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Abstract

When learning syntactic transformations, chil-

dren consistently induce structure-dependent

generalizations, even though the primary lin-

guistic data may be consistent with both linear

and hierarchical rules. What is the source of

this inductive bias? In this paper, we use com-

putational models to investigate the hypothe-

sis that evidence for the structure-sensitivity

of one syntactic transformation can bias the

acquisition of another transformation in favor

of a hierarchical rule. We train sequence-to-

sequence models based on artificial neural net-

works to learn multiple syntactic transforma-

tions at the same time in a fragment of English;

we hold out cases that disambiguate linear and

hierarchical rules for one of those transforma-

tions, and then test for hierarchical generaliza-

tion to these held-out sentence types. Consis-

tent with our hypothesis, we find that multitask

learning induces a hierarchical bias for cer-

tain combinations of tasks, and that this bias is

stronger for transformations that share compu-

tational building blocks. At the same time, the

bias is in general insufficient to lead the learner

to categorically acquire the hierarchical gener-

alization for the target transformation.

1 Introduction

Children learning language are faced with a daunt-

ing task. Given a finite, limited set of utterances,

children must infer the correct grammar for their

language among an infinite number of compat-

ible grammars. Despite the variability in qual-

ity and quantity in their linguistic input, children

generally select grammars that are consistent with

the generalizations that best explain the linguistic

competence of their parents. How do children con-

verge to such a grammar?

This question can be viewed as a generaliza-

tion problem, in which sentences are learning in-

stances, and competing grammars are possible

generalizations over them. In the machine learn-

ing literature, any reason for picking one general-

ization consistent with the training data over an-

other is referred to as inductive bias (Mitchell,

1980). A prominent hypothesis as to the source

of such inductive bias is innate, domain-specific

knowledge about grammar (Chomsky, 1965). This

hypothesis rests on the argument that if there is in-

sufficient evidence in the linguistic environment

to acquire certain features of a given language,

successful language acquisition must be attributed

to a biological language faculty. The classic in-

stantiations of this argument have to do with the

structure-sensitivity of rules: linguistic generaliza-

tion make crucial reference to the syntactic struc-

ture of the sentence, rather than the sequence of

words it consists of. This view, often referred

to as the poverty of the stimulus argument, has

come under scrutiny, with critics indicating that

positive evidence that would provide unambigu-

ous evidence for one generalization over another,

once assumed to be inaccessible, in fact appears

more frequently in natural language than argued

by Chomsky (Pullum and Scholz, 2002).

A central source of empirical evidence for the

poverty of the stimulus argument comes from

child language acquisition experiments. Crain and

Nakayama (1987) tested 3 to 5-year-old children

on their ability to form questions from declara-

tive sentences, a transformation known as subject-

auxiliary inversion. They asked children to form

yes-no questions from sentences with a relative

clause on the subject (e.g. The cat that is yawn-

ing is on the couch), a construction presumed by

Crain and Nakayama to be unattested in question

form in child speech. Participants in the experi-

ment generally fronted the correct, matrix auxil-

iary in such sentences, and even when they made

errors, those errors were never consistent with a

non-hierarchical rule. These findings have been
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interpreted by Crain and Nakayama as evidence

for an innate structure-sensitivity bias.

The necessity of an innate structure-sensitivity

bias has also been addressed by computational

modeling work. Work in this area has compared

the probabilities assigned by language models to

correctly and incorrectly fronted questions us-

ing artificial languages (Lewis and Elman, 2001),

child-directed speech corpora (Reali and Chris-

tiansen, 2005), and raw data used in unsuper-

vised pretraining of BERT (Warstadt and Bow-

man, 2020), finding in all cases that models as-

signed higher probability to the hierarchically-

generated, correctly fronted questions. Other

work followed more closely the approach taken

by Crain and Nakayama and investigated mod-

els trained to perform the transformation by pro-

ducing an output sequence. Most relevant to this

work, Frank and Mathis (2007) trained a neural

network language model to output a question after

observing a declarative sentence, often producing

the correct auxiliary but failing to generalize on

held-out cases. This paradigm has recently been

extended to contemporary sequence-to-sequence

networks (McCoy et al., 2020a), the architecture

we use in this paper, with similar results: their

models only generalized hierarchically when they

were architecturally constrained to base its output

on hierarchical syntactic structure.

