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A MODIFIED PRIMAL-DUAL WEAK GALERKIN FINITE

ELEMENT METHOD FOR SECOND ORDER ELLIPTIC

EQUATIONS IN NON-DIVERGENCE FORM

CHUNMEI WANG

Abstract. A modified primal-dual weak Galerkin (M-PDWG) finite element method is designed

for the second order elliptic equation in non-divergence form. Compared with the existing PDWG
methods proposed in [6], the system of equations resulting from the M-PDWG scheme could be
equivalently simplified into one equation involving only the primal variable by eliminating the dual

variable (Lagrange multiplier). The resulting simplified system thus has significantly fewer degrees
of freedom than the one resulting from existing PDWG scheme. Optimal order error estimates
are derived for the numerical approximations in the discrete H2-norm, H1-norm and L2-norm
respectively. Extensive numerical results are demonstrated for both the smooth and non-smooth

coefficients on convex and non-convex domains to verify the accuracy of the theory developed in
this paper.

Key words. Primal-dual, weak Galerkin, finite element methods, non-divergence form, Cordès
condition, polyhedral meshes.

1. Introduction

In this paper, we consider the second order elliptic equation in non-divergence
form which seeks an unknown function u = u(x) such that

d∑
i,j=1

aij∂
2
iju = f, in Ω,

u = 0, on ∂Ω,

(1)

where Ω ⊂ Rd(d = 2, 3) is an open bounded domain with Lipschitz continuous
boundary ∂Ω, the load function f ∈ L2(Ω), and the coefficient tensor a = (aij)d×d ∈
[L∞(Ω)]d×d is symmetric, uniformly bounded and positive definite in the sense that
there exist constants C1 > 0 and C2 > 0 such that

(2) C1ξ
T ξ ≤ ξTaξ ≤ C2ξ

T ξ, ∀ξ ∈ Rd, x ∈ Ω.

For the simplicity of notation, denote by L :=
∑d

i,j=1 aij∂
2
ij the second order partial

differential operator.

The second order elliptic problem in non-divergence form arises in various ap-
plications such as probability and stochastic processes [2]. This type of problem
also plays an important role in the research of fully nonlinear partial differential
equations in conjunction with linearization techniques (e.g., the Newton’s iterative
method) [1, 3]. In such applications, the coefficient tensor a(x) is often hardly
smooth. Therefore, it is crucial to develop effective numerical methods for the
model problem (1) with nonsmooth coefficient tensor. Readers are referred to [6]
for more details of recent work developed for the model problem (1) . f The goal of
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this paper is to develop a modified primal-dual weak Galerkin (M-PDWG) scheme
for the second order elliptic problem in nondivergence form (1), which is different
from and advantageous over the one proposed in [6]. The system of equations aris-
ing from the M-PDWG scheme could be equivalently simplified into one equation
by eliminating its dual variable (Lagrange multiplier). The simplified system in-
volves only the primal variable and thus has significantly fewer degrees of freedom
compared to the PDWG scheme proposed in [6]. The main contribution of the
present paper is that the numerical scheme admists a simplified form with reduced
computational complexity. Our theory for the M-PDWG method is based on two
assumptions: (1) the H2-regularity of the exact solution of the model problem (1);
and (2) the coefficient tensor a(x) is piecewise continuous and satisfies the uni-
form ellipticity condition (2). Optimal order error estimates are established for the
primal variable in a discrete H2-norm and for the dual variable in the L2-norm.
Moreover, the convergence theory is derived for the primal variable in the H1 norm
and L2 norm under some smoothness assumptions for the coefficient tensor a(x).
Numerical examples are presented to illustrate the accuracy of the theory developed
for the M-PDWG method.

The paper is organized as follows. In Section 2, we present the weak formulation
for the model problem (1). Section 3 is devoted to a review of weak second order
differential operator and its discretization. In Section 4, we describe the M-PDWG
finite element method for the model problem (1). Section 5 presents a simplified
system resulting form the M-PDWG method proposed in Section 4. Section 6 is
devoted to a stability analysis for the M-PDWG scheme. Section 7 presents the error
equations for the numerical scheme. In Section 8, we derive an optimal order error
estimate for the M-PDWG method in a discrete H2 norm. Section 9 establishes
some error estimates in the usual H1 norm and L2 norm for the primal variable. In
Section 10, the numerical experiments are presented for the M-PDWG scheme for
smooth and non-smooth coefficient tensor a(x) on convex and non-convex domains.

2. Variational Formulations

We shall briefly review the weak formulation of the second order elliptic model
problem (1) in non-divergence form [6].

Theorem 2.1. [4] Assume (1) Ω ⊂ Rd is a bounded convex domain; (2) the coef-
ficient tensor a = (aij) ∈ [L∞(Ω)]d×d satisfies the ellipticity condition (2); and (3)
the Cordès condition holds true; i.e., there exists an ε ∈ (0, 1] such that

(3)

∑d
i,j=1 a

2
ij

(
∑d

i=1 aii)
2
≤ 1

d− 1 + ε
in Ω.

There exists a unique strong solution u ∈ H2(Ω)∩H1
0 (Ω) of the model problem (1)

satisfying

(4) ∥u∥2 ≤ C∥f∥0,

for any given f ∈ L2(Ω), where C is a constant depending on d, the diameter of Ω,
C1, C2 and ε.

Throughout this paper, we assume the model problem (1) has a unique strong
solution in H2(Ω) ∩H1

0 (Ω) with a priori estimate (4).
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The variational formulation of the model problem (1) seeks u ∈ X = H2(Ω) ∩
H1

0 (Ω) such that

b(u, σ) = (f, σ) ∀σ ∈ Y = L2(Ω),

where

(5) b(u, σ) = (Lu, σ).

The regularity assumption (4) implies that the bilinear form b(·, ·) satisfies the
inf-sup condition

sup
v∈X,v ̸=0

b(v, σ)

∥v∥X
≥ α∥σ∥Y ,

for all σ ∈ Y , where α is a generic constant related to the constant C in the
H2 regularity estimate (4), ∥ · ∥X and ∥ · ∥Y are the H2 norm and the L2 norm,
respectively.

3. Discrete Weak Second Order Partial Derivative

This section will briefly review the weak second order partial derivative and its
discrete version [5, 6].

Let T be a polygonal or polyhedral domain with boundary ∂T . Denote by
v = {v0, vb,vg} the weak function on the element T , where v0 ∈ L2(T ) and vb ∈
L2(∂T ) are the values of v in the interior and on the boundary of T ; and vg =
(vg1, . . . , vgd) ∈ [L2(∂T )]d is the value of ∇v on the boundary of T . Note that vb
and vg may not necessarily be related to the traces of v0 and ∇v0 on ∂T . It is
feasible to take vb as the trace of v0 and leave vg completely free or vice versa.

Let W (T ) be the local space of the weak functions on T ; i.e.,

(6) W (T ) = {v = {v0, vb,vg} : v0 ∈ L2(T ), vb ∈ L2(∂T ),vg ∈ [L2(∂T )]d}.

