyi,...,y,] be generators for I,(AG). We write G = prj(div(a)) + G’ as in Re-
mark 2.6. For every a = (a1, ..., ;) € C", the restriction G, of G to

X~Xx{a}—=>XxA"

is equal to the sum of div(a) and the divisor G, defined on X by >, a;h;. Note
that we have Gyq = prj} (div(a))rC 4 G If G, is reduced, having no common
components with div(a), then the restriction of Gyeq to X ~ X x {a} is equal to
div(a)red + G, = (Ga)red- In this case we can apply the Restriction Theorem for
Hodge ideals (see [MP19, Theorem 13.1]) to deduce that for such a, we have

I(A-div(a) + X GY,) € I,(A\G) - Ox = (Q1(«), ..., Qr()).

Moreover, this is an equality for general «.

The fact that Coeff (I,(A\G)) = I]’J(ak) now follows from Lemma 2.4. Moreover, it
is clear by definition that I} (a*) C I,(a*). The above consequence of the Restriction

Theorem gives the inclusion I,(a*) C Coeff(I,(AG)), completing the proof of the
result. O

Remark 2.7. If X and a are as in Theorem 2.5 and U is an affine open subset of
X, then it follows from either of the two descriptions of I,(a") in the theorem that
the restriction of I(a%) to U is I((a|y)*). We may thus define I,(a’) by gluing the
objects defined locally in a suitable affine open cover.

Definition 2.8 (Global definition). If X is a smooth variety, a is a nonzero ideal on
X, and A € (0,1] N Q, we choose an affine open cover of X such that on each open
subset U belonging to the cover, the ideal & X( - div(a))|U is principal. For every
such U we may thus define I,,((a|y)"), and it follows from Remark 2.7 that these
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ideals glue to give an ideal I,(a*) on X. This is clearly independent of the choice of
cover.

Remark 2.9. We note that once the ideals I, (a’) are defined in general, the assertions
in Theorem 2.5 extend to arbitrary affine open subsets (it is straightforward to reduce
to the case when the ideal &x ( — div(a)) is principal).

Remark 2.10 (Hodge ideals associated to several ideals). Suppose that we have
nonzero ideals aj,...,a, on X. We may assume that X is affine, and for each 1,
the ideal ﬁx( — div(ui)) is principal. For rational numbers \y,..., A\, € (0,1], we
consider divisors D ="\, \; (div(ai) + EZ-), where each E; is defined by an element
of b;, such that ) . E; is a reduced divisor that has no common components with
>, div(a;). This allows us, as in Definition 2.1, to define an ideal

Iy(ay" - a}r) C Ox.
There is an analogue of Theorem 2.5 in this more general setting and the interested

reader will have no trouble stating and proving it.

3. BASIC PROPERTIES

In this section we extend some basic properties of Hodge ideals from the case of
divisors to that of ideals.

Proposition 3.1. If a C b are nonzero ideals on the smooth variety X, such that
the divisors div(a) — div(b) and div(b) have no common components, then for every
p>0and X € (0,1] N Q we have

Ip(a*) C I(0Y).

Proof. We may assume that X is affine and that a is generated by fi,..., fr and b

is generated by f1,..., fr, fr41,- -, fr+s. Furthermore, we may assume that for i <r
we can write f; = gh; such that hy,...,h, define a subscheme of codimension > 2
and similarly, for i < r + s we can write f; = ¢’h} such that hA,... k., define a

subscheme of codimension > 2. We can then write g = g’u, for some u € Ox(X).

Consider f = gh, where h € (hi,...,h,) defines a reduced divisor without common
components with the divisor div(a) defined by g. Since we can write f = ¢'(uh),
and div(uh) = div(u) + div(h) has no common components with div(g’) (note that
by hypothesis, div(u) and div(g’) have no common components), it follows from the
definition that

I,(X-div(f)) C I,(bY).
Since this holds for all f as above, we obtain the assertion in the proposition. O
Remark 3.2. The condition on div(a) and div(b) in Proposition 3.1 cannot be
dropped: if D and FE are effective Q-divisors such that D — FE is effective, it is

not the case that we always have I,(D) C I,,(F). In fact, this can fail even when D
and E are rational multiples of the same integral divisor, see [MP19, Example 10.5].

We next show that Iy coincides with a multiplier ideal.
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Proposition 3.3. If X is a smooth variety and a is a nonzero ideal on X, then for
every X € (0,1] N Q we have

Ip(a*) = I(a)‘_e) for 0<e<x 1.

Proof. 1t is enough to check this when X is affine. If A is a general linear combination
of a system of generators of a, then it follows from [Laz04, Proposition 9.2.28] that

I(h*¢) =Z(a*).
If D is the divisor defined by h, then

Z(h*=) = In(AD)
by [MP19, Proposition 9.1]. The assertion now follows from Theorem 2.51). O
Remark 3.4. Note that if we also allowed A > 1 in Definition 2.1 and Theorem 2.5,

using the fact that Io((a+1)D) = Ox(—D) - Ip(aD) for every a € Q, we would get
Io(a®tt) = a- Ip(a®), and not Z(a®+1~¢).

Proposition 3.5. If a is a nonzero ideal on the smooth variety X and p: Y — X is
a smooth morphism, then for every A € (0,1] N Q and every p > 0, we have

() - Oy = Ip((a- ﬁY))\)'

Proof. We may clearly assume that both X and Y are affine, and let fi,..., f, be
generators of a. This implies that fiop, ..., frop generate a-Oy. If & = (e, ..., ;) €
C" is general and D, is defined by ), o f;, then ¢*D, is defined by >, ai(fi o ¢).
Since I,(a*) is generated by such I,(AD,) and I,((a - Oy)") is generated by such
I(A\p* D,,), we obtain the assertion in the proposition thanks to the lemma below. [

The following is the extension of [MP19, Proposition 15.1] to the case of Q-divisors;
it is stated only implicitly in [MP19].

