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Abstract

We study off-policy evaluation (OPE) from multiple logging policies, each generating a dataset
of fixed size, i.e., stratified sampling. Previous work noted that in this setting the ordering of the
variances of different importance sampling estimators is instance-dependent, which brings up a
dilemma as to which importance sampling weights to use. In this paper, we resolve this dilemma
by finding the OPE estimator for multiple loggers with minimum variance for any instance,
i.e., the efficient one. In particular, we establish the efficiency bound under stratified sampling
and propose an estimator achieving this bound when given consistent q-estimates. To guard
against misspecification of q-functions, we also provide a way to choose the control variate in a
hypothesis class to minimize variance. Extensive experiments demonstrate the benefits of our
methods’ efficiently leveraging of the stratified sampling of off-policy data from multiple loggers.

1 Introduction
In many applications where personalized and dynamic decision making is of interest, exploration is
costly, risky, unethical, or otherwise infeasible ruling out the use of online algorithms for contextual
bandits (CB) and reinforcement learning (RL) that need to explore in order to learn. This includes
both healthcare, where we fear bad patient outcomes, and e-commerce, where we fear alienating
users. This motivates the study of off-policy evaluation (OPE), which is the task of estimating the
value of a given policy using only historical data, which is generated by current decision policies.
This can support performance evaluation of policies with respect to various rewards objectives in
order to better understand their behavior before deploying them in a real environment. Given how
invaluable this is, OPE has been studied extensively both in CB (Kallus, 2018; Narita et al., 2019;
Wang et al., 2017; Dudík et al., 2014; Swaminathan et al., 2017; Muandet et al., 2020; Su et al., 2020)
and in RL (Farajtabar et al., 2018; Liu et al., 2018; Kallus and Uehara, 2019a,b, 2020a; Munos et al.,
2016; Jiang and Li, 2016; Thomas and Brunskill, 2016; Yin et al., 2020) and has been applied in
various domains including healthcare (Murphy, 2003) and education (Mandel et al., 2014).
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In most of the above studies, the observations used to evaluate a new policy are assumed generated
by a single logging policy. Often, however, we have the opportunity to leverage multiple datasets,
each potentially generated by a different logging policy (Agarwal et al., 2017; He et al., 2019; Strehl
et al., 2010; Bareinboim and Pearl, 2016). The size of each dataset is generally fixed by design, which
distinguishes this setting from a single logging policy given by the mixture of logging policies. Such
fixed dataset sizes is an example of stratified sampling (Wooldridge, 2001), where the identity of the
logging policies constitute the stratum.

The distinction of these two settings is crucial since the same estimator may have varying precision
in each setting (a fact well-known in Monte Carlo integration, Geyer, 1994; Kong et al., 2003; Tan,
2004, and noise contrastive estimation, Gutmann and Hyvärinen, 2010; Uehara et al., 2018). Thus,
many results in the standard unstratified OPE setting cannot be directly translated to a multiple
logger setting, most crucially the efficiency lower bound on mean-squared error (MSE) and estimators
that achieve this lower bound (Narita et al., 2019; Kallus and Uehara, 2020a; Dudík et al., 2014;
Jiang and Li, 2016). In the multiple logger setting, we may additionally consider a much greater
variety of estimators that can utilize the logger identity as data. In this paper, we study a wide range
of such estimators, establish the efficiency lower bound, and propose estimators that achieve it.

Previous work on OPE with multiple loggers proposed various importance sampling (IS) estimators
that use the logger identity (Agarwal et al., 2017). However, they arrived at a dilemma: there is
no strict ordering between the IS estimate with marginalized logging probabilities and a precision-
weighted combination of the IS estimates in each dataset. That is, which estimate has lower MSE
depends on the problem instance and is not known a priori, and therefore it is not clear which should
be preferred. Our analysis resolves this dilemma by developing an efficient estimator, which has
MSE better (or not worse) than both of the above.

Our contributions are as follows. First, when the logging policies are known, we study the
variances of a new class of unbiased estimators that includes and is much bigger than the class
considered in Agarwal et al. (2017). This new class incorporates both control variates and flexible
weights that may depend on logger identity. We show that a single estimator has minimum variance
in this class (Sections 3.1 and 3.2). We extend this finite-sample bound to also bound the asymptotic
MSEs of all regular estimators, thereby establishing the efficiency lower bound (Section 3.3). We
show how to construct an efficient estimator even if behavior policies are unknown and establish
theoretical guarantees for it (Section 4). Then, we theoretically investigate the differences between
OPE in the stratified and unstratified cases by showing that the variances of the estimator are
generally different under two settings and are asymptotically equivalent only when the estimator
is efficient (Section 5). We use this insight to choose optimal control variates to directly minimize
variance, extending the More Robust Doubly Robust (MRDR) estimator of Rubin and der Laan
(2008); Farajtabar et al. (2018) to the stratified setting (Section 6). Finally, we study our new OPE
methods empirically and compare them to benchmark methods including those of Agarwal et al.
(2017).

2 Background
We start by setting up the problem and summarizing the relevant literature.

2.1 Problem Setup
We focus on the CB setting as was the topic of previous work (Agarwal et al., 2017) and discuss the
extension to RL in Appendix B.

We are concerned with the average reward of taking an action a ∈ A in context (state) s ∈ S
when following the policy πe(a | s), known as the evaluation policy. Both A and S may be discrete
or continuous. Rewards r ∈ [0, Rmax] are described by the (unknown) reward emission probability
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distribution pR|S,A(r | s, a), and contexts are drawn from the (unknown) distribution pS(s). Thus,
the average reward under πe, which is our target estimand is

J := Eπe [r],

where the subscript πe refers to the joint distribution pS(s)πe(a | s)pR|S,A(r | s, a) over (s, a, r).
To help estimate J , we consider observing K datasets, D = {D1, · · · ,DK}, each of (fixed) size nk

and associated with the logging policy πk(a | s), for k ∈ [K] = {1, . . . ,K}. (We consider both the
cases where πk are known and unknown.) Each dataset consists of observations of state-action-reward
triplets, Dk = {(Skj , Akj , Rkj)}nkj=1, drawn independently according to the product distribution

(Skj , Akj , Rkj) ∼ pS(s)πk(a | s)pR|S,A(r | s, a).

Notice that the distribution above differs from the distribution in the definition of J in the policy
used to generate actions. We let n = n1 + · · · + nK be the total dataset size. We often reindex
the whole data as D =

⋃K
k=1{(k, s, a, r) : (s, a, r) ∈ Dk} = {(ki, Si, Ai, Ri) : i = 1, . . . , n}, treating

the logger identity ki as an additional component of an observation in one big pooled dataset. For
a function f(s, a, r) we let Enk [f ] = 1

nk

∑
(s,a,r)∈Dk f(s, a, r) and for a function f(k, s, a, r) we let

En[f ] = 1
n

∑
(k,s,a,r)∈D f(k, s, a, r). As mentioned above, we let Eπ refer to expectations with respect

to the distribution on (s, a, r) induced by playing π (similarly, varπ). Unsubscripted expectations
and variances are with respect to the data generation (such as the variance of an estimator).

We let ρk = nk/n be the dataset proportions and π∗(a | s) =
∑K
k=1 ρkπk(a | s) be the marginal

logging policy (as a policy, it corresponds to randomizing the choice of logger with weights ρk
and then playing the chosen logger, but note this is not how the data is generated, as nk are
fixed). For any function f(s, a), let f(s, π) = Eπ[f(s, a) | s] =

∫
f(s, a)dπ(a | s). We let q(s, a) =

EpR|S,A [r | s, a], v(s) = q(s, πe), σ2
r(s, a) = varpR|S,A [r | s, a]. We define the L2 norm by ‖f‖2 =

{Eπ∗ [f2(s, a, r)]}1/2. We denote the normal distribution with mean µ and variance σ2 by N (µ, σ2).
We always let n, n1, . . . , nK be fixed and finite. When we discuss asymptotic behavior we consider

sample sizes n′ = mn, n′k = mnk and m → ∞ such that sample proportions ρk = nk/n = n′k/n
′

remain fixed.

2.2 Previous Work and the Multiple Logger Dilemma
In the unstratified setting, wherein the logging policy first chooses k at random from [K] with weights
ρk and then plays the logging policy πk, the standard IS estimator would be

ĴIS := En
[
πe(a | s)r
π∗(a | s)

]
.

This estimator can still be applied in the stratified setting in the sense that is unbiased under a weak
overlap.

Assumption 1 (Weak Overlap). For any s ∈ S,
πe(· | s) � π∗(· | s) (where � means absolutely continuous). When |A| < ∞, this is equiva-
lent to: for any s ∈ S, a ∈ A, πe(a | s) > 0 implies π∗(a | s) > 0.

