
Feature-Enhanced Graph Networks for
Genetic Mutational Prediction Using

Histopathological Images in Colon Cancer

Kexin Ding1, Qiao Liu2, Edward Lee3, Mu Zhou4, Aidong Lu1,
and Shaoting Zhang5(B)

1 Department of Computer Science, UNC Charlotte, Charlotte, NC, USA
2 Department of Automation, Tsinghua University, Beijing, China

3 Department of Radiology, Stanford University, Stanford, CA, USA
4 SenseBrain Research, Santa Clara, CA, USA

5 SenseTime Research, Shanghai, China
szhang16@uncc.edu

Abstract. Mining histopathological and genetic data provides a unique
avenue to deepen our understanding of cancer biology. However, exten-
sive cancer heterogeneity across image- and molecular-scales poses tech-
nical challenges for feature extraction and outcome prediction. In this
study, we propose a feature-enhanced graph network (FENet) for genetic
mutation prediction using histopathological images in colon cancer.
Unlike conventional approaches analyzing patch-based feature alone
without considering their spatial connectivity, we seek to link and explore
non-isomorphic topological structures in histopathological images. Our
FENet incorporates feature enhancement in convolutional graph neural
networks to aggregate discriminative features for capturing gene muta-
tion status. Specifically, our approach could identify both local patch
feature information and global topological structure in histopathological
images simultaneously. Furthermore, we introduced an ensemble strategy
by constructing multiple subgraphs to boost the prediction performance.
Extensive experiments on the TCGA-COAD and TCGA-READ cohort
including both histopathological images and three key genes’ mutation
profiles (APC, KRAS, and TP53) demonstrated the superiority of FENet
for key mutational outcome prediction in colon cancer.

Keywords: Histopathological image analysis · Graph convolutional
networks · Gene mutation prediction

1 Introduction

Colon cancer [1,2] is the third common cancer worldwide that accounts for 13%
of all new cancer incidence and approximately 8% of all cancer deaths. Especially

This study has been partially supported by fund of STCSM (19511121400).

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12262, pp. 294–304, 2020.
https://doi.org/10.1007/978-3-030-59713-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59713-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-59713-9_29


Feature-Enhanced Graph Networks for Genetic Mutational Prediction 295

colon adenoma and carcinoma are known to occur through a series of histopatho-
logical changes due to key genetic alterations [3–5]. Therefore, the prediction of
genetic mutations over the course of cancer evolution is highly desired towards
accurate detection and diagnosis of colon cancer.

Mining histopathological and genetic profiles provides a unique avenue to
deepen our understanding of cancer biology across scales. Particularly, genetic
mutations play key roles in colon cancer evolution at all clinical stages (Fig. 1).
For example, KRAS gene mutation has been proven to be an independent prog-
nostic factor in patient with advanced colon cancer [5]. Also, APC gene mutation
triggers chain of molecular and histological changes, leading to increased growth
of colon cancer cells [6]. In parallel, whole slide images (WSIs) permit exten-
sive cell-level characterization of individual patients. Thus increasing empha-
sis has been placed on extracting quantitative features from WSIs for outcome
assessment [7,8]. Preliminary evidences suggested the usefulness of quantitative
features extracted from large-scale image patches [9–13]. However, conventional
approaches were merely focused on image patches and thus unable to consider
rich topological structures as shown in WSIs. Especially local and spatial con-
nectivity of image-based findings, critical to understand characteristics of cancer
heterogeneity [14], has not been explicitly analyzed.

To explore the topological structure of WSIs, we introduce a graph-based
analysis with a goal to capture both spatial and local histopatholgical varia-
tions. Specifically, we focus on analyzing spatial-based graph convolutional net-
works (Spatial-GCNs) due to their advances in network flexibility [15–17]. For
example, spatial-GCNs allows convolutional operations locally on each node with
weight sharing across locations and structures [18]. Thus it is more convenient to
integrate node features with their neighborhood information in spatial-GCNs,
compared with Spectral-based graph convolutional networks (Spectral-GCNs)
that commonly requires entire graph Laplacian embedding. In addition, spatial-
GCNs offers mechanisms of aggregators for feature integration. For example,
GraphSage [15], GCN [19] and GIN [17] models demonstrate their learning abil-
ity using max-, mean-, or sum-pooling aggregators. However, it remains uncer-
tain about how can we implement an efficient graph structure to characterize
histopathological images, especially for the classification of non-isomorphic topo-
logical structures in our study.