The weak second order partial derivative of the weak function v ∈ W (T ), denoted
by ∂2

ij,wv, is defined as a bounded linear functional on the Sobolev space H2(T )
satisfying

(7) (∂2
ij,wv, φ)T = (v0, ∂

2
jiφ)T − ⟨vbni, ∂jφ⟩∂T + ⟨vgi, φnj⟩∂T ,

for any φ ∈ H2(T ), where n = (n1, · · · , nd) is the unit outward normal direction
on ∂T .

Denote by Pr(T ) the space of polynomials with degree no more than r ≥ 0
on T . A discrete version of ∂2

ij,wv, denoted by ∂2
ij,w,r,T v, is defined as the unique

polynomial in Pr(T ) such that

(8) (∂2
ij,w,r,T v, φ)T = (v0, ∂

2
jiφ)T − ⟨vbni, ∂jφ⟩∂T + ⟨vgi, φnj⟩∂T , ∀φ ∈ Pr(T ).

Applying the usual integration by parts to the first term on the right-hand side of
(8) yields

(9) (∂2
ij,w,r,T v, φ)T = (∂2

ijv0, φ)T − ⟨(vb − v0)ni, ∂jφ⟩∂T + ⟨vgi − ∂iv0, φnj⟩∂T ,

for all φ ∈ Pr(T ), provided that v0 ∈ H2(T ).
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4. Primal-Dual Weak Galerkin

Denote by Th a finite element partition of the domain Ω into polygons in 2D
or polyhedra in 3D which is shape regular as described in [7]. Denote by Eh the set
of all edges or flat faces in Th and E0

h = Eh \ ∂Ω the set of all interior edges or flat
faces. Denote by hT the diameter of the element T ∈ Th and h = maxT∈Th

hT the
meshsize of the partition Th.

Let k ≥ 2. Denote by Wk(T ) the local space of discrete weak functions; i.e.,

(10) Wk(T ) := {v = {v0, vb,vg} ∈ Pk(T )× Pk(e)× [Pk−1(e)]
d, e ∈ ∂T ∩ Eh}.

Patching Wk(T ) over all the elements T ∈ Th through common value for vb on the
interior interface E0

h gives the weak finite element space; i.e.,

Wh,k :=
{
{v0, vb,vg} : {v0, vb,vg}|T ∈ Wk(T ), T ∈ Th

}
.

Let W 0
h,k be the subspace of Wh,k with vanishing boundary value for vb on ∂Ω; i.e.,

W 0
h,k = {{v0, vb,vg} ∈ Wh,k, vb|e = 0, e ⊂ ∂Ω}.

We further introduce the finite element space

Vh,k =
{
σ : σ|T ∈ Vk(T ), T ∈ Th

}
,

where Vk(T ) is chosen as either Pk−2(T ) or Pk−1(T ), as appropriate. The choice of
Vk(T ) = Pk−2(T ) has fewer degrees of freedom, while the choice Vk(T ) = Pk−1(T )
results in more accurate M-PDWG solution.

For simplicity of notation, denote by ∂2
ij,wv the discrete weak second order

partial differential operator defined by (8) with Vr(T ) = Vk(T ) on each element T ;
i.e.,

(∂2
ij,wv)|T = ∂2

ij,w,r,T (v|T ), v ∈ Wh,k.

We introduce the bilinear forms

bh(v, σ) =
∑
T∈Th

bT (v, σ), v ∈ Wh,k, σ ∈ Vh,k,(11)

sh(u, v) =
∑
T∈Th

sT (u, v), u, v ∈ Wh,k,(12)

where

bT (v, σ) =

d∑
i,j=1

(aij∂
2
ij,wv, σ)T ,(13)

sT (u, v) = h−3
T ⟨u0 − ub, v0 − vb⟩∂T + h−1

T ⟨∇u0 − ug,∇v0 − vg⟩∂T .(14)

We further introduce a symmetric and nonnegative continuous bilinear form

ch(·, ·) : Vh,k × Vh,k → R,
satisfying the continuity property; i.e., there exists a constant C such that

(15) ch(λ, µ) ≤ Ch4∥λ∥2,h∥µ∥2,h
for any λ, µ ∈ Vh,k, where ∥ · ∥s,h is a discrete H2 norm with partial derivatives
taken locally on each element. From the usual inverse inequality, we have

(16) ch(λ, µ) ≤ C∥λ∥0∥µ∥0,
for any λ, µ ∈ Vh,k, where ∥ · ∥ is the L2 norm.
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Algorithm 4.1. (M-PDWG Finite Element Method) A modified primal-dual weak
Galerkin scheme for solving the second order elliptic problem (1) in non-divergence
form seeks (uh;λh) ∈ W 0

h,k × Vh,k satisfying

sh(uh, v) + bh(v, λh) = 0, ∀v ∈ W 0
h,k,(17)

−ch(λh, σ) + bh(uh, σ) = (f, σ), ∀σ ∈ Vh,k.(18)

Here uh is the primal variable and λh is the dual variable or Lagrange multiplier.

5. M-PDWG Finite Element Methods

In order to greatly reduce the degrees of freedom and the computational com-
plexity of the M-PDWG method (17)-(18), we shall eliminate the dual variable λh

from the M-PDWG system resulting in a simplified system involving the primal
variable uh only.

Deonte by ⟨·, ·⟩ the duality pairing between the two spaces. For the bilinear
forms sh(·, ·), bh(·, ·) and ch(·, ·), we associate the operators S ∈ L(W 0

h,k; (W
0
h,k)

′),

B ∈ L(W 0
h,k;V

′
h,k) and C ∈ L(Vh,k;V

′
h,k) defined by

⟨Su, v⟩ = sh(u, v), ∀u, v ∈ W 0
h,k,

⟨Bu, µ⟩ = bh(u, µ), ∀u ∈ W 0
h,k, µ ∈ Vh,k,

⟨Cλ, µ⟩ = ch(λ, µ), ∀λ, µ ∈ Vh,k,

where we assume ch(·, ·) is suitably constructed so that (15) is satisfied and the
matrix C is invertible. As a specific example, for any ρ, σ ∈ Vh,k, we may use

(19) ch(ρ, σ) =
∑
T∈Th

h4
T

(ρ, σ)T + (∇ρ,∇σ)T +
d∑

i,j=1

(∂2
ijρ, ∂

2
ijσ)T

 .

Let B′ ∈ L(Vh,k; (W
0
h,k)

′) be the dual operator of B; i.e.,

⟨B′µ, u⟩ = ⟨Bu, µ⟩ = bh(u, µ), ∀u ∈ W 0
h,k, µ ∈ Vh,k.

The M-PDWG scheme (17)-(18) can be equivalently rewritten as follows: Find
(uh;λh) ∈ W 0

h,k × Vh,k satisfying

Suh +B′λh = 0, in (W 0
h,k)

′,(20)

−Cλh +Buh = f, in (Vh,k)
′,(21)

where (W 0
h,k)

′ and (Vh,k)
′ are the dual spaces of W 0

h,k and Vh,k, respectively. Note

that C is invertible. Using (21), we have

λh = −C−1(f −Buh),

which, combined with (20), leads to a simplified system as follows: Find uh ∈ W 0
h,k,

such that

(22) (S +B′C−1B)uh = B′C−1f.

