
Journal of Machine Learning Research 22 (2021) 1-39 Submitted 11/19; Revised 1/21; Published 1/21

Asynchronous Online Testing of Multiple Hypotheses

Tijana Zrnic TIJANA.ZRNIC@BERKELEY.EDU
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720, USA

Aaditya Ramdas ARAMDAS@CMU.EDU
Department of Statistics and Data Science

Carnegie Mellon University

Pittsburgh, PA 15232, USA

Michael I. Jordan JORDAN@CS.BERKELEY.EDU

Department of Electrical Engineering and Computer Sciences

Department of Statistics

University of California, Berkeley

Berkeley, CA 94720, USA

Editor: Gabor Lugosi

Abstract
We consider the problem of asynchronous online testing, aimed at providing control of the false discovery rate
(FDR) during a continual stream of data collection and testing, where each test may be a sequential test that
can start and stop at arbitrary times. This setting increasingly characterizes real-world applications in science
and industry, where teams of researchers across large organizations may conduct tests of hypotheses in a
decentralized manner. The overlap in time and space also tends to induce dependencies among test statistics,
a challenge for classical methodology, which either assumes (overly optimistically) independence or (overly
pessimistically) arbitrary dependence between test statistics. We present a general framework that addresses
both of these issues via a unified computational abstraction that we refer to as “conflict sets.” We show how
this framework yields algorithms with formal FDR guarantees under a more intermediate, local notion of
dependence. We illustrate our algorithms in simulations by comparing to existing algorithms for online FDR
control.
Keywords: FDR control, false discovery rate, sequential hypothesis testing, sequential experimentation,
p-values

1. Introduction

As applications of machine learning expand in scope beyond the classical setting of a single decision-maker
and a single dataset, the decision-making side of the field has become increasingly important. Unfortunately,
research on the decision-making side of the field has lagged relative to the pattern-recognition side, often
focusing only on the validity of single decisions. Arguably, however, deployed machine learning models
witness large collections of decisions, typically occurring in an extended asynchronous stream. In such
settings, it is essential to consider error rates over sets of decisions, and not merely over single decisions.

Although it is not a focus of research in machine learning, multiple decision-making has been promi-
nent during the past two decades in statistics, in the wake of seminal research by Benjamini and Hochberg
(1995) on false discovery rate (FDR) control in multiple testing. That literature has, however, principally
focused on batch data analysis and relatively small-scale problems. Modern applications in domains such as
medicine, commerce, finance, and transportation are increasingly of planetary scale, with statistical analy-
sis and decision-making tools being used to evaluate hundreds or thousands of related hypotheses in small
windows of time (see, e.g., Tang et al., 2010; Xu et al., 2015). These testing processes are often sequential,

c�2021 Tijana Zrnic, Aaditya Ramdas, and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v22/19-910.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-910.html

ZRNIC, RAMDAS, AND JORDAN

conducted in the context of a continuing stream of data analysis. The sequentiality is at two levels—each
individual test is often a sequential procedure, terminating at a random time when a stopping criterion is
satisfied, and also the overall set of tests is carried out sequentially, with possible overlap in time. In this
setting—which we refer to as asynchronous online testing—the goal is to control a criterion such as the FDR
not merely at the end of a batch of tests, but at any moment in time, and to do so while recognizing that the
decision for a given test must generally be made while other tests are ongoing.

A recent literature on “online FDR control” has responded to one aspect of this problem, namely the
problem of providing FDR control during a sequence of tests, and not merely at the end, by adaptively setting
the test levels for the tests (Foster and Stine, 2008; Javanmard and Montanari, 2018; Ramdas et al., 2017,
2018). These methods are synchronous, meaning that each test can only start when the previous test has
finished. Our goal is to consider the more realistic setting in which each test is itself a sequential process
and where tests can overlap in time. This is done in real applications to gain time efficiency, and because
of the difficulties of coordination in a large-scale, decentralized setting. To illustrate this point, Figure 1
compares the testing of five hypotheses within an asychronous setting and a synchronous setting. In the
asynchronous setting, the test level ↵t used to test hypothesis Ht is allowed to depend only on the outcomes
of the previously completed tests—for example, ↵3 can depend on the outcome of H1, however not on the
outcome of H2. In the synchronous setting, on the other hand, the test level ↵t can depend on all previously
started (hence also completed) tests. To account for the uncertainty about the tests in progress, the test levels
assigned by asynchronous online procedures must be more conservative. Thus, there is a tradeoff—although
asynchronous procedures take less time to perform a given number of tests they are necessarily less powerful
than their synchronous counterparts. The management of this tradeoff involves consideration of the overall
power achieved per unit of real time, and consideration of the complexity of the coordination required in the
synchronous setting.

Another limitation of existing work on online multiple testing is that the dependence assumptions on the
tested sequence of test statistics, under which the formal false discovery rate guarantees hold, are usually at
one of two extremes—they are either assumed to be independent, or arbitrarily dependent. From a practical
perspective, independence seems overly optimistic as new tests may use previously collected data to formulate
hypotheses, or to form a prior, or as evidence while testing. On the other hand, arbitrary dependence is likely
too pessimistic, as older data and test outcomes with time become “stale,” and no longer have direct influence
on newly created tests. We see that a reconsideration of dependence is natural in the setting of online FDR
control, and is particularly natural in the asynchronous setting, given that tests that are being conducted
concurrently are often likely to be dependent, since they may use the same or highly correlated data during
their overlap.

We therefore define and study a notion of local dependence, and place it within the context of asyn-
chronous multiple testing. Working with p-values for simplicity, and letting Pt denote the t-th tested p-value,
we say that a sequence of p-values {Pt} satisfies local dependence if the following condition holds:

for all t > 0, there exists Lt 2 N such that Pt ? Pt�Lt�1, Pt�Lt�2, . . . , P1, (1)

where {Lt} is a fixed sequence of parameters which we will refer to as “lags.” Clearly, when Lt = 0 for all t,
we obtain the independent setting, and when Lt = t, we recover the arbitrarily dependent setting. If Lt ⌘ L

for all t, condition (1) captures a lagged dependence of order L.
To further emphasize the natural connection between asynchrony and local dependence, consider the

simple setting in Figure 2. This diagram captures the setting in which a research team is collecting data over
time, and decides to run multiple tests in a relatively short time interval. For example, such a situation might
arise when testing multiple treatments against a common control (Robertson and Wason, 2018), or in large-
scale A/B testing by internet companies (Xu et al., 2015). Since there is overlap in the data these tests use
to compute their test statistics, the corresponding p-values could be arbitrarily dependent. In general several
tests might share data with the first test. Thus the p-values are locally dependent, with the lag parameter being
equal to the number of consecutive tests that share data.

In this work, we reinforce this connection between asynchronous online testing and dependence by devel-
oping a general abstract framework in which, from an algorithmic point of view, these two issues are treated

2

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Figure 1: Testing five hypotheses synchronously (top) and asynchronously (bottom). In both cases, the test
levels ↵t depend on the outcomes of previously completed tests, which in the synchronous case includes all
previously started tests. At the start time of experiment t, Wt�1 is used to denote the remaining “wealth”
for making false discoveries. At the end of experiment t, a p-value Pt and its corresponding decision Rt : =
1 {Pt  ↵t} are known, which is used to adjust the available wealth at the start time of the next new test.

