Demo: Software-defined Virtual Networking Across
Multiple Edge and Cloud Providers with
EdgeVPN.i0

Renato Figueiredo
ACIS Lab, ECE Department
University of Florida
Gainesville, FL
https://orcid.org/0000-0001-9841-6060

Abstract—This demonstration will showcase EdgeVPN.io, an
open-source software-defined virtual private network (VPN)
that enables the creation of scalable layer-2 virtual networks
across multiple providers - including scenarios where devices
are behind Network Address Translation (NAT) and firewall
middleboxes. Its architecture combines a distributed software-
defined networking (SDN) control plane and a scalable structured
peer-to-peer overlay of Internet tunnels that form its datapath.
EdgeVPN.io provides a foundation for the deployment of virtual
networks that enable research and development in distributed
computing. The demonstration will include a brief overview of
the architecture, and will show step-by-step how a researcher can
deploy EdgeVPN.io networks on devices including Raspberry Pis,
Jetson Nanos, and VMs/Docker containers in the cloud. Attendees
will be provided with trial resources to allow them to follow the
demonstration hands-on if they so desire.

Index Terms—edge computing, fog computing, virtualization,
VPN, SDN, peer-to-peer, overlay

I. INTRODUCTION

The nascent area of edge computing encompasses tech-
niques that can complement the widely adopted cloud comput-
ing model of deployment of distributed applications: it allows
time-sensitive applications and services to leverage low round-
trip times to resources deployed physically near mobile and
IoT devices, and can significantly reduce the requirements
(and cost) of transfer of large datasets to the cloud. In order
to fully realize the potential of edge computing, it is key
to support deployments that: 1) span across multiple edge
regions/providers, 2) enables seamless connectivity among
participating nodes, 3) enforces privacy in communications,
and 4) leverage a wealth of applications and middleware
platforms, such as Docker [3] and Kubernetes [2].

The EdgeVPN.io [1] (Evio for short) software provides
a platform to deploy layer-2 virtual private networks span-
ning multiple edge and cloud providers. With this tool, edge
computing researchers and practitioners can easily establish
network connectivity at the Ethernet layer among devices

EdgeVPN.io is funded in part by grants from the National Science Foun-
dation (OAC-2004441, OAC-2004323, and CNS-1951816). Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the NSE.

Kensworth Subratie
ACIS Lab, ECE Department
University of Florida
Gainesville, FL.
https://orcid.org/0000-0001-8248-2856

that belong to a managed group. Once the virtual network
is formed, applications that use TCP/IP (IPv4 and IPv6) can
run unmodified.

Evio is a software-defined virtual network that runs on a va-
riety of devices, and does not require any specialized hardware.
The open-source software builds on standards and widely-used
open-source platforms. Its self-configuring approach enables
a quick start process (test virtual networks can be deployed
often in minutes), and its self-organizing topology and routing
enables the network to accommodate nodes joining and leaving
the network without any manual configuration.

This demonstration is intended to target an audience of
researchers and practitioners of ICDCS who are interested in
experimental research in edge computing. The demonstration
will overview the key technical underpinnings of the system
(including SDN forwarding, peer-to-peer overlay networking,
NAT traversal, and bootstrapping), and provide attendees with
documentation, code, and trial environments they can use
to deploy their own Evio VPNs - during the demonstration
session, and/or afterwards.

II. USE CASES

There are several use cases that can benefit from the use
of Evio. In particular, edge video stream analytics: EdgeVPN
provides a virtual network fabric spanning devices that can
support edge-to-cloud analytics workflows for applications
including distributed image stream processing, where video
streams captured by distributed cameras are processed at
the edge (e.g. for Al-based inference), while orchestration
and aggregate analytics are performed in cloud resources.
In this scenario, Evio facilitates the deployment of existing
TCP/IP based software to run across multiple edge and cloud
providers. In particular, Evio supports orchestration platforms
such as Kubernetes, and the deployment of Docker-based
containers.