Lemma 3.6. If p: Y — X is a smooth morphism of smooth varieties, and D is an
effective Q-divisor on X, then for every p > 0 we have

1,(¢" D) = (D) - 6.

Proof. By possibly shrinking X, we may assume that D = aH, where « is a positive
rational number and H is the effective Cartier divisor defined by a function h €
Ox(X). We denote by Z the support of D. We then have that ¢*D = ap*H, and
©*H is defined by h' = h o . Moreover, since ¢ is smooth, the divisor Z’ = ©*Z is
reduced, and is therefore equal to the support of ¢*D.

Note now that, in the notation of [MP19, §2 and §4], the Hodge ideal I,(D) is
defined by the Hodge filtration on the Zx-module M(h™%), in the sense that

Fy,M(h™%) = L,(D) ® Ox(pZ) - h™ .
(Cf. more precisely [MP19, Remark 4.3].) Analogously, we have
FM(H ™) = L(¢"D) @ Ox (p7) - 1.
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It suffices then to have

FyM(IW'™%) = ¢" F,M(h™),
which is deduced in [MP19, Remark 2.15] as a consequence of the behavior of mixed
Hodge modules under smooth morphisms and base-change. O

Proposition 3.7. Let X be a smooth complex variety and a,b nonzero ideals on X.
i) For every p > 0 and every X € (0,1] N Q, we have
a? - Iy(at) C I(a).
i1) For every p > 0 and every A € (0,1] N Q, we have
a1 1, (6%) C I(ab?).

Proof. In order to prove the inclusion in i), we may assume that X is affine. Let
hi,...,h, be generators of a. If h = 23:1 ajhj, with aq, ..., a, € C general, then as
in the proof of Proposition 3.3 we have Io(h*) = Ip(at). Using [MP19, Remark 4.2],
we have

hP - Io(a?) = hP - Io(h*) C I,(hY) C (o).
Since this holds for every Ay,..., A\, € C general, and we are in characteristic 0, we

conclude that
a? - Io(a) C I(at).

We next prove ii). Consider first the case when a = (f) and b = (g) are principal
ideals. In this case we have an inclusion of filtered Zx-modules

(3.8) Ox[1/glg™ C Ox[1/fglg™.
For the definition of these Zx-modules, which play an important role in defining

Hodge ideals of Q-divisors, we refer to [MP19, §2]. Recall from [MP19, §4] that by
the definition of Hodge ideals, we have

FpﬁX[l/g]gf/\ - Ip(g)\) ' ﬁX (p ' div(g)red)gi)\
and
FyOx[1/folg™ = L(fg") - Ox (p - div(fg)rea) f g™
By passing to filtered pieces, the inclusion (3.8) thus gives

Ox (p-div(g)red) - Ip(gM)g ™ C Ox (p - div(fg)red) - Ip(fa™) f g™,
hence
fp—HIp(g)\) - Ip(fg)\)-

We now turn to the case of arbitrary ideals. We may and will assume that X is
affine, with R = Ox(X), and that we have factorizations a = ¢ -a’ and b = ¢ - b/,
with a’ and b’ defining subschemes of codimension > 2. Consider a general linear
combination g of generators of b, that defines a divisor E. By the generality condition,

we may assume that F — div(b) is reduced, without any common components with
div(a) + div(b). In this case the divisors

div(ag) — div(ab) = E — div(b)
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and div(ab) have no components in common, hence the obvious analogue of Proposi-
tion 3.1 for Hodge ideals associated to several ideals (see Remark 2.10) gives

Iy(ag*) C Ip(ab®).

Using the characterization of I,(6%) in Theorem 2.5i), it then suffices to show that
for every g as above we have

(3.9) @ Iy(g%) C Ip(agh).

Let fi,..., fr be generators of a and consider h = Y, fiyi € R[y1,...,y,]. It follows
from the case of principal ideals that

WP (gY) C Lp(hg™).
(Note that I,(¢*) - R[y1,...,y,] is the p'® Hodge ideal with exponent A for the image
of g in Rly1,...,yr|, by Proposition 3.5.) This implies
Coeff(h?*1) - I,(g*) = Coeff (P11 1,(g*)) C Coeff (I,(hg*)) = I,(ag"),

where the last equality follows from the analogue of Theorem 2.5ii) for Hodge ideals
associated to several ideals. On the other hand, it follows from the definition that

Coeff (h?11) = ol

and we obtain the inclusion in (3.9). O

For exponent A = 1, Hodge ideals become deeper as p increases:

Proposition 3.10. If X is a smooth variety and a is a nonzero ideal, then
Ipti(a) € Ip(a)

for every nonnegative integer p.
Proof. We may assume that X is affine and a is generated by hi,..., h,. If D is
a divisor defined by a linear combination > ;_; a;h; and if we write D = Dyeq + B,

where Dyeq is the effective reduced divisor with the same support as D, then it follows
from [MP19, Lemma 4.4] that

Iy1(D) = Lps1(Dred) - Ox(=B) and  1,(D) = I,(Dsea) - Ox(~B).
On the other hand, since Dyeq is reduced, we have
Ip+1(Dred) - Ip(Dred)
by [MP19, Proposition 13.1]. We thus conclude that I,+1(D) C I,,(D) and the asser-

tion in the proposition now follows from the definition of I,(a) and I,41(a). O

For arbitrary A we only have the following:

Proposition 3.11. Let X be a smooth variety and consider a nonzero ideal a on X
which is radical in codimension 1. If p and p' are nonnegative integers and \,\ €
QN (0,1] are such that p+ X\ < p' + X, then