Figure 2: Example of p-values within a short interval computed on overlapping data. They exhibit local
dependence; for example, P3 and P4 are independent of P1.

with a single formal structure. We do so by associating with each test a conflict set, which consists of other
tests that have a potentially adversarial relationship with the test in question. Within this framework, we de-
velop algorithms with provable guarantees on the rate of false discoveries. The core idea is to enforce a notion
of pessimism with regard to the conflict set—when computing a new test level, the algorithm “hallucinates”
the worst-case outcomes of the conflicting tests.

We derive procedures that handle conflict sets as strict generalizations of current state-of-the-art online
FDR procedures; indeed, when there are no conflicts, for example when there is no asynchrony and when the

3

ZRNIC, RAMDAS, AND JORDAN

p-values are independent, our solutions recover LORD (Javanmard and Montanari, 2018), LOND (Javanmard
and Montanari, 2015), and SAFFRON (Ramdas et al., 2018), the latter of which recovers alpha-investing
(Foster and Stine, 2008) as a special case for a particular choice of parameters. On the other hand, if the
conflict sets are as large as possible—for example, if the parameter Lt or the number of tests run in parallel
tend to infinity—our algorithms behave like alpha-spending,1 which was designed to control a more stringent
criterion called the family-wise error rate (FWER), under any dependence structure. Independently, we also
prove that the original LOND procedure controls the FDR even under positive dependence (PRDS), the first
online procedure to provably have this guarantee under the PRDS condition that is popular in the offline FDR
literature (Benjamini and Yekutieli, 2001; Ramdas et al., 2019).

Organization. The rest of this paper is organized as follows. After a presentation of the general problem
formulation and related work, Section 2 presents the key notion of conflict sets. We present two general
procedures based on conflict sets, deferring their formal FDR guarantees to Section 6. In Section 3, we couch
asynchronous testing in terms of conflict sets. In a similar fashion, in Section 4, we describe synchronous
testing of locally dependent p-values using conflict sets, and present procedures having FDR guarantees
within this environment. Section 5 then combines the ideas of local dependence and asynchronous testing into
an overall framework designed for testing asynchronous batches of dependent p-values. Section 6 provides
additional, stronger guarantees of the presented algorithms, which hold under more stringent assumptions on
the p-value sequence. In Section 7 we present simulations designed to explore our methods, comparing them
to existing procedures that handle dependent p-values. Finally, we conclude the paper with a short discussion
in Section 8. All proofs are deferred to the Appendix.

1.1 Technical preliminaries

We briefly overview the technical background upon which our work builds. Recall that the false discovery

rate (FDR) (Benjamini and Hochberg, 1995) is defined as follows:

FDR ⌘ E [FDP] = E

|H

0
\R|

|R| _ 1

�
,

where H
0 is the unknown set of true null hypotheses and R is the set of hypotheses rejected by some proce-

dure. Formally we have H
0 = {i : Hi is true}, R = {i : Hi is rejected}. The random ratio appearing inside

the expectation is called the false discovery proportion (FDP). It is also of theoretical and practical interest to
study a related metric called the modified false discovery rate (mFDR):

mFDR ⌘
E
⇥
|H

0
\R|

⇤

E [|R| _ 1]
.

Foster and Stine (2008) show that in the long run the mFDR behaves similarly to the FDR in an online
environment. Similarly, Genovese and Wasserman (2002) prove that the mFDR and FDR achieved by the
celebrated Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) become equivalent as the num-
ber of hypotheses tends to infinity. In this work, we mainly focus on the control of mFDR, as we can provide
simple proofs under less restrictive assumptions. Importantly, in the Appendix we provide a side-by-side
comparison of the mFDR and FDR for all of the experiments in this paper; as we show there, the plots for
mFDR and FDR are visually indistinguishable when the number of non-nulls is non-negligible, and mFDR
dominates the FDR when non-nulls are sparse. Thus, our experiments suggest that mFDR control suffices for
FDR control as well.

In addition, we point out one advantage of mFDR over FDR which is especially relevant in the online
context. Suppose that different sequences of hypotheses are tested with different algorithms controlling the
mFDR. Then, one can retroactively group the set of discoveries resulting from these different algorithms,

1. Alpha-spending is a generalization of the Bonferroni correction in which the assigned test levels do not have to be equal. In other
words, the Bonferroni correction suggests testing n hypotheses under level ↵/n, while alpha-spending merely requires

Pn
i=1 ↵i 

↵, where ↵i is the test level for the i-th hypothesis.

4

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

all the while knowing that the mFDR is still controlled. If the original sets of discoveries come with FDR
guarantees only, one cannot argue FDR control over the overall batch of discoveries. This decentralized
testing of different sequences using different algorithms is particularly aligned with the online FDR setup,
where not all hypotheses are known in advance. In fact, this “online” property of the mFDR was recognized
even within offline FDR control (van den Oord, 2008).

To simplify our presentation, we will often suppress the distinction, referring to both of these metrics as
“FDR.”

In online FDR control, the set of rejections possibly changes at each time step, implying changes in
mFDR and FDR. Therefore, in online settings, we have to consider R(t), which is the set of rejections up to
time t, and the naturally implied mFDR(t) and FDR(t). We will also use the symbol V(t) : = R(t) \H

0 to
denote the set of false rejections made up to time t. The main objective of online FDR algorithms is to ensure
mFDR(t)  ↵ or FDR(t)  ↵, for a chosen level ↵ and for all times t.

Many of the online FDR algorithms that have been proposed to date in the literature are special cases of the
generalized alpha-investing (GAI) framework (Aharoni and Rosset, 2014). The initial interpretation of these
algorithms, as put forward by Foster and Stine (2008), relied on a notion of dynamically changing “alpha-
wealth.” Ramdas et al. (2017, 2018) subsequently presented an alternative perspective on GAI algorithms.
In this view, GAI algorithms are viewed as keeping track of an empirical estimate of the true false discovery
proportion, denoted dFDP(t), and they assign test levels ↵t in a way that ensures dFDP(t)  ↵ for all time
steps t, where ↵ is the pre-specified FDR level. In the earlier paper (Ramdas et al., 2017), they show that
such control of FDP estimates also yields FDR control. This perspective—which is equivalent to the earlier,
wealth characterization of GAI algorithms—will provide the mathematical framework upon which we build
in this paper.

Finally, we recap the typical assumptions made for null p-values in the FDR literature. If a hypothesis Hi

is truly null, then the corresponding p-value Pi is stochastically larger than the uniform distribution (“super-
uniformly distributed,” or “super-uniform” for short), meaning that:

If the null hypothesis Hi is true, then Pr{Pi  u}  u for all u 2 [0, 1].

This condition is sometimes generalized to the online FDR setting by incorporating a filtration F
i�1, resulting

in the following assumption:

If the null hypothesis Hi is true, then Pr
�
Pi  u

�� F i�1

 u for all u 2 [0, 1], (2)

Here, F i captures all relevant information about the first i tests. As we discuss in later sections, however,
this condition can be overly stringent when there are interactions between p-values, and we will accordingly
introduce weaker super-uniformity assumptions.

1.2 Problem formulation and contribution

We now give a formal introduction to the problem setting, at the same time introducing the necessary notation
for the sections to follow.

