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Eigenvalues of graphs and spectral Moore 
theorems 

Sebastian M. Cioab 酎

April 18, 2020 

Abstract 
In this paper, we describe some recent spectral Moore theorems 

related to determining the maximum order of a connected graph of 
given valency and second eigenvalue. We show how these spectral 
Moore theorems have applications in Alon−Boppana theorems for reg−
ular graphs and in the classical degree−diameter /Moore problem. 

§1 Introduction 
Our graph theoretic notation is standard (see [4, 5]). Let r = (V, E) be an 
undirected graph with vertex set V and edge set E. Given u, v E V, the 
distance d(u, v) equals the minimum length of a path between u and v if 
such a path exists or oo otherwise. If r is connected, then all the distances 
between its vertices are finite and the diameter diam( 「） of r is defined as the 
maximum of d(u, v), where the maximum is taken over all pairs u, v EV. The 
pairwise distance and the diameter of a connected graph can be calculated 
efficiently using breadth first search. The Moore or degree−diameter problem 
is a classical problem in combinatorics (see [31]). 

Problem 1. Given r 2'. 3 and D 2'. 2, what is the maximum order nr,D of a 
connected r−regular graph of diameter D ? 

There is a well known upper bound for nr,D known as the Moore bound 
mr,D which is obtained as follows. If r is a connected r−regular graph of 
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diameter D, then for any given vertex x in r and any 1 :::; j :::; D, the 
number of vertices at distance j from x is at most r(r − 1)j−l. Therefore, 

四 D :s; 1 + r + r(r − 1) +・ ・ ・+ r(r − 1t−1. (1) 
We denote by mr,D the right hand−side of the above inequality. When r = 2, 
it is straightforward to note that n2,D = m2,D = 2D + 1 and the maximum 
is attained by the cycle C2D+l on 2D + 1 vertices. For D = 1, it is easy to 
see that 叫 1= mr,l = r + 1 and the maximum is attained by the complete 
graph Kr+l on r + 1 vertices. 

For D = 2, a classical result of Hoffman and Singleton [20] gives that 叩，2
eq 叫 s the Moore bound mr,2 = r2 + 1 only when r = 2 (attained by the 
cycle Cり， r = 3 (the Petersen graph), r = 7 (the Hoffman−Singleton graph) 
or possibly r = 57. The existence of a 57−regular graph with diameter 2 
on 572 + 1 = 3250 vertices is a well known open problem in this area (see 
[10, 24, 28]). For D~3 and r~3, Damerell [11] and independently, Bannai 
and Ito [2] proved that there are no graphs attaining the Moore bound (1). 

The adjacency matrix A is the V x V matrix whose (x, y)−th entry equals 
the number of edges between x and y. This matrix is a real symmetric matrix 
and if r is simple (no loops nor multiple edges), then A is a (0, 1) symmetric 
matrix. Let r~3 be a given integer. We will use the following family of 
orthogonal polynomials: 

Fo(x) = 1, F心） =x, 的 (x) = x2 − r, 
Fj(x) = xFj_1(x) − (r − l)Fj_2(x), 

﹆1,
﹆I,

2
3 

,
ｰ
﹆
,
ｰ
＼

for any j~3. Let q = Jk−=−1. The polynomials (Fi)i2:0 form a sequence of 
orthogonal polynomials with respect to the positive weight 

w(x) = k2 − x2 
on the interval [−2q, 2q] (see [23, Section 4]). The polynomials Fi(qy)/ ずin
y are called Geronimus polynomials [18]. 

For any vertices u and v of r and any non−negative integer C, the entry 
(u, v) of the matrix AR equals the number of walks of length C between u 
and v. A walk u = u0, u1, ... , U£−1, 切 =v in G is called non−backtracking if 
糾 ui+ 1 E E for any O ::; i ::; C − 1 and ui ナ 糾+2 for any O ::; i ::; C − 2 (when 
C 2:: 2). The following result goes back to Singleton [38]. 
Proposition 2 (Singleton [38]). Let r be a connected r−regular graph with 
adjacency matrix A. For any vertices u and v of r and any non−negative 
integer C, the entry (u,v) of the matrix FR(A) equals the number of non−
backtracking walks of length C between u and v. 
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The eigenvalues of A are real and we denote them by 入1 2: ふこ・・・こ心
where n = IVI− Sometimes, to highlight the dependence of the eigenvalues 
on a particular graph, we will use ふ(r) for Aj− When r is r−regular and 
connected, it is known that 入1 =rand that ふ < r. It is also known that 
入j E [−r, r] and that −r is an eigenvalue if and only if the graph is bipartite. 
The smallest eigenvalue of a regular graph has been used to determine the 
independence number of various interesting graphs (see Godsil and Meagher 
[17]). 

