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Abstract

We provide a deterministic space-efficient al-
gorithm for estimating ridge regression. For
n data points with d features and a large
enough regularization parameter, we provide
a solution within ε L2 error using only O(d/ε)
space. This is the first o(d2) space deter-
ministic streaming algorithm with guaran-
teed solution error and risk bound for this
classic problem. The algorithm sketches
the covariance matrix by variants of Fre-
quent Directions, which implies it can oper-
ate in insertion-only streams and a variety
of distributed data settings. In comparisons
to randomized sketching algorithms on syn-
thetic and real-world datasets, our algorithm
has less empirical error using less space and
similar time.

1 INTRODUCTION

Linear regression is one of the canonical problems in
machine learning. Given n pairs (ai, bi) with each ai ∈
R

d and b ∈ R, we can accumulate them into a matrix
A ∈ R

n×d and vector b ∈ R
n. The goal is to find

x0 = argminx∈Rd ‖Ax− b‖22. It has a simple solution
x0 = A†b where A† is the pseudoinverse of A. The
most common robust variant, ridge regression (Hoerl
and Kennard, 1970), uses a regularization parameter
γ > 0 to add a squared `2 regularizer on x. Its goal is

xγ = arg min
x∈Rd

(

‖Ax− b‖2 + γ‖x‖2
)

.

This also has simple solutions as

xγ =

{

(A>A+ γI)−1A>b, when n ≥ d,
A>(AA> + γI)−1b, when n ≤ d,

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

where I is the identity matrix. The regularization and
using γI makes regression robust to noise (by reducing
the variance), improves generalization, and avoids ill-
conditioning.

However, this problem is difficult under very large data
settings because the inverse operation and standard
matrix multiplication will take O(d3+nd2) time, which
is O(nd2) under our assumption n > d. And this can
also be problematic if the size of A, at O(nd) space,
exceeds memory. In a stream this can be computed
in O(d2) space by accumulating A>A =

∑

i a
>
i ai and

A>b =
∑

i a
>
i bi.

1.1 Previous Sketches

As a central task in data analysis, significant effort has
gone into improving the running time of least squares
(ridge) regression. Most improvements are in the form
of sketching methods using projection or sampling.
Sarlos (2006) initiated the formal study of using Ran-
dom Projections (RP) for regression to reduce n di-
mensions to ` dimensions (still ` > d) preserving the
norm of the d dimension subspace vectors with high
probability. Clarkson and Woodruff (2013) extended
this technique to runtime depending on the number-of-
non-zeroes, for sparse inputs, with CountSketch (CS).
In non-streaming settings, the space can be reduced to
depend on the rank r = rank(A) in the place of the full
dimension. Lu et al. (2013) used a different random
linear transform, called SRHT, and the dependence on
the error was improved by Chen et al. (2015).

These random linear transform methods need a ran-
domly selected subspace embedding with dimension `,
and the resulting sketches have size O(`d). In the re-
sulting analysis, the value ` should be greater than d
or (if not streaming) r. If one strictly adheres to this
theory, the large space bounds make the methods im-
practical when d is large and/or when requiring a high
degree of accuracy (i.e., with small error parameter
ε). One could of course still use the above methods to
project to a small dimension with ` < d (as we do in
our experiments), but no guarantees are known.

McCurdy (2018) proposed deterministic but not
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streaming ridge leverage score sampling. Cohen et al.
(2016, 2017) proposed streaming but not determinis-
tic ridge leverage score sampling, relying on sketch-
ing techniques like Frequent Directions. In particular,
their algorithms are strictly more complicated than the
ones we will present, relying on additional random-
ized steps (ridge leverage score sampling) and analy-
sis beyond the techniques we will employ. In partic-
ular, the computation of leverage scores depends on
(A>A + γI)−1, which is also the key for the solu-
tion of ridge regression. These approaches can pro-
vide “risk” bounds (defined formally later), where the
expected solution error is bounded under a Gaussian
noise assumption. Recently, Wang et al. (2018) re-
analyzed the quality of these previous linear ridge re-
gression sketches from two related views: the opti-
mization view (errors on objective function f(x) =
‖Ax−b‖2+nγ‖x‖2) and the statistics view (bias and
variance of the solutions x), but this work does not
specifically improve the space or streaming analysis
we focus on.