At time step t 2 N, the test of hypothesis Ht begins, and the p-value resulting from this test is denoted Pt.
In contradistinction to the standard online FDR paradigm, Pt is not required to be known at time t; indeed,
this test is not fully performed at time t, but is only initiated at time t. The decision time for Ht is denoted
Et; this is the time of possible rejection. Fully synchronous testing is thus an instance of this setting in which
Et = t, as assumed in classical online FDR work. In general, however, Et 6= t. Note also that, unlike in the
classical online FDR problem, the set of rejections R(t) and false rejections V(t) at time t now consider not
all {Pi : i  t}, but only {Pi : Ei  t}:

R(t) = {i 2 [t] : Ei  t,Hi is rejected}, V(t) = R(t) \H
0
.

In addition, to capture the desideratum of statistical validity in the face of data reuse, we allow the possibility
of the p-values not being completely independent; in particular, we allow local dependence. Here, we envi-
sion Pt having arbitrary, possibly adversarial dependence on Pt�1, . . . , Pt�Lt , while the dependence between

5

ZRNIC, RAMDAS, AND JORDAN

Pt and Pj , j < t�Lt is limited. For simplicity the reader can assume Pt ? Pt�Lt�1, Pt�Lt�2, . . . , P1, how-
ever in later sections we will discuss some restricted forms of dependence between Pt and Pj , for j < t�Lt,
handled by our results.

We treat Et as fixed but unknown before time Et itself. While the p-value and the duration of a test
could indeed be dependent random quantities—for example, when the duration is a reasonably good proxy
for sample size—here Et is not the absolute duration on a meaningful time scale, but it merely captures how
many tests have started before the decision for the t-th test. Thus, treating Et as fixed roughly corresponds
to asserting independence between Pt and the number of newly created tests before test t finishes. As we
envision a highly decentralized setting with little between-test coordination, we deem this assumption reason-
able. We do, however, acknowledge the possibility of a more coordinated setting with Pt and Et randomly
coupled, and this is an important avenue for future work.

Under the setup described above, the goal is to produce test levels ↵t dynamically at the beginning of
the t-th test, such that, despite arbitrary local dependence and regardless of the decision times Et, the false
discovery rate is controlled at any given moment under a pre-specified level ↵. In this work, we provide
procedures which achieve this goal, both at all fixed times t 2 N, as well as adaptively chosen stopping
times.

It is important to remark that, even under independence of p-values, we cannot simply ignore the asyn-
chronous aspects of the problem and naively apply an existing online FDR algorithm. We discuss two such
plausible but naive applications of online methodology, and discuss why they are invalid.

One natural adjustment could be to apply an online FDR algorithm whenever each test finishes (that is,
whichever test is the t-th one to finish, test it at level ↵t). This scheme would only assign ↵t to a test at
the end of that test, which is unrealistic because sequential hypothesis tests—parametric tests such as Wald’s
sequential probability ratio test (SPRT), and nonparametric tests as well (Balsubramani and Ramdas, 2016)—
typically require specification of the target type I error level in advance because it is an important component
of their stopping rule. For examples of sequential tests in clinical trials, see, e.g., (Bartroff et al., 2012;
Bartroff and Lai, 2008; Bartroff and Song, 2014). The same constraint holds for more recent, multi-armed
bandit approaches to A/B testing (Yang et al., 2017; Jamieson and Jain, 2018). Thus, we need to specify ↵t at
the start of test t. That said, there do exist tests which only require the test level at decision time. If all tests
in the sequence are of the latter kind, existing online methodology is indeed sufficient; however, we find this
assumption too strong, especially given the popularity of bandit approaches in modern testing applications.

Alternatively, one could imagine computing ↵t at the start of test t by applying an online FDR algorithm
to the completed tests only, and ignoring those that have not finished. From the theory perspective, this
clearly comes with no formal guarantee; for example, one could imagine starting N tests, and all N tests
finishing at once, after the N -th test has started. Given that there are no completed tests at the time of test
level assignment, all tests would receive the same level, which would violate the FDR requirement under any
natural setting (we ignore trivial special cases such as all hypotheses being non-null). Somewhat less trivially,
Figure 3 plots the FDR and mFDR achieved by this naive heuristic in a simulation setting from Section 7.
When the proportion of non-null p-values is relatively small—as one would generally expect in practice—this
heuristic severely violates the FDR requirement.

1.3 Related work

There is a vast literature on sequential testing (see, e.g., Wald, 1945; Chernoff, 1959; Albert, 1961; Naghshvar
and Javidi, 2013). We do not aim to contribute to that literature per se; rather, our goal is to consider multiple
testing through a more realistic lens as an outer sequential process, one that acknowledges the existence of
inner sequential processes that are based on sequential testing.

Likewise, there is a large and growing literature on false discoveries in multiple testing, aimed at solving
a range of problems, often addressing issues of scientific reproducibility in research (Ioannidis, 2005). Here
we focus on work whose methods or objectives have the most overlap with ours. In particular, we focus on
literature on “online” methods in multiple testing, and compare and contrast those solutions to the ones we
propose.

6

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

naive LORD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F

D
R

naive LORD

Figure 3: FDR and mFDR achieved by a naive application of the LORD algorithm with target FDR level
↵ = 0.05 (Javanmard and Montanari, 2018) in an asynchronous environment. We adopt the experimental
setting from Section 7; we set the asynchrony parameter to p = 1/150, and the mean of observations under
the alternative to µc = 3. Here, ⇡1 is the proportion of tested hypotheses which are non-null. Both FDR and
mFDR are controlled only for ⇡1 � 0.4.

The most salient difference is that we address the general problem of asynchrony; when there is no
asynchrony, meaning Et = t, our approach recovers a slew of existing methods, including work by Foster
and Stine (2008), Aharoni and Rosset (2014), Javanmard and Montanari (2015, 2018), Ramdas et al. (2017,
2018).

Most previous work also differs from ours in that it assumes that condition (2) holds. This condition is
too strong for the notion of local dependence this paper considers; indeed, in Section 4 we present a simple
toy example in which this assumption fails. An exception is the work of Javanmard and Montanari (2015,
2018), who discuss sufficient conditions for achieving FDR control under arbitrary dependence within the
p-value sequence. However, these conditions essentially imply an alpha-spending-like correction for the test
levels, making their proposed procedure overly conservative. We elaborate on this argument and empirically
demonstrate this observation in Section 7.

Robertson and Wason (2018) have investigated the performance of several online FDR algorithms empir-
ically, including all of those listed above, when the p-value sequence is positively dependent. They do not,
however, provide any formal guarantees for those procedures that have thus far been shown to work only un-
der independence. We make partial progress to justifying their empirical observations by proving that LOND
provably controls FDR under positive dependence.

Recently, there has also been some work specifically motivated by controlling false discoveries in A/B
testing in the tech industry (Yang et al., 2017). However, their setup was again fully synchronous, and assume
that the observations are independent across all experiments, which are the two assumptions this paper deems
too strong and circumvents.

The vast literature on adaptive data analysis (Dwork et al., 2015b,a; Bassily et al., 2016; Blum and Hardt,
2015) focuses on an online setting where a distribution is adaptively queried for a chosen functional, and at
each step these queries are answered by making use of a single data set coming from that distribution. This
line of work also has the goal of preventing false discovery, however by proving generalization bounds, rather
than controlling the FDR in online multiple testing.

Ordered hypothesis testing considers tests for which additional prior information is available, and allows
sorting null hypotheses from least to most promising (Li and Barber, 2017; Lei and Fithian, 2016; Lynch
et al., 2017; G’Sell et al., 2016). In these papers, however, the word “sequential” or “ordered” does not refer
to online testing; these methods are set in an offline environment, requiring access to all p-values at once. In
our approach, we allow testing a possibly infinite number of hypotheses with no available knowledge of the
future p-values.