III. EDGEVPN.I0 ARCHITECTURE

The Evio architecture is illustrated in Figure 1. It consists of
modules that run on each of the edge nodes joining a network,



Cloud Bootstrap Services

' XMPP, STUN, TURN |
| Servers I

WebRTC/tincan P2P
. links to other Evio
------------- nodes

Overlay
ctrl

SDN
ctrl

I
I

I

I

I

I R
| tlncar}‘

I | :
I

I

I

I

I

I

I

0vs |9 L]
switch \

wicl

' Node ID: 1Dn

Overlay Topology View

% WebRTC/
£ tincan {
{0 ik @

Node IDs: ID1 < ID2<ID3 < ... < IDn

Fig. 1. Software architecture of EdgeVPN.io. Left: each Evio node consists of: 1) a software SDN switch programmed using OpenFlow by an SDN controller,
2) a user-level process (tincan) that tunnels encrypted traffic captured from the host using a tap virtual NIC (VNIC) device, 3) NAT traversal using STUN,
TURN and XMPP protocols using WebRTC libraries, and 4) an EdgeVPN.io overlay controller that authenticates the node, discovers other peers in the
authorized group of nodes, and creates a scalable P2P topology for overlay routing (shown to the right). The structured P2P topology is ordered by node IDs
and follows the Symphony protocol, with an outer ring and log(N) long-distance nodes. The XMPP, STUN, and TURN servers run in cloud resources, while

Evio nodes run on edge and.or cloud resources.

as well as modules that run on cloud resources and serve as
a basis for bootstrapping and managing networks. These can
be divided into the following major components:

« Bootstrapping/messaging service: this is a service that
typically is deployed on a cloud resource, and provides
the abilities of Evio nodes to authenticate, discover other
nodes belonging to the same network, and communicate
with them via short messages to establish peer-to-peer
tunnels. This is leveraged in the form of a service that
supports the XMPP [5] (eXtensible Messaging and Pres-
ence Protocol) standard, such as the open-source Openfire
and eJabberd platforms.

e NAT traversal services: these services (also typically
deployed on cloud resources) support negotiation of NAT
traversal endpoints for devices that are in private networks
and subject to NAT/firewall middleboxes. This is lever-
aged in the form of services that supports the standards
of STUN [9], TURN [8], and ICE [10] protocols, such
as the open-source coturn platform.

o Packet capture and forwarding: each Evio node includes
an SDN switch, and software implementations of vir-
tual Ethernet Network Interface Cards (vNICs). Packets
from/to the virtual network are picked/injected via the

Flow [7] switches such as Open vSwitch, and tap vNICs
that are available in typical Linux distributions. The tap
vNICs are bound to the endpoints of Internet tunnels
(leveraging the open-source WebRTC [4] framework) via
the user-level “tincan” process.

Overlay management: each Evio node includes both an
SDN controller, and an overlay controller. The overlay
controller is responsible for creation, monitoring, and
tear-down of (NAT-traversed) Internet tunnels through
which Evio traffic is forwarded by SDN switches. The
overlay controller implements a decentralized, scalable
routing algorithm based on a structured P2P topology
(with long-distance shortcuts) that requires O(log(N))
links per node and delivers messages over O(log(N))
hops on average. Forwarding tables are programmed
automatically in SDN switches via the use of existing
mechanisms/protocols (e.g. the ARP protocol)

SDN controller: the SDN controller is responsible for
implementing the flow rules associated with the struc-
tured routing algorithm, using the OpenFlow protocol to
program the Open vSwitch (OVS). It also is responsible
for capturing events that require overlay messaging, such
as broadcast messages.

VvNICs, and are forwarded through SDN forwarding rules. The overlay topology used by Evio is based on Sym-
This is leverage in the form of open-source SDN Open- phony [6]. The number of long-distance shortcut links is



configurable; the Symphony protocol allows a trade-off be-
tween number of links and average routing distance, and
links can be configured to be capped to a constant maximum,
per node, without compromising correctness. By default, the
system creates and maintains O(log(N)) long distance links,
where N is the size of the network. This allows Evio to
scale to large networks: the average number of links (and
vNICs) at each endpoint is O(log(N)), while overlay routing
takes place in O(log(N)) hops on average between network
endpoints. The O(log(N)) long-distance links in Evio are
drawn at random from a harmonic distribution, according to
the approach described in Symphony. In addition to Symphony
long-distance links, Evio monitors peer-to-peer traffic on links,
and creates on-demand links (bound by a constant) between
frequently-communicating nodes.

The interactions between Evio nodes and cloud services are
limited to bootstrapping and NAT traversal setup, and, except
for the case of symmetric NATs (where TURN is needed),
the cloud nodes are not in the VPN packet datapath - packets
flow across peer-to-peer links as shown in Figure 1 (right).
To provide an estimate, the bootstrapping service we use for
internal testing with networks of the order of 16-32 Evio nodes
utilizes on average 4.3KB/s of network, with an average data
transfer cost of 8 cents per day.