Although some of these sketches can be made stream-
ing, if they use o(d2) space (so beating the simple
O(d2) approach), they either do not provably approx-
imate the solution coefficients, or are not streaming.
And no existing streaming o(d2) space algorithm with
any provable accuracy guarantees is deterministic.

1.2 Our Results

We make the observation, that if the goal is to approx-
imate the solution to ridge regression, instead of or-
dinary least squares regression, and the regularization
parameter is large enough, then a Frequent-Directions-
based sketch (which only requires a single streaming
pass) can preserve (1 ± ε)-relative error on the solu-
tion parameters with only roughly ` = O(1/ε) rows.
Thus it uses only O(d`) = O(d/ε) = o(d2) space. In
contrast, streaming methods based on random linear
transforms require ` = Ω(1/ε2) for similar guarantees.
We formalize and prove this (see Theorems 4 and 5
for more nuanced statements), show evidence that this
cannot be improved, and demonstrate empirically that
indeed the FD-based sketch can significantly outper-
form random-projection-based sketches – especially in
the space/error trade-off.

2 FREQUENT DIRECTIONS

Liberty (2013) introduced Frequent Directions (FD),
then together with Ghashami et al. (2016b) improved
the analysis. It considers a tall matrix A ∈ R

n×d

(with n � d) row by row in a stream. It uses lim-
ited space O(`d) to compute a short sketch matrix
B ∈ R

`×d, such that the covariance error is rela-

tively small compared to the optimal rank k approxi-
mation,

∥

∥A>A−B>B
∥

∥

2
≤ ε ‖A−Ak‖

2
F . The algo-

rithm maintains a sketch matrix B ∈ R
`×d represent-

ing the approximate right singular values of A, scaled
by the singular values. Specifically, it appends a batch
of O(`) new rows to B, computes the SVD of B, sub-
tracts the squared `th singular value from all squared
singular values (or marks down to 0), and then up-
dates B as the reduced first (`−1) singular values and
right singular vectors. After each update, B has at
most `− 1 rows. After all rows of A, for all k < `:

∥

∥A>A−B>B
∥

∥

2
≤

1

`− k
‖A−Ak‖

2
F . (1)

The running time is O(nd`) and required space is
O(`d). By setting ` = k+1/ε, it achieves ε‖A−Ak‖

2
F

covariance error, in time O(nd(k + 1/ε)) and in space
O((k + 1/ε)d). Observe that setting ` = rank(A) + 1
achieves 0 error in the form stated above.

Recently, Luo et al. (2019) proposed Robust Frequent
Direction (RFD). They slightly extend FD by main-
taining an extra value α ≥ 0, which is half of the sum
of all squared `th singular values. Adding α back to
the covariance matrix results in a more robust solution
and less error. For all 0 ≤ k < `:

∥

∥A>A−B>B− αI
∥

∥

2
≤

1

2(`− k)
‖A−Ak‖

2
F . (2)

It has same running time and running space with FD
in terms of `. To guarantee the same error, RFD needs
almost a factor 2 fewer rows ` = 1/(2ε) + k.

Huang (2018) proposed a more complicated variant to
separate n from 1/ε in the running time. The idea
is two level sketching: not only sketch B ∈ R

3k×d,
but also sketch the removed part into Q ∈ R

1/ε×d

via sampling. Note that for a fixed k, B has a fixed
number of rows, only Q increases the number of rows
to reduce the error bound, and the computation of
Q is faster and more coarse than that of B. With
high probability, for a fixed k, the sketch B>B+Q>Q

achieves the error in (1) in time O(ndk) + Õ(ε−3d)
using space O((k + ε−1)d). By setting ` = 3k + 1/ε,
the running time is O(nkd) + Õ((` − k)3d) and the
space is O(`d)

The Frequent Directions sketch has other nice prop-
erties. It can be extended to have runtime de-
pend only on the number of nonzeros for sparse in-
puts (Ghashami et al., 2016a; Huang, 2018). More-
over, it applies to distributed settings where data is
captured from multiple locations or streams. Then
these sketches can be “merged” together (Ghashami
et al., 2016b; Agarwal et al., 2012) without accumu-
lating any more error than the single stream setting,
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so xγ = M−1c, x̂γ = M̂−1c.