The properties of the eigenvalues of a regular graph were essential in the 
proofs of Hoffman and Singleton [20] as well as Damerell [11] and Bannai 
and Ito [2]. 

The spectral gap r一心 is an important parameter in spectral graph theory 
and is closely related to the connectivity [15] and expansion properties of the 
graph [19]. Informally, expanders are sparse graphs with large spectral gap. 
More precisely, a family (rm 加：：：：：1 of graphs is called a family of expanders if 

1. there exists r 2: 3 such that each rm is a connected r−regular graph for 
m 2: 1 and the number of vertices of rm goes to infinity as m goes to 
infinity, 

2. there is a positive constant Cr > 0 such that > Cr for any 
rm. 

The first condition above explains the denomination of sparse used at the 
beginning of this paragraph. This condition implies that the number of 
edges in い is linear in its number of vertices for every m 2: 1. This is best 
possible in order of magnitude for connected graphs. 

The second condition is algebraic and is equivalent to a combinatorial con−
dition that each r五is highly connected (meaning their expansion constants 
are bounded away from 0) and also equivalent to the probability condition 
that a random walk on rm converges quickly to its stationary distribution. 
We refer to [19] for the precise descriptions of these conditions. 

A natural question arising from the previous considerations is how large 
can the spectral gap r ーふ(r) be for an r−regular connected graph r ? Since 
we are interested in situations where r 2: 3 is fixed, this is equivalent to 
asking how small can 入2 be for a connected r−regular graph r. This was 
answered by the Alon−Boppana theorem. 
Theorem 3. Let r 2: 3 be a natural number. 

1. Alon−Boppana 1986. If 「is a connected r−regular graph with n ver−
tices, then 

C 叫） 2: 2v'r−=−1 (1 −diam 打）） =2 好 可1−o(l)), (4) 
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where C > 0 is a constant and o(l) is a quantity that goes to O as n 
goes to infinity. 

2. Asymptotic Alon−Boppana Theorem. If (「 m)m2:1 is a sequence of 
connected r−regular graphs such that IV (rm) I→ oo as m → oo. Then 

liminf ふ(r 』 2: 2好て了．
m→OO 

(5) 

To my knowledge, there is no paper written by Alon and Boppana which 
contains the theorem above. The first appearance of this result that I am 
aware of, is in 1986 in Alon's paper [1] where it is stated that 

R. Boppana and the present author showed that for every d−regular graph G 
on n vertices 入(G) :::; d − 2、仁了+O(logd n)−1. 

Note that the 入 in [1] is the smallest positive eigenvalue of the Laplacian 
D − A = r I − A of G and it equals r ーふ (G). Therefore the statement above 
is equivalent to 

− O(logr n) ―1_ (6) 
There is a similar result to the Alon−Boppana theorem that is due to Serre 
[37]. The meaning of this theorem below is that larger−regular graphs tend to 
have a positive proportion of eigenvalues trying to be greater than 2−/r ニエ
Theorem 4 (Serre [37]). For any r~3,E > 0, there exists c = c(E,r) >。
such that any r−regular graph r on n vertices has at least c・n eigenvalues 
that are at least 2好 てl−E.