In this study, we proposed the feature-enhanced graph network (FENet),
as a novel graph-driven approach for gene mutation prediction in patients with
colon cancer (Fig. 1). To tackle the challenge of cancer heterogeneity, our FENet
model consists of multiple subgraphs construction from histopathological image
patches. Conceptually, FENet can be considered as an ensemble learning solution
for predicting genetic signal variations with enhanced feature integration. Our
major contributions are summarized as follows.

– We introduced an efficient transformation method between WSIs and graph
structured data. Focusing on generating spatially-connected graphs, our app-
roach can link and explore local feature and global topological structure of
WSIs simultaneously.
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– We developed a feature-enhanced model to underscore discriminative fea-
ture learning. In this architecture, we improved the ability of distinguishing
non-isomorphic topological structure, and adaptively selected the node rep-
resentations from the different graph convolution layers.

– Our ensemble strategy of network models alleviates cancer heterogeneity so
that integration of multiple subgraph outcomes leads to a significant improve-
ment of prediction performance.

Fig. 1. (a) Illustration of colon cancer evolution in histopathology over time and its
key genetic mutations. (b) the proposed FENet networks architecture.

2 Methodology

Overview of FENet Model. Our FENet is constructed by multiple sub-
graphs using image patches from each patient’s WSI. We particularly under-
scored the spatially-connected subgraph construction strategy that was seldom
addressed in prior studies [9–13]. To increase feature learning performance, we
then described our feature-enhanced mechanism to aggregate the features of
neighboring patches and combine the aggregated feature as the updated central
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node representation. Moreover, our feature-enhanced mechanism could adap-
tively select the node representations from different graph convolution layers.
Finally, an ensemble strategy was introduced to combine the prediction results
of subgraphs for predicting important mutation statuses (i.e., mutated and non-
mutated classes).

Spatially-Connected Subgraph Construction. For each whole slide image
(WSI), we randomly selected a set of sampled patches P = {P1, P2, . . . , PN} from
all patches generated from WSIs (N is the number of patches). Random selec-
tion always maintains the distribution of the original feature underlying WSI,
which provides a comprehensive description of WSIs. In our study, we defined
patches as graph nodes in each subgraph, and the spatial distance between two
patches determines whether there exists a graph edge. We emphasized the analy-
sis of non-isomorphic graphs because informative image patches caused by cancer
mutation can be always in various spatial locations in WSIs [14]. This property is
opposed to isomorphic graphs which strictly share the same adjacency neighbor-
hood matrix. Therefore, we first used a pre-trained ResNet18 model to extract
high-level features (node attribute) of all individual patches within a subgraph.
We constructed graph representation for each subgraph by calculating its adja-
cent matrix with criterion that the edge exists if the spatial distance is below
a fixed threshold. Precisely, we measured the spatial distance by directly cal-
culating the Euclidean distance of two patches mapped on the original WSI.
Algorithm 1 describes the details of the subgraph construction.

Algorithm 1. Spatially-connected Subgraph Construction Algorithm
Input: A set of selected patches in one slide P = P1, P2, ..., PN ; a set of top-left cor-

responding coordinates of the selected patches Cpi = (x1, y1), (x1, y1), ..., (xN , yN );
N is the number of patches.
Threshold t is the distance

Output: Adjacency Matrix A and Feature Matrix X

1: function Constructing(A,P,Cpi , N, t)
2: X ← Feature extractor(P )
3: for i ← 1 to N do
4: (xj , yj) ← cpj
5: sij ← √