Agarwal et al. (2017) study the multiple logger setting and propose estimators that combine
the IS estimators in each of the K datasets: given simplex weights λ ∈ ∆K = {λ ∈ RK : λk ≥
0,
∑K
k=1 λk = 1}, they let

Υ(D;λ) =
K∑
k=1

λkEnk
[
πe(a | s)r
πk(a | s)

]
. (1)

For any λ ∈ ∆K , Υ(D;λ) is unbiased under a whole weak overlap.
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Assumption 2 (Whole Weak Overlap). For any s ∈ S, k ∈ [K], πe(· | s)� πk(· | s).

Clearly Assumption 2 implies Assumption 1.
Then, they consider two important special cases: the naïve average of the K IS estimates,

ĴIS-Avg := Υ(D; (n1/n, . . . , nk/n)),

and a precision-weighted average,

ĴIS-PW := Υ(D;λ∗), λ∗k =
nk/varπk [πe(a | s)r/πk(a | s)]∑
k′ nk′/varπk′ [π

e(a | s)r/πk′(a | s)]
.

Notice that λ∗ = arg minλ∈∆K var[Υ(D;λ)]. Unlike ĴIS and ĴIS-Avg, the estimator ĴIS-PW is not
feasible in practice since λ∗ needs to be estimated from data first (we discuss this in more detail in
Section 3.2 and show that asymptotically there is no inflation in variance).

Agarwal et al. (2017) established two relationships about the above:

var[ĴIS-Avg] ≥ var[ĴIS], var[ĴIS-Avg] ≥ var[ĴIS-PW].

However, they noted that they cannot find a theoretical relationship between var[ĴIS] and var[ĴIS-PW].
In fact, unlike the above two relationships, which of these two estimators has smaller variance depends
on the problem instance. This brings up an apparent dilemma: which one should we use? We resolve
this dilemma by showing another estimator dominates both. In fact, it dominates a much bigger
class of estimators, that includes ĴIS,Υ(D;λ), ĴIS-Avg, ĴIS-PW.

3 Optimality
We next tackle the question of what would be the optimal estimator. We tackle this from three
perspectives. First, we study a class of estimators like Υ(D;λ) but larger, allowing for control
variates, and determine the single estimator with minimal (non-asymptotic) MSE among these.
Second, since not all estimators (including this optimum) are feasible in practice as they may involve
unknown nuisances (just like ĴIS-PW depends on the unknown λ∗), we then consider a class of feasible
estimators given by plugging in these nuisances and we show that asymptotically the minimum
MSE is the same and achievable. Third, we show that this minimum is in fact the efficiency lower
bound, that is, the minimum asymptotic MSE among all regular estimators. Fig. 1 illustrates the
relationship between these different classes of estimators.

3.1 A Class of (Possibly Infeasible) Unbiased Estimators
Consider the class of estimators given by

Γ(D;h, g) = En[h(k, s, a)πe(a | s)(r − g(s, a)) + g(s, πe)],

for any choice of functions h(k, s, a), g(s, a), where we restrict to functions h that satisfy

K∑
k=1

nkπk(a | s)h(k, s, a) = n ∀s, a : πe(a | s) > 0. (2)

Here h, g may depend on unknown aspects of the data generating distribution (e.g., g = q). Thus,
certain choices may be infeasible in practice. Feasible analogues may be derived by estimating h, g
and plugging the estimates in as we will do in the next section. We refer to the class of estimator as
we range over h, g satisfying Eq. (2) as {Γ(D;h, g)}, and we refer to h as “weights” and g as “control
variates.”
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Fig. 1: Relationship between the classes of estimators considered in Section 3. The green circle represents
the class {Γ(D;h, g)}. The blue circle is {ĴBI(ĥ, ĝ)}. The red circle is regular estimators. The blue shaded
region is the estimators ĴBI(ĥ, ĝ) with feasible and consistent estimators ĥ, ĝ (see Theorem 2). The minimal
asymptotic MSE in any one of these sets is the same and achievable by a feasible estimator.

This is a fairly large class in the sense that it allows both for flexible weights that depend on
logger identity and for control variates. In fact, it includes the class Υ(D;λ) as a subclass (including
ĴIS-Avg, ĴIS-PW) by letting h(k, s, a) = 1/πk or h(k, s, a) = nλ∗k/(nkπk(a | s)), and g = 0. It also
includes ĴIS by letting hk(k, s, a) = 1/π∗(a | s) and g = 0. This class of estimators is unbiased,
i.e., EΓ(D;h, g) = J . But notice that the restriction on h (Eq. (2)) implicitly requires a form
of h-specific overlap. E.g., for h(k, s, a) = 1/π∗(a | s), it corresponds to Assumption 1, and for
h(k, s, a) = nλ∗k/(nkπk(a | s)), it is implied by Assumption 2.

We have the following optimality result.

Theorem 1. Suppose Assumption 1 holds. The minimum of the variances among estimators in the
class {Γ(D;h, g)} is V ∗/n where

V ∗ := Eπ∗

[{
πe(a | s)
π∗(a | s)

}2

σ2
r(s, a)

]
+ varpS [v(s)].

This minimum is achieved by Γ(D; 1/π∗(s, a), q(s, a)).

The result is remarkable in two ways. First, it gives an answer to the dilemma outlined in Section 2.
In the end, none of the three estimators ĴIS-PW, ĴIS, ĴIS-Avg studied by (Agarwal et al., 2017) are
optimal. Second, it states the surprising fact that logger identity information does not contribute
to the lower bound. In other words, whether we allow different weights in different strata (allow h
to depend on k), the minimum variance is unchanged since it is achieved by a stratum-independent
weight function.

This key observation can also be translated to the multiple logger settings in infinite-horizon RL
(e.g., as studied by Chen et al., 2020). We provide this extension in Appendix B.

3.2 A Class of Feasible Unbiased Estimators
When h, g depend on unknowns, such as g = q as in the optimal estimator in Theorem 1, the
estimator Γ(D;h, g) is actually infeasible in practice. We therefore next study what happens when
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Algorithm 1 Feasible Cross-Fold Version of Γ(D;h, g)

1: Input: Estimators ĥ(k, s, a), ĝ(s, a)
2: Fix a positive integer Z. For each k ∈ [K], take a Z-fold random even partition (Ikz)

Z
z=1 of the

observation indices {1, . . . , nk} such that the size of each fold, |Ikz|, is within 1 of nk/Z
3: Let Lz = {(Ski, Aki, Rki) : k = 1, . . . ,K, i ∈ Ikz}, Uz = {(Ski, Aki, Rki) : k = 1, . . . ,K, i /∈ Ikz}
4: for z = 1, · · · , Z do
5: Construct estimators ĥ(z) = ĥ(k, s, a;Uz), ĝ(z) = ĝ(s, a;Uz) of h, g using only Uz as data
6: Set Ĵz = Γ(Lz; ĥ(z), ĝ(z))
7: end for
8: Return: ĴBI(ĥ, ĝ) = 1

n

∑Z
z=1 |Lz| Ĵz.

we estimate g, h and plug them in. Generally, when we plug nuisance estimates in, the variance
may inflate due to the additional uncertainty associated with these estimates, both in finite samples
and asymptotically: for example, when we consider a direct method estimator En[q̂(S, πe)], the
asymptotic variance is much larger than En[q(S, πe)]. Interestingly, for the current case, this inflation
does not occur asymptotically.

Specifically, we propose the feasible estimators ĴBI(ĥ, ĝ) given by the meta-algorithm in Algo-
rithm 1, which uses a cross-fitting technique (Zheng and van Der Laan, 2011; Chernozhukov et al.,
2018). The idea is to split the sample into a part where we estimate g, h and a part where we plug
them in and then averaging over different roles of the splits. If each ĥ(z) satisfies Eq. (2), then this
feasible estimator is still unbiased since

E[Γ(Lz; ĥ(z), ĝ(z))] = E[E[Γ(Lz; ĥ(z), ĝ(z)) | Uz]] = J.

If we do not use sample splitting, this unbiasedness cannot be ensured.
In addition, in the asymptotic regime (recall that in the asymptotic regime we consider n′ =

mn, n′k = mnk observations and m→∞) we can show that whenever ĥ, ĝ are consistent, the feasible
estimator ĴBI(ĥ, ĝ) is also asymptotically normal with the same variance as the possibly infeasible
Γ(D;h, g).

Theorem 2. Suppose ‖ĥ(z) − h‖2 = op(1), ‖ĝ(z) − g‖2 = op(1), ĥ(z), ĝ(z), h, g are uniformly bounded
by some constants, and h, ĥ(z) satisfy Eq. (2). Then, ĴBI(ĥ, ĝ) is unbiased and

√
n′(ĴBI(ĥ, ĝ)− J)

d→ N (0, nvar[Γ(D;h, g)]).

Note the restriction on ĥ(z) implicitly assumes we know logging policies. Theorems 1 and 2
together immediately lead to two important corollaries:

Corollary 1. Under the assumptions of Theorem 2, ĴBI(ĥ, ĝ) has asymptotic MSE lower bounded
by V ∗.

Corollary 1 shows that among the class {ĴBI(ĥ, ĝ)}, V ∗ is also an MSE lower bound. This class
is larger than {Γ(D;h, g)} since we can always take ĥ = h, ĝ = g although it may be infeasible in
practice.