7

ZRNIC, RAMDAS, AND JORDAN

2. Conflict sets: the unifying approach
In this section we describe a general, abstract formulation of multiple testing under asynchrony and depen-
dence, which unifies the seemingly disparate solutions of this paper and provides the point of departure for
deriving specific algorithms. We describe two such procedures, which we will refer to as LORD* and SAF-
FRON*, that control mFDR within this framework.

LORD* and SAFFRON* build off the LORD (Javanmard and Montanari, 2018) and SAFFRON (Ramdas
et al., 2018) algorithms. Like SAFFRON, SAFFRON* allows the user to choose a parameter �t � ↵t, which
is the “candidacy threshold” at time t, meaning that, if Pt  �t, then Pt is referred to as a candidate for
rejection. We will discuss this extension introduced in the SAFFRON procedure further below; for now, we
simply note that it is an analog of the notion of “null-proportion adaptivity” in the offline multiple testing
literature. Indeed, Ramdas et al. (2018) argue that LORD can be seen as the online analog of the BH pro-
cedure (Benjamini and Hochberg, 1995), while SAFFRON can be seen as the online analog of the adaptive
Storey-BH procedure (Storey, 2002; Storey et al., 2004).

Throughout we let Rt : = 1 {Pt  ↵t} denote the indicator for rejection, and Ct : = 1 {Pt  �t} denote
the indicator for candidacy.

We now define several filtrations, which capture the increasing information available to the experimenter
as well as the FDR algorithm.

By L
t, we denote a filtration that captures all relevant information about the tests that started up to, and

including, time t, for the LORD* procedure. Formally, Lt : = �({R1, . . . , Rt, }). For SAFFRON*, we also
incorporate candidates in the filtration: St : = �({R1, C1, . . . , Rt, Ct}). Many of our arguments will apply
to both algorithms; we accordingly use F

t to indicate a generic filtration that can be either Lt or St.
With each test and its corresponding hypothesis, we associate a conflict set. For the test starting at step

t, we denote this set X t; it consists of a (not necessarily strict) subset of {1, . . . , t � 1}. For example, X 5

could be {3, 4}. The reason why we refer to this set as conflicting for test t is because it contains the indices
of tests that interact with the t-th test in some unknown way. This could mean that, at time t, there is missing
information about these tests, or that there potentially exists some arbitrary dependence between those tests
and the upcoming one. More explicitly, we let

X
t = {i 2 [t� 1] : Ei � t} [{t� Lt, . . . , t� 1},

where Lt is the sequence of dependence lags. In words, X t consists of all tests that have not finished running
or are locally dependent with test t.

We require the conflict sets to be monotone: each index t has to be in a continuous “block” of conflict
sets. More formally, if there exists j such that t 2 X

j , then t 2 X
i, for all i 2 {t + 1, . . . , j}. Without any

constraint on the sequence {Lt}, the conflict sets need not be monotone. Therefore, we translate the condition
of monotonicity of conflict sets into a constraint on the sequence {Lt} as: Lt+1  Lt +1. Informally, this is
just a requirement that the “non-conflicting information” does not decrease with time. This will ensure that
the test level ↵t and candidacy threshold �t have at least as much knowledge about prior tests as ↵t�1 and
�t�1. Moreover, this requirement is indeed a natural one, and usual testing practices satisfy it; for example,
this condition holds if dependent p-values come in disjoint blocks.

We define the last-conflict time of test t as ⌧t : = max{j : t 2 X
j
}. If test t never appears in a conflict

set, we take ⌧t = t.
Consider again the filtration F

t. A subtlety we initially ignored is that the superscript t does not corre-
spond to the physical quantity of time. In particular, different tests may run for different lengths of time and
the decision time for each test may even be random; therefore, Rt might be known before Rt�1. This moti-
vates us to define a filtration as a counterpart of F t whose increase at each step corresponds to the real increase
in knowledge with time. We introduce F

�X
t

as the non-conflicting filtration; the sigma-algebra F
�X

t

con-
tains information about the tests that started before time t which are not in the conflict set of test t. In partic-
ular, L�X

t

: = �({Ri : i  t� 1, i 62 X
t
}) for LORD*, S�X

t

: = �({Ri, Ci : i  t� 1, i 62 X
t
}) for SAF-

FRON*, and again we use F
�X

t

to generically denote either L�X
t

or S�X
t

. We have that F�X
t

✓ F
t�1.

Notice that we promised to make this set a filtration; if X t was an arbitrary set of indices, this would not in

8

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

general be satisfied. However, it is straightforward to verify that the monotonicity property of conflict sets
ensures that F�X

t

indeed forms a filtration.
We will design ↵t and �t to be F

�X
t

-measurable. This is essentially the idea of pessimism mentioned
earlier—among all tests that finished before the t-th one starts, ↵t and �t have to ignore the ones conflicting
with test t in order to guard against unknown interactions that the conflicting tests have with the upcoming
one.

Finally, we will generally require the following super-uniformity condition for null p-values:

If the null hypothesis Ht is true, then Pr
n
Pt  u

��� F�X
Et
o
 u, for all u 2 [0, 1]. (3)

This is a condition that requires validity of null p-values: given the knowledge one has before making a
decision, if a hypothesis is truly null, it has to be well-behaved. However, unlike in classical online FDR
work, we do not have F

�X
Et = F

t�1. As we discuss further in later sections, assumption (3) will allow
arbitrary local dependence, as well some limited, but nevertheless important, forms of dependence between
distant p-values. Note that, if the distant p-values are independent—a setting we study in Section 4 and
Section 5—this condition is automatically satisfied.

2.1 The LORD* algorithm

Following a recently proposed framework (Ramdas et al., 2017), we define LORD* and SAFFRON* as
arbitrary update rules which control a certain estimate of the false discovery proportion under a pre-specified
level ↵; the two algorithms differ in their choice of estimate. In Subsection 2.3, we introduce additional
analysis tools which will justify the choice of these estimates.

LORD* is defined as any update rule for ↵t that ensures that the estimate

dFDPLORD*(t) : =

P
jt ↵j

(
P

jt,j 62X t Rj) _ 1
.

is at most ↵ for all t 2 N.
Below we state two different versions of LORD*, using two different test level updates. Algorithm 1

generalizes the LORD++ procedure (Javanmard and Montanari, 2018; Ramdas et al., 2017), while Algorithm
2 generalizes its predecessor, the LOND procedure (Javanmard and Montanari, 2015). These are not the only
ways of assigning ↵j that are consistent with the assumptions and satisfy the definition of LORD* in their
control of dFDPLORD*, but they are our focus in the remainder of the paper. Other rules can be developed as
extensions of the rules in the LORD paper (Javanmard and Montanari, 2018).

To state the algorithms in this paper, we will make use of the variable rk, which refers to the first time
that k rejections are non-conflicting, meaning that there exist k rejected hypotheses which are no longer in
the conflict set at that time. That is, we define rk as:2

rk : = min{i 2 [t] :
iX

j=1

Rj1 {⌧j  i} � k}. (4)

Algorithm 1 The LORD++ algorithm under general conflict sets (a special case of LORD*)
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, initial wealth W0  ↵

Set ↵1 = �1W0

for t = 1, 2, . . . do
start t-th test with level ↵t

↵t+1 = �t+1W0 + �t+1�r1 (↵�W0) +
⇣P

j�2 �t+1�rj

⌘
↵

end

2. Here, as well as in the rest of this paper, we define the minimum of an empty set to be �1.

9

ZRNIC, RAMDAS, AND JORDAN

Algorithm 2 The LOND algorithm under general conflict sets (a special case of LORD*)
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1

Set ↵1 = �1↵
for t = 1, 2, . . . do

start t-th test with level ↵t

↵t+1 = ↵�t+1

⇣
(
Pt

j=1 1 {Pj  ↵j , ⌧j  t}) _ 1
⌘

end

It is a simple algebraic exercise to verify that the two update rules given for ↵t indeed guarantee that
dFDPLORD*(t)  ↵ for all t 2 N.