(xi − xj)2 + (yi − yj)2

6: if sij < t then
7: Aij ← 1
8: end if
9: end for

10: return A,X
11: end function
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Feature-Enhanced Mechanism. Spatial-based convolutional networks utilize
a neighborhood aggregation strategy that iteratively updates the representa-
tion of a central node by AGGREGATE and COMBINE [15,16]. The AGGRE-
GATE can aggregate neighboring node representations of the center node, while
the COMBINE combines the neighborhood node representation with the center
node representation to obtain the updated center node representation. After k
iterations of aggregation and combination, a node’s representation captures the
structural information within its k-hop network neighborhood. Formally, the kth

layer spatial-based graph convolutional network can be represented as

a(k)v = AGGREGATE({h(k−1)
u : u ∈ N (v)}) (1)

h(k)
v = COMBINE(h(k)

v−1, a
(k)
v ) (2)

Where h
(k)
v is the feature vector of node v at the kth layer. N (v) is a set of nodes

adjacent to v. As illustrated in [17], the selection of AGGREGATE and COM-
BINE is critical to capture the graph topological structures. The traditional
aggregation strategy using max-pooling (GraphSage) considers multiple node
representations as one node representation while ignoring multiplicities. Alter-
natively, the mean-pooling (GCN) captures the statistical and distributional
information within the graph rather than the exaction of the entire graph struc-
ture. These measurements can be useful if the graphs are isomorphic (i.e., with a
strictly same adjacency matrix). However, the topological structure of subgraphs
are non-isomorphisms in our study, improving the ability to distinguish topolog-
ical non-isomorphism is a critical issue. As proved in [17], sum-pooling captures
the full structural information of the entire graph representation. Additionally,
we use multi-layer perceptrons (MLPs) with Rectified Linear Unit (ReLU) and
batch normalization [20] to model in each graph neural network layers. There-
fore, FENet updates node feature representation h

(k)
v as:

h(k)
v = MLP(k)(h(k)

v−1 +
∑

u∈N (v)

h(k−1)
u ) (3)

It is known that nodes in the central and boundary regions of a graph requiring
different frequencies of aggregation to achieve optimal performance [21]. Our
WSI-based graph contains both central and marginal nodes since each WSI has
a unique spatial distribution of cancerous regions. To consider all topological
structural information, we emphasized the useful information from all depths of
network layers. Therefore, we aggregated node representation from each previous
layer to the last layer. By this design, the network could adaptively select the
most meaningful information during the training process and find the desired
representation for each node. To achieve the subgraph classification, we intro-
duced the READOUT function to converts node representations into a graph
representation. To guarantee that each part in the network is injective, we also
selected GlobalAddPooling as a READOUT function to aggregate information
from all nodes and to convert it to the entire graph representation. Formally,
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FENet aggregates layers information and converts node representation to graph
representation hG by:

hG = READOUT(h1
v‖h2

v‖...‖hk
v , v ∈ G) (4)

where ‖ is the feature concatenation. The feature concatenation could aggregate
node representation in different graph convolutional layers. After READOUT
representation, the final prediction outcome for each subgraph is classified by
fully-connected layers.

Ensemble Strategy. Our ensemble strategy utilized the majority vote to aggre-
gate all subgraphs’ prediction outcomes derived from the same WSI. The ensem-
ble strategy is motivated by two major findings. First, since a WSI can contain a
large number of patches (e.g., 10k) that allows us to explore the diversity of WSI
characteristics via individual subgraphs. Second, analyzing individual patches
creates a sizeable computational burden as shown in conventional CNN-based
approaches. The ensemble strategy, therefore, achieves a good trade-off between
informative representation of WSI and computational burden. We highlighted
that ensemble learning allowed FENet to increase its generalization power by
exploiting the advance of multiple spatial subgraphs of which the predictive
error can be reduced by majority vote.