Corollary 2. Suppose g = q and ‖q̂(z) − q‖2 = op(1), Assumption 1 holds, and q̂(z), 1/π∗, q are
uniformly bounded by some constants. Then, the cross-fitting doubly robust estimator

ĴDR := ĴBI(1/π∗, q̂)

achieves the asymptotic variance lower bound V ∗.
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Corollary 2 shows that, when the logging policies are known, the minimum MSE is achievable by
the cross-fitting doubly robust estimator ĴDR. In Section 6, we discuss how to estimate q̂, which is a
necessary ingredient in constructing ĴDR.

Theorem 2 can also be used to establish new theoretical results about other (suboptimal) estimators.
For example, we can consider a feasible version of ĴIS-PW, which we call ĴIS-PW(f), where we use
λ̂∗k =

nk/varnk [πe(a|s)r/πk(a|s)]∑
k′ nk′/varn

k′
[πe(a|s)r/πk′ (a|s)]

. Theorem 2 shows it has the same asymptotic variance as ĴIS-PW,
which was not established in Agarwal et al. (2017). Additionally, we can consider the naively weighted
and precision-weighted average of the doubly robust estimators in each dataset, respectively:

ĴDR-Avg := ĴBI(1/πk(a | s), q̂),

ĴDR-PW := ĴBI(nkλ̂
†
k/(nπk(a | s)), q̂),

λ̂†k :=
nkvarnk [πer/πk{r − q̂(s, a)}+ q̂(s, πe)]∑
k′ nk′varnk′ [π

er/πk′{r − q̂(s, a)}+ q̂(s, πe)]
.

These have the same asymptotic variance as Γ(D; 1/πk(a | s), q),Γ(D;nkλ
†
k/(nπk(a | s)), q), respec-

tively, where λ†k is the same as λ̂†k with varnk replaced with varπk . Neither, however, is optimal and
ĴBI(1/π∗, q̂) outperforms these both.

Even if the estimators ĥ(z) does not satisfy Eq. (2), as long as the convergence point h satisfies
Eq. (2), the final estimator is consistent, but it may not be asymptotically normal. In this case, we
need additional conditions on the convergence rates to ensure

√
n′-consistency. This is relevant when

the logging policies are not known. We explore this in Section 4.

3.3 The Class of Regular Estimators
The previous sections considered the minimal MSE in a class of estimators given explicitly by a
certain structure or by a meta-algorithm. We now show that the same minimum in fact reigns
among the asymptotic MSE of (almost) all estimators that are feasible in that they “work” for all
data-generating processes (DGPs).

Recall our data is drawn from

D ∼
K,nk∏

k=1,i=1

pS(ski)πk(aki | ski)pR|S,A(rki | ski, aki),

and that in the asymptotic regime we consider observing m independent copies of D (for total data
size n′ = mn). Consider first the case where πk are known. Then, pS and pR|S,A are the only
unknowns in the above DGP. That is, different instances of the problem are given by setting these
two to different distributions. Thus, in the known-logger case, we consider the model (i.e., class
of instances) given by all DGPs where pS and pR|S,A vary arbitrarily and πk are fixed. (This is
a nonparametric model in that these distribution are unrestricted.) Regular estimators are those
that are

√
n′-consistent for all DGPs and remain so under perturbations of size 1/

√
n′ to the DGP

(for exact definition see van der Vaart, 1998). When ĥ, ĝ satisfy the conditions of Theorem 2 for
every instance (i.e., are feasible consistent estimators for h, g for all instances), ĴBI(ĥ, ĝ) is a regular
estimator, as a consequence of Theorem 2 and van der Vaart (1998, Lemma 8.14).

The benefit of considering the class of regular estimators is that it allows us to appeal to the
theory of semiparametric efficiency in order to derive the minimum asymptotic MSE in the class. We
paraphrase the key result for doing this below. We provide additional detail in Appendix C.

Theorem 3. (van der Vaart, 1998, Theorem 25.20) Given a model, the efficient influence function
(EIF), φ̃(D), is the least-L2-norm gradient of J with respect to instances ranging in the model. The
EIF satisfies that for any estimator Ĵ that is regular with respect to the model, the variance of the
limiting distribution of

√
n′(Ĵ − J) is at least nvar[φ̃(D)].
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The term nvar[φ̃(D)] is called the efficiency bound. Estimators that achieve this bound are
called efficient. We next derive the EIF and efficiency bound for our problem. That is, for our
average-reward estimand J in the model given by varying pS , pR|S,A arbitrarily.

Theorem 4. Define

φ(s, a, r; g) =
πe(a | s)
π∗(a | s)

(r − g(s, a)) + g(s, πe). (3)

Then in the model with πk known and fixed, the EIF is φ̃(D) = 1
n

∑K,nk
k=1,i=1 φ(Ski, Aki, Rki; q) − J

and the efficiency bound is V ∗.

Notably, the EIF belongs to the class {Γ(D;h, g)} and is exactly the optimal (infeasible) estimator
in that class. Correspondingly, the efficiency bound is exactly the same V ∗ from Theorem 1
and Corollary 1. This shows that, remarkably, ĴDR is in fact also optimal in the much broader sense
of semiparametric efficiency.

Notice that in efficiency theory for OPE in the standard unstratified case (Kallus and Uehara,
2020a) and in other standard semiparametric theory (Bickel et al., 1998; Tsiatis, 2006), we must
consider iid sampling of observations. However, in the stratified case the data are not iid, since nk
are fixed. To be able to tackle the stratified case meaningfully we consider a dataset of size n′ →∞
where the proportions of data from each logger, ρk, are always fixed. We achieve this in a new way
via the equivalent construction of observing m independent copies of D with m→∞.

Next, we consider the case where the logging policies πk are not known. Namely, we consider
the model where we allow all of pS , pR|S,A, π1, . . . , πK to vary arbitrarily. We next show that in this
larger model, the EIF and efficiency bounds are again the same.

Theorem 5. When the logging policies are not known, the EIF and the efficiency bound are the
same as the ones in Theorem 4.

Recall that Theorem 2 shows that the efficiency bound is asymptotically achieved with ĥ =
1/π∗, ĝ = q̂ when we know each πk. In the next section, we show that this lower bound can be
achieved even if we do not know the logging policies and we use ĥ = 1/π̂∗ under some additional
mild conditions.

4 Efficient and Robust Estimation with Unknown Logging
Policies

In the previous section, we showed the efficiency bound is the same whether we know or do not know
the logging policies, but the efficient estimator proposed, ĴDR = ĴBI(1/π∗, q̂), only works when they
are known. A natural estimation way when we do not know behavior policies is to estimate π∗:

ĴDR-π̂∗ := ĴBI(1/π̂∗, q̂).

First, we prove efficiency of ĴDR under lax nonparametric rate conditions for the nuisance estimators.

Theorem 6 (Efficiency). Suppose 1/π∗, q, q̂
(z), 1/π̂

(z)
∗ are uniformly bounded by some constants

and that Assumption 1 holds. Assume ∀z ∈ [Z], ‖q̂(z) − q‖2 = op(1), ‖π̂(z)
∗ − π∗‖2 = op(1), and

‖q̂(z) − q‖2‖π̂(z)
∗ − π∗‖2 = op(n

′−1/2). Then, ĴDR-π̂∗ is efficient:
√
n′(ĴDR-π̂∗ − J)

d→ N (0, V ∗).

First, notice that Corollary 2 can also be seen as corollary of Theorem 6 by noting that if we set
π̂∗ = π∗ then ‖π̂(z)

∗ − π∗‖2 = 0. Second, notice that unlike Theorem 2, we do not restrict ĥ = 1/π̂∗
to satisfy Eq. (2), as indeed satisfying it would be impossible when πk are unknown. At the same
time, ĴDR-π̂∗ is not unbiased (only asymptotically). Finally, notice that again ĴDR-π̂∗, an efficient
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estimator, does not appear to use logger identity data. We will, however, use it in Section 6 to
improve q-estimation.

Next, we prove double robustness of ĴDR-π̂∗ . This suggests when we posit parametric models for
q̂, π̂, as long as either model is well-specified, the final estimator ĴDR-π̂∗ is

√
n′-consistent though

might not be efficient. This is formalized as follows noting that well-specified parametric models
converge at rate n′−1/2.

Theorem 7 (Double Robustness). Suppose Assumption 1 holds. Assume ∀z ∈ [Z], for some q†, π†∗,
‖q̂(z) − q†‖2 = Op(n′−1/2) and ‖π̂(z)

∗ − π†∗‖2 = Op(n′−1/2), and 1/π†∗, q
†, q̂(z), 1/π̂

(z)
∗ are uniformly

bounded by some constants. Then, as long as either q† = q or π†∗ = π∗, ĴDR-π̂∗ is
√
n′-consistent.