‖x̂γ − xγ‖ =
∥

∥

∥
M̂−1c−M−1c

∥

∥

∥
=

∥

∥

∥

(

M̂−1 −M−1
)

c

∥

∥

∥

=
∥

∥

∥
M̂−1

(

M− M̂
)

M−1c

∥

∥

∥

≤
∥

∥

∥
M̂−1

∥

∥

∥

2

∥

∥

∥
M− M̂

∥

∥

∥

2

∥

∥M−1c
∥

∥

=
‖A>A−C>C‖2
λmin(C>C) + γ

‖xγ‖

The third equality can be validated backwards by sim-
ple algebra. Here λmin(·) refer to the minimal eigen-
value of a matrix.

Lemma 1 is tight when A>A − C>C = αI, and
C>C = βI for any α, β ∈ R; see Lemma 2.

Lemma 2. With the same settings as those in Lemma
1, if A>A − C>C = αI, and C>C = βI for any
α, β ∈ R, then

‖x̂γ − xγ‖ =
‖A>A−C>C‖2
λmin(C>C) + γ

‖xγ‖.

Proof. In the proof of Lemma 1, we have shown that

‖x̂γ − xγ‖ = ‖M̂
−1

(

M− M̂
)

M−1c‖, Using the def-

initions M = A>A + λI, M̂ = C>C + λI, and
xγ = (A>A+ γI)−1c,

‖x̂γ − xγ‖ = ‖(C
>C+ γI)−1(A>A−C>C)xγ‖

= ‖(βI+ γI)−1(αI)xγ‖ =
α

β + γ
‖xγ‖.

Similarly for the right hand side

‖A>A−C>C‖2
λmin(C>C) + γ

‖xγ‖ =
α

β + γ
‖xγ‖.

Risk bound. We consider the fixed design setting
commonly used in recent papers (Dhillon et al., 2013;
Lu et al., 2013; Chen et al., 2015; McCurdy, 2018;
Wang et al., 2018): we assume the data generation
model is b = Ax + sZ, where A,x and s are fixed,
Z ∼ N (0, I) is the random error. The risk R(x̂) of
estimator x̂ of unknown coefficient x is the expected
sum of squared error loss over the randomness of noise,

R(x̂) = EZ

[

‖Ax̂−Ax‖2
]

= EZ

[

‖A(x̂− x)‖2
]

.

We can further decompose the risk into squared bias
and variance,

R(x̂) = B2(x̂) + V(x̂),

B2(x̂) = ‖A (EZ [x̂]− x) ‖2,

V(x̂) = EZ

[

‖A (x̂− EZ [x̂]) ‖2
]

.

Lemma 3. Given A ∈ R
n×d, x ∈ R

d, s > 0, let
Z ∼ N (0, I) represent the standard Gaussian random
variable, and b = Ax+ sZ, let C>C be an determin-
istic approximation of A>A. Then the risk of optimal
ridge regression solution xγ = (A>A + γI)−1A>b is
the sum of

B2(xγ) = γ2
∥

∥A(A>A+ γI)−1x
∥

∥

2
,

V(xγ) = s2‖A(A>A+ γI)−1A>‖2F .

The risk of the approximate solution x̂γ = (C>C +
γI)−1A>b is the sum of

B2(x̂γ) =
∥

∥A
(

(C>C+ γI)−1A>A− I
)

x
∥

∥

2

V(x̂γ) = s2‖A(C>C+ γI)−1A>‖2F

which are bounded as

B2(x̂γ) ≤

(

1 +
1

γ4
‖A‖42‖A

>A−C>C‖2
)

B2(xγ)

V(x̂γ) ≤ (1 + ‖A‖22/γ)
2V(xγ).

Proof. Within this proof, we sometimes useK = A>A

and K̂ = C>C to shorten long equations.

Plugging b = Ax+ sZ into xγ = (A>A+ γI)−1A>b

gives us

xγ = (A>A+ γI)−1A>Ax+ (A>A+ γI)−1A>sZ.

Since the standard Gaussian Z is the only random vari-
able and we know that EZ [XZ] = 0 for any X ∈ R

d×n,
thus

EZ [xγ ] = (A>A+ γI)−1A>Ax.

Similarly, we have

x̂γ = (C>C+ γI)−1A>Ax+ (C>C+ γI)−1A>sZ,

and
EZ [x̂γ ] = (C>C+ γI)−1A>Ax.