3 Experiments and Results

Dataset. We collected whole slide images (WSIs) from The Cancer Genome
Atlas Colon Adenocarcinoma (TCGA-COAD) dataset [22], which contains 421
WSIs with colon tumors. We identified the associated colon cancer genetic muta-
tional profiles from Cbioportal [23]. Data exclusion criteria included that we
removed 40 WSIs with noisy stained annotation. We also removed patient data
without key mutational profiles. We finally analyzed the total number of 274
patients’ WSIs with a resolution of 40X (0.25 microns/pixel). For each type of
mutational profile in each patient, we assigned the outcome label as a positive
class if mutated and as a negative class if non-mutated. We focus on three key
genes (APC, KRAS, and TP53) that are significantly associated with colon can-
cer evolution over various clinical stages with treatment impact [22]. We found
that 70% of samples contain APC mutation, 60% of samples contain TP53 muta-
tion, and 40% of samples contain KRAS mutation. We also collected 30 WSIs
from The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) as an
external dataset. We found that 75% of samples contain APC mutation, 70% of
samples contain TP53 mutation, and 36% of samples contain KRAS mutation.

Experimental Settings and Implementations. In data preprocessing, all
slides are color-normalized by Macenko’s method [24], and the foreground is
segmented using OTSU [25]. To obtain a tumor region in WSI, we trained a
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tumor detection model by performing a pre-trained ResNet18 on the NCT-CRC-
HE-100K dataset [26]. A fault-tolerant tumor region delineation is acceptable
due to our patch-focused analysis. We then generated non-overlapping patches
with a size of 224 * 224 that was resized from raw 512 * 512 patches within the
tumor region. We then randomly generated five different subsets of patches to
build subgraphs. The number of selected patches in each subset was set to 1,000
due to the consideration of computational efficiency [27].

For graph construction, we used a pre-trained ResNet18 to extract features
from patches as the feature matrix. For the adjacency matrix, we calculated the
Euclidean distance between patches’ coordinate values recorded in their raw WSI
and determine the connection by a fixed spatial distance threshold. Precisely,
we calculated the mode value from the statistical distribution of the spatial
Euclidean distances among all pairs of patches to determine the threshold value.
Finally, the feature matrix and the adjacency matrix were used for the non-
isomorphic graph representation of WSI.

In the experiments, we evaluated our FENet with multiple competing meth-
ods on TCGA-COAD cohort. The performances are achieved from 10-fold cross-
validation and reported the mean accuracy and AUC among 10 times exper-
iments for each prediction task. We guarantee patches in the same WSI will
not appear in different sets simultaneously. Moreover, to show the generaliza-
tion power, we trained FENet on TCGA-COAD and tested it on TCGA-READ.
To facilitate model training, we augmented patch samples from the minority
class in the training set to balance the number of positive and negative samples.
Notably, we always kept the real positive and negative ratios at the testing stage.
In the training set, we dropped a fraction of edges (drop rate = 0.3) to reduce
potential overfitting as commonly done in [28]. The optimal hyperparameters
were obtained by a grid search. For a fair comparison, we always used the same
hyperparameters setting in all experiments to ensure differences only come from
the variants of the methods. All models were trained with initial learning rate
1e−3, batch size 64 by Adam optimizer [29] with a weight decay 5e−3 and the
cross-entropy loss.

Method Comparison and Ablation Study. We compared our approach
with multiple state-of-the-art models. GCN [19] is a spectral-GCNs with mean-
pooling aggregation. GraphSAGE [15] is a spatial-GCNs model applying node
embedding with max-pooling aggregation. GAT [18] is a spatial-GCNs model
that leverages masked self-attentional layers to graph convolutions. We used
VGG16 [31] and ResNet18 [32] as a baseline CNN-based model. Additionally, we
designed several ablation studies. First, we introduced the Perceptron-3 model by
replacing model’s MLPs by 1-layer perceptrons with sum-pooling as the aggre-
gator. Meanwhile, Perceptron-3 comes without ensemble strategy and the opera-
tion feature concatenation (i.e., aggregating node representation from each layer
to the last layer). Second, MLP-n model removes both the ensemble strategy
and feature concatenation in the FENet-n, where n is the number of MLP in
the model. Third, the FENet-n w/o ensemble model keeps all components in the
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FENet (e.g., feature concatenation, MLPs and sum-pooling) except the ensemble
strategy. Finally, the FENet-3 is our proposed approach with full components.