2.2 The SAFFRON* algorithm

In response to LORD and LOND’s FDP estimate, the SAFFRON method was derived after observing that
the former might be overly conservative estimates of the FDP. Indeed, if the tested sequence contains a
significant fraction of non-nulls, and if the non-nulls yield strong signals for rejection, the realized FDP and
the estimated FDP might be very far apart. Motivated by this observation, SAFFRON was developed as the
adaptive counterpart of LORD which keeps track of an empirical estimate of the null proportion, similar to the
way in which Storey et al. (Storey, 2002; Storey et al., 2004) improved upon the BH procedure (Benjamini
and Hochberg, 1995). We thus propose the SAFFRON* algorithm to maintain control over the following
estimate:

dFDPSAFFRON*(t) : =

P
j<t,j 62X t

↵j

1��j
1 {Pj > �j}+

P
j2{X t[{t}}

↵j

1��j

(
P

jt,j 62X t Rj) _ 1
.

Any update rule for ↵t and �t ensuring dFDPSAFFRON*(t)  ↵ for all t 2 N satisfies the definition of SAF-
FRON*. Algorithm 3 and Algorithm 4 describe two particular instances of SAFFRON*, obtained for specific
choices of the sequence {�j}. We present an algorithmic specification of SAFFRON* for the constant se-
quence {�j} ⌘ � in Algorithm 3. A different case of SAFFRON* is presented in Algorithm 4, where we use
the alpha-investing strategy �j = ↵j (Foster and Stine, 2008; Ramdas et al., 2018).

For the updates below, recall the definition of rk from equation (4).

Algorithm 3 The SAFFRON* algorithm for constant � under general conflict sets
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, candidate threshold � 2 (0, 1), initial

wealth W0  ↵
↵1 = (1� �)�1W0

for t = 1, 2, . . . do
start t-th test with level ↵t

↵t+1 = min
n
�, (1� �)

⇣
W0�t+1�C0+ + (↵�W0)�t+1�r1�C1+ +

P
j�2 ↵�t+1�rj�Cj+

⌘o
,

where Cj+ =
Pt

i=rj+1 Ci1
�
i 62 X t

end

Algorithm 4 The alpha-investing algorithm under general conflict sets (a special case of SAFFRON*)
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, initial wealth W0  ↵

s1 = �1W0

↵1 = s1/(1 + s1)
for t = 1, 2, . . . do

start t-th test with level ↵t

st+1 = W0�t+1�R0+ + (↵�W0)�t+1�r1�R1+ +
P

j�2 ↵�t+1�rj�Rj+ , where Rj+ =
Pt

i=rj+1 Ri1
�
i 62 X t

↵t+1 = st+1/(1 + st+1),
end

10

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

2.3 Oracle estimate under conflict sets

Following Ramdas et al. (2018), we analyze LORD* and SAFFRON* through an oracle estimate of the false
discovery proportion. This quantity serves as a good estimate of the true false discovery proportion, and
controlling it under a pre-specified level guarantees that FDR is also controlled. Let the oracle estimate of the
FDP be defined as:

FDP⇤(t) : =

P
jt,j2H0 ↵j

(
P

Ejt Rj) _ 1
,

where we recall that ↵j is required to be F
�X

j

-measurable, across all j. The following proposition gives
formal justification for using FDP⇤(t) as a proxy for the true FDP.

Proposition 1 Suppose that the null p-values are super-uniform conditional on F
�X

Et
, meaning Pr

n
Pt  u

��� F�X
Et
o


u, for all u 2 [0, 1] and t 2 H
0
. Then, for all times t 2 N, the condition FDP⇤(t)  ↵ implies that

mFDR(t)  ↵.

Note that Proposition 1 is technically true even if we only consider tests for which Ej  t, j 2 H
0 in

the numerator of FDP⇤(t). However, it is not clear how to achieve this without ensuring FDP⇤(t)  ↵. For

example, even if
P

Ejt,j2H0 ↵j

(
P

Ejt Rj)_1  ↵ at time t, it is possible that in subsequent rounds all tests will finish

without any new rejections, thus increasing the FDP estimate. Therefore, we need to assign ↵j conservatively,
such that this estimate is provably controlled under ↵, despite unknown future outcomes which might augment
the FDP estimate.

The fact that ↵t is measurable with respect to F
�X

t

should give us pause. Even though we are only
required to guarantee FDP⇤(t)  ↵, we cannot rely on the rejection indicators that push down the value of
FDP⇤(t), if they are in the current conflict set. As a consequence, ↵t has to ensure FDP⇤(t)  ↵ for the
worst-case configuration of conflicting rejections; that is, when Rj = 0 for all j 2 X

t. This motivates us to
define the oracle estimate of the FDP under conflict sets:

FDP⇤

conf(t) : =

P
jt,j2H0 ↵j

(
P

jt,j 62X t Rj) _ 1
. (5)

Since this quantity is only more conservative than the oracle estimate, controlling it under ↵ will preserve
the guarantees given by Proposition 1. However, notice an unfortunate fact about both oracle estimates—they
depend on the unobservable set H0. This implies that not even FDP⇤

conf(t) can be controlled tightly. For this
reason, LORD* and SAFFRON* construct empirical estimates of FDP⇤

conf(t), such that the properties given
in Proposition 1 are retained. For LORD*, claiming mFDR control at fixed times boils down to a simple
observation: for any chosen ↵, FDP⇤

conf(t)  dFDPLORD*(t)  ↵, hence by Proposition 1 mFDR is controlled.
SAFFRON* controls mFDR by virtue of ensuring that, on average, FDP⇤

conf(t)  ↵. We make this argument
formal in Section 6.

3. Example 1: Asynchronous online FDR control
In this section, we look at one instantiation of the conflict-set framework, which considers arbitrary asyn-
chrony but limits possible dependencies between p-values. This immediately gives two procedures for asyn-
chronous online testing as special cases of LORD* and SAFFRON*. From here forward we will refer to these
methods as LORDasync and SAFFRONasync, respectively. In Section 6, we provide mFDR guarantees of these
procedures in terms of the general conflict-set setting, as well as additional FDR guarantees for LORDasync
and SAFFRONasync under a strict independence assumption.

In this section, the only conflicting tests are those whose outcomes are unknown, since the allowed de-
pendencies will be fairly restrictive. Therefore, the asynchronous conflict set at time t is:

X
t
async = {i 2 [t� 1] : Ei � t},

11

ZRNIC, RAMDAS, AND JORDAN

which is observable at time t � 1. This simplified conflict set implies that the last-conflict time of test t is,
naturally, ⌧t = Et.

Denote by Rt the set of rejections at time t, and similarly let Ct denote the set of candidates at time t:

Rt = {i 2 [t] : Ei = t, Pi  ↵i}, Ct = {i 2 [t] : Ei = t, Pi  �i}.