Compared with the PDWG scheme for the second order elliptic problem in
nondivergence form proposed in [6], the M-PDWG scheme admits a simplified form
(22) involving only the primal variable uh. The idea of M-PDWG method can
be generalized to PDWG methods for other model PDEs by adding appropriately
chosen ch(·, ·) terms.
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6. Stability and Solvability

We shall demonstrate the existence and uniqueness for the M-PDWG solution
arising from Algorithm 4.1 through an inf-sup condition for the bilinear form bh(·, ·)
.

Let k ≥ 2. On each element T , denote by Q0 the L2 projection onto Pk(T ). On
each edge or face e ⊂ ∂T , denote by Qb and Qg = (Qg1, . . . , Qgd) the L

2 projections

onto Pk(e) and [Pk−1(e)]
d, respectively. For any function w ∈ H2(Ω), denote by

Qhw the L2 projection onto the weak finite element space Wh,k such that on each
element T , we have

(23) Qhw = {Q0w,Qbw,Qg(∇w)}.

Denote by Qh the L2 projection onto the space Vh,k.

Lemma 6.1. [5] For any w ∈ H2(T ), the commutative property holds true

(24) ∂2
ij,w(Qhw) = Qh(∂

2
ijw), i, j = 1, . . . , d.

We introduce the semi-norm for the weak finite element space Wh,k; i.e.,

(25) ∥v∥22,h =
∑
T∈Th

∥
d∑

i,j=1

Qh(aij∂
2
ijv0)∥2T + sh(v, v), ∀v ∈ Wh,k.

Lemma 6.2. [6] Assume that the coefficient matrix a = (aij) is uniformly piecewise
continuous in Ω with respect to the finite element partition Th. There exists a fixed
h0 > 0 such that if v = {v0, vb,vg} ∈ W 0

h,k satisfies ∥v∥2,h = 0, then we have v ≡ 0
for h ≤ h0.

We further introduce another semi-norm for the weak finite element space Wh,k;
i.e., for any v ∈ Wh,k,

(26) |||v|||22 =
∑
T∈Th

∥
d∑

i,j=1

Qh(aij∂
2
ij,wv)∥2T + sh(v, v).

The two semi-norms defined in (25) and (26) are equivalent, which is stated in
the following lemma.

Lemma 6.3. [6] Assume that the coefficient tensor a = (aij) is uniformly piecewise
continuous in Ω with respect to the finite element partition Th. For any v ∈ Wh,k,
there exist α1 > 0 and α2 > 0 such that

α1∥v∥2,h ≤ |||v|||2 ≤ α2∥v∥2,h.

Lemma 6.4. [6] (inf-sup condition) Assume that the coefficient tensor a = (aij)
is uniformly piecewise continuous in Ω with respect to the finite element partition
Th. For any σ ∈ Vh,k, there exists vσ ∈ W 0

h,k satisfying

bh(vσ, σ) ≥ 1

2
∥σ∥20,(27)

∥vσ∥22,h ≤ C∥σ∥20,(28)

provided that the meshsize h < h0 for a sufficiently small, but fixed parameter
h0 > 0.
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Theorem 6.5. Assume that the coefficient matrix a = (aij) is uniformly piecewise
smooth in Ω with respect to the finite element partition Th. The M-PDWG finite
element scheme (17)-(18) has a unique solution (uh;λh) ∈ W 0

h,k × Vh,k, provided
that the meshsize h < h0 holds true for a sufficiently small, but fixed parameter
h0 > 0.

Proof. It suffices to show that the homogeneous problem of (17)-(18) has only the
trivial solution. To this end, assume f = 0. By choosing v = uh and σ = λh in
(17)-(18) we arrive at

sh(uh, uh) + ch(λh, λh) = 0,

which implies sh(uh, uh) = 0 and ch(λh, λh) = 0. From sh(uh, uh) = 0, we have
u0 = ub and ∇u0 = ug on each ∂T , which gives uh ∈ C1(Ω). Therefore, from (17),
we have

bh(v, λh) = 0, ∀v ∈ W 0
h,k.

From Lemma 6.4, for λh ∈ Vh,k, there exists vλh
∈ W 0

h,k satisfying

0 = bh(vλh
, λh) ≥

1

2
∥λh∥20,

which gives λh = 0 on each T ∈ Th and further λh ≡ 0 in Ω. Substituting λh ≡ 0
in Ω into (18) yields

0 = bh(uh, σ)

=
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,wuh, σ)T

=
∑
T∈Th

d∑
i,j=1

(∂2
ij,wuh,Qh(aijσ))T

=
∑
T∈Th

d∑
i,j=1

(∂2
iju0,Qh(aijσ))T − ⟨(ub − u0)ni, ∂jQh(aijσ)⟩∂T

+ ⟨ugi − ∂iu0,Qh(aijσ)nj⟩∂T

=
∑
T∈Th

d∑
i,j=1

(∂2
iju0,Qh(aijσ))T

=
∑
T∈Th

d∑
i,j=1

(∂2
iju0, aijσ)T

=
∑
T∈Th

(
d∑

i,j=1

aij∂
2
iju0, σ)T

=
∑
T∈Th

(Qh(

d∑
i,j=1

aij∂
2
iju0), σ)T

(29)

for any σ ∈ Vh,k, where we used (9) together with u0 = ub and ∇u0 = ug on each

∂T . Letting σ = Qh(
∑d

i,j=1 aij∂
2
iju0) in (29) gives Qh(

∑d
i,j=1 aij∂

2
iju0) = 0 on each

element T ∈ Th. This implies that
∑d

i,j=1 aij∂
2
iju0 = 0 on each element T ∈ Th.

Note that u0 ∈ C1(Ω). Thus, we have
∑d

i,j=1 aij∂
2
iju0 = 0 in Ω. Since uh ∈ W 0

h,k,
we have u0 = ub = 0 on ∂Ω. Therefore, u0 ≡ 0 in Ω and further uh ≡ 0 in Ω.
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This completes the proof of the theorem. �

7. Error Equations

Let (uh;λh) ∈ W 0
h,k×Vh,k be the M-PDWG solution arising from the numerical

scheme (17)-(18). Note that the dual problem b(v, λ) = 0 has a trivial solution λ = 0
for any v ∈ H2(Ω)∩H1

0 (Ω). The error functions are respectively defined as follows

eh = uh −Qhu, γh = λh −Qhλ = λh.

Lemma 7.1. The following error equations for the M-PDWG scheme (17)-(18)
hold true; i.e.,

sh(eh, v) + bh(v, γh) = −sh(Qhu, v), ∀v ∈ W 0
h,k,(30)

−ch(γh, σ) + bh(eh, σ) = ℓu(σ), ∀σ ∈ Vh,k,(31)

where

(32) ℓu(σ) =
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijσ)T .

Proof. First, by subtracting sh(Qhu, v) from both sides of (17) we obtain

sh(uh −Qhu, v) + bh(v, λh) = −sh(Qhu, v), ∀v ∈ W 0
h,k,

which implies

sh(eh, v) + bh(v, γh) = −sh(Qhu, v), ∀v ∈ W 0
h,k.

This completes the proof of the first error equation (30).