5 Stratified vs iid Sampling
We next discuss in more detail the differences and similarities between stratified and iid sampling.
To make comparisons, consider the alternative iid DGP: D′ = {(Si, Ai, Ri) : i = 1, . . . , n}, where
(Si, Ai, Ri) ∼ pS(s)π∗(a | s)pR|S,A(r | s, a) independently for i = 1, . . . , n. That is, we observe
n iid samples from the logging policy π∗. This is equivalent to randomizing the dataset sizes
as (n1, . . . , nK) ∼ Multinomial(n, ρ1, . . . , ρK). In this iid setting, the results of Kallus and Uehara
(2020a) show that the efficiency bound is the same V ∗ as in Theorems 1, 2 and 4 and that ĴDR-π̂∗ , ĴDR

also achieve this bound in the iid setting.
This is very surprising since usually an estimator has different variances in different DGPs. For

example, the variance of ĴIS under the two different sampling settings are different, i.e.:

varD[ĴIS] =
1

n

K∑
k=1

ρkvarπk

[
πe(a | s)r
π∗(a | s)

]
≤ 1

n
varπ∗

[
πe(a | s)r
π∗(a | s)

]
= varD′ [ĴIS].

This inequality is easily proved by law of total variance and shows that the variance under stratified
sampling is lower. The inequality is generally strict when πk are distinct. This observation generalizes.

Theorem 8. Suppose Assumption 1 holds. Consider the class of estimators {En [φ(s, a, r; g)]}, where
φ is given in Eq. (3) and g is any function. Estimators in this class are unbiased. In addition, we
have

varD[En [φ(s, a, r; g)]] ≤ varD′ [En [φ(s, a, r; g)]]. (4)

And, equality holds for all πe, π∗ satisfying Assumption 1 if and only if g = q.

We have already seen the “if” part of the last statement. The intuition for the “only if” part is that
the difference in Eq. (4), var[E[En [φ(s, a, r; g)] | {nk}Kk=1]], is zero exactly when Eπk [φ(s, a, r; g)] =
J ∀k ∈ [K], which can only happen for any π∗ if g = q so we get unbiasedness due to double robustness
even for a “wrong” importance weight. This conveys two things: stratification is still beneficial in
reducing variance in finite samples since we never know the true q exactly, while at the same time
the efficiency bound is the same in the two settings so this reduction washes out asymptotically when
we use an efficient estimator, but only if we use an efficient estimator.

6 Stratified More Robust Doubly Robust Estimation
We have so far considered a meta-algorithm for efficient estimation given a q-estimator, which can
be constructed by applying any type of off-the-shelf nonparametric or machine learning regression
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method to the whole dataset D. However, if q̂ is misspecified and inconsistent, the theoretical
guarantees such as efficiency fail to hold. This a serious concern in practice as we always risk
some level of model misspecification. We therefore next consider a more tailored loss function for
q-estimation that can still provide intrinsic efficiency guarantees regardless of specification.

Specifically, following Rubin and der Laan (2008); Cao et al. (2009); Farajtabar et al. (2018),
we consider choosing the control variate g in a hypothesis class Q to minimize the variance of
Γ(D; 1/π∗, g) = En[φ(s, a, r; g)]. Specifically, we are interested in:

q̃ := arg min
g∈Q

V (g), V (g) = nvar[En[φ(s, a, r; g)]]

=
K∑
k=1

ρkvarπk [φ(s, a, r; g)].

Of course, per Theorem 1, if q ∈ Q then q̃ = q, but the concern is that q /∈ Q. In this case, q̃
will ensure best-in-class variance and will generally perform better than the best-in-class regression
function q̄ = arg ming∈Q Eπ∗ [(r − g(s, a))2], which empirical risk minimization would estimate.

In practice, we need to estimate varπk [φ(s, a, r; g)]. A feasible estimator is

q̌ := arg min
g∈Q

K∑
k=1

ρkvarnk [φ(s, a, r; g)].

Then, we define the Stratified More Robust Doubly Robust estimator as ĴSMRDR := ĴBI(1/π∗, q̌).

Theorem 9. Suppose 1/π∗, supg∈Q |g(s, a)| are uniformly bounded by some constants and Assump-
tion 1 holds. Assume a condition for the uniform covering number: supU logN(ε,Q, L2(U)) . (1/ε),
where N(·) is a covering number and the supremum is taken over all probability measures. Then,√
n′(ĴSMRDR − J)

d→ N (0,ming∈Q V (g)).

Notice that if we had ignored the stratification and used the standard MRDR estimator (Cao
et al., 2009), we would end up minimizing the wrong objective:

q̌MRDR := arg min
g∈Q

varn[φ(s, a, r; g)],

which targets the variance under iid sampling. In particular, we will not obtain the best-in-class
variance. This is again a consequence of Theorem 8: when the control variates is not exactly q, the
variances under stratified and iid setting are different.

7 Experimental Results
We next empirically compare our methods with the existing estimators for OPE with multiple loggers.

Setup. Following previous work on OPE (Farajtabar et al., 2018; Wang et al., 2017; Kallus and
Uehara, 2019b) we evaluate our estimators using multiclass classification datasets from the UCI
repository. Here we consider the optdigits and pendigits datasets (see Table 3 in Appendix E.). We
transform each classification dataset into a contextual bandit dataset by treating the labels as actions
and recording reward of 1 if the correct label is chosen by a classifier, and 0 otherwise. This lets us
evaluate and compare several different estimators with ground-truth policy value of an evaluation
policy.

We split the original data into training (30%) and evaluation (70%) sets. We first obtain a
deterministic policy πdet by training a logistic regression model on the training set. Then, following
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Fig. 2: Comparing proposed estimators to some vari-
ants of IS type estimators.

Fig. 3: Comparing SMRDR (leveraging the stratifica-
tion) and MRDR (ignoring the stratification).

Table 1: The evaluation and logging policies used in the experiments.

evaluation policy (πe) 1.00πdet + 0.00πu
logging policy 1 (π1) 0.95πdet + 0.05πu
logging policy 2 (π2) 0.05πdet + 0.95πu

Table 1, we construct evaluation and logging policies as mixtures of one of the deterministic policy
and the uniform random policy πu. We vary ρ1/(1− ρ1) = n1/n2 in {0.1, 0.25, 0.5, 1, 2, 4, 10}. Since
π1 is closer to πe than π2, larger ρ1/ρ2 corresponds to an easier problem. We then split the evaluation
dataset into two according to proportions ρ1, ρ2 and in each dataset we use the corresponding policy
to make decisions and generate reward observations (the true label is then omitted). Using the
resulting dataset we consider various estimators Ĵ for J . We describe additional details of the
experimental setup in Appendix E.

We repeat the process M = 200 times with different random seeds and report the relative root
MSE :

Relative-RMSE (Ĵ) =
1

J
√
M

√√√√ M∑
m=1

(
J − Ĵm

)2

where Ĵm is an estimated policy value with m-th data.

Estimators considered. We consider the following estimators:
• Our proposed estimators, JDR-π̂∗, ĴSMRDR.

• Standard estimators in the iid setting, ĴIS, ĴMRDR.

• (Feasible versions of) the two estimators proposed by (Agarwal et al., 2017), ĴIS-Avg, ĴIS-PW.

• The natural doubly robust extension of these as discussed in Section 3.2, ĴDR-Avg, ĴDR-PW.
We suppose we do not know logging policies. For all estimators, we estimate the logging policies

using logistic regression on the evaluation set with 2-fold cross-fitting as in Algorithm 1. Most of the
estimators above are introduced with known logging densities in the previous sections. Here, we just
replace each πk with their estimates. For DR, DR-Avg, and DR-PW, we construct q-estimates using
logistic regression again using 2-fold cross-fitting as in Algorithm 1. For SMRDR and MRDR, we
optimize their respective estimated variance objectives over the class of logistic regression Q. We use
tensorflow and the same hyperparameter setting for DR, DR-Avg, DR-PW, SMRDR, and MRDR to
ensure a fair comparison.

Results. The resulting Relative-RMSEs on optdigits and pendigits datasets with varying values
of n1/n2 are given in Figs. 2 and 3. Several findings emerge from the results. First, we see the
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dilemma pointed out by Agarwal et al. (2017): Specifically, the ordering of the variances of IS-Avg
and IS-PW depend on the instance. More generally, there is no clear ordering between IS, IS-Avg,
IS-PW, DR-Avg, and DR-PW. For example, on the optdigits data, DR-PW performs best among
baselines with small values of n1/n2, while IS performs better with large values of n1/n2. This
behavior is predicted by our analysis showing none of these estimators are optimal.

Second, our proposed estimators successfully resolve the dilemma and are superior to the above
suboptimal estimators. Moreover, we see SMRDR generally performs better than DR, especially
when overlap is weak (n1/n2 is small), which exacerbates issues of misspecification. It does appear
that DR outperforms SMRDR in the specific example of optdigits when overlap is strong (n1/n2 is
large), which might be attributed to bad optimization of the non-convex objective compared to a
reasonably good-enough plug-in q-estimate.