Therefore, R(t) = [
t
i=1Rt. With this, we can write the non-conflicting filtrations L�X

t

async and S
�X

t

async compactly
as:

L
�X

t

async : = �(R1, . . . ,Rt�1), S
�X

t

async : = �(R1, C1, . . . ,Rt�1, Ct�1).

Since the arguments for LORDasync and SAFFRONasync have significant overlap, for brevity we write F
�X

t

async

to refer to both L
�X

t

async and S
�X

t

async , where possible. Recall from Section 2 that ↵t is designed to be measurable
with respect to F

�X
t

async ; here this essentially means that it is computed as a function of the outcomes known
by time t. For SAFFRONasync, additionally �t is S

�X
t

async -measurable. More generally, for LORDasync, we
can choose ↵t = ft(R1, . . . ,Rt�1), for any deterministic function ft as long as the correct FDP estimate
is controlled. The SAFFRONasync procedure also keeps track of encountered candidates, hence we can take
↵t = gt(R1, C1, . . . ,Rt�1, Ct�1) and �t = ht(R1, C1, . . . ,Rt�1, Ct�1), for deterministic functions gt and
ht.

Our mFDR guarantees hold under a condition which we term asynchronous super-uniformity:

If the null hypothesis Ht is true, then Pr
n
Pt  u

��� F�X
Et

async

o
 u, for all u 2 [0, 1]. (6)

This condition essentially shapes the allowed dependencies between p-values. It is immediately implied if
the p-values are independent. However, it is strictly weaker. For example, it allows revisiting p-values which
were previously not rejected. Suppose we have tested independent p-values thus far, and we failed to reject
Ht, that is Pt > ↵t. If at a later time s > t we have a higher error budget ↵s > ↵t, we can, somewhat
surprisingly, test Ht using the same p-value Pt again at time s. This clearly violates independence of Pt and
Ps (as they are identical), however condition (6) is nevertheless satisfied. Indeed, for all u > ↵t:

Pr
n
Ps  u

��� F�X
Es

async

o
= Pr{Ps  u | Ps > ↵t} 

u� ↵t

1� ↵t
 u,

where the equality follows because Ps ? F
�X

Es

async | 1 {Ps > ↵t}. On the other hand, if u  ↵t, Pr{Ps  u | Ps > ↵t} =
0  u, and hence condition (6) follows.

The LORDasync and SAFFRONasync algorithms

We turn to an analysis of how the abstract LORD* and SAFFRON* procedures translate into our asyn-
chronous testing scenario, for the particular choice of conflict set X t

async. They utilize all available informa-
tion; the conflict set—the tests whose outcomes the algorithms ignore—consists only of the tests about which
we temporarily lack information.

Plugging in the definition of X t
async, we obtain the following empirical estimate of the false discovery

proportion for LORDasync:

dFDPLORDasync(t) =

P
jt ↵j

(
P

jt 1 {Pj  ↵j , Ej < t}) _ 1
.

For SAFFRONasync, we obtain the following estimate:

dFDPSAFFRONasync(t) =

P
jt

↵j

1��j
(1 {Pj > �j , Ej < t}+ 1 {Ej � t})

(
P

jt 1 {Pj  ↵j , Ej < t}) _ 1
.

12

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Consider the dynamics of these two algorithms, and how their pessimism comes into play. Whenever
a test starts, they increase their FDP estimate, expecting that the resulting p-value will have no favorable
contribution. However, when the test in question ends, they readjust the FDP estimate if they see a positive
outcome, namely a candidate and/or rejection. This shows that testing in parallel indeed has a cost—due to
pessimistic expectations about the tests in progress, the algorithms remain conservative when assigning a new
test level. For this reason, asynchronous testing should be used with caution, and the number of tests run in
parallel should be monitored closely. Indeed, in the asymptotic limit where the number of parallel tests tends
to infinity, the algorithm behaves like alpha-spending; i.e., the sum of all assigned test levels converges to the
error budget ↵.

Substituting X
t for X t

async in Algorithms 1-4 yields procedures for asynchronous online FDR control. The
explicit statements of these algorithms, which correspond to asynchronous versions of LORD++, LOND,
SAFFRON, and alpha-investing, are given in the Appendix.

4. Example 2: Online FDR control under local dependence
In this section, we derive online FDR procedures that handle local dependencies. We begin with the fully
synchronous setting studied in classical online FDR literature, and turn to the asynchronous environment in
the next section.

A standard assumption in existing work on online FDR has been independence of p-values, a requirement
that is rarely justified in practice. Tests that cluster in time often use the same data, null hypotheses depend
on the outcomes of recent tests, etc. On the other hand, arbitrary dependence between any two p-values in
the sequence is also arguably unreasonable—very old data used for testing in the past is usually considered
“stale,” and hypotheses tested a long time ago may bear little relevance to current hypotheses. In light of this,
we consider a notion of local dependence:

for all t > 0, there exists Lt 2 N such that Pt ? Pt�Lt�1, Pt�Lt�2, . . . , P1,

where {Lt} is a fixed sequence of parameters which we refer to as lags.
Since we allow Pt to have arbitrary dependence on the previous Lt p-values, some of these dependencies

might be adversarial toward the statistician, and, with “peeking” into this adversarial set, the nulls might no
longer behave super-uniformly. Suppose we observe a sample X ⇠ N(µ, 1), and wish to test two hypotheses
using this sample. Let the two hypotheses be H1 : µ < 0 and H2 : µ � 0. If, for instance, R1 = 0, we know
that P2  1�↵1 almost surely, implying that P2 is not super-uniform, given the information about past tests.
On the other hand, if we were to ignore the outcome of the first test, P2 would indeed be super-uniform.

This observation motivates us to define the conflict set for testing under local dependence as:

X
t
dep : = {t� Lt, . . . , t� 1}.

The non-conflicting filtrations L�X
t

dep for LORDdep and S
�X

t

dep for SAFFRONdep are respectively given by:

L
�X

t

dep : = �(R1, . . . , Rt�Lt�1), S
�X

t

dep : = �(R1, C1, . . . , Rt�Lt�1, Ct�Lt�1).

Since most formal arguments in this section apply to both procedures, we use F
�X

t

dep to indicate that the
filtration in question could be both L

�X
t

dep and S
�X

t

dep .
In contrast to asynchronous testing, the levels ↵t and �t under local dependence ignore some portion of

available information, specifically the outcomes of the last Lt tests. Notice the difference between these two
settings—in the asynchronous setting, pessimism guards against unknown outcomes, while here pessimism
guards against known outcomes. Perhaps counterintuitively, this observation means that the pessimism of
LORDdep and SAFFRONdep actually guards against possible disadvantageous direct impact of the last Lt

p-values on the upcoming one. In the Appendix we instantiate the test levels and candidacy thresholds
according to Algorithms 1-4, however more generally we allow ↵t = ft(R1, . . . , Rt�Lt�1) for LORDdep, and
↵t = gt(R1, C1, . . . , Rt�Lt�1, Ct�Lt�1) and �t = ht(R1, C1, . . . , Rt�Lt�1, Ct�Lt�1) for SAFFRONdep.