Iy(@) C I(a") mod a,

i.e. the inclusion holds in the quotient Ox /a.
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Proof. We may assume that X is affine, and let D be the divisor corresponding to a
general linear combination f of generators of a. By [MP18b, Theorem A’ and Remark
4.8], we have

ILy(N'D) C I,(AD) mod f,
and hence also mod a. Indeed, mod f these statements say that I,,(AD) coincides with
VPG x, Saito’s microlocal V-filtration on Ox along f; this is a decreasing filtration.
We can then use Theorem 2.51) to conclude. 0

We now turn to the analogue of the Restriction Theorem for multiplier ideals
(cf. [Laz04, Theorem 9.5.1 and Example 9.5.4]) and for Hodge ideals of divisors (cf.
[MP18, Theorem A] and [MP19, Theorem 13.1]). Let X be a smooth complex variety
and H C X a smooth, irreducible hypersurface. Consider an ideal a on X such that
ag = a- Oy is nonzero. We define on H the divisor F' = ), arT, where T varies
over the components of div(az) and

ar := ordp (div(a)red|H) + OrdT(CIH) — ordp (diV(ﬂ)’H) — 1.
It is easy to see that ap > 0, but this will also be clear from the proof of the next

theorem.

Theorem 3.12. With the above notation, for every p > 0 and every X € (0,1] N Q,
we have

(3.13) Ou(—pF) - Iy(ayy) C I(a*) - On.

Moreover, if H is sufficiently general (for example, a general member of a basepoint-
free linear system), then F' =0 and the inclusion in (3.13) is an equality.

Proof. We may assume that X is affine, Ox ( —div(a)) is principal, and a is generated
by hi,...,hy. If a1,...,a, € C are general and D is defined by ). a;h;, then D|p is
defined by a general linear combination of a system of generators of ag. We can write
D = div(a) + B, with B reduced and having no common components with div(a).
Therefore we have
Z = Dyeq = diV(Cl)red + B.

If Zy = Z|g and Z); = (ZH )red, it follows from [MP19, Theorem 13.1] that we have
(3.14) O~ p(Zi — Zy)) - 1,(AD|w) € ,(AD) - 0.
Moreover, if H is sufficiently general (depending on D), then Zy = Z); and we have
equality in (3.14).

Note now that if T is a prime divisor on H such that ordp(Zy) > 2, then
ordr(D|g) > 2, hence T is a component of div(ag). In particular, there are only

finitely many such T', independently of our choice of D. Since D is general, for every
component 1" of div(ag), we have ordr(D|p) = ordr(ag), hence

ordp(Zy — Zy) = ordy (div(a)red|r) + ordr(Blg) — 1
= OrdT(diV(a)red|H) + ordT(D]H) — ordT (div(a)|H) -1
= OrdT (div(a)red|H) + ordT(aH) — OrdT (diV(Cl)|H) — 1.
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This shows that Zy — Zj; = F. By letting D vary and using Theorem 2.5i), we
deduce from (3.14) the first assertion of the proposition.

Let us now choose divisors D1, ..., D, as above such that
I(a") =Y I,(AD;) and Iy(ay) =Y L(ADiln).
i=1 i=1

If we take H general with respect to all D;, then we see that
I,(A\Dilg) = I,(AD;) - Oy for 1<i<s.

We thus obtain the second assertion of the proposition. O

Suppose now that a is a nonzero ideal on X and let us put
(3.15) a' := Ox(— div(a)red) - b,

where a = Ox (—div(a)) -b and div(a),eq is the reduced effective divisor with the same
support as div(a). Note that a is reduced in codimension 1 if and only if a = a'.

Remark 3.16. With the notation in Theorem 3.12, if a’- @y is radical in codimension
1, then F' =0, and we get
I(aY) C I,(a*) - O for every p>0.

Indeed, if X is affine and Z is as in the proof of the theorem, then the hypothesis
implies that Z|p is reduced. Therefore Zy = Z};, hence F' = 0. Note also that in
this case we have by assumption o' - Oy = (a- Op)’.

Corollary 3.17. Let p: W — X be any morphism of smooth complex varieties. If a
s an ideal on X such that ay := a-Oy is nonzero and o - Oy is radical in codimension
1, where o is defined in (3.15), then for every p > 0 and every A € QN (0, 1] we have

Ip(alév) - Ip(a)\) “Ow.

Proof. We can factor ¢ as
WL W ox X 2 X,
where p is the projection and j is a closed embedding. Since p is smooth, we have
Ip((a : ﬁWxX)/\) = Ip(a/\) - Owxx
by Proposition 3.5, hence in order to prove the corollary it is enough to treat the case

when ¢ is a closed embedding. In this case the statement follows by an easy induction
on the codimension of W, using Theorem 3.12 (see also Remark 3.16). O

We deduce the following analogue of the Subadditivity Theorem for multiplier ideals
(cf. [Laz04, Theorem 9.5.20]) and for Hodge ideals of divisors (cf. [MP18, Theorem B|
and [MP19, Theorem 15.1]).

Proposition 3.18. If X is a smooth, complex algebraic variety, and a and b are
nonzero ideals on X such that div(a) and div(b) have no common components, then
for every nonnegative integer p and every A € QN (0,1], we have

I((a-6)) C Iy(a) - I,(6).
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Proof. Consider the diagonal embedding A: X — X x X. If the assertion in the
proposition holds for the ideals a and bon X xX given by pulling back a and b
respectively, via the first and second projections, then it follows from Corollary 3.17
and Proposition 3.5 that if ¢ = @ - b, then

L((a-0)Y) = L,((c- Ox)*) C L(c*) - Ox
C (L@) - Ox) - (I,(8Y) - Ox) = L(a®) - I,(b*).