Finally, we directly compare the performances of SMRDR and MRDR in Figure 3. We observe
that SMRDR significantly outperforms MRDR in the stratified setting, leading to up to 45% reduction
in error. This strongly highlights that even though the asymptotic efficiency bounds are the same in
the stratified and iid settings, leveraging the stratification structure can still offer significant gains in
the multiple logger setting.

8 Conclusions and Future Directions
We studied OPE in the multiple logger setting, framing it as a form of stratified sampling. We
then studied optimality in several classes of estimators and showed that, at least asymptotically, the
minimum MSE is the same among all of them. We proposed feasible estimators that can achieve this
minimum, whether logging policies are known or not. This gives a concrete and positive resolution
to the multiple logger dilemma posed in Agarwal et al. (2017). We further discuss how to take
stratification into account when choosing best-in-class control variates.

There are a number of avenues for future work. One is to consider optimality in the case of
adaptive data collection from multiple loggers, where each logger may depend on historical data
so far (Luedtke and van der Laan, 2016; Hadad et al., 2019; Zhang et al., 2020; Kato et al., 2020).
Another is to study off-policy optimization in the stratified setting, whether by policy search (Zhang
et al., 2013; Kallus, 2018, 2017; He et al., 2019) or by off-policy gradient ascent (Kallus and Uehara,
2020b).
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A Notation
We first summarize the notation we use in Appendix A.

Table 2: Notation

n, nk, (1 ≤ k ≤ K),K Whole sample size, sample size, stratification size
n′, n′k, (1 ≤ k ≤ K),K Sample size considering asymptotics
ρk nk/n
J Policy value Eπe [r]
pS(s), pR|S,A(r | s, a) State, reward distributions
s, a, r State, action, reward
[K] Partition [1, · · · ,K]
[Z] Partition for cross-fitting
D = {D1, · · · ,DK},Dk = {Skj , Akj , Rkj}K,nkj=1 Observed whole data, data in the size k
πk, π∗, π

e k-th behavior policy, mixture of k policies, evaluation policy
Eπ[f(k, s, a, r)], varπ[f(k, s, a, r)] Expectation and variance regarding π
ĴIS-Avg, ĴIS, ĴIS-PW Naïve IS, IS, precision-weighted IS estimator
ĴDR, ĴSMRDR Doubly robust, Stratified more robust doubly robust estimator
{Υ(D;λ)}, {Γ(D;h, g)} Set of some estimators
ĴBI Feasible cross-fold version estimators
En[f(k, s, a, r)],Enk [f(k, s, a, r)] Empirical approximation
q(s, a), v(s) E[r|s, a], q(s, πe)
N (0, B) Normal distribution with mean 0 and variance B
‖f‖2 {Eπ∗ [f2(k, s, a, r)]}1/2
o {sjk, ajk, rjk}
φ̃(o) EIF: 1

n

∑n
i=1

{
πe(ai|si)
π∗(ai|si){ri − q(si, ai)}+ q(si, π

e)− J
}
.

φ(s, a, r; g) πe/π{r − g(s, a)}+ g(s, πe)
Q Function class for g in {φ(s, a, r; g)} in SMRDR
Lz,Uz Set induced by sample splitting
σ2
r(s, a) Variance: var[r | s, a]
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B Off-policy Evaluation in Reinforcement Learning with Mul-
tiple Loggers

We discuss an efficiency bound and a method to achieve the efficiency bound when the data is
generated by an MDP and multiple loggers.

Consider that we have a data D = {D1, · · · , DK}:

Dk = {Skj , Akj , Rkj , S′kj}
nk
j=1

i.i.d∼ pk(s)πk(a | s)pR|S,A(r | s, a)pS′|S,A(s′ | s, a).

When K = 1, this is a standard DGP assumption in an RL setting. Here, there are K-multiple
loggers. State distribution pk(s) for each logger can be different as well as each behavior policy. We
sometimes reindex the whole data as D = {Si, Ai, Ri, S′i}ni=1. In this section, given some function
f(s, a, r, s′), we define

Epk(s)×πk [f(s, a, r, s′)] :=

∫
f(s, a, r, s′)pk(s)πk(a | s)pR|S,A(r | s, a)pS′|S,A(s′ | s, a)d(s, a, r, s′).

Our target is the policy value J(γ) defined by the same MDP and an evaluation policy πe with a
discount factor γ as follows:

J(γ) = (1− γ) lim
T→∞

E[
T∑
t=1

γt−1rt | s1 ∼ pe(s), a1 ∼ πe(s1), a2 ∼ πe(s2), · · · ],

where pe(s) is an initial state distribution. Here, we have an important observation

J(γ) = E
p
(∞)
e,γ ×πe [r],

where p(∞)
e,γ (s) is an average visitation distribution with a discount factor γ and an initial distribution

pe(s). Based on Liu et al. (2018) when K = 1, this is estimated by

1

n

n∑
i=1

ŵ(Si)
πe(Ai | Si)
π1(Ai | Si)

Ri

where ŵ(s) is some estimator for w(s) := p
(∞)
e,γ /p1(s). In this K = 1 setting, Kallus and Uehara

(2019a) derived the efficiency bound and a way to achieve the efficiency bound.
Here, we give the efficiency bound with a multiple logger case. This is

Eπ∗(s,a)

[{
pπe,γ(s)πe(a | s)

π∗(s, a)

}2

var[r + γq(s′, πe) | s, a]

]
,

where π∗(s, a) =
∑K
k=1(nk/n)πk(a | s)pk(s). When K = 1, this result is reduced to Kallus and

Uehara (2019a). Though we do not give a formal derivation, this is derived in the same spirit of
Theorem 4.

Next, we give an efficient estimator. Before that, we define w(s, a) :=

{
p
(∞)
πe,γ

(s)πe(a|s)
π∗(s,a)

}
, q(s, a) :=

Eπe [
∑∞
t=1 γ

t−1rt | s1 = s, a1 = a]. The efficient estimator is

1

n

n∑
i=1

ŵ(Si, Ai){Ri + γq̂(S′i, π
e)− q̂(Si, Ai)}+ Epe(s)[q̂(s, π

e)]

given some estimators ŵ(s, a), q̂(s, a). Q-functions are estimated by any off-the-shelf methods such as
fitted Q-iteration (Antos et al., 2008). We can estimate the ratio w(s, a) using some methods agnostic
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to pk(s) and πk(a | s) following Uehara et al. (2020). More specifically, for some test function f(s, a),
this is estimated by solving

0 =
1

n

n∑
i=1

{γw(Si, Ai;β)f(S′i, π
e)− w(Si, Ai;β)f(Si, Ai)}+ (1− γ)Epe(s)[f(s, πe)],

w.r.t. β, where w(s, a;β) is some model for w(s, a). Here, π∗ is not included in the estimating
equation. Note that this is different form the ones in Liu et al. (2018); Kallus and Uehara (2019a),
which are not agnostic to πk(a | s).

Finally, note that our result is more sophisticated comparing to Chen et al. (2020) in the sense
that (1) they consider a special case when pk(s) is a stationary distribution; however, our result is
applied to any pk(s), (2) their estimator does not use a control variate; however, our estimator and
optimality result take the control variate term q(s, a) into account.

C Efficiency Bound
A central question is what is the smallest-possible error we can hope to achieve in estimating J .
In parametric models, the Cramér-Rao lower bound gives the lower bound of the variance among
unbiased estimators. We have a stronger result that the Cramér-Rao lower bound lower bounds the
asymptotic MSE of all regular estimators (van der Vaart, 1998, Chapter 7). Besides, this Cramér-Rao
lower bound is extended from parametric models to non or semiparametric models, which is called an
efficiency bound (van der Vaart, 1998, Chaptre 25). Again, this efficiency bound lower bounds the
asymptotic MSE of all regular estimators. Standard semiparametric theory is established under the
i.i.d sampling (Bickel et al., 1998; Tsiatis, 2006). Since our data mechanism is not i.i.d (not identical
though independent), it looks we cannot apply this theory.

Here, the trick to apply this theory to our setting is regarding a set of n samples as one observation.
In other words, we consider that we have m copies of this single observation consisting of n samples,
where n′ := nm→∞ with fixed n as m→∞. We consider a nonparametric modelM:

p(o) =
K∏
k=1

nk∏
j=1

pS(skj)πk(akj | skj)pR|S,A(rkj | skj , akj),

where each density is free except for the weak overlap constraint 1. We also consider another
nonparametric modelMb:

p(o) =

K∏
k=1

nk∏
j=1

pS(skj)πk(akj | skj)pR|S,A(rkj | skj , akj),

where πk is fixed at the true value and other densities (state and reward densitiese) are free except
for the weak overlap constraint. Then, the efficiency bound of each model lower bounds the limit of
the MSE for any regular estimator Ĵ w.r.t each model.

To check this, we informally state this key property of the efficient influence function (EIF) in
our setting.

