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Abstract

We provide a deterministic space-efficient al-
gorithm for estimating ridge regression. For
n data points with d features and a large
enough regularization parameter, we provide
a solution within € Ly error using only O(d/¢)
space. This is the first o(d?) space deter-
ministic streaming algorithm with guaran-
teed solution error and risk bound for this
classic problem. The algorithm sketches
the covariance matrix by variants of Fre-
quent Directions, which implies it can oper-
ate in insertion-only streams and a variety
of distributed data settings. In comparisons
to randomized sketching algorithms on syn-
thetic and real-world datasets, our algorithm
has less empirical error using less space and
similar time.

1 INTRODUCTION

Linear regression is one of the canonical problems in
machine learning. Given n pairs (a;, b;) with each a; €
R? and b € R, we can accumulate them into a matrix
A € R™ and vector b € R™. The goal is to find
Xo = arg minycpa ||[Ax — b||3. It has a simple solution
xo = A'b where At is the pseudoinverse of A. The
most common robust variant, ridge regression (Hoerl
and Kennard, 1970), uses a regularization parameter
v > 0 to add a squared ¢y regularizer on x. Its goal is

x, = arg min (| Ax — b|[* +/x|?).

This also has simple solutions as

[ (ATA+~0)"'ATb, when n >d,
=1 AT(AAT ++9I)~'b, when n < d,
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where I is the identity matrix. The regularization and
using I makes regression robust to noise (by reducing
the variance), improves generalization, and avoids ill-
conditioning.

However, this problem is difficult under very large data
settings because the inverse operation and standard
matrix multiplication will take O(d>+nd?) time, which
is O(nd?) under our assumption n > d. And this can
also be problematic if the size of A, at O(nd) space,
exceeds memory. In a stream this can be computed
in O(d?) space by accumulating ATA = 3", aa; and
ATb=3.a'b;.

1.1 Previous Sketches

As a central task in data analysis, significant effort has
gone into improving the running time of least squares
(ridge) regression. Most improvements are in the form
of sketching methods using projection or sampling.
Sarlos (2006) initiated the formal study of using Ran-
dom Projections (RP) for regression to reduce n di-
mensions to ¢ dimensions (still £ > d) preserving the
norm of the d dimension subspace vectors with high
probability. Clarkson and Woodruff (2013) extended
this technique to runtime depending on the number-of-
non-zeroes, for sparse inputs, with CountSketch (CS).
In non-streaming settings, the space can be reduced to
depend on the rank r = rank(A) in the place of the full
dimension. Lu et al. (2013) used a different random
linear transform, called SRHT, and the dependence on
the error was improved by Chen et al. (2015).

These random linear transform methods need a ran-
domly selected subspace embedding with dimension /,
and the resulting sketches have size O(4d). In the re-
sulting analysis, the value ¢ should be greater than d
or (if not streaming) r. If one strictly adheres to this
theory, the large space bounds make the methods im-
practical when d is large and/or when requiring a high
degree of accuracy (i.e., with small error parameter
€). One could of course still use the above methods to
project to a small dimension with ¢ < d (as we do in
our experiments), but no guarantees are known.

McCurdy (2018) proposed deterministic but not
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streaming ridge leverage score sampling. Cohen et al.
(2016, 2017) proposed streaming but not determinis-
tic ridge leverage score sampling, relying on sketch-
ing techniques like Frequent Directions. In particular,
their algorithms are strictly more complicated than the
ones we will present, relying on additional random-
ized steps (ridge leverage score sampling) and analy-
sis beyond the techniques we will employ. In partic-
ular, the computation of leverage scores depends on
(ATA + ~I)~!, which is also the key for the solu-
tion of ridge regression. These approaches can pro-
vide “risk” bounds (defined formally later), where the
expected solution error is bounded under a Gaussian
noise assumption. Recently, Wang et al. (2018) re-
analyzed the quality of these previous linear ridge re-
gression sketches from two related views: the opti-
mization view (errors on objective function f(x) =
|Ax —b||? 4+ n~|/x||?) and the statistics view (bias and
variance of the solutions x), but this work does not
specifically improve the space or streaming analysis
we focus on.

Although some of these sketches can be made stream-
ing, if they use o(d?) space (so beating the simple
O(d?) approach), they either do not provably approx-
imate the solution coefficients, or are not streaming.
And no existing streaming o(d?) space algorithm with
any provable accuracy guarantees is deterministic.

