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Abstract

We present a primal only derivation of Mirror
Descent as a “partial” discretization of gra-
dient flow on a Riemannian manifold where
the metric tensor is the Hessian of the Mirror
Descent potential. We contrast this discretiza-
tion to Natural Gradient Descent, which is ob-
tained by a “full” forward Euler discretization.
This view helps shed light on the relationship
between the methods and allows generalizing
Mirror Descent to general Riemannian geome-
tries, even when the metric tensor is not a
Hessian, and thus there is no “dual.”

1 Introduction

Mirror Descent (Nemirovsky and Yudin) |1983; Beck
and Teboulle, 2003)) is an important template first-order
optimization method for optimizing w.r.t. a geometry
specified by a strongly convex potential function. It en-
joys rigorous guarantees, and its stochastic and online
variants are even optimal for certain learning settings
(Srebro et al., [2011). As its name implies, Mirror De-
scent was derived, and is typically described, in terms
of performing gradient steps in the dual space using
a mirror map: in each iteration, one maps the iterate
to the dual space through a link function, performs an
update there, and then mirrors the updates back to the
primal space. Understanding Mirror Descent in this
way requires explicitly discussing the dual space or the
link function.

In this paper we derive a direct “primal” understand-
ing of Mirror Descent, and in order to do so, turn to
Riemannian Gradient Flow. The infinitesimal limit of
Mirror Descent, where the stepsize is taken to zero,
corresponds to a Riemannian Gradient Flow on a man-
ifold with a metric tensor that is given by the Hessian
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of the potential function used by Mirror Descent (see
Section . The standard forward Euler discretiza-
tion of this Riemannian Gradient Flow gives rise to
the Natural Gradient Descent algorithm |[Amari| (1998).
Our main observation is that a “partial” discretization
of the flow, where we discretize the optimization objec-
tive but not the metric tensor specifying the geometry,
gives rise precisely to Mirror Descent (see Section .
This view allows us to understand how Mirror Descent
is, in a sense, more “faithful” to the geometry compared
to Natural Gradient Descent.

The relationship we reveal between Mirror Descent and
Natural Gradient Descent is different from, and com-
plementary to, the relationship discussed by |[Raskutti
and Mukherjee| (2015)—while their work showed how
Mirror Descent and Natural Gradient Descent are dual
to each other, in the sense that Mirror Descent is equiv-
alent to Natural Gradient Descent in the dual space,
we avoid the duality altogether. We work only in the
primal space, derive Mirror Descent directly, without
considering the dual or link functions, and show how
both methods are different discretizations of the same
flow (more details in Section .

As a consequence, our derivation of Mirror Descent
allows us to conceptually generalize Mirror Descent to
any Riemannian manifold, including situations where
metric tensor is not specified by the Hessian of any
potential, and so there is no dual, no link function and
no Bregman divergence.

1.1 Background: Mirror Descent

Consider optimizing a smooth objective F' : W — R
over a closed convex set W C R ming ey F(w). We
will focus on unconstrained optimization, i.e., WW = R%.

Mirror Descent is a template first-order optimiza-
tion algorithm specified by a strictly convex poten-
tial function ¥ : W — R. Mirror Descent was devel-
oped as a generalization of gradient descent to non-
Euclidean geometries, where the local geometry is spec-
ified by the Bregman divergences w.r.t. ¥ given by
Dy(w,w') = h(w) — (W) — (Vip(w'), w — w'). The
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iterative updates of Mirror Descent with stepsize n are
defined as:

(k+1)

. k k
wik D =argmin 1(w, VE(W)+Dy (w, wiih). (1)

wew
For unconstrained optimization, the updates in are
equivalently given by:

Vo(wiin") = Vo(wish) —aVEw)),  (2)

where Vv is called the link function and provides a
mapping between the primal optimization space w € W
and the dual space of gradients. Mirror Descent thus
performs gradient updates in the dual “mirror”.