13

ZRNIC, RAMDAS, AND JORDAN

Consider some Pt which is from a null hypothesis. As previously emphasized, we cannot trust Pt to
behave like a true null, given that we already know its last Lt predecessors that have a direct impact on it.
The appropriate super-uniformity condition satisfied by locally dependent p-values thus ignores these last Lt

p-values and is of the following form:

If the null hypothesis Ht is true, then Pr
n
Pt  u

��� F�X
t

dep

o
 u, for all u 2 [0, 1]. (7)

This will allow setting ↵t 2 F
�X

t

dep , while knowing Pr
n
Pt  ↵t

��� F�X
t

dep

o
 ↵t. Importantly, unlike in

the previous section where the appropriate super-uniformity condition implied dependence constraints on the
p-values, condition (7) is immediately true by local dependence.

The LORDdep and SAFFRONdep algorithms

As in Section 3, we analyze the particular instances of LORD* and SAFFRON* that are obtained by taking
the conflict set of Section 2 to be X

t
dep = {t � Lt, . . . , t � 1}. Since this conflict set is deterministic,

unlike X
t
async, the estimate of the false discovery proportion that LORDdep and SAFFRONdep keep track of is

completely determined Lt steps ahead, that is at time t� Lt � 1.
By definition of the general estimates and the conflict set in consideration, LORDdep controls the follow-

ing quantity:

dFDPLORDdep(t) =

P
jt ↵j

(
P

jt,j 62{t�Lt,...,t�1} Rj) _ 1
.

The SAFFRONdep method, on the other hand, controls the estimate:

dFDPSAFFRONdep(t) =

P
j<t�Lt

↵j

1��j
1 {Pj > �j}+

Pt
j=t�Lt

↵j

1��j

(
P

jt,j 62{t�Lt,...,t�1} Rj) _ 1
.

In the case of running asynchronous tests, the algorithms were constructed as pessimistic; however, they
had access to as much information as the statistician performing the tests. Here, that is not the case—LORDdep
and SAFFRONdep choose to ignore the outcomes of completed tests as long as they are in the conflict set of
subsequent tests. Only after the last-conflict time ⌧i, positive outcomes are rewarded by readjusting the
FDP estimate. On the other hand, the statistician’s perspective is different—as soon as round t is over, the
statistician knows the outcome of the t-th test. Just like testing in parallel, testing locally dependent p-values
comes at a cost—if the lags are large, the algorithm keeps increasing the FDP estimate, assigning ever smaller
test levels, waiting for rewards from tests performed a long time ago. In the extreme case of Lt = t, the test
levels steadily decrease so that their sum converges to ↵, regardless of the fact that discoveries have possibly
been made.

Explicit setting-specific algorithms, obtained by substituting X
t for X t

dep in Algorithms 1-4, resulting in
LORD++, LOND, SAFFRON, and alpha-investing under local dependence, are given in the Appendix.

5. Example 3: Controlling FDR in asynchronous mini-batch testing
Here we merge the ideas of the previous two sections, bringing together asynchronous testing and local
dependence of p-values. Although there are various ways one could think of in which these two concepts
intertwine, here we discuss a particularly simple and natural one.

Let a mini-batch represent a grouping of an arbitrary number of tests that are run asynchronously, which
result in dependent p-values; for instance, these tests could be run on the same data. After a mini-batch
of tests is fully executed, a new one can start, testing new hypotheses, independent of the previous batch,
and doing so on fresh data. From the point of view of asynchrony, such a process could be thought of as a
compromise between synchronous and asynchronous testing—batches are internally asynchronous, however
they are globally sequential and synchronous. If all batches are of size one, one recovers classical online

14

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

testing; if the batch-size tends to infinity, the usual notion of asynchronous testing is obtained. Figure 4
depicts an example of a mini-batch testing process with three mini-batches.

Figure 4: Running three mini-batches of tests. The batches are run synchronously, while the tests that com-
prise each of them are run asynchronously. We use Wt,j�1 to denote the remaining "wealth" for making false
discoveries before starting the j-th test in the t-th batch.

We introduce notation that captures this setting. We will use two time indices; Pb,t denotes the p-value
resulting from the test that starts as the t-th one in the b-th batch, testing hypothesis Hb,t. We allow any two
p-values in the same batch to have arbitrary dependence; however, we require any two p-values in different
batches to be independent. This can be written compactly as:

Pb1,i ? Pb2,j , for any b1, b2, i, j, such that b1 6= b2.

We will denote the size of the b-th batch as nb. Thus, the first batch results in P1,1, . . . , P1,n1 , the
second one in P2,1, . . . , P2,n2 , etc. Analogously, the test levels and candidacy thresholds will also be doubly-
indexed; ↵b,t and �b,t are used for testing Pb,t. Further, we define Rb,t : = 1 {Pb,t  ↵b,t}, and Cb,t :
= 1 {Pb,t  �b,t} as the rejection and candidacy indicators, respectively. By Rb we will denote the set of
rejections in the b-th batch, and by Cb the set of candidates in the b-th batch.

Recall the key ideas of the previous two sections—tests running in parallel, or those resulting in dependent
p-values, are seen as conflicting. We again pursue this approach, and let the conflict set of Pb,t consist of all
other p-values in the same batch. More formally, the mini-batch conflict set can be defined as:

X
b,t
mini = {(b, i) : i < t}.

Notice that in Section 3, the conflicts arise solely due to missing information, in Section 4 solely due to
dependence, while here they are due to both.

The instances of LORD* and SAFFRON* used to test mini-batches will be referred to as LORDmini and
SAFFRONmini. As before, we will define the past-describing filtrations for both of these algorithms. Due to
local dependence, as in Section 4, whole batches of tests are mutually conflicted. Only at the finish time of a
batch are the discoveries taken into account. For this reason, from the perspective of any batch, all rejections
in any prior batch happened at one time step. Consequently, there is no need to consider the actual finish
time of any test from previous batches, and thus the respective non-conflicting filtrations for LORDmini and
SAFFRONmini will be of the form:

L
�X

b,t

mini = �(R1, . . . ,Rb�1), S
�X

b,t

mini = �(R1, C1, . . . ,Rb�1, Cb�1).

As before, we use F
�X

b,t

mini to refer to both of these two filtrations simultaneously. The test levels {↵b,t}

and candidacy thresholds {�b,t} are therefore computed as functions of the outcomes of the tests in previous
batches, i.e., we can write ↵b,t = fb,t(R1, . . . ,Rb�1) for LORDmini, and similarly, ↵b,t = gb,t(R1, C1, . . . ,Rb�1, Cb�1)
and ↵b,t = hb,t(R1, C1, . . . ,Rb�1, Cb�1) for SAFFRONmini.

By analogy with the last section, we do not necessarily expect the p-value Pb,t to be well-behaved, given
that we have seen the outcomes of tests whose p-values have dependence on Pb,t. By the local dependence
assumption, it is straightforward to verify that the following condition holds true:

If the null hypothesis Hb,t is true, then Pr
n
Pb,t  u

��� F�X
b,t

mini

o
 u, for all u 2 [0, 1]. (8)

15

ZRNIC, RAMDAS, AND JORDAN

The LORDmini and SAFFRONmini algorithms

By definition of the mini-batch conflict set and the general estimate of LORD*, LORDmini is obtained as an
update rule for ↵b,t such that the following quantity is controlled for all b, t 2 N:

dFDPLORDmini(b, t) =

P
i<b

P
jni

↵i,j +
P

jt ↵b,j

(
P

i<b

P
jni

Ri,j) _ 1
.

Similarly, SAFFRONmini controls the following adaptive estimate:

dFDPSAFFRONmini(b, t) =

P
i<b

P
jni

↵i,j

1��i,j
1 {Pi,j > �i,j}+

P
jt

↵b,j

1��b,j

(
P

i<b

P
jni

Ri,j) _ 1
.