1.2 Owur Results

We make the observation, that if the goal is to approx-
imate the solution to ridge regression, instead of or-
dinary least squares regression, and the regularization
parameter is large enough, then a Frequent-Directions-
based sketch (which only requires a single streaming
pass) can preserve (1 + e)-relative error on the solu-
tion parameters with only roughly ¢ = O(1/¢) rows.
Thus it uses only O(d¢) = O(d/e) = o(d?) space. In
contrast, streaming methods based on random linear
transforms require £ = (1/&?) for similar guarantees.
We formalize and prove this (see Theorems 4 and 5
for more nuanced statements), show evidence that this
cannot be improved, and demonstrate empirically that
indeed the FD-based sketch can significantly outper-
form random-projection-based sketches — especially in
the space/error trade-off.

2 FREQUENT DIRECTIONS

Liberty (2013) introduced Frequent Directions (FD),
then together with Ghashami et al. (2016b) improved
the analysis. It considers a tall matrix A € R™*¢
(with » > d) row by row in a stream. It uses lim-
ited space O(4d) to compute a short sketch matrix
B € R such that the covariance error is rela-

tively small compared to the optimal rank k£ approxi-
mation, [[ATA — BTBH2 <e||A- Ak||%. The algo-
rithm maintains a sketch matrix B € R4 represent-
ing the approximate right singular values of A, scaled
by the singular values. Specifically, it appends a batch
of O(f) new rows to B, computes the SVD of B, sub-
tracts the squared fth singular value from all squared
singular values (or marks down to 0), and then up-
dates B as the reduced first (¢ —1) singular values and
right singular vectors. After each update, B has at
most £ — 1 rows. After all rows of A, for all k < ¢:

1
|ATA-B'B|, </~ A - Al (1)

The running time is O(ndf) and required space is
O(4d). By setting £ = k+1/e, it achieves €||A — Ag||%
covariance error, in time O(nd(k 4+ 1/¢)) and in space
O((k + 1/¢)d). Observe that setting ¢ = rank(A) + 1
achieves 0 error in the form stated above.

Recently, Luo et al. (2019) proposed Robust Frequent
Direction (RFD). They slightly extend FD by main-
taining an extra value a > 0, which is half of the sum
of all squared fth singular values. Adding a back to
the covariance matrix results in a more robust solution
and less error. For all 0 < k < /:

1

|ATA-B'B—aif, < = A A% ()

It has same running time and running space with FD
in terms of £. To guarantee the same error, RFD needs
almost a factor 2 fewer rows ¢ = 1/(2¢) + k.

Huang (2018) proposed a more complicated variant to
separate n from 1/e in the running time. The idea
is two level sketching: not only sketch B € R3#*d
but also sketch the removed part into Q € R/exd
via sampling. Note that for a fixed k, B has a fixed
number of rows, only Q increases the number of rows
to reduce the error bound, and the computation of
Q is faster and more coarse than that of B. With
high probability, for a fixed k, the sketch BTB+QTQ
achieves the error in (1) in time O(ndk) + O(e~3d)
using space O((k + e~ 1)d). By setting £ = 3k + 1/e,
the running time is O(nkd) + O((¢ — k)3d) and the
space is O({4d)

The Frequent Directions sketch has other nice prop-
erties. It can be extended to have runtime de-
pend only on the number of nonzeros for sparse in-
puts (Ghashami et al., 2016a; Huang, 2018). More-
over, it applies to distributed settings where data is
captured from multiple locations or streams. Then
these sketches can be “merged” together (Ghashami
et al., 2016b; Agarwal et al., 2012) without accumu-
lating any more error than the single stream setting,
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Figure 1: A figurative illustration of possible eigenval-
ues (02) of a covariance matrices AT A and variants
when approximated by FD or adding a ridge term I,
along sorted eigenvectors.

and extend to other models (Shi et al., 2021). These
properties apply directly to our new sketches.