To derive (31), we use (1) and Lemma 6.1 to obtain

bh(Qhu, σ) =
∑
T∈Th

(
d∑

i,j=1

aij∂
2
ij,wQhu, σ)T

=
∑
T∈Th

(

d∑
i,j=1

aijQh∂
2
iju, σ)T

=
∑
T∈Th

(
d∑

i,j=1

aij∂
2
iju, σ)T +

∑
T∈Th

(
d∑

i,j=1

aij(Qh − I)∂2
iju, σ)T

=(f, σ) +
∑
T∈Th

d∑
i,j=1

((Qh − I)∂2
iju, aijσ)T ,

for all σ ∈ Vh,k. Now subtracting the above equation from (18) yields the error
equation (31).

This completes the proof of the lemma. �

8. Error Estimates

Let Th be a shape-regular finite element partition of the domain Ω. For any
T ∈ Th, the following trace inequality holds true [7]:

(33) ∥φ∥2∂T ≤ C(h−1
T ∥φ∥2T + hT ∥∇φ∥2T ), ∀φ ∈ H1(T ).
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Furthermore, assume φ is a polynomial on the element T ∈ Th. Applying the
inverse inequality to (33) gives [7]

(34) ∥φ∥2∂T ≤ Ch−1
T ∥φ∥2T .

Lemma 8.1. [7] Assume that Th is a shape regular finite element partition of the
domain Ω as specified in [7]. For any 0 ≤ s ≤ 2 and 1 ≤ m ≤ k, there holds

∑
T∈Th

h2s
T ∥u−Q0u∥2s,T ≤ Ch2(m+1)∥u∥2m+1,(35)

∑
T∈Th

d∑
i,j=1

h2s
T ∥u−Qhu∥2s,T ≤ Ch2(m−1)∥u∥2m−1,(36)

∑
T∈Th

d∑
i,j=1

h2s
T ∥∂2

iju−Qh∂
2
iju∥2s,T ≤ Ch2(m−1)∥u∥2m+1.(37)

We are ready to present the critical error estimates for the M-PDWG scheme
(17)-(18), which is the main contribution of this paper.

Theorem 8.2. Assume that the coefficient tensor a = (aij) is uniformly piecewise
continuous in Ω with respect to the finite element partition Th. Let u be the exact
solution of (1) and (uh;λh) ∈ W 0

h,k × Vh,k be the M-PDWG solution of (17)-(18),

respectively. Assume that the exact solution u of (1) is sufficiently regular such that
u ∈ Hk+1(Ω). There exists a constant C such that

(38) ∥uh −Qhu∥2,h + ∥λh∥0 + ch(λh, λh)
1
2 ≤ Chk−1∥u∥k+1,

provided that the meshsize h < h0 holds true for a sufficiently small, but fixed
h0 > 0.

Proof. From (30), we have

(39) bh(v, γh) = −sh(Qhu, v)− sh(eh, v).

Recall that

sh(Qhu, v) =
∑
T∈Th

h−3
T ⟨Q0u−Qbu, v0 − vb⟩∂T

+
∑
T∈Th

h−1
T ⟨∇Q0u−Qg(∇u),∇v0 − vg⟩∂T .

(40)

The first term on the right-hand side of (40) can be estimated by using the Cauchy-
Schwarz inequality, the trace inequality (33), and the estimate (35) with m = k as
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follows ∣∣∣∣∣ ∑
T∈Th

h−3
T ⟨Q0u−Qbu, v0 − vb⟩∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h−3
T ⟨Q0u− u, v0 − vb⟩∂T

∣∣∣∣∣
≤
( ∑

T∈Th

h−3
T ∥u−Q0u∥2∂T

) 1
2
( ∑

T∈Th

h−3
T ∥v0 − vb∥2∂T

) 1
2

≤C
( ∑

T∈Th

h−4
T

(
∥u−Q0u∥2T + h2

T ∥u−Q0u∥21,T
)) 1

2

(sh(v, v))
1
2

≤Chk−1∥u∥k+1(sh(v, v))
1
2 .

(41)

Similarly, the second term on the right-hand side of (40) has the following estimate

(42)

∣∣∣∣∣ ∑
T∈Th

h−1
T ⟨∇Q0u−Qg(∇u),∇v0 − vg⟩∂T

∣∣∣∣∣ ≤ Chk−1∥u∥k+1(sh(v, v))
1
2 .

Combining (40) - (42) gives

(43) |sh(Qhu, v)| ≤ Chk−1∥u∥k+1(sh(v, v))
1
2 .

Using Cauchy-Schwarz inequality, it is easy to obtain

(44) |sh(eh, v)| ≤
(
sh(eh, eh)

) 1
2
(
sh(v, v)

) 1
2 .

Substituting (43)-(44) into (39) gives

|bh(v, γh)| ≤ (Chk−1∥u∥k+1 + (sh(eh, eh))
1
2 )(sh(v, v))

1
2 ,

which from Lemma 6.4, for γh ∈ Vh,k, there exists vγh
∈ W 0

h,k such that

1

2
∥γh∥20 ≤|bh(vγh

, γh)|

≤(Chk−1∥u∥k+1 + (sh(eh, eh))
1
2 )∥vγh

∥2,h
≤(Chk−1∥u∥k+1 + (sh(eh, eh))

1
2 )∥γh∥0.

Therefore, we have

(45) ∥γh∥0 ≤ Chk−1∥u∥k+1 + (sh(eh, eh))
1
2 .

From (31), we have

(46) bh(eh, σ) = ℓu(σ) + ch(γh, σ).

Using (32) and the estimate (37) with m = k we have

|ℓu(σ)| =

∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijσ)T

∣∣∣∣∣∣
≤

d∑
i,j=1

∥aij∥L∞ ∥(I −Qh)∂
2
iju∥0 ∥σ∥0

≤ Chk−1∥u∥k+1∥σ∥0.

(47)
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Substituting (47) into (46), we have

|bh(eh, σ)| ≤ C(hk−1∥u∥k+1 + ∥γh∥0)∥σ∥0,

where we used (16). Taking σ =
∑d

i,j=1 Qh(aij∂
2
ij,weh) in the above equation gives

(48)
( ∑

T∈Th

∥
d∑

i,j=1

Qh(aij∂
2
ij,weh)∥2T

) 1
2 ≤ C(hk−1∥u∥k+1 + ∥γh∥0).

Letting v = eh in (30) and σ = γh in (31) gives

(49) sh(eh, eh) + ch(γh, γh) = −sh(Qhu, eh)− ℓu(γh).

Substituting (43), (45) and (47) into (49) yields

sh(eh, eh) + ch(γh, γh)

≤Chk−1∥u∥k+1((sh(eh, eh))
1
2 + ∥γh∥0)

≤Chk−1∥u∥k+1((sh(eh, eh))
1
2 + Chk−1∥u∥k+1)

≤Ch2k−2∥u∥2k+1 + C
1

ϵ
h2k−2∥u∥2k+1 + Cϵsh(eh, eh)

(50)

where we used Young’s inequality with ϵ being sufficiently small such that 1−Cϵ >
0, which gives

(1− Cϵ)sh(eh, eh) + ch(γh, γh) ≤ Ch2k−2∥u∥2k+1,

which gives

(51) sh(eh, eh) + ch(γh, γh) ≤ Ch2k−2∥u∥2k+1.

Using (51), (45) gives

(52) ∥γh∥0 ≤ Chk−1∥u∥k+1,

which, from (48) and (51), gives

(53) |||eh|||2 ≤ Chk−1∥u∥k+1.