By definition, the squared bias of xγ is

B2(xγ) = ‖A (EZ [xγ ]− x)‖2

=
∥

∥A
(

(A>A+ γI)−1A>Ax− x
)∥

∥

2

=
∥

∥A
(

(K+ γI)−1K− I
)

x
∥

∥

2

=
∥

∥A
(

(K+ γI)−1K− (K+ γI)−1(K+ γI)
)

x
∥

∥

2

=
∥

∥

∥
A

(

(K+ γI)
−1

(K− (K+ γI))
)

x

∥

∥

∥

2

=
∥

∥A
(

(A>A+ γI)−1(−γI)
)

x
∥

∥

2

= γ2
∥

∥A(A>A+ γI)−1x
∥

∥

2
.
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And the squared bias of x̂γ is

B2(x̂γ) = ‖A (EZ [x̂γ ]− x)‖2

=
∥

∥A
(

(C>C+ γI)−1A>A− I
)

x
∥

∥

2
.

By playing with linear algebra, we can show that it is

=
∥

∥

∥
A

(

(K̂+ γI)−1K− I
)

x

∥

∥

∥

2

=
∥

∥

∥
A

((

(K̂+ γI)−1 − (K+ γI)−1 + (K+ γI)−1
)

K− I
)

x

∥

∥

∥

2

=
∥

∥

∥
A

((

(K̂+ γI)−1(K− K̂)(K+ γI)−1 + (K+ γI)−1
)

K− I
)

x

∥

∥

∥

2

=
∥

∥

∥
A

(

(K̂+ γI)−1(K− K̂)(K+ γI)−1K+ (K+ γI)−1K− I
)

x

∥

∥

∥

2

=
∥

∥

∥
A

(

(K̂+ γI)−1(K− K̂)K(K+ γI)−1 − γ(K+ γI)−1
)

x

∥

∥

∥

2

=
∥

∥

∥

(

A(K̂+ γI)−1(K− K̂)A>A(K+ γI)−1 − γA(K+ γI)−1
)

x

∥

∥

∥

2

=
∥

∥

∥

(

1
γA(K̂+ γI)−1(K− K̂)A> − I

)

γA(K+ γI)−1x

∥

∥

∥

2

≤
∥

∥

∥

1
γA(K̂+ γI)−1(K− K̂)A> − I

∥

∥

∥

2

γ2
∥

∥A(K+ γI)−1x
∥

∥

2

≤
(

1
γ2 ‖A‖22

1
γ2 ‖K− K̂‖2‖A‖22 + 1

)

γ2
∥

∥A(K+ γI)−1x
∥

∥

2

=

(

1

γ4
‖A‖42‖A

>A−C>C‖2 + 1

)

B2(xγ).

The third equality follows M̂−1 −M−1 = M̂−1(M −

M̂)M−1 for any invertable matrices M, M̂ with the
same dimensions, which has been used in the proof of
Lemma 1. The fifth equality follows (K+γI)−1K−I =
−γ(K+γI)−1, which has been shown in the derivation

of B2(xγ) above. The last inequality follows ‖(K̂ +

γI)−1‖22 ≤
1
γ2 because K̂ is positive semi-definite.

For the variance part, by definition, the variance of xγ

is

V(xγ) =EZ

[

‖A (xγ − EZ [xγ ]) ‖
2
]

=EZ

[

‖A
(

(A>A+ γI)−1A>sZ
)

‖2
]

=s2‖A(A>A+ γI)−1A>‖2F .

And the variance of x̂γ is

V(x̂γ) =EZ

[

‖A (x̂γ − EZ [x̂γ ]) ‖
2
]

=EZ

[

‖A
(

(C>C+ γI)−1A>sZ
)

‖2
]

=s2‖A(C>C+ γI)−1A>‖2F

=s2‖(A†)†(C>C+ γI)†((A>)†)†‖2F

=s2‖((A>)†C>CA† + γ(A>)†A†)†‖2F

≤s2‖(γ(AA>)†)†‖2F =
1

γ2
s2‖A>A‖2F

≤

(

‖A‖22 + γ

γ

)2

V(xγ)

=(1 + ‖A‖22/γ)
2V(xγ).