These results motivated the definition of Ramanujan graphs that was in−
traduced by Lubotzky, Phillips and Barnak [27]. A connected r−regular graph 
r is called Ramanujan if all its eigenvalues (with the exception of r and per−
haps −r, if r is bipartite) have absolute value at most 2−/r 二I. Lubotzky, 
Phillips and Barnak [27] and independently Margulis [30] constructed infinite 
families of r−regular Ramanujan graphs when r − 1 is a prime. These con−
structions used results from algebra and number theory closely related to a 
conjecture of Rama 叫 an regarding the number of ways of writing a natural 
number as a sum of four squares of a certain kind (see [27, 30] and also, [12] 
for a more detailed description of these results). For the longest time, it was 
not known whether infinite families of r−regular Ramanujan graphs exist for 
any r~3. Marcus, Spielman and Srivastava [29] obtained a breakthrough 
result by showing that there exist infinite families of bipartite r−regular Ra— 
manujan graphs for any r~3. Their method of interlacing polynomials has 
been fundamental to this proof and has found applications in other areas of 
mathematics as well. 
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§2 Spectral Moore theorems for general graphs 
Throughout the years, several proofs of the Alon−Boppana theorem have 
appeared (see Lubotzky, Phillips and Sarnak [27], Nilli [33], Kahale [25], 
Friedman [16], Feng and Li [14], Li and Sole [26], Nilli [34] and Mohar [32]). 
Theorem 4 was proved by Serre [37] with a non−elementary proof (see also 
[12]). The first elementary proofs appeared around the same time by Cioaba 
[6] and Nilli [34]. Richey, Stover and Shutty [36] worked to turn Serre's proof 
into a quantitative theorem and asked the following natural question. 
Problem 5. Given an integer r 2: 3 and 0 < 2Jr−=−1, what is the maximum 
order v(r, 0) of a r−regular graph r with ふ(r) :::; 0 ? 

These authors obtained several results involving v(r, 0). In this section, 
we describe our recent results related to the problem above and its bipartite 
and hypergraph versions. See [9, 8, 7] and the references therein for more 
details and other related problems. The method that is fundamental to all 
these results is due to Nozaki [35] who proved the linear programming bound 
for graphs. 
Theorem 6 (Nozaki [35]). Let r be a connected r−regular graph with v ver−
tices and distinct eigenvalues 仇 = k > 02 > ... > 0d. If there exists a poly−
nomial f(x) =~ し。 Jぶ (x) such that J(r) > 0, J(0 』:::; 0 for any 2 :::; i :::; d, 
Jo > 0, and Ji 2: 0 for any l :::; i :::; t, then 

V:::; f(r) ． 
Jo 

Nozaki used this result to study the following problem. 
Problem 7. Given integers v > r 2: 3, what is the r−regular graph r on v 
vertices that has the smallest 入2 among all r−regular graphs on v vertices ? 

While similar to it, this problem is quite different from Problem 5. 
In [8], the authors used Nozaki's LP bound for graphs to obtain the 

following general upper bound for v(r, 0). 
Theorem 8 (Cioaba, Koolen, Nozaki and Vermette [8]). Given integers 
r, t 2: 3 and a non−negative real number c, let T(r, t, c) be the t x t tridiagonal 
matrix: 

0 r 
1 0 r − l 

1 0 r − l 
T(r, t, c) = 

1 0 r −1 
C r − C 
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If 0 equals the second largest eigenvalue 入2(T(r, t, c)) of the matrix T(r, t, c), 
then t−3 

v(r, 0) :::; 1十 Lr(r− it+ . 
− r(r − 1)i−2 

C i=O 
We sketch below the ideas of the proof of this theorem. For j~0, denote 

j 

Gj = LFi, (7) 
i=O 

where the Fis are the orthogonal polynomials defined in equations (2) and 
(3). The polynomials (G 山：：：：。 also form a family of orthogonal polynomials. 
They satisfy the following properties: 

G0(x) = 1, G心） = x+ 1, ら (x) =叶 +x−(r−1) (8) 
Gj(x) = xGj−l − (r − l)Gj_2(x), (9) 

for j~3. 
The eigenvalues of the matrix T = T(r, t, c) are the roots of (x−r)(Gt−l + 

(c − l)Gt_2) and are distinct (see [8, Theorem 2.3]). If we denote them by 
r= 入1>ふ＞．．．＞心 then the polynomial f (x) =¾ ・(x− ふ）几：：：：3(x− 入y
satisfies f (入 i) さ 0 for i~2. It is a bit more involved to check the other 
conditions from Theorem 6 and we refer the reader to [8] for the details to 
see how one can apply Nozaki's LP bound to f and obtain that 

t−2 t−3 f(r) v(r, 0) :::; = L Fi(r) + 犀 (r)/c = 1 + L r(r − ll + c . 
. r(r − 1/−2 

Jo i=O i=O 
To make things more clear, note the following result. 

Proposition 9. Let r 2: 3 be an integer. For any 0 E [−1, 2好ゴ， there
exists an integer t and a positive number c such that 0 is the second largest 
eigenvalue of the matrix M(r, t, c). 

Let 灼 denote the largest root of Gt andμ(t) denote the largest root of 
Ft. Note that 灼 ＝ ー1 < 0 =μ(1) and 

入(2) −1 + v'4r=3 = 2 く好 =μ(2). (10) 

Bannai and Ito [3, Section III.3] showed that 灼 = 2好 =−1 cosT, where 
t+l ニ < T <~- Because Ft = Gt − Gt−1, one can show that 灼 <μ(t) for 
any t (see [8, Prop 2.6] for other properties of these eigenvalues). From the 
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remarks following Theorem 8, note that the second largest eigenvalue 入2(t, c) 
of T(r, t, c) eq 叫 s the largest root of the polynomial (c − l)Gt−l + Gt−2・ 
Because the roots of Gt_2 and Gt−l interlace, one obtains that ふ(t,c) is a 
decreasing function in c and takes values between lime →OO 心(t, c) =入 (t−2)
and lime → 0 >.2(t, c) =μ(t-l)_ Taking into the account what happens when 
c = 1, namely that ふ(t, c) =入 (t−l), we obtain the following result. 

p ropos1tion 10. For c E [1,oo), 入2(t, c) takes any value in the interval 
［入(t−1), 入(t−2)).

Putting these things together, one deduces that ふ(t, c) can take any 
possible value between 入2(2, 1) = −1 and limt →OO 入2(t, c) = 2./7 了=−I. There 
are several infinite families (r, 0) for which the precise values v(r, 0) have 
been determined in [8], but there are several open problems for relatively 
small values of r and 0. For example, v(6, 2) 2: 42 with an example of a 6−
regular graph with 入2= 2 on 42 vertices being the 2nd subconstituent of the 
Hoffman−Singleton graph. Theorem 8 can give v(6, 2) :s; 45 (see [7]). Also, 
we know that v(3, v'2) = 14 (Heawood graph), but we don't know the exact 
value of v(k, ⑫） for any k 2: 3. Lastly, v(k, 局has been determined for 
k = 3 (equals 18 with Pappus graph as an example attaining it) and k = 4 
(it is 35 with the odd graph 04 meeting it), but we don't know it for k 2: 5. 

§3 Alon−Boppana and Serre theorems 
We point out the relevance of these results in the context of Alon−Boppana 
and Serre theorems. A typical Alon−Boppana result is of the form: if r is a 
connected r−regular graph with diameter D 2:: 2k, then 

cos . 7r 

k+l (11) 

See Friedman [16, Corollary 3.6] for the inequality above or Nilli [34, Theorem 
1] for a slightly weaker bound. The equivalent contrapositive formulation of 
inequality (11) is the following: if r is a connected r−regular graph of diameter 
D with 心(r) < 2−/r コcos k:l, then D < 2k. By Moore bound (1), this 
implies that 

IV(r)I :::; mr,2k−1 = 1 + r + r(r − 1) +・ ・ ・+ r(r − 1)2k−2. (12) 

Obviously, the best bound one can achieve here is obtained for that k with 
2~ 丁cos 舟<入 2(r) く 2好 コ ⑯ 出 邸 叩 叩 血 匹 ⑬ 可 皿 ＆ 匝 。
be a real number such that 2v'r−=−I cos I :::; 0 < 2好−−=−1 cos k:l. Given the 
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properties of the largest roots 灼 of the polynomials Gt (see Proposition 10 
and the paragraph containing it), we must have that either 0 E (入 (k−1), 入(k)]
or 0 E (入 (k)' 入(k+l)). If 0 E (入 (k−1), 入(k)], then there exists c1~1 such that 
0 is the largest eigenvalue of the polynomial 伍 + (c1 − l)Gk−1・If r is a 
connected r−regular graph with ふ(r) ::::; 0, then using Theorem 8 we get that 

r(r − 1)k−1 IV( 「）1さv(r, 0) = 1 + r + r(r − 1) +・・・十 r(r − 1t−2 + (13) 
C1 

which is clearly better than (12). If 0 E (入 (k)' 入(k+l)), then there exists ② >1 
such that 0 is the largest eigenvalue of the polynomial Gk+l + (c2 − l)Gk. As 
above, if r is a connected r−regular graph with 入2( 「） ::::; 0, then Theorem 8 
implies that 

r(r − l)k IV(r)I ::::; v(r, 0) = 1 + r + r(r − 1) +・ ・ ・+ r(r − 1t−1 + (14) 
C2 

which is again better than (11). 