1.2 Background: Riemannian Gradient Flow

Let (W, H) denote a Riemannian manifold over W =
R? equipped with a metric tensor H(w) at each point
w € W. The metric tensor H(w) : Tyy(w) x Tyy(w) —
R denotes a smoothly varying local inner product on
the tangent space at w. Intuitively, the tangent space
Ty (w) is the vector space of all infinitesimal directions
dw that we can move in while following a smooth path
on W (for more detailed exposition see, e.g. Do Carmo),
2016)). For manifolds over R?, we can take the tangent
space as Tyy(w) = R? and the metric tensors can be
identified with positive definite matrices H(w) € S{_
that define local distances at w as d(w,w + dw) =

v/dwT H(w)dw for infinitesimal dw.

The Riemannian Gradient Flow dynamics w(t) for the
optimization problem minyeyy F(w) with initialization
w(0) = winj; are obtained by seeking an infinitesimal
change in w(t) that would lead to the best improvement
in objective value, while controlling the length of the
change in terms of the manifold geometry, that is,

w(t+dt) = argv{]nin F(w)dt + %d(w,w(t))Q. (3)

For infinitesimal d¢, using dw(t) = w(t + dt) — w(t),
we can replace F(w) and d(w,w(t)) Wlth their first

order approximations'| F'(w(t)) + (dw, VF(w(t))), and
diw,w(t)) = /dw T H(w(t))dw:

dw(t) = argmin (dw, VF(w(t))>dt+%dwTH(w(t))dw.

dw
(4)
Solving for dw, we obtain:

w(t) = —H(w(t)) " VF(w(t)), (GF)

dw

where here and throughout we denote w = <.

We use {(.,.) to denote the canonical inner product

in R? and V denotes the gradient operator such that
(VF(w),dw) = F(w+dw) — F(w) for all infinitesimal dw

We refer to the path specified by (GF)) and initial
condition w(0) = wi,it as Riemannian Gradient Flow
or sometimes simply as gradient flow.

Examples of Riemannian metrics and corresponding
gradient flow that arise in learning and related areas:

1. The standard Euclidean geometry is recovered
with H(w) = I. In this case reduces to
the standard gradient flow w = —VF(w). When
H(w) = H is fixed to some other positive definite
H, we get the pre-conditioned gradient flow w =
—H~'VF(w), which can also be thought of as
the gradient flow dynamics on a reparametrization
w = H'/?w, i.e. with respect to geometry specified
by a linear distortion.

2. For any strongly convex potential function 1 over
W, the Hessian V21 defines a non-Euclidean met-
ric tensor. Examples include squared ¢, norms
Y(w) = ||w||12] for 1 < p <2 (p =2 again recovers
the standard Euclidean geometry) and a particu-
larly important example is the simplex, endowed
with an entropy potential ¢(w) = — >, w; log w;.

3. Information geometry (Amari, |2012)) is concerned
with a manifold of probability distributions, e.g. in
a parametric family {p(z;0) : § € © C R?}, typ-
ically endowed with the metric derived from the
KL-divergence. In our notation, we would consider
this as defining a Riemannian metric structure over
the manifold parameters W = O, with a metric ten-
sor given by the Fisher information matrix H(0) =
Z(0) = Eu[-Volog(p(z;0))Velog(p(x;0))" |0).
Such a geometry can also be obtained by con-
sidering the entropy as a potential function and
taking its Hessian.

2 Discretizing Riemannian Gradient
Flow

The Riemannian Gradient Flow is a continuous object
defined in terms of a differential equation . To
utilize it algorithmically, we consider discretizations of
the flow.

2.1 Natural Gradient Descent

Natural Gradient Descent is obtained as the forward
Euler discretization with stepsize 7 of the gradient flow

[CH):

W(k+1) (k)

k k
NGD = NGD_nH<W1(\IC);D) 1VF(W1(\I()}D)>

(5)
where wl(\?c);D = Winit-

These Natural Gradient Descent updates were sug-
gested and popularized by |Amari| (1998), particularly
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in the context of information geometry, where the met-
ric tensor is given by the Fisher information matrix of
some family of distributions.