Therefore we may assume that X = X7 X X9 and that a =a;-O0x and b = ay- O,
where a; are ideals on X;. In this case, by combining Propositions 3.1 and 3.5, we see
that

L((a-0)") C L(a") N L,(6*) = (I,(a}) - Ox) N (I,(a3) - O)

= Ip(ai\) ®c Ip(aé\) = Ip(a)\) : Ip([’)\)-
O

Remark 3.19. A similar argument shows that under the assumptions of Proposi-
tion 3.18, for every A, € QN (0,1] and every p > 0, we have

Ly(a*0") C (@) - I(b").

We end this section with a triviality criterion for all Hodge ideals I,(a), where a
is any nonzero ideal on X. Given a point x € X, defined by the ideal m,, we denote
by ord;(a) the largest nonnegative integer ¢ such that a C mf.

Proposition 3.20. If X is a smooth n-dimensional variety, x € X is a point in
the support of the subscheme defined by the ideal a C Ox, and A € (0,1], then the
following are equivalent:

i) For all p >0, we have I,(a*); = Ox ;.
ii) There is p > n such that I(a)), = Ox ..
i11) We are in one of the following two situations: either ord,(a) = 1, or in a
suitable neighborhood of x, we have a = Ox(—mZ) for some smooth divisor
Z,and 2 <m< %

Proof. We may assume that X is affine, and we let D be the divisor defined by
a general linear combination of some generators of a. Given p > 0, it follows from
Theorem 2.5 that Ip(a’\);Ij = Ox . if and only if there is such a D with I,(AD), = Ox ..
In fact, in this case the same equality holds for all general D; this is a consequence
of the Semicontinuity Theorem for Hodge ideals (see [MP19, Theorem 14.1]).

On the other hand, if I,(AD), = Ox, for some p > n, then D,¢q is smooth at
x (see [MP19, Corollary 10.7]). If this is the case, after replacing X by a suitable
neighborhood of z, we may assume that Z = D,qq is smooth and D =mZ. If m =1,
then we clearly have ord,(a) = 1. On the other hand, if m > 2, then D being general
implies that D = div(a), hence a = Ox(—mZ). The inequality Am < 1 follows from
the fact that, since Z is smooth, we have

L,(mZ) = Ox((1 - [Am])2)
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(see [MP19, §3,4]). This proves the implication ii)=iii).
The implication iii)=-i) follows immediately from the fact that, as we have already

seen, for a smooth divisor Z we have I,(A\Z) = Ox for all p > 0 and A € (0,1]. Since
the implication i1)=-ii) is trivial, this completes the proof of the proposition. O

As mentioned in the Introduction, further tools from the study of Hodge ideals of
divisors are still missing, mainly due to the lack of a direct connection with Hodge
theory. For example, at least at the moment, there is no Zx-module (of Hodge
theoretic origin) associated naturally to the ideals Ij,(a). A natural question is the
following:

Question 3.21. Is there a vanishing theorem for Hodge ideals associated to ideals?
More precisely, assuming that X is a smooth projective variety, a is a nonzero ideal
on X and A is a line bundle on X, what are the conditions a, A and p must satisfy
in order to have

H'(X,wxy ® A® I(a)) =0, forall i> 0.

Here one is looking for a statement in analogy with the vanishing theorem for
Hodge ideals of divisors, see [MP19, Theorem F] and [MP18b, Theorem 12.1], and
with that for multiplier ideals associated to ideals, see [Laz04, Corollary 9.4.15].

4. EXAMPLES

In this section we provide a few concrete calculations of Hodge ideals associated to
ideals; note that even in the case of powers of the maximal ideal this is quite involved.
We also give some examples of pathological behavior of higher Hodge ideals, compared
to the case of multiplier ideals.

First, in light of the Proposition 3.3, we see that if X is affine and h is a general
linear combination of a system of generators of a, then
Io(h*) = Ip(a*) forall e (0,1]1NQ.

We give two examples showing that the corresponding assertion can fail for p > 0,
even when A = 1.

Example 4.1. Let a = (zy,2z) C C[z,y, z]. Note that for every (a,b) € C2~.{(0,0)},
the divisor D, in A3 defined by axy + bxz is reduced, with simple normal crossings,
and so by [MP19, Proposition 8.2] we have
Il(Da,b) = (v,ay + bz).
We thus see that I;(a) = (z,y, 2), but I1(Dy) # (x,y, 2) for any (a,b) # (0,0).
Example 4.2. Let a = (2%,y3) C Clz,y]. If D,y is the divisor in A? defined by
h = az? + by?, with a,b # 0, an easy computation based on [MP19, Corollary 17.8]
gives
I2(Da,b) = (x?;’ $2y2, 'Ty3a 3a:c2y - by4)
We deduce from Theorem 2.5i) that
L(a) = (23, 2%y, x5, yt) # I)(Dgyp) forall a,b#0.
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We now give an example in which we can compute the Hodge ideal of an ideal,
while we do not have a closed formula for the corresponding Hodge ideal of a general
member of the ideal.

Example 4.3. We compute the Hodge ideals associate to powers of maximal ideals.
Let m; be the ideal defining the point x on a smooth variety X of dimension n > 2.
We will show that if N > 1 and p(N,p,n) = (p+1)(N —1) —n+ [n/N], then

o X, if p+ 1< %;

N T R
Note that if p +1 > &, then u(N,p,n) > 0.

For N =1, the above formula says that I,(m;) = Ox for all p, which is clear (see
Proposition 3.20). From now on we assume N > 2. By taking an étale map U — A"
that maps = to 0, where U is an open neighborhood of x, using Proposition 3.5 we
may assume that X = A" and m, = (z1,...,%,). In this case, since m}Y is preserved
by all linear changes of variables, every Ip(miv ) has the same property, hence it is a

power of m,. It follows that given a system of homogeneous generators of I,(m2’), we
only need to determine the minimal degree of these generators.

(4.4) Ip(m)) =

Let D be the divisor in A™ defined by a general linear combination f of the mono-
mials of degree N. In particular f is a homogeneous polynomial, with an isolated
singularity at 0. Note that I,(D) is a homogeneous ideal, but might not be monomial.
We need to show that if (N, p,n) is the minimal degree of a homogeneous element
of I(D), then v(N,p,n) = u(N,p,n) if p+1> § and v(N,p,n) = 0, otherwise.

The key ingredient is an inductive formula for computing the Hodge ideals of such
a polynomial f; according to [Zhal8, Corollary B], inspired in turn by a result in
[Sai09], for every p > 1 we have

(45) (D)= > Ox - vj + > Ox - (f0ig — pgdif),
deg(v;)>(p+1)N—n 1<i<n, g€l,—1(D)
where the first sum is taken over those v; in a basis of monomials for the Milnor
algebra
S=C[X1,...., X,/ (O f,...,0nf),
whose degree is at least (p + 1)N — n.
We prove the formula for v(N, p,n) by induction on p, the case p = 0 being clear, by
Proposition 3.3 and the well-known formula for Z(m?) (see [Laz04, Example 9.2.14]):

Io(D)=Z((1 - €e)D) = Z(mY179) =m) ™" where 0<e< 1,
with the convention that the last term is &x when N < n.

If p+1< &, then I,(D) = Ox by (4.5) since 1 is part of a monomial basis of the
Milnor algebra (recall that we assume N > 2) of degree 0 > (p + 1)N — n. Suppose
now that p is positive, with p+1 > . Note that if g is a homogeneous polynomial of
degree ¢ in I,_1(D), then by (4.5) all f0;g — pg0; f lie in I,(D); if nonzero, these are
homogeneous of degree N + ¢ — 1. If ¢ = v(N,p — 1,n), then not all these can be 0:
otherwise we have 0;(g/f?) = 0 for all 7, hence g/ fP is a constant, and thus ¢ = pN;
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however, using the formula for v(N,p — 1,n) given by the induction hypothesis, we
see that v(N,p—1,n) < pN.

We also note that we get a contribution to I,(D) from the first sum in (4.5) if
and only if (p + 1)N —n < n(IN — 2), and in this case the contribution consists of
monomials of degree > (p + 1)N — n, with equality for some monomials. Indeed,

since 01 f,...,0,f form a regular sequence of homogeneous forms of degree N — 1,
the Hilbert series of S is given by
(1 o tN_l)n

J A — 1 t . tN*Q n
T (I4t4---+tV2)",
hence for a nonnegative integer d we have S; # 0 if and only if d < n(N — 2). By

combining these observations, we conclude from (4.5) that

(4.6)
V(N .p )_{min{l/(]\ﬂp—1,n)+N—1,(p+1)N—n}, if (p+1)N <n(N—1);
e —1).

v(N,p—1,n)+ N —1 if (p+1)N>n(N-1)

We distinguish two cases. If p > &, then we see using the induction hypothesis
and an easy computation that

V(va_lan)+N_1:M(N7p_17n)+N_]‘S(p+1)N_n7

hence we deduce using (4.6) that v(N,p,n) = u(N,p—1,n) + N — 1 = pu(N,p,n).

Suppose now that p < &, hence by the induction hypothesis we have v(N,p —
1,n) = 0. We further distinguish two possibilities. If pN € {n — 1,n}, then we again
have N —1 < (p+1)N —n, hence v(N,p,n) = N — 1 by (4.6). Moreover, in this case
it is easy to see that u(p, N,n) = N — 1, hence we are done.

On the other hand, if pN < n —2, then (p+1)N < n(N — 1) (we use the fact that
N >2)and (p+ 1)N —n < N — 1, so that it follows from (4.6) that v(N,p,n) =
(p+ 1)N —n. Note also that in this case we have [n/N| = p+ 1, hence pu(N,p,n) =
(p+ 1)N — n. This completes the proof of (4.4).

Example 4.7. Let a = (2, ..., o)) C C[z1,...,z,], with n, N > 2. We show that
if m = (z1,...,2,), then

Clz1,...,zn), if N§%7
(4.8) Ii(a) = (N7 aNh)  m2N if 2<N<n
(‘/I:iv_la cee 7X;]LV_1) : mN—n + mQN—n’ if N >n.

Suppose that N > n. Let D be the divisor defined by a general linear combination

n
f= Z ozl
i=1

Again, f is homogeneous of degree N, having an isolated singularity at 0, hence we
can use the formula (4.5).
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In this case the Milnor algebra is given by

S:C[:cl,...,xn]/(xiv_l,...,mfy_l),

hence the contribution of the first sum in (4.5) to I;(D) consists of

(it x| ap < N —=2foralli, aj +--+ ap, > 2N —n).

Note that since a is a monomial ideal, it is preserved by the standard action of
(C*)™ on A™, hence the same holds for I;(a). Therefore I;(a) is a monomial ideal as
well. It follows that [;(a) is generated by the monomials that appear with nonzero
coefficient in the polynomials in I;(D), for D as above.