§4 Spectral Moore theorems for bipartite graphs 
Building on this work, the author with Koolen and Nozaki extended and re−
fined these results to bipartite regular graphs [9]. Let r~3 be an integer and 
0 be any real number between O and 2..;i 二丁. Define b(r, 0) as the maximum 
number of vertices of a bipartite r−regular graph whose second largest eigen−
value is at most 0. Clearly, b(r, 0) :::; v(r, 0) and a natural question is whether 
or not these parameters are actually the same or not. One can show that 
v(3, 1) = 10 attained by the Petersen graph and that b(3, 1) = 8 attained 
by the 3−dimensional cube. For the bipartite graphs, a linear programming 
bound similar to Nozaki's Theorem 6 from [35] was obtained with the use of 
the following polynomials: 

瓦，i = F2 ふ圧），左＝ F2H1( 喜）
喜 '

for any i~0, where (F. 心 0 were defined earlier in (2) and (3). Let r 
be a bipartite connected regular graph. Its adjacency matrix A has the 

0 N 
form [ゞ。] an: we call N the biadjacency matrix of r. Note that 

応 (A)= for any i~0. The following is called 
the LP bound for bipartite regular graphs. 
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Theorem 11 (Cioaba, Koolen and Nozaki [9]). Let 「be a connected bipartite 
r−regular graph with v vertices and denote by {士 To, ...'土 −−rd} its set of distinct 
eigenvalues, where To= r. If there exists a polynomial f(x) =こし。 fぷ，i(x)
such that f (r り> 0, f(−−r?) さ 0 for each i E {1, ... , d}, Jo > 0, and h~0 
for each j E {1, ... , t}, then 

v さ 2f( 戸）
Jo . (15) 

Equality holds if and only if for each i E {1, ... , d}, f(Tl) = 0 and for each 
j E {l, ... , t}, tr(! 入 (NN り） = 0, and tr(! 入 (NTN)) = 0, where 
N is the biadjacency matrix of r. If equality holds and I} > 0 for each 
j E {1, ... , t}, then the girth of r is at least 2t + 2. 

For any integers t~3, r~3 and any positive c ::; r, let B(r, t, c) be the 
t x t tridiagonal matrix with lower diagonal (1, ... , 1, c, r), upper diagonal 
(r, r − 1, ... , r − 1, r − c), and constant row sum r. Using Theorem 11, the 
following general upper bound for b(r, 0) was obtained in [9]. 

Theorem 12 (Cioaba, Koolen and Nozaki [9]). If 0 is the second largest 
eigenvalue of B(r, t, c), then 

b(r, 0) <'. 2 (豆− l)'+ (r −:)t−3 (r − 1y−2 
i=O 

+ c )  :~M(r, t,c). (16) 

Equality holds if and only if there exists a bipartite distance−regular graph 
whose quotient matrix with respect to the distance−partition from a vertex is 
B(r, t, c) 加 1 :::; c < r or B(r, t − 1, 1) for c = r. 

Define Hj(x) = I: 誓 Fj−2i(x) for j 2: 0. These are orthogonal polyno−
mials and one can show that Hj(x) = xHj_1(x) − (r − l)Hj_2(x) for j 2: 2 
as well as that Hj に）＝ Fj+2(x)−(r−1)2 凡 (x) . The first step m provmg the 
above result is showing that the characteristic polynomial of B(r, t, c) equals 
(x2 − r2)(Ht_2(x) + (c − l)Ht_4(x)). The proof proceeds in similar steps to 
Theorem 8, but is more technical and we refer the reader to [9] for the details. 
Similar to the situation for general graphs, one can show the following. 

Proposition 13. Let r 2'. 3 be an integer. For any 0 E [O, 2Jr−=−1), there 
exists t and c such that 0 is the second largest eigenvalue of B(r, t, c). 

In [9], the authors also proved that for given r and 0, the upper bound 
obtained in Theorem 12 is better than the one in Theorem 8. Theorem 12 has 
applications to various areas and it improves results obtained in the context 
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of coding theory by H0holdt and Janwa [21] and H0holdt and Justensen [22] 
and design theory by Teranishi and Yasuno [39]. 