2.1 FD and Ridge Regression

Despite FD being recognized as the matrix sketch with
best space/error trade-off (often optimal (Ghashami
et al., 2016b)), it has almost no provable connections
improvements to high-dimensional regression tasks.
The only previous approach we know of to connect
FD to linear regression ((McCurdy, 2018) via (Co-
hen et al., 2017)), uses FD only to make the stream
processing efficient, does not describe the actual al-
gorithm, and then uses ridge leverage scores as an
additional step to connect to ridge regression. The
main challenge with connecting FD to linear regres-
sion is that FD approximates the high norm direc-
tions of AT A (i.e., measured with direction/unit vec-
tor x as ||A T Ax||), but drops the low norm directions.
However, linear regression needs to recover ¢ = ATb
times the inverse of AT A. So if ¢ is aligned with the
low norm part of AT A, then FD provides a poor ap-
proximation. We observe however, that ridge regres-
sion with regularizer I ensures that all directions of
AT A +~I have norm at least +, regardless of A or its
sketch B.

Figure 1 illustrates the effect on the eigenvalue distri-
bution (as 0?) for some AT A, and how it is affected
by a ridge term and FD. The ridge term increases the
values everywhere, and FD decreases the values every-
where. In principle, if these effects are balanced just
right they should cancel out — at least for the high
rank part of ATA. In particular, Robust Frequent
Directions attempts to do this implicitly — it automat-
ically picks a good choice of regularizer « as half of the
amount of the shrinkage induced by FD.

3 ALGORITHMS AND ANALYSIS

We consider rows of A € R"*¢ and elements of b €
R™ are given in pairs (a;,b;) in the stream, we want
to approximate x, = (ATA +~I)"1ATb for a given
~ > 0 within space O(¢d), where ¢ < d. Let ¢ =
ATb, which can be exactly maintained using space
O(d). But AT A needs space Q(d?), so we use Frequent
Directions (FD) or Robust Frequent Directions (RFD)
to approximate A by a sketch (which is an £ x d matrix
C and possibly also some auxiliary information). Then
the optimal solution x, and its approximation of X,
are

x, = (ATA+ D) 'c and %, = (sketch+~I)'c.

Algorithm 1 General FD Ridge Regression (FDRR)
1: Input: ¢, A, b,

2: Initialize xFD, ¢ < 0¢

3: for batches (Ay,by) € A,;b do
4:  sketch < xFD(sketch, Ay)

5. c<+c+ A;bg
6
7
8

: end for
: X < Solution(sketch, v, c)
: return %,

Algorithm 1 shows the general algorithm framework.
It processes a consecutive batch of ¢ rows of A (de-
noted Ay) and £ elements of b (denoted by) each step.
xFD refers to a sketching step of some variant of Fre-
quent Directions. Line 5 computes ATb on the fly, it
is not a part of FD. Line 7 computes the solution coef-
ficients X using only the sketch of A and c at the end.
This supplements FD with information to compute the
ridge regression solution.

Coefficients error bound. The main part of our
analysis is the upper bound of the coefficients error:
e = || %Xy — x4||/lIx4||. Lemma 1 shows the key struc-
tural result, translating the sketch covariance error to
the upper bound of ridge regression coefficients error.

Lemma 1. Let C'TC be an approzimation of ATA €
R4 For any ¢ € R, v > 0, consider an optimal
solution X, = (ATA +~I)"tc, and an approzimate
solution X, = (CTC +~I)"tc. Then

|[ATA - CTCl;

||5('y - X’YH < ||X'v||

Proof. To simplify the equations, let M = ATA 4+,
M=C'C+ X, then M—M=ATA - CTC, and
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SO Xy = M_1c7§c7 =M lc.
R [
= [t (1 - ng) e
< [ o - ] e

_|[ATA-CTCl,
B Amm((j—r(j)

ilial

The third equality can be validated backwards by sim-
ple algebra. Here Apin(+) refer to the minimal eigen-
value of a matrix. O

Lemma 1 is tight when ATA — CTC = al, and
C'C = gl for any a, 3 € R; see Lemma 2.

Lemma 2. With the same settings as those in Lemma
1, if ATA —CTC = oI, and C'C = SI for any
a, B €R, then

B
Y Y )\mzn(CTC) _|_,7 Y

Proof. In the proof of Lemma 1, we have shown that
%, — x| = [N (M - M) M-~c||, Using the def-
initions M = ATA + AI, M = CTC + AL, and
x, = (ATA +4I)7!