Previous computational work has focused on in-

ductive bias arising from the learning architecture,

which would correspond to the innate biases often

considered in linguistics. In this work, by contrast,

we assess whether a structure-sensitivity bias for a

particular transformation can arise from learning

the target transformation jointly with other syn-

tactic transformations. We hypothesize that, by

observing hierarchical structure in other construc-

tions and situations, learners may show a prefer-

ence for hierarchical structure when tested on new

constructions where the training data is ambiguous

between generalizations.

To test this hypothesis, we use the multitask

learning paradigm, which leverages training sig-

nals from related tasks to induce a bias for a target

task. We train models to perform various syntac-

tic transformations and find that some, but not all,

combinations of tasks lead to improved hierarchi-

cal generalization, and that the magnitude of this

effect depends on the nature of the transformations

involved. Our findings suggest that some of the hi-

erarchical bias exhibited in syntactic transforma-

tion tasks may emerge through indirect evidence

made accessible by learning aspects of hierarchi-

cal structure in other parts of the linguistic input,

but this evidence alone is insufficient for learning

categorically structure-dependent rules. This in-

dicates that, even given evidence that other trans-

formations in the language are structure-sensitive,

architectural structure-sensitivity bias is still re-

quired to obtain robust hierarchical generalization

in a transformation for which such evidence is ab-

sent, at least in the simplified setting we investi-

gate.

2 Background: Multitask Learning

Inductive bias can arise not only from model archi-

tecture but also from the training regimes in which

it is employed. One such regime used for introduc-

ing bias is multitask learning (Caruana, 1998).

In this setup, generalization performance on a tar-

get task is improved by leveraging training sig-

nals from related side tasks, which the model is

trained to perform in parallel with the target task.

In a neural network, for example, a weight up-

date that improves the performance of the network

on a side task might result in an inductive bias

that is beneficial for the target task. One exam-

ple Caruana gives is autonomous driving: to im-

prove performance on the target task, determining

the direction in which the car should be streered,

the learner might be taught a series of side tasks,

such as predicting the location of the center of the

road, the intensity of the road surface, and so on.

Caruana shows that when tested for generalization

on unseen roadways, the multitask model outper-

forms the single-task model on the same quantity

of within-task data.

Multitask learning has been shown to be ef-

fective in natural language tasks. For instance,

the various similarities underlying all human lan-

guages have made multitask learning with multi-

ple languages a useful approach to machine trans-

lation. Dong et al. (2015) designed encoder-

decoder networks that learn to decode into many

languages in parallel, where the shared encoder

learns a more useful syntactic representation for

translating into the target language, whereas Firat

et al. (2016) used separate encoders and decoders

for each language but shared the attention mecha-

nism across languages. Johnson et al. (2017) per-

formed multilingual translation using a single en-
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coder and decoder by appending an artificial to-

ken in the input which indicates the language to

be translated into. In this setting, they were able to

perform zero-shot translation, i.e., translating be-

tween language pairs for which the model never

received parallel data; instead, it relied on a shared

representation learned via multitask learning.

The present work adopts the architecture used

by Johnson et al. (2017), with a shared encoder

and a shared decoder. Instead of translation be-

tween different languages, we deploy this archi-

tecture to learn different syntactic transformations

within a single language (a fragment of English),

and assess whether the process of learning the

transformations can induce a bias for hierarchical

generalization in other syntactic transformations.

3 Methods

We performed a series of multitask learning ex-

periments.1 In these experiments, one transforma-

tion task was always designated as the target task,

and the others as side tasks. The training data

for the target task were ambiguous as to whether

they were generated using the hierarchical or lin-

ear rule; in other words, applying either of the

rules to the inputs included in the training set re-

sulted in identical outputs. By contrast, the train-

ing data for the side task provided unambiguous

evidence for either a hierarchical or linear rule

through the inclusion of key disambiguating ex-

amples, for which different rules produce differ-

ent outputs.

3.1 Tasks

We used three syntactic transformations: pas-

sivization, question formation, and tense reinflec-

tion. In English, all of these transformations are

governed by hierarchical structure. For each of

these transformations, we also constructed a rule

stated in terms of linear order of the words in the

sentence, such that the rule produces identical out-

puts for the sentence types included in the training

set. The tasks and their corresponding hierarchi-

cal and linear rules are described below. Table 1

gives examples of sentences on which the rules

yield distinct outputs.

Passivization In this task, an active sentence is

transformed into a passive sentence using MOVE-

1Code and data for the experiments described in this pa-
per are available at the following link: https://github.
com/karlmulligan/mtl-transformations.