Since m¥ is the integral closure of a and since multiplier ideals do not change after
replacing an ideal by its integral closure (see [Laz04, Corollary 9.6.17]), we see as in
Example 4.3 that In(D) = m”~". Thus the contribution of the second sum in (4.5)
to I (D) consists of the ideal generated by f0;9 — Nxf-v_lg, where ¢ varies over the
monomials in mY ™™ and 1 < i < n. Since the coefficients of f are general, it is
clear that the monomials that appear in f0;g — NxZN*lg are xﬁvflg and xj-vﬁig, with

1 < j < n. The ideal generated by these monomials is (z) %, ... zN=1) . mN-",

By combining the two contributions, we conclude that

N(a) = @V 2V N 2N

rr'n

which proves our formula for N > n. The proofs in the other two cases are similar,
but easier.

Example 4.9 (Non-invariance under integral closure). Recall that if a and b are two
nonzero ideals on X, with the same integral closure, then

T(a*) =Z(b*) forall A >0

(see [Laz04, Corollary 9.6.17]). This property fails for Hodge ideals: consider, for
example, a = (zV,y",2") and b = (z,y, 2)" in C[z,y, 2], for N > 3. Note that b
is the integral closure of a, while it follows from Examples 4.3 and 4.7 that I;(a) is
strictly contained in I;(b).

Example 4.10 (Failure of the asymptotic property). For multiplier ideals, it follows
immediately from their definition that

ZI((a")7) = Z((a")77)

for all integers k, ¢ > 0. The inclusion “C” is crucial for the construction of asymptotic
multiplier ideals; see [Laz04, §11.1]. This inclusion might not hold for higher Hodge
ideals. Consider for instance the maximal ideal a = (z1,...,2,) C Clzy,...,zy),
with n > 3, and fix an integer m > 0. Let D be the zero locus of a general linear
combination of monomials of degree m in the z;, so that D has an isolated ordinary
singularity of multiplicity m at the origin. An easy application of [Zhal8, Corollary B]
(see also [MP19, Example 11.7]) gives I; (1 D) = mZ™1=" for m > n — 1; in this case
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Theorem 2.51) implies Iy ((am)%) = m7*t1=" This means that for £ > n — 1 and
k > 1 we have in fact the strict inclusion

1 1
Li((a¥)re) € I ((af)7).
It is an interesting question if, or when, some type of asymptotic construction can be
performed in this context.

Example 4.11. For effective divisors D and E on a smooth variety X, with D + F
reduced, it is shown in [MP18, Theorem B]| that we have

I(D+E)C Y L(D) Ij(E)-Ox(—jD —iE) foral p>0.
i+j=p
We used this for instance to deduce the inclusion in Proposition 3.18 in the case of
locally principal ideals and A = 1. One could ask whether for arbitrary nonzero ideals
a and b such that div(a) and div(a) have no common components, we have

(4.12) I(a-b) C ) Ii(a)-Ij(b)-a’-b' forall p>0.

i+j=p
It is easy to deduce that this still holds if either a or b is locally principal. However,
it does not hold in general. Suppose, for example, that X = A?" with coordinates
TlyeeeyTpyYly---,Yn, while a = (z1,...,2,) and b = (y1,...,yn). Note that [;(a) =
I;(b) = Ox (see Proposition 3.20), hence (4.12) says in this case that

Iy(a-b) C Z (@1, xn) - (W1, yn) = (21, T, Y1, - Yn)P
i+j=p
However, it follows from [MP18, Corollary D] that if f = Y | z;y;, then Iy (f) = Ox
for p < n — 1. Therefore (4.12) fails for n > 2.

5. GENERIC MINIMAL EXPONENT

In this section we define and study an extension of the concept of minimal exponent
of a hypersurface [Sai93], [Sail6] (see also [MP18b], [MP19b] for a recent study and
applications) to the case of arbitrary subschemes. As always, we work on a smooth
variety X of dimension n.

Recall first that an important invariant of the singularities of a nonzero f € Ox(X)
is the Bernstein-Sato polynomial bs(s) € C[s] of f. The roots of b; are negative
rational numbers by a theorem of Kashiwara [Kas76]. From now on we assume that
f is not invertible, in which case by(—1) = 0. The negative of the greatest root
of by(s)/(s + 1) is the minimal exponent o(f) of f (with the convention that if
bs(s) = s+ 1, which is the case if and only if f defines a smooth hypersurface,
then a(f) = oo). By a result of Lichtin and Kollar (see [Ko0l97, Theorem 10.6]),
the negative of the greatest root of by(s) is the log canonical threshold lct(f), hence
let(f) = min{l,a(f)}. For an introduction to the log canonical threshold and its
relation to multiplier ideals, we refer to [Laz04, Chapter 9].

We will be mostly using a local version of the minimal exponent: given z in the
zero-locus of f, if U is an open neighborhood of z, then a(f|r) > a(f). Moreover, if
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U is small enough, then a(f|y) is independent of U; the common value is the minimal
exponent o, (f) of f at x.

Remark 5.1. The global and local minimal exponents of f were denoted in [MP18b]
by ay and ay ., respectively, in line with the notation from [Sai93], [Sail6]. However,
for what follows below we found the present notation more convenient.

The minimal exponent is related to Hodge ideals as follows: if f defines a divisor
D which is reduced in a neighborhood of z, then

(5.2) Iy(AD)y = Ox 5 <= p+ X< a,(f)

(see [MP18b, Corollary C]). Note that from the point of view of the minimal exponent,
the interesting case is that when D is reduced in some neighborhood of x; otherwise

lety(f) < 1 and ag(f) = letz(f).