Theorem 10. Theorem 3 The EIF φ̃(o) is the gradient of J w.r.t the model M, which has the
smallest L2-norm and it satisfies that for any regular estimator Ĵ of J w.r.t the modelM, AMSE[Ĵ ] ≥
var[φ(D)], where AMSE[Ĵ ] is the second moment of the limiting distribution of

√
n′(Ĵ − J).

1Without this overlap, the estimand J is not identifiable.
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Note that a regular estimator is any whose limiting distribution is insensitive to small changes of
order O(1/

√
m) to the DGP in the model (van der Vaart, 1998, Chapter 7). This is a super broad

class of estimators excluding pathological estimators such as Hodges’ estimator. The term var[φ] is
called the efficiency bound. For the current problem, the EIF and the efficiency bound are derived as
follows.

Theorem 11. Under the model M, the EIF φ̃(o) is

1

n

n∑
i=1

{
πe(ai | si)
π∗(ai | si)

{ri − q(si, ai)}+ v(si)− J
}
.

The efficiency bound V (M) scaled by n, i.e., nvar[φ̃(o)], is

Eπ∗

[{
πe(a | s)
π∗(a | s)

}2

var[r | s, a]

]
+ varpS [v(s)].

The EIF and efficiency bound are the same for the model Mb.

We will give the formal proof in Appendix D. Before that, we show that this is exactly the
Cramér-Rao lower bound in a finite, action, reward space setting.

Theorem 12. Assume S,A,R is a finite space. Then, the Cramér-Rao lower bound of J is V (Mb).

Proof. We define the Cramér-Rao lower bound of the target functional. Assume some parametric
model

{pS(s; θ0), π1(a | s; θ1), · · · , πK(a | s; θK), pR|A,S(r|a, s; θK+1)},

where each parameter corresponds to each state, action and reward. For example, assume S =
{S1, · · · ,Sb}:

pS(s; θ0) =

{
b−1∑
i=1

I(Si = s)θ0i

}
− I(Sb = s)θ0b.

The i-th element of the score of this pS(s) (1 ≤ i ≤ b− 1) is

logθ0i pS(s) = I(Si = s)/θ0i − I(Sb = s)/θ0b.

Let us define a score function for a parametric submodel:

gS = ∇θ0 log pS(s; θ0), gk = ∇θk log πk(a | s; θk), gR|A,S = ∇θK+1
log pR|A,S(r|a, s; θK+1),

gS,A,R = {g>S , g>1 , · · · , g>K , g>R|A,S}
>, gS,A = {g>1 , · · · , g>K}>, θ = {θ>0 , · · · , θ>K+1}>.

The Cramér-Rao lower bound is defined as

∇θ>Eπe [r]I(θ)−1∇θEπe [r].

The term I(θ) is

I(θ) =
K∑
k=1

nk∑
j=1

Eπk [∇θ>0 gS ] 0 0

0 Eπk [∇θ>S,AgS,A] 0

0 0 Eπk [∇θ>K+1
gR|S,A]


= n

Eπ∗ [⊗gS ] 0 0

0 1
n

∑K
k=1

∑nk
j=1 Eπk [∇θ>S,AgS,A] 0

0 0 Eπ∗ [⊗gR|S,A]


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In addition,

∇θEπe [r] = (Eπe [rg>S ], 0, · · · , 0,Eπe [rg>R|S,A])>.

From matrix CS-inequality, this is transformed as

∇θ>Eπe [r]I(θ)−1∇θEπe [r]

=
1

n
Eπe [rg>R|A,S ]Eπ∗ [gR|A,Sg>R|A,S ]−1Eπe [gR|A,Sr] +

1

n
Eπe [rg>S ]Eπ∗ [gSg>S ]−1Eπe [gSr]

=
1

n
Eπ∗

[
πe

π∗
{r − q(s, a)}g>R|A,S

]
Eπ∗ [gR|A,Sg>R|A,S ]−1Eπ∗

[
πe

π∗
{r − q(s, a)}gR|A,S

]
+

1

n
Eπ∗

[
(v(s)− J)g>S

]
Eπ∗ [gSg>S ]−1Eπ∗ [gS(v(s)− J)]

=
1

n
Eπ∗

[{
πe

π∗
(r − q(s, a))

}2
]

+
1

n
Eπ∗ [(v(s)− J)2].

Here, we use the assumption that state, action and reward spaces are finite to state the last
equality. For example, any function g(s) s.t. E[g(s)] = 0 is represented as a linear combination of
{logθ0i pS(s)}b−1

i=1 .

D Proof
Proof of Theorem 1. We define S := {Skj},A := {Akj}. Then, by law of total variance, the variance
of Γ(D;h, g) is decomposed as follows:

var

 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj){Rkj − g(Skj , Akj)}+ g(Skj , π

e)}


= E

var

 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj){Rkj − g(Skj , Akj)}|S,A


+ E

var

E
 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj){Rkj − g(Skj , Akj)}|S,A

 |S


+ var

E
 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj){Rkj − g(Skj , Akj)}+ g(Skj , π

e)|S

 (5)

= E

var

 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj)Rkj |S,A

 (6)

+ E

var

 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj){q(Skj , Akj)− g(Skj , Akj)}|S,A|S

+ (7)

+ varpS(s)

[
1

n
q(s, πe)

]
. (8)

The term (5) is converted into the term (8) because of the constraint (2). The term (7) takes 0 when
g(s, a; p) = q(s, a). Thus, we only focus on the term (6). The term (6) is further expanded as

1

n

K∑
k=1

ρkEπk [h2(k, s, a){πe(a | s)}2var[r | s, a]] =
1

n
Eπ∗

[
K∑
k=1

ρkπk(a | s)h2(k, s, a)

π∗
{πe(a | s)}2var[r | s, a]

]
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=
1

n
Eπ∗

[
K∑
k=1

ρ2
kπ

2
k(a | s)h2(k, s, a)

ρkπkπ∗
{πe(a | s)}2var[r | s, a]

]

≥ 1

n
Eπ∗

[
{
∑K
k=1 ρkπk(a | s)h(k, s, a)}2

π2
∗(a | s)

{πe(a | s)}2var[r | s, a]

]

=
1

n
Eπ∗

[
1

π2
∗(a | s)

{πe(a | s)}2var[r | s, a]

]
.

Here, we use CS-inequality in the second line. From the second line to the third line, we use the
constraint (2):

K∑
k=1

ρkπk(a | s)h(k, s, a) = 1.

This inequality becomes an equality when hk(s, a; p) = 1/π∗. In conclusion, we have

var

 1

n

K∑
k=1

nk∑
j=1

h(k, Skj , Akj)π
e(Akj | Skj){Rkj − g(Skj , Akj)}+ g(Skj , π

e)


≥ 1

n
Eπ∗

[
1

π2
∗(a | s)

{πe(a | s)}2var[r | s, a]

]
+

1

n
varpS [v(s)].

and it becomes an equality when g = q(s, a), h = 1/π∗.

Remark 1 (Another Proof). This theorem is also proved from semiparametric theory in Appendix C.
Consider an estimator Γ(D;h, g) by fixing h and g underMb. (Mb is the model where {πk}Kk=1

is known) Then, Γ(D;h, g) is an asymptotically linear estimator. Thus, the influence function of an
asymptotically linear estimator belongs to the set of gradients of J relative toMb. The EIF has the
smallest norm among this set of gradients. Thus,

var[Γ(D;h, g)] ≥ var[φ̃(D)].

Proof of Theorem 2. We consider the case K = 2 for simplicity. We also suppose that samples in
each strata are uniformly distributed. We prove

ĴBI(ĥ, ĝ) = 0.5Γ(L1; ĝ(1), ĥ(1)) + 0.5Γ(L2; ĝ(2), ĥ(2)) (9)

= 0.5Γ(L1; g, h) + 0.5Γ(L2; g, h) + op(n
−1/2). (10)

Then, the proof is immediately concluded from (stratified sampling) CLT. This is proved as follows.
The first term is further expanded as follows:

Γ(L1; ĝ(1), ĥ(1)) = {Γ(L1; ĝ(1), ĥ(1))− E[Γ(L1; ĝ(1), ĥ(1)) | U1]} − {Γ(L1; g, h)− E[Γ(L1; g, h)]} (11)

+ E[Γ(L1; ĝ(1), ĥ(1)) | U1]− E[Γ(L1; g, h)] (12)
+ Γ(L1; g, h).

First, (12) is 0 since

E[Γ(L1; ĝ(1), ĥ(1)) | U1]− E[Γ(L1; g, h) | U1] = J − J = 0.
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Here, we use the constraint (2) on h and ĥ. Second, we show (11) is op(n
′−1/2). The conditional

expectation of (11) conditioning on U1 is 0. The conditional variance conditioning on U1 is

var
[
Γ(L1; ĝ(1), ĥ(1))− Γ(L1; g, h) | U1

]
=

1

n′(1)

K∑
k=1

ρkvarπk [ĥ(1)(k, s, a)πe(a | s){r − ĝ(1)(s, a)}+ ĝ(1)(s, πe)− {h(k, s, a)πe(a | s){r − g(s, a)}} − g(s, πe) | U1].