1%, =%,/ = [(CTC+~1) 1 (ATA - CTC)x, ||

= [(BT+D) " (aD)x, | = /6’+v” Xy -

Similarly for the right hand side

||ATA CTCHQ «
ey ol = gl

O

Risk bound. We consider the fixed design setting
commonly used in recent papers (Dhillon et al., 2013;
Lu et al., 2013; Chen et al., 2015; McCurdy, 2018;
Wang et al., 2018): we assume the data generation
model is b = Ax + sZ, where A,x and s are fixed,
Z ~ N(0,I) is the random error. The risk R(%X) of
estimator X of unknown coefficient x is the expected
sum of squared error loss over the randomness of noise,
R(x) =Ez[|Ax - Ax|*] =Ez [ A(x - x)[*].
We can further decompose the risk into squared bias
and variance,

R(%) = B*(%) + V(%)
B*(x) = ||A (Ez[x] — %) |1?,
V(%) =Ez [||A (X —Ez[x]) ] .

Lemma 3. Given A € R"4 x € R? s > 0, let
Z ~ N(0,I) represent the standard Gaussian random
variable, and b = Ax + sZ, let CTC be an determin-
istic approzimation of AT A. Then the risk of optimal
ridge regression solution x, = (ATA +~I)"1ATb is
the sum of
B2 (x,) =+* |A(ATA + 1) x|,
V) — AT A - AT
The risk of the approzimate solution X, = (CTC +
7I)~tA b is the sum of
BX(%,) = ||A (CTC+D)"ATA - T) x|’
V() = | A(CTC 1) AT

which are bounded as
R 1
B(%,) < (1 +LIAIIATA - cTcn2> B(x,)

V(%) < (1+ [Al5/7)*V(xy).

Proof. Within this proof, we sometimes use K = AT A
and K = C'C to shorten long equations.

Plugging b = Ax + sZ into x, = (ATA +7I)"'ATb

gives us

=(ATA+D)'TATAx + (ATA +41)*ATsZ

Since the standard Gaussian Z is the only random vari-
able and we know that Ez[X Z] = 0 for any X € R*",
thus

Ez[x,] = (ATA+1I)'ATAx.
Similarly, we have

=(C'TC+)'TATAx+ (CTC+AI)'ATsZ,

and

Ez[%,] = (C'C+~I) AT Ax.

By definition, the squared bias of x, is
B (x,) = || A (Ez[x,] - x)||?
—||A (ATA+~T) AT Ax — )|
= ||A (K +51) 1K—I)x||
= [|A (K + D) 'K — (K + 1)~ (K + 1)) x||°
2
~|a ((K+71)_ (K~ (K +D)) x|
— ||A (ATA + 1)} (—D)) x||°
=7 ||A ATA—FvI x||
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And the squared bias of X, is
B*(%,) = ||A (Ez [%,] — x)||”
—||[A((CTC+~T)'ATA -T) x||".

By playing with linear algebra, we can show that it is

- HA (R+1)'K-1) XH2

:HA ((K—i-'yI — (KA1~ + (K+VI)*1>K—I> x‘
LK — K)(K + 1)~ +(K+71)*1)K—I) XH

(K + D)~ (K — K)(K +71)~ 1K+(K+71)*1K—I) XH

_HA( D) (K — K)K(K + 1)1 —

=|(acx

:H(aA<K+vI>—1<K ~K)AT ~T) yAK + 1) x|

K -~ K)ATA(K + 1) 77A(K+w1)’1>x‘

<[tak+mk-K)A
<(&lAl3

_ (74||A||3||ATA _cTo 4 1) B(x,).

IH 12 [|A(K + 1)~ x|

LK~ K[2[A[3+ 1) 9 |AGK + 1) x|’

The third equality follows M~! — M~' = M~1(M —
M)M~! for any invertable matrices M, M with the
same dimensions, which has been used in the proof of
Lemma 1. The fifth equality follows (K+~1)'K—1I =
—v(K+~I)~1, which has been shown in the derivation
of B%(x,) above. The last inequality follows ||(K +
D)3 < 1 because K is positive semi-definite.

For the variance part, by definition, the variance of x,
is
V(xy) =Ez [||A (xy — Ez[x,]) |I?]
=Ez[|A (ATA +11)'ATs2) |?]
=s*|A(ATA +T) AT 3.

And the variance of % is

V(f(’y) =Ez [HA (ﬁ’y —Ez [&’y]) Hﬂ
=Ez [[|A ((CTC+1)"'ATs2) ||?]
=s’|A(CTC+~D) AT
=s*|(ANT(CTC+4D) (A%
=s*[|(AT)TCTCAT +~(AT)TANT||Z

1
<s?[[(y(AATNT|E = s |ATA|%

. (IIAIIi +7>2V(Xv)

=(1+ [AIZ/7)*V(x,).

The fifth equality need the assumption that A has full
column rank. The last inequality holds because

w:szi(g ) 2 (7))

i=1
s T A2
—— A" A%
=TT Z = AT A Al
Here o; represent the ith singular value of A. O

Note that the variance bound is independent of C T C;
this is because it is positive definite and constructed
deterministically. We also get some other variance
bounds, Lemma 6 and 7 in the the Supplement Mate-
rials, which are related to the spectral bound, but can
be much worse when [|[ATA — CTC||2 # 0.

3.1 Using Frequent Directions

Now we consider Algorithm 2 (FDRrR), using FD as xFD
in Algorithm 1. Specifically, it uses the Fast Frequent
Directions algorithm (Ghashami et al., 2016b). We ex-
plicitly store the first £ singular values 3 and singular
vectors VT, instead of B, to be able to compute the
the solution efficiently. Note that in the original FD
algorithm, B = EgV;. Line 4 and 5 are what FD
actually does in each step. It appends new rows A,
to the current sketch EgV;r, calls SVD to calculate the
singular values 3 and right singular vectors V', then
reduces the rank to /.

Algorithm 2 Frequent Directions Ridge Regression
(FDRR)

1: Input: ¢, A b, vy

2: B 09X VT 0% ¢ <0

3: for batches (Ay,by) € A;b do

4: B VT svp([VET;A/]T)

5 X /P -07 1,V V,

6: c<+c+ AZbg

7: end for

8: ¢+ Ve

9: X, V(22 +4I) " + v (c — V)
10: return x,

Line 8 and 9 are how we compute the solution %, =
(VE2VT 4+ 4I)"le. Explicitly inverting that matrix
is not only expensive but also would use O(d x d)
space, which exceeds the space limitation O(¢ x d).
The good news is that V contains the eigenvectors
of (VE2VT 4 4I)~! the corresponding ¢ eigenvalues
(02 +~)~! for i € {1,...,£}, and the remaining eigen-
values are 7~'. So we can separately compute X, in
the subspace spanned by V and its null space.
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Theorem 4. Given A € R"*% b € R", let Xy =
(ATA +7I)"'ATb and %, be the output of Algo-
rithm 2 FDRr({, A, b, ). If
A — Ayl A — Ayl
0> 4k >k
- e thoor 2 e(l—k) ~’
then
1%y =% || < el
It also holds that ||(%,,a’) — (xy,a)|] < ellx4|[[|&l
for any a' € R, and [[A"%, — A%, | < el 1A’z
for any A’ € R™X4.  The squared statistical bias
B (x,) < (1+ %HAH%) B2(x,), and the statistical
variance V(%) < (1 + [|A|13/7)*V(x5).
time is O(ndd) and requires space O({d).

The running

Proof. Line 6 computes ¢ = A'b in time O(nd) using
space O(¢d). Thus x, = (ATA +~I)~1

Line 8 and 9 compute the solution x, = V(X? +
)71V ety (e—VVTe) in time O(df) using space
O(dl). Let N € R¥*(4=0) be a set of orthonormal basis
of the null space of V. Then

(VE2VT 441) 7"

([V N][ﬁgm VIS_J[V N]T>1

(E2+7hf4 0
0 S A

=V(2?+9L) V' +N(y L) NT
—V (2 +91,) ' VT 447 'NNT
—V(224+9L) VT 44 I-VVT).

v N [(v ~y

-1

Thus %, = (VE2VT +4I)"lc
The rest of Algorithm 2 is equivalent to a normal FD
algorithm with B = XV'. Thus %, = (B'B +

7I)~!c, and satisfies (1). Together with Lemma 1 and
Amin(BTB) > 0, we have

”5{ —x ” ”ATA BTBH2
7 = >\m17L(BTB)+

[+l <

lA—Al%
y(£—k)
the guarantee for coefficients error. Plugging the FD
result (1) into Lemma 3 gives us the risk bound. The
running time and required space of a FD algorithm is
O(ntd) and O(4d). Therefore the total running time
is O(nd) + O(¢d) + O(ntd) = O(ntd), and the running
space is O(¢d) + O(¢d) + O(¢d) = O(¢d). O

By setting = ¢ and solving ¢ or v, we get

Interpretation of bounds. Note that the only two
approximations in the analysis of Theorem 4 arise from
Lemma 1 and in the Frequent Directions bound. Both

bounds are individually tight (see Lemma 2, and The-
orem 4.1 by Ghashami et al. (2016b)), so while this is
not a complete lower bound, it indicates this analysis
approach cannot be asymptotically improved.

We can also write the space directly for this algorlthm
to achieve [[% — x,|| < £]x, || as O(d(k + L IA=Axlky)
Note that this holds for all choices of k < ¢, so the
space is actually O(d - ming<p<p(k + % M)). So
when v = Q(|]A — A, |%) (for an 1dent1ﬁed best choice
of k) then this uses O(d(k+ 1)) space, and if this holds
for a constant k, then the space is O(d/¢e). This iden-
tifies the “regularizer larger than tail” case as when
this algorithm is in theory appropriate. Empirically
we will see below that it works well more generally.

3.2 Using Robust Frequent Directions

If we use RFD instead of FD, we store « in addition to
B = XV see Algorithm 3. Then the approximation
of ATAis BTB + ol = VX2V 4 ol. We approx-
imate x, by X, = (VE?VT + (y + a)I)f1 c. Line 6
in Algorithm 3 is added to maintain v 4+ «. The re-
mainder of the algorithm is the same as Algorithm 2.
The theoretical results slightly improve those for FD.
Theorem 5 and its proof is established by replacing FD
result with RFD result (2) in Theorem 4.

Algorithm 3 Robust Frequent Directions Ridge Re-
gression (RFDrr)
Input: /,A € b,y
P OEXZ VT Ofxd c Od
: for Ay,by; € A,b do
LY VT SVD([VET;AZT]T)
Y /BP -7 1,V <V

VTt 07 /2
CcC<C+ A;bg
end for
¢+ Ve
)A(,Y<—V(22 +’}/Ig)_1
return x,

¢+~ 1c—-Vc)

—_ =
e A e S A e

Theorem 5. Given A € R"™4 b € R", let x, =
(ATA +~I)"'ATb and %, be output of Algorithm 3
with input (6, A, b,~). If

|A — Ayl A — Ayl
(> —+k > —=
- 2ve oo Y2 2e(l — k)

then
%y — x4 < ellx,|

It also holds that ||(%y,a’) — (xy,a")|| < el|x,|[||a’||
Jor any a' € RY, and [A'%, — A%, || < e[, [ A]
for any A’ € R™*?. The squared statistical bias
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B(x,) < (1 + Zff—;HAH%) B2(x,), and the statistical
variance V(%) < (1 + ||Al|3/7)V(x,). The running
time is O(nld) and requires space O(4d).

4 EXPERIMENTS

We compare new algorithms FDrrR and RFDRR with
other FD-based algorithms and randomized algo-
rithms on synthetic and real-world datasets. We focus
only on streaming algorithms.

Competing algorithms include:

e 1ISVDRrR: Truncated incremental SVD (Brand,
2002; Hall et al., 1998), also known as Sequential
Karhunen-Loeve (Levey and Lindenbaum, 2000), for
sketching, has the same framework as Algorithm 2 but

replaces Line 5 ¥ « /X7 — 07,1,V « V) with

3 + X,V « V. That is, it simply maintains the
best rank-¢ approximation after each batch.

e 2LFDRR: This uses a two-level FD variant proposed
by Huang (2018) for sketching, and described in more
detail in Section 2.

e RPrr: This uses generic (scaled) {-1,+1} random
projections (Sarlos, 2006). For each batch of data,
construct a random matrix 8 € {—v7, I}, set
C = C+ SA and ¢ = ¢+ Sb. Output x, =
(CTC+A~I)"1CTc at the end.

e CSrRr: This is the sparse version of RPRR using the
CountSketch (Clarkson and Woodruff, 2013). The ran-
dom matrix S are all zeros except for one -1 or 1 in
each column with a random location.

e rr: This is the naive streaming ridge regression
which computes AT A and A Tb cumulatively (a batch
size of 1). In each step it computes ATA + ATA +
a/a; where aa; is an outer product of row vec-
tors, and ¢ + ¢ + a;'—bi. Then it outputs x, =
(ATA +4I)7'c at the end. This algorithm uses d?
space and has no error in AT A or c. This algorithm’s
found ridge coefficients x, are used to compute the
coefficients error of all sketching algorithms.

Datasets. We use three main datasets that all have
dimension d = 2!, training data size n = 2'3, and test
data size n, = 211,

Synthetic datasets. Two synthetic data-sets are low
rank (LR) and high rank (HR), determined by an effec-
tive rank parameter R; set R = |0.1d] and R = |0.5d]
respectively, which is 10 and 50 percent of d. This
R is then used as the number of non-zero coefficients
x and the number of major standard deviations of a
multivariate normal distribution for generating input
points A. Each row vector of A € R™*? are gener-
ated by normal distribution with standard deviations
8; = Cxp(—é—z) for i = 0,1,...,d — 1, so the maximal
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Figure 2: Datasets singular values

standard deviation is sg = 1. Figure 2 shows the sin-
gular value distributions datasets, normalized by their
first singular values, and indices normalized by d. The
linear model coefficients x € R? have first R entries
non-zero, they are generated by another standard nor-
mal distribution, then normalized to a unit vector so
the gradient of the linear model is 1. A Gaussian noise
Z ~ N(0,41) is added to the outputs, i.e. b = Ax+ Z.
Finally, we rotate A by a discrete cosine transform.

TEMP: Temperature sequence. This is derived from
the temperature sequence recorded hourly from 1997
to 2019 at an international airport. To model an AR
process, we compute the difference sequence between
hourly temperatures, and then shingle this data, so a;
is d consecutive differences starting at the ith differ-
ence, and b; is the next (the (i + d)th) difference be-
tween temperatures. Then the TEMP dataset matrix
A is a set of n randomly chosen (without replacement)
such shingles.

Choice of . We first run RR on training datasets
with different ~ys, then choose the ones which best min-
imize ||Atestz} — brest|| using a held out test dataset
(Atest, Drest). The best s for low rank LR and high
rank HR datasets are 4096 and 32768 respectively, the
best «y for TEMP dataset is 32768. These y values are
fixed for the further experiments. Since the  value
is only used to compute the solution x, or x (storing
« separate from v in RFDRR), so this choice could be
made when calculating the solution using a stored test
set after sketching. To avoid this extra level of con-
founding error into the evaluation process, we simply
use this pre-computed  value.

4.1 Evaluation

We run these 6 algorithms with different choices of ¢ on
these three datasets. They are implemented in python
using numpy, and are relatively straightforward. For
completeness, we will release de-anonymized code and
data for reproducibility after double-blind peer review.
We first train them on the training sets, query their
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Figure 3: Running time (seconds) as a function of: sketch size parameter ¢ (Row 1), data dimension d (Row 2),

and training set size n (Row 3).

coefficients, then compute the coefficients errors with
RR and prediction errors with outputs. We repeat all
these experiments 10 times and show the mean results.

Running time. In Figure 3, Row 1 we show the
running time (on HR) by training time, solution query
(computation of the coefficients) time, their sum, and
training time 4+ query timesxn/¢ simulating making a
query every batch. The other datasets are the same
size, and have the same runtimes. FD based algo-
rithms are slower then randomized algorithms during
training, but much faster during query solutions since
the sketch sizes are smaller and more processed. They
maintain the SVD results of the sketch so the matrix
inversion is mostly precomputed. Note that this pre-
computation is not available in the two-level 2LFDRR
either, hence this also suffers from higher query time.

When we add the training time and (n/¢) queries, then
ISVDRR, RFDRR, and FDRR are the fastest for ¢ be-
low about 300 (past 28). Note that in this plot the
number of batches and hence queries decreases as £ in-
creases, and as a result for small £ the algorithms with
cost dominated by queries (CSRR, RPRR, and 2LFDRR)
have their runtime initially decrease. All algorithms
are generally faster than RrR — the exception is the ran-
dom projection algorithms (CSrr and RPrR) which
are a bit slower for query time, and these become worse
as £ becomes greater than d.

In Figure 3, Row 2 and 3 we show the runtime of the

algorithms as both n and d increase. We fix ¢ = 26.
When we vary d we fix n = 2%, and when we vary n
we fix d = 2!'. As expected, the runtimes all scale
linearly as n grows, or the sum of two linear times
for (training+query) time. As d grows, FD-based al-
gorithms (not including 2LFDRR) overcome RP-based
algorithms (as well as Rr and 2LFDRR) even with one
query. The query time for the latter increase too fast,
cubic on d, but is linear for FD-based algorithms.

Accuracy. Let x, be the coeflicients solutions of
RR and X%, be its approximation, let b be the pre-
dicted values by RR, Ax,, or its approximation, Ax.;
for each algorithm we compute the coefficients error
(coef. error = || X, —%,]|/||x4||) and the prediction error
(pred. error = ||[b—b||2/n). Figure 4 shows these errors
versus space in terms of £, and (training + %query)
time in seconds. For the high rank data (top row), all
FD-based algorithms (FDRR, RFDRR, 2LFDRR, as well
as ISVDRR) have far less error than the random pro-
jection algorithms (RPRr and CSRR). For very small
{ size RFDRR does slightly worse than the other FD
variants, likely because it adds too much bias because
the “tail” is too large with small £.

For the low rank data and real-world TEMP data the
errors are more spread out, yet the FD-based algo-
rithms still do significantly better as a function of
space (£). Among these RFDrR (almost) always has
the least error (for small £) or matches the best error
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Figure 4: Errors vs space (measured by rows ¢) and time (measured by seconds). The time shown is the training
time + the query time*% to simulate a query every batch. The left double column shows coefficient error, and
the right double column shows prediction error. Note that the runtime for CSRr and RPRR form a ‘C’ shape since
these are query-dominated, and the runtime initially decreases as the number of queries (number of “batches”)

decreases, as ¢ increases, like in Figure 3, Row 1.

(for larger ¢). The only one that sometimes improves
upon RFDRR, and is otherwise the next best is the
huersistic ISVDRR which has no guarantees, and likely
will fail for adversarial data (Desai et al., 2016). In
terms of the time, the random projection algorithms
can be a bit faster (say 4 seconds instead of 5 — 10
seconds), but then achieve more coefficient error. In
particular, RFDRR always can achieve the least coef-
ficient error, and usually the least coefficient error for
any given allotment of time. For prediction error as a
function of time (the rightmost column of Figure 4),
the results are more muddled. Many algorithms can
achieve the minimum error (nearly matching rRr) in the
nearly best runtime (about 5 — 7 seconds). The FD-
based algorithms are roughly at this optimal points for
all ¢ parameters tried above £ = 2°, and hence consis-
tently achieves these results in small space and time.

5 CONCLUSION & DISCUSSION

We provide the first streaming sketch algorithms that
can apply the optimally space efficient Frequent Di-
rections sketch towards regression, focusing on ridge
regression. This results in the first streaming deter-
ministic sketch using o(d?) space in R?. We demon-
strate that our bounds will be difficult to be improved,
and likely cannot be. We also prove new risk bounds,

comparable to previous results, but notably have a
variance bound independent of the specific sketch ma-
trix chosen. Similar to prior observations (McCurdy,
2018; Cohen et al., 2016), we show the ridge term
makes regression easier to sketch. Moreover, our ex-
periments demonstrate that while these FD-based al-
gorithms have larger training time than random pro-
jection ones, they have less empirical error, their space
usage is smaller, and query time is often far more ef-
ficient. Our proposed sketches clearly have the best
space/error trade-off.

Discussion relating to PCR. Principal Compo-
nent Regression (PCR) is a related approach; it iden-
tifies the top k principal components Vi of A and
performs regression using, [rv, (A), b], the projection
onto the span of V. For this to be effective, these
components must include the directions meaningfully
correlated with A Tb. However, when the top k¥’ > k
singular vectors of A are all similar, which of the corre-
sponding top k' singular vectors are in the top k is not
stable. If a meaningful direction among the top-k is
not retained in a top-k sketch B, then while the norms
of A are preserved using a sketch B, the regression re-
sult may be quite different. Hence, PCR is not stable
in the same way as RR, and precludes approximation
guarantees in the strong form similar to ours.
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