OBJECT or MOVE-SECOND. Disambiguating in-

puts are those with a relative clause (RC) or prepo-

sitional phrase (PP) on the subject, i.e., sentences

in which the subject contains two different nouns.

MOVE-OBJECT (hierarchical): Delete the

subject noun phrase, move the object noun

phrase to the subject position, and inflect the

matrix verb to agree with the former object.

MOVE-SECOND (linear): Delete the linearly

first noun phrase, move the linearly second

noun phrase to the front of the sentence, and

inflect the linearly first verb to agree with the

formerly second noun phrase.

Question Formation In this task, a declarative

sentence is transformed into an interrogative sen-

tence using MOVE-MAIN or MOVE-FIRST. Dis-

ambiguating inputs are those with an RC on the

subject, i.e., sentences with an auxiliary that lin-

early precedes the matrix auxiliary.

MOVE-MAIN (hierarchical): Move the aux-

iliary modifying the main (matrix) verb to

the front of the sentence.

MOVE-FIRST (linear): Move the linearly

first auxiliary to the front of the sentence.

Tense Reinflection In this task, a past tense sen-

tence is transformed into a present tense sentence

using INFLECT-SUBJECT or INFLECT-RECENT. In

English, past tense verbs have no number mor-

phology (did), while present tense verbs inflect for

the third-person singular (does vs. do). Disam-

biguating inputs are those with an RC or PP on the

subject that contains a noun of a different number

from the head of the subject; this noun therefore

intervenes between the head of the subject and the

matrix auxiliary.

INFLECT-SUBJECT (hierarchical): Change

the inflection of the main verb to match the

number of the head of the subject noun

phrase.

INFLECT-RECENT (linear): Change the in-

flection of the main verb to match the number

of the most recently processed noun.

Unlike question formation and passivization,

tense reinflection as it is framed here is not a lin-

guistically natural task: declarative and active sen-

tences can easily be argued to be base forms, while
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Input Output (Hierarchical) Output (Linear)

our handsome yak upon our fantastic

grotesque newt does amuse her wal-

rus . PASSIVE

her walrus is amused . our fantastic grotesque newt

is amused .

the yaks who don’t amuse her agree-

able quail do applaud my deter-

mined handsome vulture . QUEST

do the yaks who don’t amuse

her agreeable quail applaud my

determined handsome vulture ?

don’t the yaks who amuse her

agreeable quail do applaud my

determined handsome vulture ?

some newts upon my courageous ze-

bra did admire my bewildered exu-

berant zebras . PRESENT

some newts upon my coura-

geous zebra do admire my be-

wildered exuberant zebras .

some newts upon my coura-

geous zebra does admire my

bewildered exuberant zebras .

Table 1: Examples of disambiguating constructions for passivization, question formation, and tense reinflection,

for which hierarchical and linear rules give distinct outputs.

no framework to our knowledge would treat the

past tense as a base form and the present as a

transformation over it; instead, a more plausible

input form would be a lemma underspecified for

tense. Instead of using an abstract lemma form, we

use already-inflected forms for consistency across

sequence-to-sequence tasks, with a view towards

using these datasets to test any model that accepts

English sentences as inputs. We emphasize that

tense reinflection as it is defined here achieves our

main goal of targeting the same fundamental fea-

tures as the other syntactic tasks, namely, long-

distance agreement and hierarchical structure.

3.1.1 Notation

As a shorthand for describing the combinations of

tasks used in each experiment, we write the tar-

get task followed by the side task and a superscript

that indicates whether the rule used to generate the

disambiguating examples for the side task was hi-

erarchical or linear. For instance, we write

PASSIVE | QUESTION
H

to indicate that passivization was the target task

and question formation, with examples disam-

biguating the transformation in favor of the hier-

archical rule (MOVE-MAIN), was the side task.

We use the following abbreviations: PASSIVE =

passivization; QUESTION = question formation;

TENSE = tense reinflection; H = hierarchical; and

L = linear.