IV. OPEN-SOURCE SOFTWARE IMPLEMENTATION

The Evio implementation leverages several open-source
packages: WebRTC to create tunnels with NAT traversal, Open
vSwitch for packet switching, and the Ryu framework for the
SDN controller. It also inter-operates with cloud-side software,
including coturn for STUN/TURN services, and OpenFire
for XMPP messaging. The open-source Evio software itself
consists of the three main modules depicted in Flgure 1:
tincan, SDN controller, and overlay controller.

The software has been ported to x86 (amd64) and ARM
(armhf, arm64) architectures, and both Debian installation
packages and Docker [3] images are provided to users. The
software has been tested in platforms including amd64 and
arm64 Amazon EC2 cloud instances, VMware VMs, Docker
containers, armhf and arm64 Raspberry Pi devices, Compulab
fitlet2 and Jetson Nano edge devices.

EdgeVPN can be installed and deployed on endpoints in two
ways: via a Debian package (hosted in a package repository),
or via a Docker container (hosted in DockerHub). The software
takes a single JSON configuration file that configures the
node’s identity, credentials, and various overlay parameters.

Evio has been demonstrated to work with Kubernetes [2], a
widely-used platform for workload orchestration using Docker
containers that is commonplace in cloud environments, and
increasingly used as a platform for edge computing. The Ku-
bernetes Flannel plug-in works seamlessly over Evio tunnels,
without requiring any changes to the Kubernetes code.

While Evio performance depends on a variety of factors
including the performance of nodes hosting Evio nodes, and
underlying link performance, the overhead of running Evio
is sufficiently small to make it viable to a variety of edge

applications. While a detailed analysis is beyond the scope
of this demo, the software footprint is such that it runs on
inexpensive edge devices such as Raspberry Pi and Jetson
Nano. To provide an estimate of orders of magnitude, on
an edge-class device (such as the Compulab fitlet2), the per-
packet round-trip latency overhead on an Evio VPN link is
of the order of 1ms, and iperf TCP throughput across tincan
tunnels is of the order of 140Mbit/s.

V. DEMONSTRATION AND ACCOMMODATIONS

The demonstration flow is outlined as follows; materials will
be made available to attendees in advance of the conference:

o Brief Evio architecture overview

o Demonstration of a pre-deployed Evio network that
brings together heterogeneous distributed devices - all
behind different NAT/firewalls - seamlessly into a VPN.
Evio nodes in the demo will include: Amazon EC2
instances; fitlet2, Raspberry Pi, and Jetson Nano edge
devices distributed across multiple home ISP networks;
Raspberry Pi connected via a cell LTE link

o Demonstration of how to deploy a new Evio network
from scratch using a trial service. Users will be provided
with credentials to run their own nodes during the demo
if they so wish.

o Overview of deployment of Kubernetes and Flannel over
EdgeVPN

The demo is designed to work in an environment where the
presenter shares their screen, with Zoom or equivalent. It will
show introductory slides, and Linux terminals highlighting the
user experience with an EdgeVPN. Conference users who have
access to a Docker platform will, in addition, be provided the
option of deploying their own node to join the demo overlay
- however, this is an optional activity.

REFERENCES

[1] EdgeVPN.io, "Open-source VPN for Edge Computing” [Online]. Avail-
able: https://edgevpn.io [Accessed 18- February- 2021]

[2] Kubernetes, “Production-Grade Container Orchestration” [Online]. Avail-
able: https://kubernetes.io [Accessed 18- February- 2021]

[3] Docker, "Empowering App Development for Developers — Docker”
[Online]. Available: https://docker.com [Accessed 18- February- 2021]

[4] WebRTC, “Real-time communication for the web” [Online]. Available:
https://webrtc.org [Accessed 18- February- 2021]

[S] XMPP, “The universal messaging standard”
https://xmpp.org [Accessed 18- February- 2021]

[6] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
hashing in a small world,” Proc. 4th USENIX Symposium on Internet
Technologies and Systems, pp. 127-140, 2003

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker and J. Turner, “Openflow: Enabling Innovation in
Campus Networks”. SIGCOMM Comput. Commun. Rev., 38(2):69-74,
Mar. 2008

[8] R. Mahy, P. Matthews, J. Rosenberg, “Traversal Using Relays around
NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN)”, Internet Engineering Task Force (IETF) RFC 5766, April 2010.

[9] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. “STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs)”. Internet Engineering Task Force (IETF) RFC 3489,
March 2003

[10] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer Pro-
tocols”, Internet Engineering Task Force (IETF) RFC 5245, April 2010

[Online]. Available:



