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Abstract

We provide a detailed asymptotic study of gradient flow trajectories and their
implicit optimization bias when minimizing the exponential loss over “diagonal
linear networks”. This is the simplest model displaying a transition between
“kernel” and non-kernel (“rich” or “active”) regimes. We show how the transition is
controlled by the relationship between the initialization scale and how accurately
we minimize the training loss. Our results indicate that some limit behaviors
of gradient descent only kick in at ridiculous training accuracies (well beyond
10~1099), Moreover, the implicit bias at reasonable initialization scales and training
accuracies is more complex and not captured by these limits.

1 Introduction

The optimization trajectory, and in particular the “implicit bias” determining which predictor the
optimization algorithm leads to, plays a crucial role in learning with massively under-determined
models, including deep networks, where many zero-error predictors are possible [e.g., 2212329/ 31].
Indeed, in several models we now understand how rich and natural implicit bias, often inducing
sparsity of some form, can arise when training a multi-layer network with gradient descent [3} 11} 13|
16, 18420, 29]. This includes low ¢; norm [30], sparsity in the frequency domain [13]], low nuclear
norm [[11} 18], low rank [3} 25], and low higher-order total variations [6]]. A different line of works
focuses on how, in a certain regime, the optimization trajectory of neural networks, and hence also
the implicit bias, stays near the initialization and mimics that of a kernelized linear predictor (with the
kernel given by the tangent kernel) [1} 12, 14, 5, [7H9, |14} [17,132]]. In such a “kernel regime” the implicit
bias corresponds to minimizing the norm in some Reproducing Kernel Hilbert Space (RKHS), and
cannot yield the rich sparsity-inducin inductive biases discussed above, and is perhaps not as
“adaptive” as one might hope. It is therefore important to understand when and how learning is in the
kernel regime, what hyper-parameters (e.g., initialization, width, etc.) control the transition out and
away from the kernel regime, and how the implicit bias (and thus the inductive bias driving learning)
changes in different regimes and as a function of different hyper-parameters.

Initial work identified the width as a relevant hyper-parameter, where the kernel regime is reached
when the width grows towards infinity [2, 8} |9, [14} [17, [32]]. But subsequent work by Chizat et al.
[7] pointed to the initialization scale as the relevant hyper-parameter, showing that models of any

I'Sparsity in an implicit space can also be understood as feature search or “adaptation”. E.g. eigenvalue
sparsity is equivalent to finding features which are linear combinations of input features, and sparsity in the
space of ReLU units [e.g., 26] corresponds to finding new non-linear features.
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width enter the kernel regime as the scale of initialization tends towards infinity. Follow-up work by
Woodworth et al. [30] studied this transition in detail for regression with “diagonal linear networks”
(see Section , showing how it is controlled by the interactions of width, scale of initialization and
also depth. They obtained an exact expression for the implicit bias in terms of these hyper-parameters,
showing how it transitions from /5 (kernel) implicit bias when the width or initialization go to infinity,
to /1 (“rich” or “active” regime) for infinitesimal initialization, showing how a width of %k has an
equivalent effect to increasing initialization scale by a factor of v/k. Therefore, studying the effect of
initialization scale can also be understood as studying the effect of width.

In this paper, we explore the transition and implicit bias for classifi- <o | a5

cation (as opposed to regression) problems, and highlight the effect |[——7 Kernel (1)

of another hyper-parameter: training accuracy. A core distinction is [~ Rien {19 | This Work

that in classification with an exponentially decaying loss (such as the
cross-entropy/logistic loss), the “rich regime” (e.g., ¢1) implicit bias
is attained with any finite initialization, and not only with infinitesimal
initialization as in regression [[19} 20]], and the scale of initialization
does not effect the asymptotic implicit bias [[12} [15} 28}, 129]. This is in
seeming contradiction to the fact that even for classification problems,
the kernel regime is attained when the scale of initialization grows [[7]]. Initialization «
How can one reconcile the implicit bias not depending on the scale of
initialization, with the kernel regime (and thus RKHS implicit bias)
being reached as a function of initialization scale? The answer is discussed in detail in Section [2and
depicted in Figure[T} with the decaying losses used in classification, we can never get the loss to zero,
only drive it arbitrarily close to zero. If we train infinitely long, then indeed we will eventually reach
“rich” bias even for arbitrarily large initialization. On the other hand, if we only consider optimizing
to within some arbitrarily high accuracy (e.g., to loss 10~1?), we will find ourselves in the kernel
regime as the initialization scale grows. But how do these hyper-parameters interact? Where does
this transition happen? How accurately do we need to optimize to exit the “kernel” regime? To get
the “rich” implicit bias? And what happens in between? What happens if both initialization scale and
training accuracy go to infinity? And how is this affected by the depth?

Rich

Regime ‘7

Regime

Accuracy 1/¢

Figure 1: Kernel and rich limits

To answer these questions quantitatively, we consider a concrete model, and study classification using
diagonal linear networks. This is arguably the simplest model that displays such transitionsE] and as
such has already been used to understand non-RKHS implicit bias and dynamics [10} 30

We consider minimizing the exp-loss of a D-layer diagonal linear network on separable data, starting
from initialization at scale o and optimizing until the training loss reaches a value of e. In this case,
the two extreme regimes depicted in Figure|l|correspond to implicit biases given by the {5 norm in
the kernel regime and by the /5, quasi-norm when ¢ — 0 for fixed . We consider o — oo and
optimizing to within e(a)) — 0 and ask what happens for different joint behaviours of « and e.

e We identify e(ar) = exp(—©(a)) as the boundary of the kernel regime. When €(a) =
exp (70 (aD ) ) , the optimization trajectory follows that of a kernel machine, and the implicit
bias is given by the {5 norm. But when e(«) = exp (fQ (aD ) ) , the trajectory deviates from
this kernel behaviour.

e Under additional condition (concerning stability of the support vectors), we characterize
the behaviour at the transition regime, when €() = exp(—©(«”)), and show that at this
scaling, the implicit bias is given by Woodworth et al.'s QP regularizer, which interpolates
between the ¢1-norm and the ¢5-norm. This indicates roughly the following optimization
trajectory for large enough initialization scale and under the support vector stability condition:
we will first pass through the minimum Q?o = {5-norm predictor (or more accurately, max-
margin w.r.t. the /5-norm), then traverse the path of minimizers of Qf , for pu € (00, 0), until
we reach the minimum QOD = {1-norm predictor. We confirm such behaviour in simulations,
as well as deviations from it when the condition does not hold.

e As suggested by our asymptotic theory, simulations in Section [5|show that even at moderate
initialization scales, extreme training accuracy is needed in order to reach the asymptotic

2Our guiding principal is that when studying a new or not-yet-understood phenomena, we should first
carefully and fully understand it in the simplest model that shows it, so as not to get distracted by possible
confounders, and to enable a detailed analytic understanding.



behaviour where the implicit bias is well understood. Rather, we see that even in tiny
problems, at moderate and reasonable initialization scales and training accuracies, the
implicit bias behaves rather different from both the “kernel” and “rich” extremes, suggesting
that further work is necessary to understand the effective implicit bias in realistic settings.

Notation For vectors z, v, we denote by z*, exp(z), and log(z) the element-wise kth power,
exponential, and natural logarithm, respectively; z o v denotes element-wise multiplication; and
z v implies that z = v for a positive scalar . 1 denotes the vector of all ones.

2 Kernel and rich regimes in classification

We consider models as mappings f : RP x X — R from trainable parameters u € R? and input
x € X to predictions. We denote by F(u) : x — f(u,x) the function implemented by the
parameters u. We will focus on models that are D-homogeneous in u for some D > 0, i.e., such that
Ve > 0, F(cu) = ¢” F(u). This includes depth-D linear and ReLU networks.

We consider minimizing £(u) = % 25:1 0(f(u,x,),yn) for a given dataset {(X,,yn) : 1 =

1,2,... N} where £ : R x Y — Ris aloss function. We will be mostly focus on binary classification
problems, where y,, € {—1, 1}, and with the exp-loss £(g, y) = exp(—gy), which has the same tail
behaviour and thus similar asymptotic properties as the logistic or cross-entropy loss [e.g., [19]128,29].
All our results and discussion refer to the exp-loss unless explicitly stated otherwise. We are concerned
with understanding the trajectory of gradient descent, which we consider at the limit of infintesimal
stepsize, yielding the gradient flow dynamics,

u(t) = —VL(u(t)), (1)

where here and throughout u = ((11—‘;.