3.1.2 Computational Building Blocks

The multitask approach for inducing a bias relies

on the interrelatedness of the target task and the

side task. In the case of syntactic transforma-

tions, we hypothesize that two tasks are related

Task AGR MOVE DEL

PASSIVE ✓ ✓ ✓

QUESTION ✓

TENSE ✓

Table 2: A characterization of syntactic transforma-

tions in terms of coarsely defined computational build-

ing blocks: AGR = NUMBER AGREEMENT, MOVE =

MOVEMENT, and DEL = DELETION.

insofar as they have in common certain computa-

tional building blocks. For instance, both ques-

tion formation and passivization involve MOVE-

MENT, more specifically fronting to the beginning

of the sentence.2 Table 2 shows the computational

building blocks shared among tasks. While some

of this terminology originates with the theory of

Transformational Grammar (Chomsky, 1965), the

level of description at which these subprocesses

are compared is abstract and independent of any

particular syntactic theory or framework.

3.2 Data

Each of the training datasets was generated using

a probabilistic context-free grammar (PCFG) de-

scribed below. The grammar was based on the

one created by McCoy et al. (2018), with multi-

ple modifications; we describe the grammar be-

low. Each training example was created by sam-

pling a sentence from the grammar and then ap-

plying a transformation to that sentence. While the

2Although the exact types of movement (word-level V-
MOVEMENT and phrase-level NP-MOVEMENT) are different
and involve different grammatical categories, they are funda-
mentally functionally related.
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sentences generated from the PCFG were gram-

matical in English, the output of the transforma-

tion was ungrammatical in the conditions where

the side task was disambiguated in favor of a lin-

ear rule (see the rightmost column of Table 1).

We omitted from the training sets examples of the

target task with constructions that constituted dis-

ambiguating evidence for one rule over another

(e.g., questions that are compatible with having

been generated using MOVE-MAIN but not MOVE-

FIRST for question formation). As baselines, we

also experimented with single-task training sets,

which only included examples from the target

task. Finally, since our task inventory included

three tasks, we also conducted experiments with

two side tasks.

The training set for each experiment included

100,000 examples of each transformation, with the

single-task baseline datasets consisting only of ex-

amples that are ambiguous with respect to the rule

that generated them (linear or hierarchical). Each

multitask training set (N = t ∗ 100,000, where t

is the number of tasks) was created by concatenat-

ing and shuffling ambiguous examples of the tar-

get task with examples of one or more side tasks

containing disambiguating evidence. The devel-

opment set, used to determine early stopping, con-

sisted of t∗1,000 examples sampled from the same

distribution as the training set.

Grammar All sentences generated from the

grammar followed a basic subject-verb-object

structure. A third of the subject and object noun

phrases were modified by prepositional phrases

(PP), and a third were modified by relative

clauses (RC); the remaining noun phrases were

unmodified. Noun phrase modification was not

recursive: it was limited to one PP or RC per

noun phrase. Each noun was modified by up to

three adjectives, with the aim of varying sentence

length and discouraging the potential use of

position-based linear heuristics. The grammar

used explicit auxiliaries rather than inflected verbs

(e.g. does giggle instead of giggles) in order to

facilitate transfer of representations across tasks,

since all examples of question formation had

explicit auxiliary verbs in the input. Finally, it

only included transitive verbs, since passivization

requires an object noun phrase in each sentence.

Each example consisted of an input sentence

paired with a output sentence. Half of the ex-

amples were instances of syntactic transforma-

tions, in which the input sentence was followed

by a token describing which transformation task

to perform, such as PASSIVE (active to passive)

or QUEST (declarative to question) or PRESENT

(past tense to present). The other half of the ex-

amples were IDENT (identity) tasks, which con-

sisted of simply reproducing the input sequence.

The IDENT examples included instances of held-

out constructions (e.g. subject RCs in QUESTION),

but did not reveal the outputs of the transforma-

tions for these instances. The identity examples

were included to familiarize the encoder with sen-

tences of that type, so that the the model would be

able to produce viable representations for such in-

puts when asked to apply transformations to those

sentences at test time.

Each model was then evaluated on both an in-

distribution test set (N = 10,000), featuring the

same sentence constructions as those encountered

in training, and also an out-of-distribution gen-

eralization set (N = 10,000) consisting only

of the disambiguating constructions withheld dur-

ing training (see Table 1 for examples); criti-

cally, on these sentences, the hierarchical and non-

hierarchical rule make different predictions. The

test and generalizations sets for the target task

only contained examples that were consistent with

the relevant hierarchical rule (and were therefore

grammatical in English), in all conditions.

3.3 Models

All experiments used Gated Recurrent Networks

(GRU) (Cho et al., 2014) with attention (Bah-

danau et al., 2015). The output was generated

using greedy decoding, that is, the highest prob-

ability word was generated at each time step. All

models had a hidden state size of 256 units and

were optimized using stochastic gradient descent

with a learning rate of 0.001. These parame-

ters were based on the best combination of model

architecture and hyperparameters for generaliza-

tion on question formation as reported by McCoy

et al. (2020a). For each dataset configuration, we

trained 10 models with different sets of randomly

generated initial weights.

3.4 Evaluation

We used two evaluation metrics: full-sentence ac-

curacy and partial credit. For full-sentence ac-

curacy, we marked a sentence as correct when

the sequence generated by the model matched the
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Figure 1: Mean generalization set accuracy. Models with mean accuracies above the baseline, single-task model

generalization accuracy (dotted line) exhibits a multitask advantage. Models whose accuracies are higher for a

hierarchical side task (darker) than their linear side task counterpart (lighter) exhibit a hierarchical advantage.

Partial credit metrics are: for passivization, object-NP accuracy; for question formation, first-word accuracy; and

for tense reinflection, matrix-auxiliary accuracy.

gold-standard sequence exactly. This is a strin-

gent criterion, but it penalizes the model for er-

rors that may have nothing to do with the syn-

tactic generalization of interest. As such, we also

assigned the models partial credit when the pre-

dicted sentence contained, in the correct position,

the key word or words crucially indicative of sen-

sitivity to hierarchical structure for that transfor-

mation. For passivization, we assigned partial

credit when the first subsequence matched the ob-

ject noun phrase (object-NP accuracy); for ques-

tion formation, when the first word matched the

correct auxiliary (first-word accuracy); and for

tense reinflection, when the matrix auxiliary verb

was inflected correctly (matrix-auxiliary accu-

racy). Since the crucial elements in each of these

cases are of varying lengths, the partial credit mea-

sures are not directly comparable to one another: it

is more challenging to match an entire noun phrase

than a single word.

We use the following terminology to discuss

the efficacy of multi-task learning. We say that

a model shows a multitask advantage if, when

it is trained on any side task at all, it generalizes

according to the hierarchical rule more often than

the single-task baseline (for example, if the gen-

eralization accuracy for PASSIVE | QUESTION
H is

higher than for PASSIVE alone). We further say

that a pair of multitask models shows a hierarchi-

cal advantage if the model with a hierarchical side

task performs better on the target task than a model

with the linear version of that side task (e.g. gener-

alization accuracy is greater for PASSIVE | QUES-

TION
H than PASSIVE | QUESTION

L).

4 Results

In-distribution accuracy On test sentences

drawn from the same distribution as the training
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set, all models, single-task and multitask models

alike, averaged 97% full-sentence accuracy across

tasks and 99% partial credit. Accuracy on most

tasks was at ceiling, but there was a multitask ad-

vantage for all target task PASSIVE models on full-

sentence accuracy.

Generalization accuracy On the out-of-

distribution generalization set, performance was

generally high for PASSIVE, and much lower for

QUESTION and TENSE. In contrast to prior work,

the full-sentence and partial credit measures are

very similar, thus indicating that, for example, in

question formation, whenever the model failed to

output the entire sentence correctly it also failed to

produce the correct first word. Figure 1 shows the

generalization accuracy for all task combinations.

Breakdown by task combination The task

combinations that showed the most prominent ef-

fects on full-sentence accuracy were PASSIVE |
QUESTION

H (+10% multitask advantage, +17%

hierarchical advantage) and QUESTION | PAS-

SIVE
H (+31% m.a., +35% h.a.). There are also

smaller effects for TENSE | PASSIVE
H (+16% m.a.,

+6% h.a.) and TENSE | QUESTION
H (+4% m.a.,

+4% h.a.). Combinations with a multitask advan-

tage, but no hierarchical advantage include QUES-

TION | TENSE (+14% m.a.). None of the models

showed a hierarchical disadvantage: the hierarchi-

cal side tasks were always at least as effective as

the linear ones in inducing a hierarchical bias. At

the same time, the fact that even the linear side

tasks tended to increased the likelihood of hierar-

chical generalization, compared to the single-task

baseline, suggests that the larger set of syntac-

tic constructions included in the multitask train-

ing sets, most of it ambiguous as to the rule that

governs the transformations, contained consider-

able cues to hierarchy, regardless of how the criti-

cal examples were disambiguated.