We will make use of the following semicontinuity property of minimal exponents
for hypersurfaces. Suppose that we have a smooth morphism of complex algebraic
varieties m: W — T, with a section s: T — W. Given f € Oy (W) such that the
restriction f; to the fiber 7=1(¢) is nonzero for every t € T, the function

TSt dy0)(fr) € Ran U {oc}

is lower semicontinuous (see [MP18b, Theorem E(2)]). In fact, the proof in loc. cit.
shows something stronger: for every o > 0, the set {t € T' | ay)(fi:) > a} is open
in T. Since a countable intersection of nonempty open subsets of T is nonempty, it
follows that the set {ay)(fi) | t € T} has a maximum, which is achieved on an open
subset of T'. Arguing by Noetherian induction, we deduce that this set is in fact finite.

We now turn to the case of ideals. Consider a nonzero ideal a C &x and a point
x in the zero-locus of a; since we are interested in a local study around z, we assume
that X is affine, and a is generated by fi,..., f, in Ox(X).

Definition 5.3. The generic minimal exponent of a at x is defined as

az(a) == az(f),
where f =37 | N\if; is a general linear combination of the generators of a.

Remark 5.4. The fact that for a general combination f as above the value of a,(f)
is constant follows from the above discussion about the semicontinuity of the minimal
exponent. Furthermore, it is straightforward to see that this value is independent of
the choice of generators of a.

Remark 5.5. A priori it would make sense to simply call @, (a) the minimal exponent
of a and denote it by &, (a), extending the terminology and notation from the case of
hypersurfaces. However, we prefer to keep these for a different invariant, defined in
terms of the Bernstein-Sato polynomial b, . (s) in the sense of [BMSO06]. If a defines a
closed subscheme Z of codimension r at x, reduced in some neighborhood of z, then
one can deduce from [BMS06, Theorem 2] that by ,(—r) = 0; we define the minimal
exponent a,(a) as the negative of the largest root of by ;(s)/(s+r). This is in general
different from @, (a), and seems to be related more naturally to the Hodge filtration
on local cohomology. We hope to study this relationship in future work.
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Proposition 5.6. If a is not radical in codimension 1 around x, then & (a) is equal
to the log canonical threshold lct,(a) of a at x. On the other hand, if a is radical in
codimension 1 around x, then

(5.7) L(aY), = Ox. <= p+ )\ <a.(a).

Proof. If a is not radical in codimension 1 around z and f is a general linear combi-
nation of generators of a, then f defines a divisor having a non-reduced component
containing x. We therefore have lct,(f) < 1, and thus

lety (@) = lety (f) = aa(f),

where the first equality follows from [Laz04, Proposition 9.2.28] and the description
of the log canonical threshold via multiplier ideals.

Suppose now that a is reduced in codimension 1 around z. If A > 0 is a rational
number and f is a general linear combination of generators of a, defining a divisor D
which is reduced in some neighborhood of x, then &, (a) = a,(f). Moreover, we have
Ip(aA)x = Ox, if and only if I,(AD), = Ox, (for the “only if” part, we use that
Ox 5 is a local ring). The equivalence in (5.7) then follows from (5.2). O

Remark 5.8. If p = 0, then the equivalence in (5.7) also holds when a is not radical
in codimension 1 around z. Indeed, this follows from the description of I(a) as a
multiplier ideal in Proposition 3.3 and the characterization of lct,(a) via multiplier
ideals.

Example 5.9. We collect a first few examples here. The case of general monomial
ideals is discussed in Example 5.13 below.

(1) We have @, (a) = oo if and only if ord,(a) = 1, meaning a € m2.

(2) If N > 2, then @y(m)) = %, since the same is true for a hypersurface having
multiplicity N at = and whose projectivized tangent cone at x is smooth; see [Sai09,
(4.1.5)] (cf. also [MP18b, Theorem E(3)]).

(3) In general, if ord;(a) = N > 2, then a,(a) < §. This follows using [MP18b,
Theorem E(3)].

As in the case of hypersurfaces, we have:
Proposition 5.10. For every ideal a, we have
@, (a) > lety(a).
Moreover, this is an equality if lcty(a) < 1.
Proof. Tt is shown in [CM19, Proposition 2.1] that if f is a general linear combination
of generators of a, then a(f) > lctg(a). The argument uses [MP18b, Corollary D],
which gives a lower bound for a,(f) in terms of discrepancies on a log resolution.

This implies the first assertion. Another proof follows from Proposition 5.15 below;
see Remark 5.16. The second assertion follows as in the proof of Proposition 5.6. [
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Proposition 5.11. If a C b are nonzero ideals on X and x lies in the zero-locus of
b, then
a,(a) < a,(b).

Proof. Let f be a general linear combination of generators of a and ¢ a general linear
combination of generators of b, so that

Ga(0) = ay(f) and @u(b) = dul(g).

Since f € b, it follows from the semicontinuity property of the minimal exponents for
hypersurfaces that a,(f) < a,(g), which gives the assertion in the proposition. [

The following series of properties of the minimal exponent of an ideal follows
without much effort from the analogous properties proved in the case of divisors
in [MP18b, Theorem E and §6].

Proposition 5.12. (1) For every smooth subvariety Y C X, every ideal a on X such
that a- Oy # 0, and every x in the zero-locus of a- Oy, we have
Ag(a- Oy) < ag(a).

(2) For every ideal a and every a > 0, the set
{z €eV(a) | az(a) > a}
s open in X.

(8) More generally, let f: X — T be a smooth morphism and s: T — X a section of
f. If a is a nonzero ideal on X that vanishes on s(T) and such that a - Ox, is not
zero for any fiber Xy of f overt € T, then for every a > 0, the set

{teT |ayy(a-Ox,) > a}

1s open in T.

(4) If a and b are nonzero ideals vanishing at x € X, then
z(a+b) < az(a) + ay(b).