We show that this term is op(n
′−1). Then, the conditional Chebshev’s inequality concludes that (16)

is op(n
′−1/2). To see this, what we have to show is that varπk [·] is op(1) in the above. In fact, we

have

varπk [ĥ(1)(k, s, a)πe(a | s){r − ĝ(1)(s, a)}+ ĝ(1)(s, πe)− {h(k, s, a)πe(a | s){r − g(s, a)} − g(s, πe) | U1]

≤ 2varπk [{ĥ(1)(k, s, a)− h(k, s, a)}πe(a | s)r | U1]

+ 2varπk [−h(k, s, a)πe(a | s)ĝ(1)(s, a) + ĝ(1)(s, πe) + hk(a, s)πe(a | s)g(s, a)− g(s, πe) | U1]

+ 2varπk [{ĥ(1)(k, s, a)− h(k, s, a)}πe(a | s){ĝ(1)(s, a)− g(s, a)} | U1]

. max(‖ĥ(1) − h‖, ‖ĝ(1) − g‖) = op(1).

Here, we use varπk [a+ b] ≤ 2varπk [a] + 2varπk [b].

Proof of Theorem 4. Before checking this proof, refer to the proof of Theorem 5. We use the result
there.

Since the modelMb is smaller than the modelM, the function φ̃(o) is still a gradient of J w.r.t
Mb. We show this gradient again lies in the tangent space. First, we calculate the tangent space.
The tangent space of the modelMb is

K∑
k=1

nk∑
j=1

{g0(skj) + gK+1(skj , akj , rkj)} ∈ L2(o)

 ,

where

E[g0(Skj)] = 0, E[gK+1(Skj , Akj , Rkj)|Skj , Akj ] = 0 (1 ≤ k ≤ K, 1 ≤ j ≤ nk).

The function φ̃(o) lies in the tangent space by taking g0(s) = v(s), gK+1(s, a, r) = (r − q(s, a)).

Proof of Theorem 5. We follow the following steps.

1. Calculate some gradient (a candidate of EIF) of the target functional J w.r.t modelM.

2. Calculate the tangent space w.r.t the modelM.

3. Show that a candidate of EIF in Step 1 lies in the tangent space. Then, this concludes that a
candidate of EIF in Step 1 is actually the EIF.

Calculation of the gradient We start with positing a parametric model:

p(o; θ) =
K∏
k=1

nk∏
j=1

pS(skj ; θ0)πk(akj | skj ; θk)pR|S,A(rkj | skj , akj ; θK+1).
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We define the corresponding gradients:

gS(s) = ∇θ0 log pS(s), g(k, s, a) = ∇θk log πk(a | s), gR|S,A = ∇θK+1
log pR|S,A(r | s, a).

To derive some gradient of the target functional w.r.t M, what we need is finding a function f(o)
satisfying

∇J(θ) = E[f(D)∇ log p(D; θ)].

We take the gradient as follows:

∇J(θ) = Eπ∗
[
πe

π∗
r
{
gS(s) + gR|S,A(s, a, r)

}]
= Eπ∗

[
ψ(s, a, r)

{
gS(s) + gR|S,A(s, a, r)

}]
,

where ψ(s, a, r) = πe/π∗(r − q(s, a)) + v(s)− J . This is equal to the following

E

 1

n

K∑
k=1

nk∑
j=1

φ(Skj , Akj , Rkj)




K∑
k=1

nk∑
j=1

gS(Skj) + gk(Skj , Akj) + gR|S.A(Skj , Akj , Rkj)




since the above is equal to

1

n

K∑
k=1

nkEπk
[
ψ(s, a, r){gS(s) + gk(s, a) + gR|S,A(s, a, r)}

]
=

1

n

K∑
k=1

nkEπk
[
ψ(s, a, r){gS(s) + gR|S,A(s, a, r)}

]
= Eπ∗

[
ψ(s, a, r){gS(s) + gR|S,A(s, a, r)}

]
.

Thus, the following function

φ̃(o) =
1

n

K∑
k=1

nk∑
j=1

ψ(skj , akj , rkj).

is a derivative of the target functional J w.r.t the modelM.

Calculation of the tangent space Following a standard derivation way of the tangent space.
(Tsiatis, 2006; van der Vaart, 1998), the tangent space of the model M is

K∑
k=1

nk∑
j=1

{g0(skj) + gk(skj , akj) + gK+1(skj , akj , rkj)} ∈ L2(o)


where

E[g0(Skj)] = 0,E[gk(Skj , Akj)|Skj ] = 0, E[gK+1(Skj , Akj , Rkj)|Skj , Akj ] = 0 (1 ≤ k ≤ K, 1 ≤ j ≤ nk).

and L2(o) is an l2 space at the true density.
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Last part We can easily check that the φ̃(o) lies in the tangent space by taking g0(s) =
v(s), g(k, s, a) = 0, gK+1(s, a, r) = (r − q(s, a)). Thus, φ̃(o) is the EIF.

Proof of Theorem 6. In this proof, we define

φ(s, a, r;π, g) := πe/π{r − g}+ g(s, πe).

For simplicity, we consider the case where K = 2 and assume that samples in each strata are uniformly
distributed:

ĴDR = 0.5En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))] + 0.5En′(2) [φ(s, a, r; π̂

(2)
∗ , q̂(2))], (13)

where En′(i) [·] denotes an empirical approximation over the i-th fold data. We prove

ĴDR = 0.5En′(1) [φ(s, a, r;π∗, q)] + 0.5En′(2) [φ(s, a, r;π∗, q)] + op(n
′−1/2). (14)

Then, the proof is immediately concluded from CLT.
The first term in Eq. (13) is further expanded as follows:

En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))] =

1√
n′(1)

Gn′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))− φ(s, a, r;π∗, q)] (15)

− Eπ∗ [φ(s, a, r;π∗, q)] + Eπ∗ [φ(s, a, r; π̂
(1)
∗ , q̂(1)) | U1] (16)

+ En′(1) [φ(s, a, r;π∗, q)].

Here, we define

1√
n′(1)

Gn′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))− φ(s, a, r;π∗, q)]

=
{
En′(1) [φ(s, a, r; π̂

(1)
∗ , q̂(1))− φ(s, a, r;π∗, q)]− Eπ∗ [φ(s, a, r; π̂

(1)
∗ , q̂(1))− φ(s, a, r;π∗, q) | U1]

}
First, we show (16) is op(n

′−1/2). This is proved as∣∣∣Eπ∗ [φ(s, a, r;π∗, q)]− Eπ∗ [φ(s, a, r; π̂
(1)
∗ , q̂(1)) | U1]

∣∣∣
=
∣∣∣Eπ∗ [(πe/π∗ − πe/π̂

(1)
∗ )(r − q) | U1

]∣∣∣+

∣∣∣∣Eπ∗ [v − v̂ − πe

π∗
q +

πe

π∗
q̂ | U1

]∣∣∣∣
+
∣∣∣Eπ∗ [{πe/π∗ − πe/π̂

(1)
∗ }{−q + q(1)} | U1

]∣∣∣
= |Eπ∗

[
{πe/π∗ − πe/π̂

(1)
∗ }{−q + q(1)} | U1

]
| . ‖π̂(1)

∗ − π∗‖2‖q̂(1) − q‖2 = op(n
′−1/2).

Second, we show (15) is op(n
′−1/2). The conditional expectation conditioning on U1 is

E
[{

En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))− φ(s, a, r;π∗, q)]

}
| U1

]
− Eπ∗ [φ(s, a, r; π̂

(1)
∗ , q̂(1))− φ(s, a, r;π∗, q) | U1]

= 0.

The conditional variance conditioning on U1 is

var
[{

En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))− φ(s, a, r;π∗, q)]

}
| U1

]
=

1

n′(1)

K∑
k=1

ρkvarπk [φ(s, a, r; π̂
(1)
∗ , q̂(1))− φ(s, a, r;π∗, q) | U1]
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≤ 1

n′(1)
varπ∗ [φ(s, a, r; π̂

(1)
∗ , q̂(1))− φ(s, a, r;π∗, q) | U1]

.
1

n′(1)
max{‖π̂(1)

∗ − π∗‖2, ‖q̂(1) − q‖2} = op(n
′−1).

From the second line to the third line, we invoke Theorem 8. Then, the conditional Chebshev’s
inequality concludes that (15) is op(n

′−1/2).
To summarize, (15) and (16) are op(n

′−1/2). Thus, Eq. (14) is concluded.

Proof of Theorem 7. In this proof, we define

φ(s, a, r;π, g) := πe/π{r − g}+ g(s, πe).