Table 1. The prediction performance of mean accuracy and variance of FENet with
competing approaches and ablation studies.

Network architecture Network type TP53 KRAS APC

VGG16 [30] Deep CNN 59.89± 0.84 58.28± 1.12 56.36± 0.83

ResNet18 [31] Deep CNN 62.49± 2.22 61.33± 2.51 70.86± 0.18

GCN [19] Spectral-based 60.98± 0.71 62.21± 0.89 70.85± 0.24

ChebNet [32] Spectral-based 60.47± 0.86 61.62± 0.93 68.70± 0.76

GraphSAGE [15] Spatial-based 60.31± 0.95 63.98± 1.27 71.39± 1.14

GAT [16] Spatial-based 62.47± 0.86 60.47± 1.42 68.79± 0.92

Perceptron-3 Ablation analysis 64.50± 0.25 65.75± 0.62 68.89± 0.68

MLP-2 Ablation analysis 66.03± 0.36 64.21± 0.29 70.37± 0.25

FENet-2 w/o essemble Ablation analysis 65.45± 0.56 67.57± 0.52 71.72± 0.22

MLP-3 Ablation analysis 65.63± 0.14 66.29± 0.08 71.77± 0.21

FENet-3 w/o essemble Ablation analysis 67.44± 0.36 69.87± 0.25 73.18± 0.31

FENet-3 Our method 77.00± 0.01 80.38± 0.01 79.93± 0.01

Results and Analysis. In Table 1, our FENet demonstrated leading per-
formance across all three key mutational prediction tasks. Even viewing our
perceptron-3 model without ensemble learning or feature concatenation, it is
remarkable that Perceptron-3 was quite competitive to the graph-based base-
line models (e.g., GCN, GraphSAGE and GAT). This key finding can be
ascribed to the contribution of our design of sum-pooling aggregator followed
by [17], leading to improved ability to distinguish different non-isomorphic topo-
logical structures. Notably, our task is challenging because traditional CNN-
based approaches working on patches alone may not be able to perform well
(e.g., VGG16). In Fig. 2, we observed that the feature concatenation performed
strongly for improving the performance by comparing MLP-3 model and FENet-
3 without ensemble. A similar finding was confirmed by viewing MLP-2 model
and FENet-2 without ensemble. Furthermore, we recognized the boosted perfor-
mance with our ensemble strategy on all three prediction tasks (Fig. 2). Overall,
the ensembled strategy greatly increased the generalization power of our FENet
probably due to its ability to capture diverse topological information of WSI
derived from our multiple spatially-connected subgraphs. Besides the superior
performance on TCGA-COAD cohort, the proposed model also showed a rela-
tively good performance on TCGA-READ. The test accuracy of TP53 on TCGA-
READ is 0.7325, and AUC is 0.7522. Both test accuracy and AUC of KRAS and
APC are higher than 0.6. The comparative performance on TCGA-READ shows
a potential generalization power of the proposed model.
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Fig. 2. The ROC-curve comparison of our approach with or without ensemble strategy.
FENet with ensemble strategy brings the boosted performance over other methods.

4 Conclusion

In this study, we have proposed the FENet to tackle the challenging problem of
predicting gene mutational status in colon cancer using histopathological images.
Our findings supported that the convergence of multi-scale cancer data leads to
novel insights into modeling cancer biology. To address the cancer heterogene-
ity, we highlighted the importance of exploring spatial and local connections of
image patches via graph construction, which offers an efficient means for impor-
tant molecular outcome prediction. Extensive experiments suggested that our
model with a subgraph ensemble strategy outperformed current state-of-the-art
approaches. In the future work, we plan to perform and validate a large-scale of
our analysis across different types of cancers and thus gain more insights into
multi-scale cancer data integration.
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