Along the gradient flow path, £(u(t)) is monotonically decreasing, and we consider cases where
the loss is indeed minimized, i.e., converges to 0 for ¢ — co. However, if we stop the optimization
trajectory at a large but finite ¢, which is what we do in practice, we optimize to some positive
training loss €(t) = L(u(t)). We define ¥(t) = — log(e(t)) as the training accuracy. 5(t) can also
be interpreted as the number of digits of the precision representing the training loss. This is related to
the prediction margin v(t) = min,, y,x,, w(t) as v(t) < 7(t) < v(t) + log(N) and was introduced
as smoothed margin in Lyu and Li [19].

For classification problems, we consider separable data, i.e., Ju, € R? :V, y, f(u,,x,) > 0, and

s0 L(yuy) T22° 0. But especially in high dimensions, there are many such separating predictors.

If L(u(t)) — 0, which of these does u(t) converge to? Of course u(t) does not converge, since to

approach zero error it must diverge. Therefore, instead of the limit of the parameters, we study the
u(t)

limit of the decision boundary of the resulting classifier, which is given by F’ (W)

Kernel Regime When the gradients V,, f(u,x,,) do not change much during optimization, then
u(t) behaves as if optimizing over a linearized model u: f(u,x) = f(u(0),x) + (u — u(0), ¢(x))
where ¢(x) = V,f(u(0),x) is the feature map corresponding to the Tangent Kernel at ini-
tialization K (x,x’) = (¢(x),d(x’)) [2, Bl [14]. Consider the trajectory u(t) of gradient flow
u(t) = —VL(u(t)) on the loss of this linearized model £(u) = + Zle 0(f(, %), Yn). Chizat
et al. [7] showed that any D-homogeneous model enters the kernel regime (i.e., behaves like a
linearized model) when the scale of the initialization is large:

Theorem 1 (Adapted from Theorem 2.2 in Chizat et al. [7]). For any fixed time horizon T > 0,
and any g such that F(ug) = 0, and for the exp-loss, consider the two gradient flow trajecto-
ries u(t) and (t), respectively, both initialized with u(0) = u(0) = auy, for a > 0. Then
lime, 00 SUPse(o.7) || F(u(t)) — F(a(t))|| = 0.

For a linear model like £, the gradient flow i converges in direction to the maximum margin solution
in the corresponding RKHS norm [28]]. Combining this with Theorem I} we have

4
lim lim F < u(t) > o argmin || f{| g s.t. Vn @y f(xn) > 1, ()
t—r00 a—00 Hu(t)” fXSR



where recall that K is the Tangent Kernel at the initialization and || f|| ; is the RKHS norm with
respect to this kernel. It is important to highlight the crucial difference here compared to the
corresponding statement for the squared loss [[7, Theorem 2.3]. For the squared loss we have that
lima 00 SUP[0, 00) HF (t)) — F(u(t))|| = 0, ie., the entire optimization trajectory converges
uniformly to u( ). But for the exp-loss, Theoreml only ensures convergence for prefixes of the path,
up to finite time horizons T'. The order of limits in (2) is thus crucial, while for the square loss the
order of limits can be reversed.

Rich regime On the other hand, for any finite initialization aug, the limit direction of gradient
flow, when optimized indefinitely, gives rise to a different limit solution [12} |19} 20]:

Theorem 2 (Paraphrasing Theorem 4.4. in Lyu and Li [[19]). Assume that the gradient flow trajectory
in (1) minimizes the loss, i.e., L(u(t)) — 0. Then, any limit point of{ Hu(t)H it > 0} is along the
direction of a KKT point of the following constrained optimization problem:

min |jullz 8.t Vn:y,f(u,x,) > 1. 3)

Compared to the kernel regime in (2)), Theorem [2|sug gestf] that

o u(t) . . .
lim lim F ( ) o stationary points of min R(f) s.t.Vn:y,f(x,) > 1,
0] P @

where R(f) = min||uflz s.t. F(u) = f.