An equivalent way to view the updates is by dis-
cretizing the right-hand-side of the differential equation

as follows:
wi(t) = —H (w(lt], )>’1 vF (w(lt],)), (NGD)

where [t], :=n[!/n] denotes a discretization at scale 7,
i.e. the largest ¢’ < ¢ such that ' is an integer multiple
of n.

The differential equation specifies a piecewise
linear solution w(t) that interpolates between the Nat-
ural Gradient Descent iterates. In particular, the
Natural Gradient Descent iterates in are given by
wl(\f()}D = w(nk) where w(t) is the solution of
with the initial condition w(0) = Wiy, and we could
have alternatively defined the forward Euler discretiza-
tion in this way.

2.2 Mirror Descent

In we fully discretized the Riemannian Gradient
Flow . Now consider an alternate, partial, forward
discretization of , where we discretize the gradient
VF(w), but not the local metric H(w):

W(t) = —H(w(t)""VF(w([t],))

The resulting solution w(t) is piecewise smooth. We
will again consider the sequence of iterates at discrete
points t = nk:

(MD)

wk) = w(nk). (6)
Our main result is that if H(w) = V?¢(w), then the

updates @ from the solution of (MD)) are precisely
the Mirror Descent updates in with potential 1.

Theorem 1. Let ¢ : W — R be strictly convex and
twice differentiable and let H(w) = V23 (w) be invert-
ible everywhere. Consider the updates w'®) = w(kn)
obtained from the solution of with initial condi-
tion w(0) and stepsize . Then w'¥) are the same as

the Mirror Descent updates Wg\l/c[)D mn obtained with
potential ¥ and the same initialization and stepsize.

Proof. Consider the Mirror Descent iterates with step
size n for link function Vi from

Vo(wikd D) = Vo (wih) — nVE(wir).

Define a Mirror Descent path w(t) by linearly interpo-
lating in the dual space as follows:

Vk,Vt € [kn, (k+ 1)n) :
V(W () = Vi (wiih) — (t — kn)VE(wih).

One can easily check that Wl(\l,f])j = w(nk). The above

equation describing a piecewise smooth path w(t) equiv-
AV (w(t -

alently corresponds to, W = -VF (w( Ltjn ))

Using the chain rule, we see that w(t) follows the dis-

cretization path in :
w(t) = V2 (w(t) 'VF(w([t],))
= —H(W(t)"'VF(w([t],)).

This completes the proof of the theorem. U

2.3 A More Faithful Discretization?

Comparing the two discretizations (NGD)) and (MD))

allows us to understand the relationship between Nat-
ural Gradient updates and Mirror Descent updates
. Although both updates have the same infinitesimal
limit, as previously discussed by, e.g. |(Gunasekar et al.
(2018)), they differ in how the discretization is done
with finite stepsizes: while Natural Gradient Descent
corresponds to discretizing both the objective and the
geometry, Mirror Descent involves discretizing only
the objective (accessed via VF(w(t))), but not the
geometry (specified by H(w(t))). In this sense, Mirror
Descent is a “more accurate” discretization, being more
faithful to the geometry of the search space.

This view of Mirror Descent also allows us to contrast
the computational aspects of implementing the two
algorithms. While both the algorithms are first order
methods, which only require gradient access to the
objective (at discrete iterates, VF(w(*)), Natural Gra-
dient Descent can be implemented if we can compute
the inverse Hessian of the metric tensor (i.e., we need
to either obtain and invert the metric tensor, or have di-
rect access to its inverse). But at least for a traditional
implementation of the Mirror Descent updates in ,
we need (a) the metric tensor H(w) to be a Hessian
map, i.e. the differential equation H(w) = V2 (w)
should have a solution, and (b) we need to be able
to efficiently calculate the link Vi and inverse link
V1~! functions. More generally, one needs some way
of solving the ordinary differential equation (MD) to
implement Mirror Descent.

2.4 When Does a Potential Exist?

In Theorem [I] we established that for any smooth
strictly convex potential ¢(w) with everywhere invert-
ible Hessian, we can define a metric tensor H(w) =
V2 (w) so that Mirror Descent is obtained as a dis-
cretization of the Riemannian Gradient Flow .
One might ask whether this connection with Mirror
Descent holds for any Riemannian Gradient Flow.