5 Adding a Small Number of

Disambiguating Examples

In the previous experiments, the evaluation on the

generalization set was a test of zero-shot general-

ization: the models were asked to perform a trans-

formation on a syntactic structure for which they

have received no examples of the transformation

of interest. The zero-shot assumption may be un-

realistically strict if children are indeed exposed

to a small number of disambiguating examples, as

argued by Pullum and Scholz (2002). Even if a

particular multitask learning configuration did not

show an effect in the zero-shot setting, then, it may

still impart to the models a bias for hierarchical

generalization that would manifest in faster learn-

ing of the correct generalization; that is, it could

learn it from fewer disambiguating examples than

needed for a model without such a bias (McCoy

et al., 2020b).

To empirically determine whether multitask

learning can facilitate such few-shot learning, we

added to the training sets described in Section 4

a few examples of the target transformations ap-

plied to the disambiguating construction. If the

model normally requires n examples to generalize

properly, we expect a hierarchical inductive bias

to lead the model to require m examples in the

multitask setup to reach the same generalization

performance, where m < n.

5.1 Methods

For each target task, we removed 5, 10, 50,

100, 500, or 1000 examples from the gener-

alization set, and inserted them into the train-

ing set (the disambiguating examples therefore

constituted 0.00025%, 0.005%, 0.0025%, 0.05%,

0.025%, or 0.5% of the training data, respec-

tively). The models were then trained and evalu-

ated as before, again with 10 different weight ini-

tialization for each combination of multitask con-

figuration and value of n.

5.2 Results

As before, full-sentence accuracy on the in-

distribution test set was near perfect for all models.

On the generalization sets, for both single-task and

multitask models, accuracy for a small number of

disambiguating examples was generally similar to

n = 0, and increased to about 90% partial credit

accuracy for most tasks at n = 1000.

Multitask advantages gradually disappeared as

n increased (Figure 3 in the Appendix). Figure 2

shows a similar pattern for the hierarchical advan-

tage: for greater n, the initial difference between

the hierarchical side task and linear side task gets

progressively smaller as more within-distribution

disambiguating evidence is introduced. In other

words, then, the more evidence for the hierarchi-

cal rule for the target transformation, the weaker

the impact of the bias from other sources.

Perhaps surprisingly, even very small n were

able to have a large effect on improving partial
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Figure 2: Mean generalization accuracy as a function

of number of disambiguating examples of the target

task. A log scale is used for the x-axis.

credit generalization accuracy for some tasks. For

QUESTION, out of a dataset of 2 million exam-

ples, a mere n = 5 disambiguating examples were

enough to produce a gain from 36% to 47% on

partial credit accuracy. However, PASSIVE did not

show major improvement over zero-shot models

until n = 50 and beyond. Table 3 shows improve-

ment over zero-shot models as a function of n.

Number of disambiguating examples

Task 0 10 100 1000

PASSIVE 0.76 -0.01 +0.09 +0.19

QUESTION 0.36 +0.19 +0.40 +0.55

TENSE 0.08 +0.02 +0.09 +0.66

Table 3: Improvement in main task generalization ac-

curacy over zero-shot models for different settings of n

(partial credit, averaged over all side tasks).

6 Discussion

Our experiments continue a tradition of behavioral

and computational work that has sought to illu-

minate the issue of the poverty of the stimulus

in the acquisition of syntax, and has done so by

evaluating whether the generalizations that learn-

ers acquire for syntactic transformations follow

hierarchical principles. In our experiments, we

tested the hypothesis that jointly learning multiple

types of syntactic transformations could induce a

bias for hierarchical generalization. We found that

multitask learning indeed resulted in increased hi-

erarchical bias for some, but not all, combinations

of syntactic tasks; this increase was often modest

and did not lead to categorical hierarchical behav-

ior.

When is one task useful in guiding the learn-

ing of another? We hypothesized that tasks that

share computational building blocks like MOVE-

MENT would be more likely to show transfer in

a multitask learning setting. In our experiments,

we found that PASSIVE was the side task most

successful at inducing a bias, whereas QUESTION

and TENSE were less mutually informative. We

also found that such relationships were often sym-

metric with respect to whether a task was the tar-

get task or side task. For instance, for the mod-

els in Figure 1, PASSIVE as a side task induced

a multitask advantage for both QUESTION and

TENSE, and both those tasks likewise induced a

(far smaller) multitask advantage for PASSIVE.