The fifth equality need the assumption that A has full
column rank. The last inequality holds because

V(xγ) = s2
d

∑

i=1

(

σ2
i

σ2
i + γ

)2

≥ s2
d

∑

i=1

(

σ2
i

σ2
1 + γ

)2

=
s2

(‖A‖22 + γ)2

d
∑

i=1

σ4
i =

s2

(‖A‖22 + γ)2
‖A>A‖2F .

Here σi represent the ith singular value of A.

Note that the variance bound is independent of C>C;
this is because it is positive definite and constructed
deterministically. We also get some other variance
bounds, Lemma 6 and 7 in the the Supplement Mate-
rials, which are related to the spectral bound, but can
be much worse when ‖A>A−C>C‖22 6= 0.

3.1 Using Frequent Directions

Now we consider Algorithm 2 (FDrr), using FD as xFD
in Algorithm 1. Specifically, it uses the Fast Frequent
Directions algorithm (Ghashami et al., 2016b). We ex-
plicitly store the first ` singular values Σ and singular
vectors V>, instead of B, to be able to compute the
the solution efficiently. Note that in the original FD
algorithm, B = Σ`V

>
` . Line 4 and 5 are what FD

actually does in each step. It appends new rows A`

to the current sketch Σ`V
>
` , calls svd to calculate the

singular values Σ′ and right singular vectors V′>, then
reduces the rank to `.

Algorithm 2 Frequent Directions Ridge Regression
(FDrr)

1: Input: `,A,b, γ
2: Σ← 0`×`,V> ← 0`×d, c← 0d

3: for batches (A`,b`) ∈ A,b do

4: ,Σ′,V′> ← svd([VΣ>;A>
` ]

>)

5: Σ←
√

Σ′2
` − σ2

`+1I`,V← V′
`

6: c← c+A>
` b`

7: end for

8: c′ ← V>c

9: x̂γ←V(Σ2 + γI`)
−1c′ + γ−1(c−Vc′)

10: return x̂γ

Line 8 and 9 are how we compute the solution x̂γ =
(VΣ2V> + γI)−1c. Explicitly inverting that matrix
is not only expensive but also would use O(d × d)
space, which exceeds the space limitation O(` × d).
The good news is that V contains the eigenvectors
of (VΣ2V> + γI)−1, the corresponding ` eigenvalues
(σ2

i + γ)−1 for i ∈ {1, ..., `}, and the remaining eigen-
values are γ−1. So we can separately compute x̂γ in
the subspace spanned by V and its null space.
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Theorem 4. Given A ∈ R
n×d, b ∈ R

n, let xγ =
(A>A + γI)−1A>b and x̂γ be the output of Algo-
rithm 2 FDrr(`,A,b, γ). If

` ≥
‖A−Ak‖

2
F

γε
+ k, or γ ≥

‖A−Ak‖
2
F

ε(`− k)
,

then
‖x̂γ − xγ‖ ≤ ε‖xγ‖.

It also holds that ‖〈x̂γ ,a
′〉 − 〈xγ ,a

′〉‖ ≤ ε‖xγ‖‖a
′‖

for any a′ ∈ R
d, and ‖A′x̂γ − A′xγ‖ ≤ ε‖xγ‖‖A

′‖2
for any A′ ∈ R

m×d. The squared statistical bias

B2(x̂γ) ≤
(

1 + ε2

γ2 ‖A‖42

)

B2(xγ), and the statistical

variance V(x̂γ) ≤ (1 + ‖A‖22/γ)
2V(xγ). The running

time is O(n`d) and requires space O(`d).

Proof. Line 6 computes c = A>b in time O(nd) using
space O(`d). Thus xγ = (A>A+ γI)−1c.

Line 8 and 9 compute the solution x̂γ = V(Σ2 +
γI`)

−1V>c+γ−1(c−VV>c) in time O(d`) using space
O(d`). Let N ∈ R

d×(d−`) be a set of orthonormal basis
of the null space of V. Then

(

VΣ2V> + γI
)−1

=

(

[

V N
]

[

Σ2 + γI` 0
0 γId−`

]

[

V N
]>

)−1

=
[

V N
]

[

(Σ2 + γI`)
−1 0

0 γ−1Id−`

]

[

V N
]>

= V
(

Σ2 + γI`
)−1

V> +N
(

γ−1Id−`

)

N>

= V
(

Σ2 + γI`
)−1

V> + γ−1NN>

= V
(

Σ2 + γI`
)−1

V> + γ−1
(

I−VV>
)

.