The Riemannian Gradient Flow (GF)), and hence also
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the discretization , can be defined for any smooth,
invertible Riemannian metric tensor H : R? — Si L
But the classic Mirror Descent updates are only
defined in terms of a potential function 1. To relate Rie-
mannian Gradient Flow w.r.t. some metric tensor H(w)
to Mirror Descent, we need to identify such a potential
function, i.e. a function ¢ : W — R s.t. V2 = H.
That is, we need there to be a solution to the partial
differential equation V21 = H, or in other words for
H to be a Hessian map.

When is a metric tensor a Hessian map? Or, when is
there a solution to V2 = H? By Poincaré’s lemma,
the rows of the metric tensor, H; : R — R are gradi-
ents (i.e., Vi, H; = V¢; for some ¢; : R? — R) if and
only if they satisfy the following symmetry condition:

aHm- (W) o 8Hz,k(w)
8Wk - '

(7)

Ywew Vi ;
J.kef{l,...,n} -
ow;

Thus, @ is equivalent to H being a Jacobian of some
vector-valued function ¢ = [¢1, ¢a,..., ¢4 : RY —
R?. Further, since H is symmetric (by definition), ¢
also satisfies the same symmetry condition &giiv(vjw) =
H; j(w) =Hj,;(w) = %‘S’), and hence in turn is a
gradient field (i.e., ¢ = V1) for some ). Therefore,
(7) is equivalent to V2¢ = H having a solution, and
since H(w) is positive definite (in order to be a valid
metric tensor), ¥ must be strictly convex, as we would
desire of a potential function. Hence, we can conclude
that the discretization of Riemannian Gradient Flow in
corresponds to classic Mirror Descent ([2) for some
strictly convex potential ¢ if and only if holds. The
requirement in is non-trivial and does not hold in
general, for instance, a seemingly simple metric tensor
H(w) =1+ ww! fails to satisfy and therefore is
not a Hessian ma

2This metric tensor H(w) = I + ww ' can arise by
considering the d-dimensional manifold embedded in R4+t

which consists of points [1 HwH2:| with local distances in-
2

duced by the Euclidean geometry on R?*!. The distance
between w and w + dw is then given by

i)~ [y e

sIwIP] T 51w+ dw|?

= \/dwT(I +ww')dw + i”dw“4 — (w,dw)||dw]||?

dw,w+dw) = ‘

For infinitesimal dw, this means d(w,w + dw) =
/dwT (I + wwT)dw, and indeed the metric tensor is de-

scribed by H(w) = I +ww . That this is not a Hessian
map can be seen by simply calculating 8671H1’2(W) =
%W1W2 = W2 75 %HlJ(W) = %1 + W% =0.

2.5 Contrast With Prior Derivations

We emphasize that our derivation of Mirror Descent as
a partial discretization of Riemannian Gradient Flow
is rather different from, and complementary to, a pre-
vious relationship pointed out between Natural Gra-
dient Descent and Mirror Descent by |[Raskutti and
Mukherjee| (2015)). Their derivation does rely on dual-
ity and existence of a potential, and thus a link function.
Raskutti and Mukherjee showed that Mirror Descent
over w € W corresponds to Natural Gradient Descent
in the dual, that is after a change of parametrization
given by the link function w = Vi) (w).

In terms of the discretized differential equations
and , the above relationship can be stated as
follows: the path of the Natural Gradient Descent dis-
cretization is piecewise linear in the primal
space, i.e. w(t) is piecewise linear, while the path of
the Mirror Descent discretization is piecewise lin-
ear in the dual space, i.e. Vi)(w(t)) is piecewise linear,
and consequently curved in the primal space. But this
view does not explain why Mirror Descent might be
preferable when we are interested in the primal geom-
etry. In contrast, here we focus only on the (primal)
Riemannian geometry, do not use a link function nor
the dual, and highlight why Mirror Descent is more
faithful to this primal geometry.

Raskutti and Mukherjeels dual view is also captured by
another popular way of developing Mirror Descent as a
discretization of a differential equation: when the met-
ric tensor is a Hessian map and H(w) = V2¢(w), then
the partial differential equation is equivalent to
the followinﬂ (Nemirovsky and Yudin, |1983; Warmuth
and Jagotal [1997; Raginsky and Bouvrie| 2012)):

d
3 Vow(t) = ~VF(w(1)). (8)

A forward Euler discretization of the differential equa-
tion yields the Mirror Descent updates in . This
can be viewed as using standard (full discretization)
forward Euler, corresponding to piecewise linear up-
dates and Natural Gradient Descent, but on the dual
variables, i.e. discretizing % where w = Vi)(w).

Viewing Mirror Descent as a forward Euler discretiza-
tion of (8], or as dual to Natural Gradient Descent,
as in previous derivations and discussions of Mirror
Descent still depends on having a link function Vi (w)
such that the metric tensor is a Hessian map H = V2.
One might ask whether we could perform such deriva-
tions relying on a change-of-variables “link” function

3To see this, apply the chain rule to the left hand side of
to get V2 (w(t))w(t) = —VF(w(t)) and then multiply
both sides by V¢ (w(t))™" = H(w(t))"* to get (GF)
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even if the metric tensor H is not a Hessian map. In
other words, could we have a function ¢ : R — R?
such that ¢(w(t)) is piecewise linear under the Mirror
Descent dynamics , in which case we could derive
Mirror Descent as Natural Gradient Descent on ¢(w(t))
or as the forward Euler discretization

d
Tow() = ~VEw(t],)). ©)

That is, when does there exists ¢ : R* — R? such
that @D is equivalent to for any smooth objec-
tive F'(w)? Applying the chain rule to the left hand
side of @D this would require that V¢ = H, which
further implies that H is a Hessian mapﬂ Therefore,
if the metric tensor is not a Hessian map, there is no
analogue to the link function, and we cannot obtain the
discretization in as Natural Gradient Descent
after some change of variables, nor as a forward Euler
discretization of a differential equation similar to (8)).

An distinguishing feature of our novel derivation of
Mirror Descent that clearly differentiates it from all
prior derivations, is that it does not require a potential,
dual or link function, and so it does not rely on the
metric tensor being a Hessian map. This is exemplified
by the fact that, unlike any prior derivation, it allows
us to conceptually generalize Mirror Descent to metric
tensors that are not Hessian maps.

3 Potential-free Mirror Descent

As we emphasized, a significant difference between our
derivation and previous, or “classical’, derivations of
Mirror Descent, is that our derivations did not involve,
or even rely on the existence of potential function—
that is, it did not rely on the metric tensor being a
Hessian map. If the metric tensor is not a Hessian
map, we cannot define the link function nor Bregman
divergence, and the standard Mirror Descent updates
7 are not defined, nor are any prior derivations of
Mirror Descent that we are aware of. Nevertheless our
equivalent primal-only derivation of Mirror Descent
@ does allow us to generalize Mirror Descent as a
first order optimization procedure to any metric tensor,
even if it is not a Hessian map—we simply use @ as
the definition of Mirror Descent.

(k)

To be more precise, we can define wy,p, iteratively as

follows: given W1(\]/l])3 and the gradient g(k) = VF(W&CI)D)

4Applying the cham rule on @ID and substltut—
ng (D) we gt Voo VE(w([t],)) =
VF(w([t Jn)) If this holds for any objective F( ), it

must be that V¢H * = I. But V¢ = H indicates that H
is a Jacobian map, which for symmetric H further implies
since both sides evaluate to 9 k.

consider the path defined by the differential equation

w(t) = —H(w(t)) "™ with w(0) = wi},

i (10

and let wy b = w(n).

For a general metric tensor H, the above updates re-
quires computing the solution of a differential equation
at each step, which may or may not be efficiently com-
putable (just as the standard Mirror Descent updates
may or may not be efficiently computable depending on
the link function). Nevertheless, it is important to note
that the differential equation ([L0]) depends on the ob, jec—
tive F only through a single gradient g®) = VF(w{¥).).
That is, the only required access to the objective in
order to implement the method is a single gradient
access per iteration—the rest is just computation in
terms of the pre-specified geometry (similar to com-
puting the link and inverse link in standard Mirror
Descent). The updates thus define a valid first
order optimization method, and independent of the
tractability of solving the differential equation, could
be of interest in studying optimization with first order
oracle access under general geometries.

We also show in Appendix [B] that when the eigenvalues
of H(w) are bounded from above and below, and when
the objective F' is smooth and strongly convex with
respect to L2, then the updates guarantee linear
convergence to a minimizer of F', even when the metric
tensor is not a Hessian. While this result is limited to
the L2 geometry on W, it at least suggests that the
algorithm can be expected to succeed without relying
on H being a Hessian map.

4 Importance of the Parametrization

Our development in Section [2] relied not only on
a Riemannian manifold (W, H), but on a specific
parametrization (or “chart”) for the manifold, or in
our presentation, on identifying the manifold W, and
its tangent space, with R?. Let us consider now the
effect of a change of parametrization (i.e. on using a
different chart).

Cousider a change of parameters w = ¢(w) for some
smooth invertible ¢ with invertible Jacobian V¢, that
specifies an isometric Riemannian manifold (W H ),
i.e., such that dg(w, w +dw) = dg(d(w), (w4 dw))
for all infinitesimal dw. The metric tensor H(W) for
the isometric manifold is given by

Hw) T H (o7 (W) Ve (W),

where recall that the Jacobian of the inverse is the
inverse Jacobian, V¢(w)™! = V¢~!(w). This can

H(W)=V¢~ (11)
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also be thought of as using a different chart for the
manifold (in our case, a global chart, since the manifold
is isomorphic to R?).

In understanding methods operating on a manifold,
it is important to separate what is intrinsic to the
manifold and its geometry, and what aspects of the
method are affected by the parametrization, especially
since one might desire “intrinsic” methods that depend
only on the manifold and its geometry, but not on the
parametrization. We therefore ask how changing the
parametrization affects our development. In particular,
does the Mirror Descent discretization, and with it the
Mirror Descent updates change with parameterization?

Consider minimizing F(w), which after the
reparametrization we denote as F(w) = F(¢~1(W)).
The Riemannian Gradient Flow on w is

W(t) = ~H@0)'VE®E®),  (12)

where note that VF(w) = Vo~ (W) VEF(¢~1(W)).

Since our initial development of the Riemannian Gradi-
ent Flow in eq. was independent of the parametriza-
tion, it should be the case that the solution w(t¢) of
(112), i.e. as gradient flow in (W, H ), is equivalent to
gradient flow in (W, H), i.e. w(t) = ¢(w(t)) where
w(t) is the solution of (GF]). It is however, insightful
to verify this directly: to do so, let us take the solu-
tion w(t) of (GE)), define w(t) = ¢(w(t)), and check
whether it is in-fact a solution to . Starting from
the left hand side of , we have:

w = Vo(w)W = —Vo(w)H(w) 'VF(w)
= —H(W) 'VF(W), (13)
thus verifying that ¢(w(t)) indeed satisfies ([12]).

Do the same arguments hold also for the Mirror De-
scent discretization (MD])? Taking the solution w(t)
of and setting w = ¢(w), we can follow the
same derivation as above, except now the metric tensor
H and gradient VF are calculated at different points,
w(t) and w( 1], ), respectively.

W = —Ve(w)H(w)'VF(w(|t],))

= W) (Vow(1t),) " Vew) (11, )

(14)

We can see why the Mirror Descent discretization,
and hence also the Mirror Descent iterates are not
invariant to changes in parametrization: if Vé(w) is
fixed, i.e., the reparametrization is affine, we have
Vo (w( lt], ))"'Vo(w) =1 and shows that w =
¢(w) satisfies the Mirror Descent discretized differen-
tial equation w.r.t. H(W). But more generally, the

discretization would be affected by the “alignment” of
the Jacobians along the solution path. We note that,
for essentially the same reason, NGD is not generally
invariant to reparametrization either.

A related question is how a reparametrization affects
whether the metric tensor is a Hessian map. Indeed,
for a particular parametrization (i.e. chart), the exis-
tence of a potential function v such that H = V3¢
depends on whether H satisfies , and it may well be
the case that H(w) is not a Hessian map but H(w) is,
or visa versa (in fact, in general if ¢(w) is non-affine
we cannot expect both H(w) and H(W) to be Hes-
sian maps). Does every Riemannian manifold have a
reparametrization (i.e. chart) where the metric tensor
is a Hessian map, i.e. which corresponds to “classical”
Mirror Descent? |Amari and Armstrong| (2014)) showed
that while all Riemannian manifolds isomorphic to R?
admit a parametrization for which the metric tensor is
a Hessian map, this is not true in higher dimensions;
even a manifold isomorphic to R? might not admit any
parametrization with a Hessian metric tensor.

We see then how our potential-free derivation of Section
can indeed be much more general than the traditional
view of Mirror Descent which applies only when the
metric tensor is a Hessian map and a potential func-
tion exists: for many Riemannian manifolds, there is
no parametrization with a Hessian metric tensor, and
S0 it is not possible to define Mirror Descent updates
classically such that the Riemannian gradient flow is
obtained as their limit. Yet, the approach of Section [3]
always allows us to do so. Furthermore, even for mani-
folds for which there exists a parametrization where the
metric tensor is the Hessian of some potential function,
our approach allows considering discretizations in other
isometric parametrization.

Finally, in light of our characterization of Mirror De-
scent, several readers have suspected that Mirror De-
scent might be equivalent to Riemannian Gradient
Descent (see |Absil et al.| [2009) using steps that follow
geodesics on the manifold (i.e. using the exponential
map retraction). However, the Riemannian Gradient
and geodesics are intrinsic, whereas we have shown
that Mirror Descent is not.

5 Summary

In this paper we presented a “primal” derivation of Mir-
ror Descent, based on a discretization of the Rieman-
nian Gradient Flow, and showed how it can be useful
for understanding, thinking about, and potentially an-
alyzing Mirror Descent, Natural Gradient Descent, and
Riemannian Gradient Flow. We also showed how this
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view suggests an generalization of (Mirrorless) Mirror
Descent to any Riemannian geometry. It is important
to identify interesting and useful examples of metric
tensors H that are not Hessian maps for which this
Mirrorless Mirror Descent perspective can lead to new
algorithms and analysis.
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Broader Impact

Mirror Descent and Natural Gradient Descent are im-
portant and popular optimization approaches, both
theoretically and practically, and both play central
roles in machine learning. Aside from a direct role as
a method for minimizing a given optimization objec-
tive, Mirror Descent, and ideas derived from it, such
as the role of the potential function, also play a cen-
tral role in online learning (e.g. Shalev-Shwartz, [2012]
for a survey), and throughout learning theory. Ob-
taining a better understanding of Mirror Descent, and
its relationship with Natural Gradient Descent, has
thus been an ongoing endeavour in the optimization
and machine learning communities, with past work,
e.g. that of Raskutti and Mukherjee (2015)), being in-
fluential in guiding the community’s thinking about
these methods. There is also been much interest in
the community lately in understanding and re-deriving
optimization methods as discretizations of continuous
solutions to differential equations (e.g. Wibisono et al.,
2016)). Obtaining a novel, and very different, derivation
of Mirror Descent as such a discretization can thus be
very impactful in guiding our thinking about it, and in
devising novel insights and methods based on it.

Our novel view could be particularly impactful since
unlike all prior derivations of Mirror Descent, our ap-
proach does not rely on a dual and is thus valid much
more broadly, and allows generalizing Mirror Descent
to many more settings (as discussed in Section .

Cross-Disciplinary Impact and Impact in Edu-
cation Beyond the possible practical implications,
our primal-only view also has pedagogical implications,
as it can allows for an arguably more direct derivation
of Mirror Descent that might be easier to understand
intuitively, especially by an audience not familiar with
duality, link functions and Bregman divergences. As
such, it can open up understanding of this method to

a wider audience. In fact, the derivation was initially
derived in order to explain Mirror Descent to physi-
cists, and several colleagues already adopted it in the
classroom.

A Stochastic Discretization

In this bonus appendix, we briefly discuss how yet
another discretization of Riemannian Gradient Flow
captures Stochastic Mirror Descent (Nemirovsky and
Yudinl [1983), and could be useful in studying optimiza-
tion versus statistical issues in training.

We have so far discussed exact, or batch Mirror Descent,
but a popular variant is Stochastic Mirror Descent,
where at each iteration we update based on an unbiased
estimator g(¥) of the gradient VF(w(*)), i.e. such that
Eg*) = VF(w*) as,

Wi = argmin (g™, w) + Dy(w,w)).  (15)

Consider stochastic objective of the form:

F(w) = E. f(w, 2). (16)

We can derive Stochastic Mirror Descent from the fol-
lowing stochastic discretization of Riemannian Gradient

Flow :
w(t) = —H(w(t) 'V(w(lt],),z,) Q7

where z; are sampled i.i.d., and we used two different
resolutions, 77 and v, to control the discretization.

Setting v = 7 and taking x?vl(\f])) = w(nk) we recover

“single example” Stochastic Mirror Descent, i.e. where
at each iteration we use a gradient estimator ¢(*) =
Vf(w(k), z) based on a single i.i.d. example. But vary-
ing v relative to n also allows us to obtain other vari-
ants.

Taking v < n, eg. 7 = 0b-v for b > 1, we re-
cover Mini-Batch Stochastic Mirror Descent, where
at each iteration we use a gradient estimator ob-
tained by averaging across b i.i.d. examples. To
see this, note that solving as in Theorem
we have that for ¢ = 0,...,b — 1, Vip(w(kn + (i +
1)) = Vab(w(kn + i) — vV £ (W(kn), Zps:r) and so
Vi(w((k+ 1)) = Vib(w(kn + bv)) = Vis(w(kn)) —
g 2 VI (W(EN), 2kniv)-

At an extreme, as v — 0, the solution of converges
to the solution of the Mirror Descent discretization
and we recover the exact Mirror Descent updates
on the population objective.

It is also interesting to consider 1 < v, in particular
when 7 — 0 while v > 0 is fixed. This corresponds
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to optimization using stochastic (infinitesimal) gradi-
ent flow, where over a time T we use T/v samples.
Studying how close the discretization remains to
the population Riemannian Gradient Flow (GF)), in
terms of n and v, could allow us to tease apart the opti-
mization complexity and sample complexity of learning
(minimizing the population objective).

B Convergence of Mirrorless Mirror
Descent

Theorem 2. Let the metric tensor 0 < al < H(w) =
BI for all w and let F' be y-smooth and A-strongly
convex with respect to L2. Then the updates with

constant stepsize 1 = 3—; will converge at a rate

Aa?K
P~ £ < (Pl - ) e (22
B
Proof. Throughout this proof, we will use || - || exclu-

sively to denote the L2 norm. We begin by observing
that

n(k+1) X
7/ H(w(t)) 'VE(w))dt
nk

k+1 k
I(\/ID ) I(\/[]):)
= —I:Ik V F(WI( II)D)

for some matrix 311 < Hj, < noa=*I. Furthermore,
by the y-smoothness of F'

F(wip ) — F°
k * k k k
< F(wihh) — F* + (VE(wii), wirt? — with)

Y (k+1)
+§HWMD -

2
k
with|
k * k S k
= F(wi\i) — F* — (VF(wirh), iV (wirh)
Y A ONIE
n §HH;€VF(WMD)H
2
< F(wiih) = F* =0~ !||VP(wii)|
2 2
n-y k
+ || VEw)|

2
k % &7
= F(wy) — F T

where we used that n = ;"—; for the final equality. Fi-
nally, we note that by the A-strong convexity of F, for
any w

[vrwin)|

IVE(w)|* > 2\ (F(w) — F*)
We conclude that

k . Aa? k «
Fwii) - " < (1 - W) (Fowiih) - F7)

Unrolling this recursion yields the stated bound. O
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