For simplicity, we consider the case where K = 2 and samples are uniformly distributed:

ĴDR = 0.5En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))] + 0.5En′(2) [φ(s, a, r; π̂

(2)
∗ , q̂(2))].

where En′(i) denotes an empirical approximation over the i-th fold data.
The first term is further expanded as follows:

En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))]− J =

1√
n′(1)

Gn′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))− φ(s, a, r;π†∗, q

†)] (17)

− Eπ∗ [φ(s, a, r;π†∗, q
†)] + Eπ∗ [φ(s, a, r; π̂

(1)
∗ , q̂(1)) | U1] (18)

+ En′(1) [φ(s, a, r;π†∗, q
†)]− J. (19)

As in the proof of Theorem 6, Eq. (17) is op(n
′−1/2
1 ). The third term (19) is Op(n′−1/2

1 ) from CLT
noting the mean is 0 because

E[En′(1) [φ(s, a, r;π†∗, q
†)]]− J = 0.

Here, we use the assumption that π†∗ or q† is actually the true function. The second term is Op(n′−1/2
1 )

since

|Eπ∗ [φ(s, a, r;π†∗, q
†)]− Eπ∗ [φ(s, a, r; π̂

(1)
∗ , q̂(1)) | U1]|

≤
∣∣∣Eπ∗ [(πe/π†∗ − πe/π̂

(1)
∗ )(r − q†) | U1

]∣∣∣+

∣∣∣∣Eπ∗ [v† − v̂ − πe

π∗
q† +

πe

π∗
q̂ | U1

]∣∣∣∣
+
∣∣∣Eπ∗ [{πe/π†∗ − πe/π̂

(1)
∗ }{−q† + q(1)} | U1

]∣∣∣
. max(‖π̂(1)

∗ − π†∗‖2‖, q̂(1) − q†‖2) = Op(n′−1/2
1 ).

In conclusion, En′(1) [φ(s, a, r; π̂
(1)
∗ , q̂(1))]−J = Op(n′−1/2

1 ). This concludes that ĴDR is
√
n′1-consistent.

Proof of Theorem 8. Before stating the proof, in the DGP D′, we define Ni, (1 ≤ i ≤ K):

(N1, · · · , NK) ∼ Multi(n, ρ1, · · · , ρK),

where E[Nk] = nk. Note that each Ni is a random variable unlike a fixed constant ni.
First, we show that this estimator is unbiased. This is proved as follows:

Eπ∗ [φ(s, a, r; g)]
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=

∫
φ(s, a, r; g)I(π∗(a | s) > 0)pR|S,A(r | s, a)π∗(a | s)pS(s)d(s, a, r) = J.

Next, we show the inequality varD′ [Pn[φ(s, a, r; g)]] ≥ varD[Pn[φ(s, a, r; g)]]. From law of total
variance, this is proved by

varD′ [Pn[φ(s, a, r; g)]] = E[varD′ [Pn[φ(s, a, r; g)]|{Nk}Kk=1]] + var[E[Pn[φ(s, a, r; g)]|{Nk}Kk=1|]]

≥ E[varD′ [Pn[φ(s, a, r; g)]|{Nk}Kk=1]] = E

[
Nk
n2

K∑
k=1

varπk [φ(s, a, r; g)]

]

= E

[
ρk
n

K∑
k=1

varπk [φ(s, a, r; g)]

]
= varD[Pn[φ(s, a, r; g)]].

We show the last statement. First, we have

E[Pn[φ(s, a, r; g)]|{Nk}Kk=1|] =
1

n

K∑
k=1

NkEπk
[
πe

π∗
{r − g(s, a)}+ g(s, πe)

]

= E[g(s, πe)] +
1

n

K∑
k=1

NkEπk
[
πe

π∗
{r − g(s, a)}

]
.

Then, when g(s, a) = q(s, a), the equality varD′ [Pn[φ(s, a, r; g)]] = varD[Pn[φ(s, a, r; g)]] holds for any
πe, π∗ since

var[E[Pn[φ(s, a, r; g)]|{Nk}Kk=1]] = 0.

To get the equality varD′ [Pn[φ(s, a, r; g)]] = varD[Pn[φ(s, a, r; g)]] for any πe, π∗, we need

Eπk
[
πe

π∗
{r − g(s, a)}

]
= 0, ∀π∗, πe, 1 ≤ ∀k ≤ K.

This implies

Eπ∗ [πe/π∗{r − g(s, a)}] = Eπe [q(s, a)− g(s, a)] = 0, ∀πe, π∗.

This is only satisfied when q(s, a) = g(s, a).

Remark 2. We can show the statement of the inequality regarding the variances by more direct
calculation. We have

varπ∗ [φ(s, a, r; g)] = Eπ∗
[
{φ(s, a, r; g)}2

]
− Eπe [r]2,

K∑
k=1

nk
n

varπk [φ(s, a, r; g)] = Eπ∗
[
{φ(s, a, r; g)}2

]
−

K∑
k=1

nk
n
Eπk [φ(s, a, r; g)]

2
.

Thus, the desired statement varD′ [Pn[φ(s, a, r; g)]] ≥ varD[Pn[φ(s, a, r; g)]] for any πe, π∗ is reduced
to

Eπe [r]2 ≤
K∑
k=1

nk
n
Eπk [φ(s, a, r; g)]

2
.

This is proved by

Eπe [r]
2

=

{
K∑
k=1

nk
n
Eπk [φ(s, a, r; g)]

}2

=
K∑

k=1,j=1

nknj
n2

Eπk [φ(s, a, r; g)]Eπj [φ(s, a, r; g)]
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≤
K∑

k=1,j=1

nknj
2n2

{
Eπk [φ(s, a, r; g)]

2
+ Eπj [φ(s, a, r; g)]

2
}

=
K∑
k=1

nk
n
Eπk [φ(s, a, r; g)]

2
.

Here, we use 2ab ≤ a2 + b2.

Proof of Theorem 9. From the assumption, we have ‖q̂(1)
SMRDR − q̌‖ = op(1). We consider the case

K = 2 for simplicity:

ĴSMRDR = 0.5En′(1) [φ(s, a, r; q̂
(1)
SMRDR)] + 0.5En′(2) [φ(s, a, r; q̂

(2)
SMRDR)].

where En′(i) denotes an empirical approximation over the i-th fold data. The first term is further
expanded as follows:

En′(1) [φ(s, a, r; q̂
(1)
SMRDR)]− J =

1√
n′(1)

Gn′(1) [φ(s, a, r; q̂
(1)
SMRDR)− φ(s, a, r; q̌)] (20)

− Eπ∗ [φ(s, a, r; q̌)] + Eπ∗ [φ(s, a, r; q̂
(1)
SMRDR) | U1] (21)

+ En′(1) [φ(s, a, r; q̌)]− J. (22)

As in the proof of Theorem 6, Eq. (20) is op(n
′−1/2
1 ). The second term is 0. In conclusion,

En′(1) [φ(s, a, r; q̂
(1)
SMRDR)]− J = En′(1) [φ(s, a, r; q̌)]− J + op(n

′−1/2
1 ).

This concludes the statement:

ĴSMRDR − J = En[φ(s, a, r; q̌)]− J + op(n
′−1/2
1 ).

Table 3: Dataset Statistics

Dataset Name OptDigits SatImage PenDigits Letter

#Classes (l) 10 6 10 26
#Data (n) 5620 6435 10992 20000

E Detailed Experimental Setup and Additional Results
Datasets. We use 4 datasets from the UCI Machine Learning Repository.2 The dataset statistics
are displayed in Table 3.

Detailed Experimental Procedure. A multi-class classification dataset consists of (si, yi)
n
i=1

where si ∈ Rd is a context vector and yi ∈ {1, · · · , l} is a class for an index i. The value l is the
number of class. A classification algorithm assigning s to y is considered to be a policy from a
context to an action where we regard y as an action. When the prediction by the algorithm is
correct, i.e., yi = ŷi, we observe the unit reward i, otherwise the reward is 0. In this way, we can
construct a contextual bandit dataset consisting of the set of triplets {(si, ai, ri)}ni=1 where ai := ŷi
and ri := I{yi = ŷi}.

We summarize the whole experimental procedures below:
2https://archive.ics.uci.edu/ml/index.php
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Fig. 4: Comparing proposed estimators to some vari-
ants of IS type estimators.

Fig. 5: Comparing SMRDR (leveraging the stratifica-
tion) and MRDR (ignoring the stratification).

1. We split the original data into training (30%) and evaluation (70%) sets.

2. We train logistic regression using the training set to obtain a base deterministic policy πdet.

3. Following Table 1, we construct the logging and evaluation policies.

4. We measure the accuracy of the evaluation policy and use it as its ground truth policy value.

5. We regard 100× ρ1/(1− ρ1) = n1/n2% of the evaluation set as D1 (generated by π1) and the
rest as D2 (generated by π2) where ρ1/(1− ρ1) = n1/n2 ∈ {0.1, 0.25, 0.5, 1, 2, 4, 10}. A smaller
value of n1/n2 leads to a larger data size of D2 that is generated by a logging policy dissimilar
to the evaluation policy.

6. Using the evaluation set (consisting of D1 and D2), an estimator Ĵ estimates the policy value
of the evaluation policy J .

Additional Results. Figure 4 and 5 show the results on the same experiment as conducted in
Section 7 in the main text on the SatImage and Letter datasets.
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