As in the case of Theorem 8, Theorem 12 has applications for the Alon−
Boppana theorems for bipartite regular graphs. Corollary 4.11 in [9] is a 
consequence of Theorem 12 and states that if r is a bipartite r−regular graph 
of order greater than M(r, t, c) (the right hand−side in Theorem 12), then 
入2 2: 0, where 0 is the second largest eigenvalue of B(r, t, c). Li and Sole [26, 
Theorems 3 and 5] proved that if r is a bipartite r−regular graph of girth 2£, 
then 入2げ） 2: 2Jr=l cos I・This result follows from Corollary 4.11 in [9] 
as 2而＝丁cos 7z is the second largest eigenvalue of B(r, £+ 1, 1) and having 
girth 2£implies that r has at least M(r, £+ 1, 1) vertices. 

§5 Classical Moore problem 
Since the fundamental work of Singleton [38], Hoffman and Singleton [20], 
Bannai and Ito [2] and Damerell [11] in the 1970s, the families of orthogonal 
polynomials (Fj)j;::,::o and (G 山;::,::o have been important in the study of the 
Moore problem (1). It has been observed by several authors (see [13] or 
[31] for example) that if r is connected r−regular of diameter D, eigenvalues 
r= 入1 -~ 入n and /3 = max(I 入叶， I入』）， then

IV(f)I ::; GD(r) − GD(/3) = mr,D − GD(/3), (17) 

where mr,D is the upper bound from the Moore bound (1). Recall that 入(D)
denotes the largest root of GD (x) and satisfies 

7r 2vr−=−I cos − <入 (D) < 2v'r−=−I COS 
7r 

D D+l・ (18) 

Inequality (17) will improve the classical Moore bound (1) when G瓜/3) > 0. 
This will happen when /3 >入 (D). When D = 2, from (10) we know that 
炉 ＝ ―1十v'4r"=3

2 . Note that [13, Theorem 2] contains a typo in the numerator 
of the right hand−side of the inequality (the 1 in the numerator should be a 
−1). The informal description of the result above is that when /3 is large, 
then the order of the graph will be smaller than the Moore bound. Note 
however that if /3 is small, then G瓜/3) may be negative and inequality (17) 
may be worse than the classical Moore bound (1). Our results from [8] may 
be used to handle some cases when /3 is small (actually when ふ is small). 
More precisely, Theorem 8 gives an upper bound for the order of an r−regular 
graph with small second largest eigenvalue regardless of its diameter actually. 

We explain this argument and give some numerical examples in Table 1 
where we listed some values of (r, D) (these values are from [31, page 4]) 
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(r,D) Known Defect Lower Moore Upper 
(8,2) 57 8 2.09503 2.19258 3.40512 
(9,2) 74 8 2.29956 2.37228 3.53113 
(10,2) 91 10 2.46923 2.54138 3.88473 
(4,3) 41 12 2.11232 2.25342 2.88396 
(5,3) 72 34 2.42905 2.62620 3.77862 
(4,4) 98 63 2.53756 2.69963 3.44307 
(5,4) 212 214 2.91829 3.12941 4.41922 
(3,5) 70 24 2.32340 2.39309 2.64401 
(4,5) 364 121 2.89153 2.93996 3.42069 
(3,6) 132 58 2.45777 2.51283 2.75001 
(4,6) 740 717 3.00233 3.08314 3.73149 

Table 1: Numerical results for small (r, D) 

where the maximum orders nr,D of r−regular graphs of diameter D are not 
known. For each such pair, the column labeled Known gives the largest 
known order of an r−regular graph of diameter D. The column Defect equals 
the difference between the Moore bound mr,D and the entry in the Known 
column. The column Moore contains the value of 入(D) rounded below to 
5 decimal points. The column Upper contains the lower bound for T that 
guarantees that inequality (17) will give a lower bound than the value from 
the Known column. For example, for r = 8 and D = 2, if r is an 8−regular 
graph with diameter 2 having T < 3.40512, then IV(f)I < 57. The column 
Lower contains an upper bound for 入2 that guarantees that the order of such 
r−regular graph would be small. For example, for r = 8 and D = 2, our 
Theorem 8 implies that if r is an 8−regular graph with 入2 く 2.0953, then 
IV(f)I < 57. Another way to interpret these results in Table 1 is that if 
one wants to look for a 3−regular graph of diameter 6 with more than 132 
vertices, then the second largest eigenvalue of such putative graph has to be 
between 2.45777 and 2. 75001. 
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