Example 5.13. We show that if a is a monomial ideal in C[z1, . .., z,], with ordg(a) >
1, then @p(a) = letp(a). Recall that in this case, by a result of Howald [How01] we
have Icto(a) = 1/¢, where if Py is the Newton polyhedron of a (that is, P, is the convex
hull of u + RZ,, for the monomials z* € a), we have ¢ = min{t > 0| (¢,...,t) € P,}.

Note now that if m = (z1,...,x,), then

0 < @o(a+mY) —@o(a) < -
Indeed, the first inequality follows from Proposition 5.11, while the second follows

from Proposition 5.12(4) and Example 5.9(2). We similarly have
0 < leto(a +m™) — leto(a) < %

(see [Laz04, Corollary 9.5.28]). By letting N go to infinity, we see that it is enough
to show that @p(a) = Icto(a) when a is a monomial ideal defining a scheme supported
at 0 and such that ordg(a) > 1. If f is a general linear combination of monomial
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generators of a, then the hypersurface defined by f has an isolated singular point at
0. Moreover, it is nondegenerate with respect to its Newton polyhedron, in which
case it is well-known that ag(f) = 1/c (see [Var81], [EL82], or [Sai88]).

We can define a global version of the generic minimal exponent, as follows. For
any proper nonzero ideal a on X, we put
(5.14) a(a) ;= min ay(a).

zeV(a)

Note that since we work over C, a countable intersection of Zariski open subsets of an
irreducible algebraic variety has nonempty intersection. Using this, it follows easily
from Proposition 5.12(2) that the set {a,(a) | x € V(a)} is a finite set. In particular,
the minimum in (5.14) makes sense and the set of those z € V(a) for which the
minimum is achieved is a closed subset of V' (a). We also see that for every z € V(a),
we have

a;(a) = maxa(a- Oy),
Usz

where the maximum is over the open neighborhoods of .

Another useful description of @, (a) in terms of minimal exponents of hypersurfaces
is facilitated by Theorem 2.5. Suppose that a is generated by fi,...,fr € Ox(X)
and consider in X x A" the hypersurface given by the function g = Y, v; fi, where
Y1, -- -, Y are the coordinates on A".

Proposition 5.15. Given x € V(a), for A = (A1,...,\) € A" general, we have
a:c(a) = a(x,)\) (g)
Proof. If X is such that fy =Y ;_; Aif; is nonzero, then

A (9) = az(f).

This follows from the behavior of minimal exponents under restriction (in this case
to a fiber of the projection X x A" — A") described in [MP18b, Theorem E(1)]. We
thus deduce from the definition of @, (a) that for A general, we have

Az (9) = @x(a).

We next show that the opposite inequality holds for every A € A". If ord, y) (9) =
1, then ord,(a) = 1, and the inequality holds since both sides are infinite. Suppose
now that ord, »)(g) > 2 and consider first the case when a is radical in codimension
1 in a neighborhood of z (in which case the divisor defined by g is reduced in a
neighborhood of {z} x A"). Let’s write

aEn(9) =p+a,

with p an integer and o € (0,1]. We deduce from the description of the minimal
exponent of ¢ in terms of Hodge ideals that

Ip(9Y) (@) = Ox <A (@)



22 M. MUSTATA AND M. POPA

By Proposition 5.6, it is enough to show that I,(a®) is trivial at z as well. However,
by Theorem 2.5(ii) we know that

Ip(a®) = Coeff (I,(g")),
so the result follows from the general (and easy to check) fact that if I C Ox|[y1,. .., y,]

is an ideal which is not contained in the maximal ideal m(, y), then Coeff(I) is not
contained in m,.

If a is not radical in codimension 1 around x, then the divisor defined by ¢ is not
reduced around (x, \) and we have

az(a) =letz(a) and  a(x)(9) = It n)(9)
by Proposition 5.6. We then argue as above, with p = 0, using Remark 5.8. (Il

Remark 5.16. The above result leads to another proof of Proposition 5.10. Indeed,
after possibly restricting to a neighborhood of z, we may assume that lct,(a) = lct(a).
Now by [Musl9, Corollary 1.2] we know that a(g) = lct(a). On the other hand,
Proposition 5.15 says that for A € A” general, we have

See also Theorem 5.17 below and its proof for more general statements.

Recall that for any nonzero ideal a in X, a Bernstein-Sato polynomial b,(s) was
defined in [BMS06], extending the classical invariant associated to a hypersurface.
For every x € V(a), we have a local version by z(s). By Theorem 2 in loc. cit. the
greatest root of by »(s) is again —lct,(a), as in the case of hypersurfaces. We conclude
by showing that the generic minimal exponent continues to be a root as well.

Theorem 5.17. For every x € V (a), the negative of az(a) is a root of the Bernstein-
Sato polynomial bq 4(s).

Proof. This is now a simple consequence of results obtained above and in [Mus19].
Using the notation and statement of Proposition 5.15, we have

am(a) = a‘(x,)\) (9)7
where A\ = (A1,...,\;) € A" is general. By the definition of the minimal exponent
of g, it follows that —a,(a) is the greatest root of by (, 1) (s)/(s + 1). By replacing X
with an open neighborhood of x we may assume that by ,(s) = ba(s). On the other
hand, it is shown in [Musl9, Theorem 1.1] that

ba(s) = by(s)/(s + 1).
Since by (5.x)(s) divides by(s) (see e.g. the discussion at the beginning of [MP18b, §6]),
we obtain the desired result. O

We recall that in the case of hypersurfaces, there exists also a close relationship
between minimal exponents and the V-filtration (see e.g. [Sail6], and also [MP18b]).
On the other hand, for subschemes of higher codimension, as in Remark 5.5 a connec-
tion with (the several functions version of) the V-filtration seems to be more suitable
in the alternative context of the Hodge filtration on local cohomology.
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