To understand this double limit, note that Theorem 2] ensures convergence for every « separately, and
so also as we take o — oo. For neural networks including linear networks, R(f) captures rich and
often sparsity inducing inductive biases (e.g., nuclear norm, higher-order total variations, £,, bridge
penalty for p < 1) that are not captured by RKHS norms [11} [13} [15} 124} 26].

Contrasting (2)) and @) we see that if both the initialization scale « and the optimization time ¢ go to
infinity, the order in which we take the limits is crucial in determining the implicit bias, matching the
depiction in Figure [T} Roughly speaking, if o — oo first (i.e., faster) and then ¢ — oo, we end up in
the kernel regime, but if £ — oo first (i.e., faster), we can end up with rich implicit bias corresponding
to R. The main question we ask is: where the transition from kernel to rich regime happens, and
what is the implicit bias when o — oo and t — oo together?

Since the time ¢ for gradient flow does not directly correspond to actual “runtime”, and is perhaps
less directly meaningful, we instead consider the optimization trajectory in terms of the training loss
e(t) = L(u(t)). For some loss tolerance parameter €, we follow the gradient flow trajectory until
time ¢ such that £(t) = € and ask what is the implicit bias when o — oo and € — 0 together?

3 Diagonal linear network of depth D

In the remainder of the paper we focus on depth-D diagonal linear networks. This is a D-

homogeneous model with parameters u = [ EJF } € R?9 specified by:

D D
f(u,x) = (uf —u”,x) 5)
where recall that the exponentiation is element-wise.

As depicted in Figure[2] the model can be thought of as a depth-D network, with D — 1 hidden linear
layers (i.e., the output is a weighted sum of the inputs), each consisting of 2d units, with the first
hidden layer connected to the d inputs and their negations (depicted in the figure as another fixed
layer), each unit in subsequent hidden layers connected to only a single unit in the preceding hidden
layer, and the single output unit connected to all units in the final hidden layer. That is, the weight

3Theoremis suggestive of R(f) in @) as the implicit induced bias in rich regime. However, although
global minimizers of (3) and the RHS of (4) are equivalent, the same is not the case for stationary points. For
the special cases of certain linear networks and the infinite width univariate ReLU network, stronger results for
convergence in direction to the KKT points of (4) can be shown [6] [13] [16].



matrix at each layer i = 1..D is a diagonal matrix diag(u'). This presentation has 2dD parameters,
as every layer has a different weight matrix. However, it is easy to verify that if we initialize all layers
to the same weight matrix, i.e., with u’ = u, then the weight matrices will remain equal to each other
throughout training, and so we can just use the 2d parameters in u € R?? and take the weight matrix
in every layer to be diag(u), recovering the model ().

Since all operations in a linear neural net are linear,
the model just implements a linear mapping from the
input x to the output, and can therefor be viewed as an
alternate parametrization of linear predictors. That is,
the functions F'(u) : X — R implemented by the model
is a linear predictor F'(u) € X* (since X = ]Rd we also
take X* = RY), and we can write f(u, x) ug
where for diagonal linear nets F( =u? T —u”
particular, for a trajectory u(t) in parameter space, we Figure 2: Diagonal linear network of depth 4.
can also describe the corresponding trajectory w(t) = F(u(t)) of linear predictors.

The reason for using both the input features and their negation, and thus 2d units per layer, instead
of a simpler model with u € R? and F(u) = u® is two-fold: first, this allows the model to capture
mixed sign linear predictors even with even depth. Second, this allows for scaling the parameters
while still initializing at the zero predictor. In particular, we will consider initializing to u(0) = a1,
which for the diagonal neural net model (3) corresponds to w(0) = F(u(0)) = 0 regardless of the
scale of a.. Such unbiased initialization was suggested by Chizat et al. [[/] in order to avoid scaling a
bias term when scaling the initialization.

Woodworth et al. [30] provided a detailed study of diagonal linear net regression using the square loss
2(9,y) = (§ — y)?. They showed that for an underdetermined problem (i.e., with multiple zero-error
solutions), for any finite « the gradient flow trajectory with squared loss and initialization u(0) = a1
converges to a zero-error (interpolating) solution minimizing the penalty QQD , where QE is:

Z , where 2 - \/m + z -arcsinh (%) for D =2
! q fO fOI' D > 2 (6)

and hp (5) = (1 — 8) D% — (1 +5) D2,

Forall D > 2, Qﬁ’ with i« = o interpolates between the ¢; norm as a — 0, which corresponds
to the rich limit previously shown by Gunasekar et al. [[11] and Arora et al. [3]], and the ¢5 norm as
a — 00, which is the RKHS norm defined by the tangent kernel at initialization.

Can we identify a similar transition behaviour between kernel and rich regimes with exponential loss?

4 Theoretical Analysis: Between the Kernel and Rich Regimes

We are now ready to state our results that describe the limit behaviour of gradient flow when the
initialization scale « and the training accuracy 1/e go to infinity together for classification with linear
diagonal networks and the exp-loss on separable data.

First, we establish that if the data is separable, even though the objective £(u) is non-convex, gradient
flow will minimize it, i.e., we will have £ (u(t)) — 0. We furthermore obtain a quantitative bound
on how fast the training loss decreases as a function of the initialization scale «, the depth D and the
{5 separation margin of the data, v, = MAaX||w]|,=1 min,, ynxl w:

Lemma 3. For D > 2, any fixed o, and ¥t, £ (u(t)) < m.

The proof appears in Appendix [D]

We now turn to ask which separating classifier we would get to, if optimizing to within training
accuracy e and initialization of scale «, in terms of the relationship between these two quantities. To
capture this relationship, we consider a mapping e(«) such that e : R — (0, 1] is strictly monotonic
and lim,_,~ €(a)) = 0. We call ¢(«) the stopping accuracy function. For each «, we follow the

gradient flow trajectory until time 7T}, such that £ (u(T,)) = €(«) and denote w,, = ‘;Vg:)) . We

study the limit point W = lim,,_,~, W, for different € («), assuming this limit exists.



The Kernel Regime We start with showing that if the stopping accuracy function e(«) goes to zero
slowly enough, namely if log 1 /e is sub-linear in o”, then with large initialization we obtain the ¢
bias of the kernel regime:

Theorem 4. For D > 2, ife(or) = exp (—o(a)) then W = argmin

w W2 s.t. vn,y,wix, > 1.

The proof for D = 2 appears in Appendix [F.I]and the proof for D > 2 appears in Appendix [G.1]

Escaping the kernel regime Theorem[]shows that escaping the kernel regime requires optimizing
to higher accuracy, such that log 1/e is at least linear in the initialization scale a”. Complementing
Theorem E], we show a converse: that indeed the linear scaling log 1/e = ©(aP) is the transition
point out of kernel regime, and once log 1 /e = Q(a”) we no longer obtain the kernel /5 bias.

To show this, we first identify a condition about the stability of support vectorsE] for a dataset S.

Condition 5 (Stability condition). A dataset S = {(xp,yn) : n = 1,2,... N} and a stopping
accuracy function €(«) satisfy the stability condition, if for all k € [N] such that ypx; W > 1,

and large enough o, there exists €* (o) = exp (—o(a?)) and py > 1 such that V't with L(w(t)) €
[e(), e ()] : 73”"’;’3(:;(” > po.

We further say that the stability condition holds uniformly for a given dataset S if there exists pgy such
that the above condition holds for all stopping functions e(a) = exp(fQ(aD ))

If w(t) indeed follows the trajectory of the linearized model corresponding to the Neural Tangent
Kernel, then Condition [5] holds (uniformly) for almost all datasets, see details in Appendix [E]
Therefore, if Condition [5|does not hold, it follows that we no longer follow the trajectory of this
kernel model.

On the other hand, if Condition E] does hold we show in the following Theorem E] that when
e = exp (—O(a®)) we will be in the intermediate regime, leading to max-margin solution with

respect to QP function in (6)), and again deviate from the kernel regime.
Theorem 6. Under Conditionfor D > 2 if lim m = > 0, then for QE as defined in
a—r 00

@), W = argmin,, Q7 (W) s.t. Vn, ypx,w > 1.

The proof appears in Appendix [F.2] (for D = 2) and Appendix (for D > 2). In the proof, we
show that the following KKT conditions hold. The result then follows from convexity of Qf (w).

N
dv e RQ’O s.t. VQS (W) = Z UnYnXn, VN : ynx;lrvi/ >1, Vn:u, (ynx;lr\fv - 1) =0.
n=1
The Rich Limit Above we saw that log 1 /e being linear in a” is enough to leave the kernel regime,
i.e., with this training accuracy and beyond the trajectory no longer behaves as if we were training a
kernel machine. We also saw that under Condition |5, when log 1/¢ is exactly linear in oP, we are in
a sense in an “transition” regime, with bias given by the Q;? penalty which interpolates between o
(kernel) and ¢, (the rich limit for D = 2). Next we show that once the accuracy log 1/¢ is super-linear,
and again under Condition 5] we are firmly at the rich limit:

Theorem 7. Under Condition for D > 2 if e(a) = exp(—w(a?)) then w =
argming, |[wl|, .t Vn, yx) w > 1.

For D = 2 the result holds also with a weaker condition, when €* (c) in Condition[3]is replaced with
€* (o) = exp [—0 <a2 log 710*{(1/6(“)))]

a? .
The proof for D = 2 appears in Appendix [F.3]and the proof for D > 2 appears in Appendix [G.3]

For D > 2 we know from Theorem [2] that the implicit bias in the rich limit is given by an {5, quasi
norm penalty, and not by the ¢; penalty as in Theorem[7] It follows that when Condition [5|holds, the
¢; max-margin predictor must also be a first order stationary point of the £, max-margin problem.
As we demonstrate in Section[3] this is certainly not always the case, and for many problems the ¢,

*Data-point (X, yx) is a support vector at time ¢ if yxx; w(t) = min, ynx, w(t) = v(t).
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Figure 3: Optimization trajectories for 3 simple datasets in depth 2 linear diagonal network (b-d). Each point in
Azimuth-Pitch plane represents a normalized classifier /|w|,. The curves corresponding to « in the legend
are the entire gradient flow trajectories initialized with the respective a.. The curves corresponding to p are end
points of gradient flow trajectories for different « with stopping criteria set as €(«) = exp(fa2 / ,u). The pink
squares represent the directions along the (), max-margin path for the appropriate 1 marked near the square.
The dynamics in (b) takes place on a small part of the sphere as shown in (a), where the grey area represents all
separating directions.

max-margin is not a stationary point for the /5, max-margin problem—in those cases Condition
does not hold. It might well be possible to show that a super-linear scaling is sufficient to reach the
rich limit, be it the ¢; max-margin for depth two, or the 5, p max-margin (or a stationary point for
this non-convex criteria) for higher depth, and we hope future work will address this issue.

Role of depth From Theorem|§| we have that asymptotically e(a) = exp (—aD / u). Woodworth
et al. [30] analyzed the QE functiorﬂ and concluded that in order to have § approximation to ¢; limit
(achieved for i — 0) we need to have p = exp(—1/0) for D = 2, and 1/p = poly(1/6) for D > 2.
We conclude that in order to have J approximation to ¢; limit we need the training accuracy to be
e = exp(—a® exp(1/§)) for D = 2, and € = exp(—aPpoly(1/4)) for D > 2. Thus, depth can
mitigate the need to train to extreme accuracy. We confirm such behaviour in simulations.

5 Numerical Simulations and Discussion

‘We numerically study optimization trajectories to see whether we can observe the asymptotic phe-
nomena studied at finite initialization and accuracy. We focus on low dimensional problems, where
we can plot the trajectory in the space of predictors. In all our simulations we employ the Normalized
GD algorithm, where the gradient is normalized by the loss itself, to accelerate convergence [21]].
The learning rate was small enough to ensure gradient flow-like dynamics (always below 10~3).

Gradient flow trajectories In Figure [3] we plot trajectories for training depth D = 2 diagonal
linear networks in dimension d = 3, on several constructed datasets, each consisting of three points.

3Note that QE is defined for general y, and 1 = o is only for the square loss setting studied in [30]. Here
1 depends both on « and € (see Theorem |§|)
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Figure 4: Optimization trajectories for D = 3. The legend for ¢1, ¢2, start and (), path is the same as in Figure

The trajectory w(t) in this case is in R?, and so the corresponding binary predictor given by the
normalization W(#)/||w(t)||, lies on the sphere (panel (a)). We zoom in on a small section of the sphere
and plot the trajectory of W(t)/||w(t)||, — the axes correspond to coordinates on the sphere (given
as azimuth and pitch). The first step taken by gradient flow will be to the predictor proportional to
the average of the data, % > YnXn, and we denote this as the “start” point. The grey area in the
sphere represents classifiers separating the data (with zero misclassification error), and thus directions
where the loss can be driven to zero. The question of “implicit bias” is which of these classifiers
the trajectory will converge to. With infinitesimal (small) stepsizes, the trajectories always remain
inside this area (i.e., just finding a separating direction is easy), and in a sense, the entire optimization
trajectory is driven by the implicit bias.

Panel corresponds to a simple situation, with a unique /;-max-margin solution, and where the
support vectors for the /-max-margin and ¢;-max-margin are the same (although the solutions are
not the same!), and so the support vectors do not change throughout optimization and Condition 3]
holds uniformly. For large initialization scales (o = 100 and o = 10000, which are indistinguishable
here), the trajectory behaves as the asymptotic theory tells us: from the starting point (average
of the data), we first go to the />-max-margin solution (green circle, and recall that this is also
the Q% -max-margin solution), and then follow the path of Qi-max-margin predictors for i going
from oo to zero (this path is indicated by the dashed black lines in the plots), finally reaching the
¢1-max-margin predictor (orange star, and this is also the 2-max-margin solution). For smaller
initialization scales, we still always reach the same endpoint as € — 0 (as assured by the theory), but
instead of first visiting the £»-max-margin solution and traversing the Q2 path, we head more directly
to the ¢;-max-margin predictor. This can be thought of as the effect of initialization on the implicit
bias and kernel regime transition: with small initialization we will never see the kernel regime, and go
directly to the “rich” limit, but with large initialization we will initially remain in the kernel regime
(heading to the ¢5-max-margin), and then, only when the optimization becomes very accurate, escape
it gradually.

To see the relative effect of scale and training accuracy, and following our theory, we plot for different
values of y, the different points along trajectories with initialization « such that we fix the stopping
criteria as e(«) = exp(fcv2 / u) (dashed cross-lines in the plots). Our theory indicates that for any
value of i, as @ — o0, the dashes line would converge to the Qi—max—margin (a specific point on the
i path), and this is indeed confirmed in Panel where the dashed lines converge to pink squares,
which correspond to points along the Qi path for the appropriate x values. The clear correspondence
between points with the same relationship p between initialization and accuracy confirms that also at
relatively small initialization scales, this parameter is the relevant relationship between them.

From the value i we can also extract the actual training accuracy. E.g., we see that for a relatively
large initialization scale @ = 100, escaping the kernel regime (getting to the first pink square
just removed from the ¢5-max-margin solution, with & = 0.5), requires optimizing to loss ¢ =
exp(—10%/0.5) &~ 107879, while getting close to the asymptotic limit of the trajectory (the last pink

square, with 2 = 0.001) requires € ~ 10~419° (that’s four millions digits of prec1510n) Even with
reasonable initialization at scale o = 1, getting to this limit requires ¢ ~ 107434,
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Figure 5: In (a) we plot the excess ¢1 norm, defined as |[w(t)||1/||we, ||1 — 1 where wy, is the £; max-margin
(minimum norm) solution, as a function of 4. For a fixed excess ¢1 norm of 0.05, in (b) we plot how long we
need to optimize, given some initialization scale, to obtain the 5% closeness to £1 max-margin solution.