Combining (52) and (53) and using Lemma 6.3 completes the proof of the theorem.

�

9. Error Estimates in H1 and L2

In this section, we shall establish the error estimates in H1 and L2 norm for
the M-PDWG solution arising from the scheme (17)-(18).

Lemma 9.1. [6] There exists a constant C such that for any v ∈ Wk(T ), we have

(54) ∥∂2
ij,wv∥2T ≤ C

(
∥∂2

ijv0∥2T + sT (v, v)
)
.

Consider an auxiliary problem: Find w satisfying

d∑
i,j=1

∂2
ji(aijw) = θ, in Ω,(55)

w = 0, on ∂Ω,(56)

where θ is a given function. The variational formulation for (55)-(56) seeks w ∈
L2(Ω) such that

(57) b(v, w) = (θ, v), ∀v ∈ H2(Ω) ∩H1
0 (Ω),
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where the bilinear form b(·, ·) is given by (5).

The problem (55)-(56) is assumed to be H1+s-regular (s ∈ [0, 1]) in the sense
that for any θ ∈ Hs−1(Ω), there exists a unique w ∈ H1+s(Ω) ∩H1

0 (Ω) satisfying
(57) and a priori estimate:

(58) ∥w∥1+s ≤ C∥θ∥s−1.

Lemma 9.2. [6] Assume that the coefficient tensor a = (aij) ∈ [C1(Ω)]d×d. For
any v = {v0, vb,vg} ∈ W 0

h,k, there holds

(v0, θ) =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,wv, w)T − ⟨(vgi − ∂iv0)nj , (Qh − I)(aijw)⟩∂T

+ ⟨(vb − v0)ni, ∂j(Qh − I)(aijw)⟩∂T .

(59)

Lemma 9.3. [6] Assume that the coefficient matrix a = (aij) ∈ [ΠT∈Th
W 1,∞(T )]d×d.

There exists a constant C such that for any v ∈ W 0
h,k, we have∣∣∣∣∣∣

∑
T∈Th

d∑
i,j=1

⟨(vgi − ∂iv0)nj , (Qh − I)(aijw)⟩∂T

∣∣∣∣∣∣ ≤ Ch ∥v∥2,h∥θ∥−1,(60)

∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

⟨(vb − v0)ni, ∂j(Qh − I)(aijw)⟩∂T

∣∣∣∣∣∣ ≤ Ch ∥v∥2,h∥θ∥−1,(61)

provided that the dual problem (57) has the regularity estimate (58) with s = 0.

Lemma 9.4. Assume that the coefficient matrix a = (aij) ∈ ΠT∈Th
[W 2,∞(T )]d×d

and P1(T ) ⊂ Vk(T ) for each element T ∈ Th. There exists a constant C such that
for any v ∈ W 0

h,k, we have∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

⟨(vgi − ∂iv0)nj , (Qh − I)(aijw)⟩∂T

∣∣∣∣∣∣ ≤ Ch2 ∥v∥2,h∥θ∥0,(62)

∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

⟨(vb − v0)ni, ∂j(Qh − I)(aijw)⟩∂T

∣∣∣∣∣∣ ≤ Ch2 ∥v∥2,h∥θ∥0,(63)

provided that the regularity estimate (58) holds true with s = 1.

For convenience of analysis, in what follows of this paper, for any ρ, σ ∈ Vh,k,
we shall employ the specific ch(ρ, σ) define in (19).

Theorem 9.5. Let uh = {u0, ub,ug} ∈ W 0
h,k be the M-PDWG solution arising from

the numerical scheme (17)-(18). Assume that a = (aij) ∈ [C1(Ω)]d×d and the exact
solution of the model problem (1) is sufficiently regular such that u ∈ Hk+1(Ω).
There exists a constant C such that

(64)

(∑
T∈Th

∥∇u0 −∇u∥2T

) 1
2

≤ Chk∥u∥k+1,

provided that the meshsize h is sufficiently small and the dual problem (55)-(56)
has H1-regularity estimate (58) with s = 0.
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Proof. Given θ = −∇ · η with η ∈ [C1(Ω)]d satisfying η = 0 on Eh, assume w is the
solution of the dual problem (55)-(56). Taking v = eh in Lemma (9.2) yields

−(e0,∇ · η) =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, w)T − ⟨(egi − ∂ie0)nj , (Qh − I)(aijw)⟩∂T

+ ⟨(eb − e0)ni, ∂j(Qh − I)(aijw)⟩∂T
=I1 − I2 + I3,

(65)

where Ij(j = 1, 2, 3) are defined accordingly. Due to η = 0 on Eh, using the
integration by parts to (65) gives

(66) (∇e0, η) = I1 − I2 + I3.

From Lemma 9.3 and H1-regularity estimate (58) with s = 0, the terms I2 and I3
are bounded as follows

(67) |I2|+ |I3| ≤ Ch∥θ∥−1∥eh∥2,h ≤ Ch∥η∥0∥eh∥2,h.

Regarding to the term I1, from the error equation (31), we have

I1 =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, w)T

=
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh,Qhw)T + (aij∂

2
ij,weh, (I −Qh)w)T

=
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijQhw)T + ch(γh,Qhw)

+
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, (I −Qh)w)T

=J1 + J2 + J3,

(68)

where Ji for i = 1, 2, 3 are defined accordingly. As to the term J1, from the Cauchy-
Schwarz inequality, we have

|J1| =
∣∣∣ ∑
T∈Th

((I −Qh)∂
2
iju, aijQhw)T

∣∣∣
=
∣∣∣ ∑
T∈Th

|((I −Qh)∂
2
iju, (I −Qh)aijQhw)T

∣∣∣
≤
( ∑

T∈Th

∥(I −Qh)∂
2
iju∥2T

) 1
2
( ∑

T∈Th

∥(I −Qh)aijQhw∥2T
) 1

2

≤Ch∥(I −Qh)∂
2
iju∥∥w∥1.

(69)

As to the term J2, using the Cauchy-Schwarz inequality, the inverse inequality and
(19) gives

(70) |J2| = |ch(γh,Qhw)| ≤ Ch4∥γh∥2,h∥Qhw∥2,h ≤ Ch∥γh∥0∥w∥1.
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As to the term J3, using the Cauchy-Schwarz inequality and (54), we have

|J3| =
∣∣∣ ∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, (I −Qh)w)T

∣∣∣
=
∣∣∣ ∑
T∈Th

d∑
i,j=1

((aij − āij)∂
2
ij,weh, (I −Qh)w)T

∣∣∣
≤
( ∑

T∈Th

d∑
i,j=1

∥aij − āij∥2L∞(T )∥∂
2
ij,weh∥2T

) 1
2
( ∑

T∈Th

∥(I −Qh)w∥2T
) 1

2

≤Ch∥w∥1
( ∑

T∈Th

d∑
i,j=1

(ε(hT ))
2(∥∂2

ije0∥2T + sT (eh, eh))
) 1

2

,

(71)

where āij is the average of aij on the element T and ε(hT ) → 0 as h → 0. Substi-
tuting (69) - (71) into (68) yields

|I1| ≤Ch
(
ε(h)∥∇2e0∥0 + ε(h)∥eh∥2,h +

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + ∥γh∥0

)
∥w∥1

≤C
(
ε(h)∥∇e0∥0 + hε(h)∥eh∥2,h + h

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + h∥γh∥0

)
∥η∥0,

(72)

where we used the inverse inequality and the estimate ∥w∥1 ≤ C∥θ∥−1 ≤ C∥η∥0.
Substituting (72) and (67) into (66) gives

|(∇e0, η)| ≤C
(
ε(h)∥∇e0∥0 + h(1 + ε(h))∥eh∥2,h

+ h
d∑

i,j=1

∥(I −Qh)∂
2
iju∥0 + h∥γh∥0

)
∥η∥0.

Note that the set of all such η is dense in L2(Ω). The above inequality implies

∥∇e0∥0 ≤ C
(
ε(h)∥∇e0∥0 + h(1+ ε(h))∥eh∥2,h + h

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + h∥γh∥0

)
.

Therefore, we have

(73) ∥∇e0∥0 ≤ Ch
(
∥eh∥2,h +

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + ∥γh∥0

)
provided that the meshsize h is sufficiently small such that 1 − Cε(h) > 0 and
ε(h) → 0. The inequality (73), the error estimate (38), and the estimate (37) with
m = k completes the proof of the estimate (64) using the usual triangle inequality
and the estimate (35) with m = k. �

We further present the L2 error estimate for the primal variable uh.

Theorem 9.6. Assume that (1) the coefficients aij ∈ C1(Ω) ∩
[
ΠT∈Th

W 2,∞(T )
]

for i, j = 1, · · · , d; (2) the dual problem (55)-(56) satisfies H2-regularity estimate
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(58) with s = 1; and (3) P1(T ) ⊂ Vk(T ) for any T ∈ Th. There exists a constant
C such that

(74) ∥u0 − u∥0 ≤ Chk+1∥u∥k+1,

provided that the meshsize h is sufficiently small.

Proof. Let w be the solution of the dual problem (55)-(56) for a given θ ∈ L2(Ω).
Choosing v = eh in Lemma 9.2 yields

(e0, θ) =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, w)T − ⟨(egi − ∂ie0)nj , (Qh − I)(aijw)⟩∂T

+ ⟨(eb − e0)ni, ∂j(Qh − I)(aijw)⟩∂T
=J1 − J2 + J3,

(75)

where Ji are defined accordingly for i = 1, 2, 3. Using Lemma 9.4, we obtain

(76) |J2|+ |J3| ≤ Ch2∥θ∥0∥eh∥2,h.

As to the term J1, using the error equation (31) gives rise to

J1 =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, w)T

=
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh,Qhw)T + (aij∂

2
ij,weh, (I −Qh)w)T

=
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijQhw)T + ch(γh,Qhw)

+
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, (I −Qh)w)T

=I1 + I2 + I3,

(77)

where Ii(i = 1, 2, 3) are defined accordingly. Recall that P1(T ) ⊆ Vk(T ) and Qh is
the L2 projection onto Vk(T ). As to the term I1, using Cauchy-Schwarz inequality
gives

|I1| =
∣∣∣ ∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijQhw)T

∣∣∣
=
∣∣∣ ∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, (I −Qh)aijQhw)T

∣∣∣
≤
( ∑

T∈Th

d∑
i,j=1

∥(I −Qh)∂
2
iju∥2T

) 1
2
( ∑

T∈Th

d∑
i,j=1

∥(I −Qh)aijQhw∥2T
) 1

2

≤Ch2
d∑

i,j=1

∥(I −Qh)∂
2
iju∥0∥w∥2.

(78)
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As to the term I2, using Cauchy-Schwarz inequality, the inverse inequality and
(19) gives

I2 =
∑
T∈Th

h4
T

(γh,Qhw)T + (∇γh,∇Qhw)T +
d∑

i,j=1

(∂2
ijγh, ∂

2
ijQhw)T


≤Ch2∥γh∥0∥w∥2,

(79)

As to the term I3, using (54) yields

|I3| =|
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,weh, (I −Qh)w)T |

= |
∑
T∈Th

d∑
i,j=1

((aij − āij)∂
2
ij,weh, (I −Qh)w)T |

≤
( ∑

T∈Th

d∑
i,j=1

∥aij − āij∥2L∞(T )∥∂
2
ij,weh∥2T

) 1
2
( ∑

T∈Th

∥(I −Qh)w∥2T
) 1

2

≤ Ch3∥w∥2
( ∑

T∈Th

d∑
i,j=1

∥∂2
ije0∥2T + sT (eh, eh)

) 1
2

,

(80)

where āij is the average of aij on the element T ∈ Th such that ∥aij − āij∥L∞(T ) ≤
hT .

Using (78)-(80), the inverse inequality and the regularity assumption (58) for
s = 1, we have

|J1| ≤C(h3∥∇2e0∥0 + h3∥eh∥2,h + h2
d∑

i,j=1

∥(I −Qh)∂
2
iju∥0 + h2∥γh∥0)∥w∥2

≤C(h2∥∇e0∥0 + h3∥eh∥2,h + h2
d∑

i,j=1

∥(I −Qh)∂
2
iju∥0 + h2∥γh∥0)∥θ∥0.

(81)

Substituting (81) and (76) into (75) gives

|(e0, θ)| ≤ Ch2
(
∥∇e0∥0 + ∥eh∥2,h +

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + ∥γh∥0

)
∥θ∥0.

This indicates

∥e0∥0 ≤Ch2
(
∥∇e0∥0 + ∥eh∥2,h +

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + ∥γh∥0

)
≤Ch∥∇e0∥0 + Ch2

(
∥eh∥2,h +

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + ∥γh∥0

)
,

where we used the inverse inequality, which gives

(82) ∥e0∥0 ≤ Ch2
(
∥eh∥2,h +

d∑
i,j=1

∥(I −Qh)∂
2
iju∥0 + ∥γh∥0

)
,
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provided that the meshsize h is sufficiently small. Combining (82), (38), and (37)
with m = k, completes the proof of the theorem. �

Remark 9.1. [6] The optimal order error estimate (74) is based on the assumption
that P1(T ) ⊆ V2(T ), which is used to derive (76) and (78)-(80). When it comes
to the case of P1(T ) * V2(T ), those inequalities are modified by replacing ∥w∥2,T
by h−1

T ∥w∥1,T . The conclusion is stated as follows: We assume (1) the coefficients
aij ∈ C1(Ω) for i, j = 1, · · · , d, (2) the meshsize h is sufficiently small, and (3)
the dual problem (55)-(56) satisfies the H1-regularity estimate (58) for s = 0. The
sub-optimal order error estimate holds true

∥u0 − u∥0 ≤ Chk∥u∥k+1.

We introduce the following norms for the two boundary components ub and ug;
i.e.,

∥eb∥0 :=
( ∑

T∈Th

hT ∥eb∥2∂T
) 1

2

, ∥eg∥0 :=
( ∑

T∈Th

hT ∥eg∥2∂T
) 1

2

.

Theorem 9.7. [6] Under the assumptions of Theorem 9.6, there exists a constant
C such that

∥ub −Qbu∥0 ≤ Chk+1∥u∥k+1,

∥ug −Qb∇u∥0 ≤ Chk∥u∥k+1.

10. Numerical Experiments

A series of the numerical results are illustrated to verify the accuracy of the
theory developed for the M-PDWG method (17)-(18).

We shall take the lowest order WG element with k = 2 on triangular parti-
tions as an example in the implementation. The finite element spaces are thus
respectively given by

Wh,2 = {v = {v0, vb,vg} : v0 ∈ P2(T ), vb ∈ P2(e),vg ∈ [P1(e)]
2, ∀T ∈ Th, e ∈ Eh},

Vh,2 = {σ : σ|T ∈ V2(T ), ∀T ∈ Th},
where both V2(T ) = P1(T ) and V2(T ) = P0(T ) are considered. A finite element
function v ∈ Wh,2 is named C0-type if vb = v0|∂T for each element T . The C0-
type WG element leads to a linear system with less computational complexity
compared with the general WG elements. However, the C0 continuity does not
permit the availability of polygonal elements. Note that the theoretical results
developed in this paper could be generalized to C0-type triangular elements with-
out any difficulty. The C0-type WG element with V2(T ) = P1(T ) is called the
P2(T )/[P1(∂T )]

2/P1(T ) element; and the C0-type WG element with V2(T ) = P0(T )
is called the P2(T )/[P1(∂T )]

2/P0(T ) element.

Three domains are used in our numerical experiments: (1) the unit square
domain Ω1 = (0, 1)2; (2) the square domain Ω2 = (−1, 1)2; and (3) the non-convex
L-shaped domain Ω3 with vertices A0 = (0, 0), A1 = (2, 0), A2 = (1, 1), A3 =
(1, 2), and A4 = (0, 2). Starting from a given initial coarse triangulation of the
domain, the triangular partition is obtained by successively dividing each coarse
level triangle into four congruent sub-triangles through connecting the mid-points
on each edge of each triangle.
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Let uh = {u0,ug} ∈ Wh,2 and λh ∈ Vh,2 be the M-PDWG solution arising from
the scheme (17)-(18). Recall that the exact solution of Lagrange multiplier is λ = 0.
These numerical solutions are compared with the interpolants of the corresponding
exact solutions; i.e.,

eh = {e0, eg} = {u0 − Ihu, ug − Ig(∇u)}, γh = λh − 0,

where Ihu is the Lagrange interpolation of the exact solution u on each triangular
element using three vertices and three mid-points on the edges, and Ig(∇u) is the
linear interpolant of ∇u on each edge e ∈ Eh. The following L2 norms are employed
to measure the errors:

∥e0∥0 =
( ∑

T∈Th

∫
T

|e0|2dT
) 1

2

, ∥eg∥0 =
( ∑

T∈Th

hT

∫
∂T

|eg|2ds
) 1

2

,

∥γh∥0 =
( ∑

T∈Th

∫
T

|γh|2dT
) 1

2

.

Test Case 1. Find u such that
2∑

i,j=1

aij∂
2
iju =f, in Ω,

u =g, on ∂Ω,

(83)

where Ω = Ωi(i = 1, 3), the coefficients are a11 = 3, a12 = a21 = 1 and a22 = 2,
and the exact solution is given by u = sin(x1) sin(x2).

Tables 1-2 show the numerical results for the M-PDWG method (17)-(18) for
the test problem (83) when the C0-P2(T )/[P1(∂T )]

2/P1(T ) element is applied. We
observe from Tables 1-2 that the convergence rates for e0 in the discrete L2-norm
are of orders O(h4) and O(h3.6) on the unit square domain Ω1 and on the L-
shaped domain Ω3, respectively. The convergence rates for eg and γh in the discrete
L2 norm are of orders O(h2) and O(h) on both Ω1 and Ω3 respectively. Note
that the expected optimal convergence rates for e0, eg and γh in the discrete L2-
norm on the convex domain Ω1 are of orders O(h3), O(h2) and O(h), respectively.
When it comes to the non-convex L-shaped domain Ω3, the theoretical order of
convergence for e0 in the discrete L2-norm should be between O(h2) and O(h3)
due to the lack of H2-regularity required for the dual problem (55)-(56). However,
the theoretical rates of convergence for eg and γh remain to be of orders O(h2) and
O(h), respectively. It is clear that the numerical results are greatly consistent with
the theory for eg and γh in the discrete L2-norm, and outperform the theory for e0
in the discrete L2-norm for the case of smooth solutions with smooth coefficients
on uniform triangular partitions.

Test Case 2. Find u such that
2∑

i,j=1

(1 + δij)
xi

|xi|
xj

|xj |
∂2
iju = f in Ω,

u = 0 on ∂Ω,

(84)

where Ω2 = (−1, 1)2, and the exact solution is u = x1x2(1−e1−|x1|)(1−e1−|x2|). It
is easy to check the Cordès condition (3) is satisfied for the test problem (84) with
ε = 3/5 and the coefficient matrix a = (aij) is discontinuous across the xi(i = 1, 2)
axis.
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Table 1. Test Case 1: Convergence rates for C0-C0-
P2(T )/[P1(∂T )]

2/P1(T ) element on Ω1.

1/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.006248 0.1260 3.36E-04
2 0.001470 2.087 0.04477 1.493 6.51E-04 -0.9546
4 1.39E-04 3.399 0.01157 1.952 2.84E-04 1.195
8 1.03E-05 3.753 0.002843 2.025 1.32E-04 1.102
16 6.97E-07 3.891 7.02E-04 2.017 6.43E-05 1.043
32 4.54E-08 3.940 1.75E-04 2.007 3.17E-05 1.018

Table 2. Test Case 1: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P1(T ) element on Ω3.

1/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.01676 0.4804 0.004498
2 0.002489 2.751 0.1248 1.945 0.001956 1.201
4 2.30E-04 3.435 0.03100 2.009 8.76E-04 1.160
8 1.94E-05 3.572 0.007674 2.014 4.13E-04 1.082
16 1.61E-06 3.585 0.001907 2.008 2.02E-04 1.035
32 1.37E-07 3.557 4.75E-04 2.006 9.99E-05 1.015

Table 3. Test Case 2: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P1(T ) element on Ω2.

2/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.6160 2.554 1.000
2 0.4621 0.4148 1.676 0.6074 0.8970 0.1572
4 0.1389 1.734 1.006 0.7369 3.270 -1.866
8 0.02019 2.782 0.1339 2.909 0.6337 2.368
16 0.006505 1.634 0.03229 2.052 0.2249 1.494
32 0.001640 1.988 0.007814 2.047 0.09469 1.248

Table 4. Test Case 2: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P0(T ) element on Ω2.