Thus x̂γ = (VΣ2V> + γI)−1c.

The rest of Algorithm 2 is equivalent to a normal FD
algorithm with B = ΣV>. Thus x̂γ = (B>B +
γI)−1c, and satisfies (1). Together with Lemma 1 and
λmin(B

>B) ≥ 0, we have

‖x̂γ−xγ‖ ≤
‖A>A−B>B‖2
λmin(B>B) + γ

‖xγ‖ ≤
‖A−Ak‖

2
F

γ(`− k)
‖xγ‖.

By setting
‖A−Ak‖

2

F

γ(`−k) = ε and solving ` or γ, we get

the guarantee for coefficients error. Plugging the FD
result (1) into Lemma 3 gives us the risk bound. The
running time and required space of a FD algorithm is
O(n`d) and O(`d). Therefore the total running time
is O(nd)+O(`d)+O(n`d) = O(n`d), and the running
space is O(`d) +O(`d) +O(`d) = O(`d).

Interpretation of bounds. Note that the only two
approximations in the analysis of Theorem 4 arise from
Lemma 1 and in the Frequent Directions bound. Both

bounds are individually tight (see Lemma 2, and The-
orem 4.1 by Ghashami et al. (2016b)), so while this is
not a complete lower bound, it indicates this analysis
approach cannot be asymptotically improved.

We can also write the space directly for this algorithm

to achieve ‖x̂− xγ‖ ≤ ε‖xγ‖ as O(d(k+ 1
ε
‖A−Ak‖

2

F

γ )).
Note that this holds for all choices of k < `, so the

space is actually O(d ·min0<k<`(k + 1
ε
‖A−Ak‖

2

F

γ )). So

when γ = Ω(‖A−Ak‖
2
F ) (for an identified best choice

of k) then this uses O(d(k+ 1
ε )) space, and if this holds

for a constant k, then the space is O(d/ε). This iden-
tifies the “regularizer larger than tail” case as when
this algorithm is in theory appropriate. Empirically
we will see below that it works well more generally.

3.2 Using Robust Frequent Directions

If we use RFD instead of FD, we store α in addition to
B = ΣV>; see Algorithm 3. Then the approximation
of A>A is B>B + αI = VΣ2V> + αI. We approx-

imate xγ by x̂γ =
(

VΣ2V> + (γ + α)I
)−1

c. Line 6
in Algorithm 3 is added to maintain γ + α. The re-
mainder of the algorithm is the same as Algorithm 2.
The theoretical results slightly improve those for FD.
Theorem 5 and its proof is established by replacing FD
result with RFD result (2) in Theorem 4.

Algorithm 3 Robust Frequent Directions Ridge Re-
gression (RFDrr)

1: Input: `,A ∈ ,b, γ
2: Σ← 0`×`,V> ← 0`×d, c← 0d

3: for A`,b` ∈ A,b do

4: ,Σ′,V′> ← svd([VΣ>;A>
` ]

>)

5: Σ←
√

Σ′2
` − σ2

`+1I`,V← V′
`

6: γ ← γ + σ2
`+1/2

7: c← c+A>
` b`

8: end for

9: c′ ← V>c

10: x̂γ←V(Σ2 + γI`)
−1c′ + γ−1(c−Vc′)

11: return x̂γ

Theorem 5. Given A ∈ R
n×d, b ∈ R

n, let xγ =
(A>A + γI)−1A>b and x̂γ be output of Algorithm 3
with input (`,A,b, γ). If

` ≥
‖A−Ak‖

2
F

2γε
+ k, or γ ≥

‖A−Ak‖
2
F

2ε(`− k)

then

‖x̂γ − xγ‖ ≤ ε‖xγ‖

It also holds that ‖〈x̂γ ,a
′〉 − 〈xγ ,a

′〉‖ ≤ ε‖xγ‖‖a
′‖

for any a′ ∈ R
d, and ‖A′x̂γ − A′xγ‖ ≤ ε‖xγ‖‖A

′‖2
for any A′ ∈ R

m×d. The squared statistical bias
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