Panel (c) displays the trajectories for another dataset where Condition [5holds uniformly, but the ¢; -
max-margin solution is not unique. Although will always (eventually) converge to a £;-max-margin
solution, which one we converge to, and thus the implicit bias, does depends on the initialization.
Panel (d) shows a situation where the support vectors for the /5-max-margin and ¢;-max-margin
solutions are different, and so change during optimization, and Condition [5does not hold uniformly.
The condition does hold for y& > po where 1o ~ 0.04, but does not hold otherwise. In this case,
even for very large initialization scales «, the trajectory does not follow the Qi path entirely. It is

interesting to note that the Qi is not smooth, which perhaps makes it difficult to follow. Around the
kink in the path (at u = (), it does seem that larger initialization scales are able to follow it a bit
longer, and so perhaps with huge initialization (beyond our simulation ability), the trajectory does
follow the Q2 path. Whether the trajectory follows the path for sufficiently large initialization scales
even when CondltlonE] fails, or whether we can characterize its limit behaviour otherwise, remains
an open question.

In Figure ] we show optimization trajectories for depth 3 linear diagonal network where Condition 3]
does not hold uniformly. As we can observe, in both cases the trajectory for large o will first go to £
max- margln then stay near the @, path, until the trajectory starts to deviate in a direction of /5,3
max-margin solution, whereas the @,, path continues to the ¢; max-margin point. In Flgure@]we
observe that there is a local minimum point at (0,0) and for small « the trajectory converges to it.
Further discussion about convergence to local minima in high dimension appears in Appendix [H]

Initialization Scale vs Training Accuracy Using the same dataset from Figure we examine
the question: given some initialization scale, how long we need to optimize to be in the rich regime?
Flgure [5(a)] demonstrates how the initialization and depth affect the convergence rate to the rich
regime. Specifically, we chose two reasonable initialization scales a’, namely 0.1 and 1, and show
their convergence to the £; max-margin solution as a function of the traming accuracy 7 (recall that
4 = log(1/¢)), for depths D = 2,3,10. We chose this dataset so that the rich regime is the same
for all depths (i.e., the minimum ¢; norm solution also corresponds to the minimum /5,3 and ¢ 1¢
quasi-norm solutions).

As previously discussed, even on such a small dataset (with three data-points) we are required to
optimize to an incredibly high precision — in order to converge near the rich regime. Notably, the
situation is improved and we converge faster to the rich regime when the initialization scale is smaller
and/or the depth is larger. Unfortunately, taking the initialization scale to 0 will increase the time
needed to escape the vicinity of the saddle point u = 0. For example, Shamir [27]] showed that
exiting the initialization may take exponential-in-depth time.

In Figure@] we examine the relative scale between (log) accuracy and (log) initialization needed to
obtain 5% closeness to ¢; max-margin. Based on the asymptotic result in Theorem|[6] we expect that
3 o< a® orlog(7) = alog(a”) +b, for some constants a = 1 and b € R. And indeed, in Figure
we obtain a = 1, as expected. Note that although our theoretical results are valid for « — co, we
obtain the same accuracy vs initialization rate also for small a. Moreover, the intercept of the lines
decreases when increasing the depth D, which matches the observed behaviour on Figure[5(a)] and to
the discussion about the effect of depth in Section 4]



Broader Impact

The goal of this work is to shed light on the implicit bias hidden in the training process of deep
networks. These results may enable a better understanding of how hyperparameters select the
types of solutions that deep networks converge to, which in turn affect their final generalization
performance and hidden biases. This could lead to better performance guarantees or to improved
training algorithms which quickly converge to beneficial types of biases. Eventually, we believe
progress on these fronts can transform deep learning from the current nascent “alchemy” age (where
all the “knobs and levers” of the model and the training algorithm are tuned mostly heuristically
during research and development), to a more mature field (like “chemistry”), which can be seamlessly
integrated in many real world applications that require high performance, safety, and fair decisions.

Our guiding principal is that when studying a new or not-yet-understood phenomena, we should first
study it in the simplest model that shows it, so as not to get distracted by possible confounders, and
to enable a detailed analytic understanding, e.g., when understanding or teaching many statistical
issues, we would typically start with linear regression, understand the phenomena there, and then
move on to more complex models. In the specific case here, one of the few models where we have an
analytic handle on the implicit bias in the “rich” regime are linear diagonal networks, and it would be
very optimistic to hope to get a detailed analytic description of the more complex phenomena we
study in models where we can’t even understand the endpoint.
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