2/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.1590 0.7950 0.07950
2 0.2253 -0.5027 1.383 -0.7982 0.3321 -2.062
4 0.1963 0.1984 0.7627 0.8582 0.2444 0.4423
8 0.06727 1.545 0.2109 1.854 0.1349 0.8577
16 0.01536 2.130 0.04616 2.192 0.05452 1.307
32 0.003276 2.230 0.01020 2.178 0.02134 1.354

Table 3 presents the numerical performance of the M-PDWG scheme (17)-(18)
for the test problem (84) when the C0-P2(T )/[P1(∂T )]

2/P1(T ) element is employed.
The numerical results indicate that the convergence rate for eg in the discrete L2

norm is of an expected optimal order O(h2). The convergence rate for the Lagrange
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multiplier in the discrete L2 norm seems to be of an order higher than the expected
order O(h). The convergence order for e0 in the discrete L2 norm seems to be of
an order O(h2). Note that it is not clear to us whether the dual problem (55)-(56)
has the regularity required for the convergence analysis. There are no theoretical
results on the convergence rate for e0 in the discrete L2 norm. Table 4 shows the
numerical results for the test problem (84) when the C0-P2(T )/[P1(∂T )]

2/P0(T )
element is applied. We observe from Table 4 that the convergence rates for e0, eg
and γh in the discrete L2 norm seem to be a little higher than the convergence
order corresponding to the case when the C0-P2(T )/[P1(∂T )]

2/P1(T ) element is
employed.

Figures 1-2 illustrate the numerical error for the Lagrange multiplier λh when
the C0-P2(T )/[P1(∂T )]

2/P1(T ) element and the C0-P2(T )/[P1(∂T )]
2/P0(T ) ele-

ment are employed respectively, compared with the PDWG scheme proposed in
[6].

Figure 1. Test Case 2: Numerical error for Lagrange multiplier
when C0-P2(T )/[P1(∂T )]

2/P1(T ) element is applied: left figure is
without the term c(·, ·) proposed in [6]; right figure is with the term
c(·, ·) proposed in this paper.

Figure 2. Test Case 2: Numerical error for Lagrange multiplier
when C0-P2(T )/[P1(∂T )]

2/P0(T ) element is applied: left figure is
without the term c(·, ·) proposed in [6]; right figure is with the term
c(·, ·) proposed in this paper.

Test Case 3. Find u satisfying

(85)

2∑
i,j=1

(
δij +

xixj

x2
1 + x2

2

)
∂2
iju = f, in Ωi (i = 1, 2).
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For the case of α > 1, the exact solution u = |x|α has H1+α−τ (Ω) regularity for
arbitrarily small τ > 0 and the load function is f = (2α2 − α)|x|α−2. The Cordès
condition holds true with ε = 4/5.

Table 5. Test Case 3: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P1(T ) element on Ω1.

1/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.06193 0.7395 1.408
2 0.008210 2.915 0.1116 2.729 0.3570 1.980
4 0.001760 2.222 0.04270 1.385 0.2169 0.7190
8 4.30E-04 2.034 0.01483 1.526 0.1351 0.6833
16 1.05E-04 2.035 0.005024 1.562 0.08752 0.6260
32 2.55E-05 2.042 0.001681 1.580 0.05735 0.6098

Table 6. Test Case 3: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P0(T ) element on Ω1.

1/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.003403 0.4903 0.0650
2 0.007769 -1.1911 0.1774 1.467 0.06253 0.05684
4 0.002576 1.593 0.06160 1.526 0.04782 0.3870
8 7.83E-04 1.719 0.02099 1.554 0.03270 0.5482
16 2.19E-04 1.839 0.007048 1.574 0.02183 0.5832
32 5.84E-05 1.906 0.002349 1.585 0.01447 0.5930

Table 7. Test Case 3: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P1(T ) element on Ω2.

2/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 0.8998 1.207 0.4146
2 0.7142 0.3333 1.808 -0.5834 2.289 -2.465
4 0.1928 1.889 1.244 0.5394 4.685 -1.034
8 0.04503 2.098 0.0967 3.685 0.5329 3.136
16 0.02497 0.8506 0.05352 0.8540 0.3078 0.7919
32 0.01242 1.007 0.02806 0.9316 0.1958 0.6526

Tables 5-6 present the numerical results of the M-PDWG scheme on the domain
Ω1 = (0, 1)2. It is clear that the coefficient matrix a = (aij)2×2 is continuous in the
interior of the domain Ω1, but it fails to be continuous at the corner point (0, 0).
Note that the exact solution u = |x|1.6 has H2.6−τ (Ω) regularity for arbitrarily
small τ > 0. The numerical approximation indicates that the convergence rates for
eg and γh in the discrete L2 norm are of orders O(h1.6) and O(h0.6), respectively,
which are consist with the theoretical results. The convergence rate for e0 in the
discrete L2 norm seems to be of an order O(h2), for which there is no theory
available to apply.
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Table 8. Test Case 3: Convergence rates for C0-
P2(T )/[P1(∂T )]

2/P0(T ) element on Ω2.

2/h ∥e0∥0 order ∥eg∥0 order ∥γh∥0 order
1 6.82E-01 0.5800 0.1091
2 6.13E-01 0.1518 0.7084 -0.2884 0.08120 0.4271
4 2.54E-01 1.273 0.4067 0.8004 0.05057 0.6831
8 1.12E-01 1.175 0.2177 0.9018 0.04179 0.2753
16 5.12E-02 1.137 0.1101 0.9829 0.02969 0.4930
32 0.02354 1.120 0.05402 1.028 0.02011 0.5620

Figure 3. Test Case 3: Numerical error for Lagrange multiplier
when C0-P2(T )/[P1(∂T )]

2/P1(T ) element is applied on Ω1: left
figure is without the term c(·, ·) proposed in [6]; right figure is with
the term c(·, ·) proposed in this paper.

Figure 4. Test Case 3: Numerical error for Lagrange multiplier
when C0-P2(T )/[P1(∂T )]

2/P0(T ) element is applied on Ω1: left
figure is without the term c(·, ·) proposed in [6]; right figure is with
the term c(·, ·) proposed in this paper.

Figures 3-4 shows the numerical error γh for the C0-P2(T )/[P1(∂T )]
2/P1(T )

element and the C0-P2(T )/[P1(∂T )]
2/P0(T ) element on the domain Ω1 respectively,

compared with the PDWG scheme proposed in [6].

Tables 7-8 demonstrate the numerical performance of the M-PDWG scheme
(17)-(18) for the test equation (85) in the domain Ω2 = (−1, 1)2. The coefficient
matrix a = (aij)2×2 is discontinuous at the center point (0, 0) of the domain Ω2
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Figure 5. Test Case 3: Numerical error for Lagrange multiplier
when C0-P2(T )/[P1(∂T )]

2/P1(T ) element is applied on Ω2: left
figure is without the term c(·, ·) proposed in [6]; right figure is with
the term c(·, ·) proposed in this paper.

Figure 6. Test Case 3: Numerical error for Lagrange multiplier
when C0-P2(T )/[P1(∂T )]

2/P0(T ) element is applied on Ω2: left
figure is without the term c(·, ·) proposed in [6]; right figure is with
the term c(·, ·) proposed in this paper.

so that the duality argument in the convergence theory is not applicable. We
observe from Tables 7-8 that the numerical results are less accurate than the case
of Ω1 = (0, 1)2 presented in Tables 5-6. The convergence rate for γh in the L2 norm
is of an order O(h0.6), which is consistent with the theory; while the convergence
rates for e0 and eg in the L2 norm are both of an order O(h) or slightly higher.

Figures 5-6 shows the numerical error γh for the C0-P2(T )/[P1(∂T )]
2/P1(T )

element and the C0-P2(T )/[P1(∂T )]
2/P0(T ) element on the domain Ω2 respectively,

compared with the PDWG scheme proposed in [6].
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