The reason for the difference in magnitude of

these induced advantages may also be explain-

able in terms of shared computational building

blocks. Because passivization involves many

building blocks (DELETION, MOVEMENT, and

NUMBER-AGREEMENT), while the other transfor-

mations only involve a subset of these, PASSIVE

may be more informative as a side task to QUES-

TION and TENSE than the other way around.

Although the computational building blocks

theory can account for some of the variability, the

preference for the hierarchical generalization was

not categorical: models trained with the hierarchi-

cal side tasks did not exhibit behavior consistent

with having learned absolute structural rules, but

rather had a stronger preference for correct gen-

eralizations than their counterparts trained with a

linear side task.

One explanation for the lack of a clearly cat-

egorical inductive leap is that different transfor-

mations may target different aspects of hierarchi-

cal structure; that is, hierarchy could be learned

as a single concept, or piecemeal, depending on

the aspect of hierarchical structure targeted by a

certain pattern of data. Perfors et al. (2011) show

that an ideal learner tends toward hierarchical be-

havior not because of an explicit structural bias,

but because the hierarchical rules in their experi-

ments could be expressed more concisely than lin-

ear ones; while this is also true of our experiments,

the transferability of a learned hierarchical rule is
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more complicated and not guaranteed.

Another explanation is that the architecture may

impose a bottleneck in the decoder; while the

single-task models only need to learn to perform a

single transformation, the multitask models must

learn to do several with the same number of pa-

rameters. While this step encourages parame-

ter sharing, it may also be forcing an excessively

compact representation. In future work, this hy-

pothesis can be tested by implementing a sepa-

rate decoder per task (see Section 2 for examples),

and make use of other decoder techniques such as

beam search.

6.1 Future Work

The current work serves as a proof of concept for

inducing hierarchical bias through multitask learn-

ing. However, it remains an open question to

what extent joint learning of this kind plays a role

in shaping generalization behavior in human lan-

guage acquisition. In our experiments, passiviza-

tion was the side task that most reliably induced a

hierarchical bias, but in our multitask training sets

PASSIVE examples and the target task examples

were distributed equally; in spoken language, pas-

sives are a far rarer phenomenon (Brown, 1973).

In the future, this concern can be addressed, to

some extent, by lowering the proportion of pas-

sives compared to the primary task data, such that

it comprises, say, only 5% of the dataset rather

than 50%, and seeing whether the bias persists.

Future work will also attempt to isolate pre-

cisely which task properties are responsible for

transfer across tasks in a more systematic fash-

ion. For instance, an alternative possibility for

why PASSIVE may have been the most informa-

tive side task is because it had a higher propor-

tion of disambiguating examples in the side task

training sets than QUESTION and TENSE as a re-

sult of the PCFG and task properties. We can con-

trol for this and other factors by designing more

controlled languages and tasks that distill compu-

tational building blocks like MOVEMENT down to

even simpler computational primitives. By taking

inspiration from the notion of a minimal example,

the goal of future projects will be to define mini-

mal transformations based on simple languages

with limited vocabularies. By doing so, it will be

possible to better understand how syntax learning

in multitasking networks takes place.

7 Conclusion

We have shown that multitask learning of syn-

tactic tasks in sequence-to-sequence neural net-

works can induce a gradient bias for hierarchi-

cal generalization in new tasks. This bias man-

ifests more strongly for some task combinations

than others; the strength of this effect appears to

be related to the number of computational build-

ing blocks the tasks have in common. While no

side tasks led to the induction of a categorical hi-

erarchical rule for the target task, they were shown

to give a significant bias toward correct generaliza-

tion, though this bias was greatest when there were

no or few disambiguating examples, and gradually

disappeared as more disambiguating evidence be-

came available.

In natural language, hierarchical structure is ev-

erywhere. Our evidence suggests that neural net-

work models of language learning are capable of

identifying hierarchical structure and using that

information to perform structure-dependent trans-

formations, without necessarily relying on an in-

nate bias. Nonetheless, it remains to be seen

whether this model of learning is applicable to hu-

man language acquisition, and more work is nec-

essary to understand the nature of the syntactic

knowledge contained in these jointly learned rep-

resentations.
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Figure 3: Mean generalization accuracy for few-shot models (n = 10, n = 100, n = 1000). For greater number of

disambiguating examples n, the single-task models “raise the bar” at a more competitive rate, thereby weakening

or eliminating instances of multitask advantage observed in the zero-shot setting.
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