Since the set of rejections corresponding to tests that are not in the current conflict set is invariant through-
out the testing of any whole batch, the FDP estimate gradually increases while a batch is being tested. Only
when the batch has finished testing in its entirety does the algorithm get rewarded for every rejection it made
in that batch. This implies that the batch size should be carefully chosen, as the achieved power decreases
with batch size. This is numerically verified in Section 7.

The LORD++, LOND, SAFFRON, and alpha-investing procedures for mini-batch testing are explicitly
stated in the Appendix, obtained by substituting X

b,t
mini into Algorithms 1-4.

6. Controlling mFDR and FDR at fixed and stopping times
The previous three sections have shown that the abstract framework of conflict sets is a useful representa-
tional tool for expressing interactions across different tests, yielding three natural specific testing protocols.
In this section, we return to the abstract unified framework in order to prove mFDR guarantees of LORD*
and SAFFRON*, which implies mFDR control of all of the setting-specific algorithms. Additionally, we pro-
vide several results on strict FDR control under asynchrony and dependence, although under more stringent
conditions.

6.1 mFDR control

We begin by focusing on fixed-time mFDR control. As mentioned earlier, the claim for LORD* follows triv-
ially from Proposition 1, so the proof of Theorem 2, given in the Appendix, focuses on providing guarantees
for SAFFRON*.

Theorem 2 Suppose that the null p-values are super-uniform conditional on F
�X

Et
, meaning Pr

n
Pt  u

��� F�X
Et
o


u, for all u 2 [0, 1] and t 2 H
0
. Then, LORD* and SAFFRON* with target FDR level ↵ both guarantee that

mFDR(t)  ↵ for all t 2 N.

Notice that the super-uniformity assumption above reduces to conditions (6), (7), and (8), in the three
settings previously described.

The result of Theorem 2 actually holds more generally; in particular, in the following theorem we show
that mFDR is also controlled at certain stopping times. Our approach is based on constructing a process
which behaves similarly to a submartingale, which allows us to derive a result mimicking optional stopping.
This process, however, is not a submartingale in the general case. For example, it is not a submartingale in
the synchronous setting under local dependence, described in Section 4.

More specifically, we show that LORD* and SAFFRON* control mFDR at any stopping time T which
satisfies the following conditions:

(C1) T is defined with respect to the filtration F
�X

t+1

, {T = t} 2 F
�X

t+1

;

(C2) T is almost surely bounded.

16

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Recall that F�X
t+1

denotes the non-conflicting information about the first t tests (in particular, not the
first t+1), and hence the offset by 1 in indexing. Intuitively, this means that the decision to stop at time t can
depend on all information up to time t that the algorithm is allowed to utilize.

Condition (C2) is a mild one, as in practice we primarily care about bounded stopping times. For instance,
one would not wait infinitely long to observe the first rejection; if Tr1 denotes the time of the first rejection, a
natural stopping time would be T : = Tr1 ^ tmax, where tmax is the fixed longest time one is willing to wait
for a rejection.

When Et = t and the p-values are independent, we require the same conditions as Foster and Stine
(2008) in their stopping-time analysis of the mFDR. Consequently, their result can be seen as a special case
of Theorem 3, given that alpha-investing is a special instance of SAFFRON.

Theorem 3 Suppose that the null p-values are super-uniform conditional on F
�X

Et
, meaning Pr

n
Pt  u

��� F�X
Et
o


u, for all u 2 [0, 1] and t 2 H
0
. Consider any stopping time T that satisfies conditions (C1-C2). Then,

LORD* and SAFFRON* with target FDR level ↵ both control mFDR at T : mFDR(T)  ↵.

6.2 FDR control

Even though the main objective of the paper is to provide mFDR guarantees, one can also obtain FDR control
for LORDasync and SAFFRONasync, provided that the p-values in the sequence are independent. This is in
line with earlier work where (synchronous) online FDR control has only been proved under independence
assumptions (Javanmard and Montanari, 2018; Ramdas et al., 2017, 2018). While our arguments below gen-
eralize the earlier ones, we stress that the independence assumption may not be reasonable in asynchronous
settings, which is why we focused on the mFDR for most of the paper and we only present the argument
below for completeness.

For FDR control, we additionally require ↵t and �t to be monotone. In the context of LORDasync, this
means that

↵t = ft(R1, . . . ,Ri, . . .Rt�1) � ft(R1, . . . ,R
0

i, . . .Rt�1) = ↵
0

t

whenever R0

i ✓ Ri. For SAFFRONasync, we require the same condition also when C
0

i ✓ Ci, both for ↵t and
�t. All update rules stated in this paper are monotone by design.

First we state a technical lemma that is the key ingredient in proving FDR control of our asynchronous
procedures, which generalizes several similar lemmas that have appeared in related work (Javanmard and
Montanari, 2018; Ramdas et al., 2017, 2018).

Lemma 4 Assume that null p-values are independent of each other and of the non-nulls. Moreover, let

g : {N[{0}}M ! R be any coordinate-wise non-decreasing function. Then, for any index t  M such that

t 2 H
0
, we have:

E


↵t1 {Pt > �t}

(1� �t)g(|R|1:M)

���� F
�X

Et

async

�
� E


↵t

g(|R|1:M)

���� F
�X

Et

async

�
� E


1 {Pt  ↵t}

g(|R|1:M)

���� F
�X

Et

async

�
,

where |R|1:M = (|R1|, . . . , |RM |).

With this lemma, we directly obtain FDR guarantees of LORDasync and SAFFRONasync under indepen-
dence, as stated in Theorem 5.

Theorem 5 Suppose that the null p-values are independent of each other and of the non-nulls, and that

↵t and �t are monotone. Then, LORDasync and SAFFRONasync with target FDR level ↵ both guarantee

FDR(t)  ↵ for all t 2 N.

Additionally, we prove that the original LOND algorithm (Javanmard and Montanari, 2015) controls
FDR for an arbitrary sequence of p-values that satisfy positive regression dependency on a subset (PRDS)
(Benjamini and Yekutieli, 2001), without any correction. In other words, under the PRDS assumption, it

17

ZRNIC, RAMDAS, AND JORDAN

suffices to take all conflict sets in the sequence to be empty. For convenience, we state the formal definition
of PRDS in the Appendix.

Recall the setup of the LOND algorithm. Given a non-negative sequence {�j}1j=1 such that
P

1

j=1 �j = 1,
the test levels are set as ↵t = ↵�t(|R(t� 1)|_ 1), where |R(t� 1)| denotes the number of rejections at time
t� 1. Note that this rule is monotone, in the sense that ↵t is coordinate-wise non-decreasing in the vector of
rejection indicators (R1, . . . , Rt�1). Below, we prove that LOND controls the FDR at any time t 2 N under
PRDS.

Recalling the definition of reshaping (Ramdas et al., 2019; Blanchard and Roquain, 2008), we will also
prove that if {�t} is a sequence of reshaping functions, then using the test levels e↵t := ↵�t�t(|R(t�1)|_1)
controls FDR under arbitrary dependence. We call this the reshaped LOND algorithm. As one example,
using the Benjamini-Yekutieli reshaping yields e↵t := ↵�t(|R(t� 1)| _ 1)/(

Pt
i=1

1
i).

Theorem 6 (a) The LOND algorithm satisfies FDR(t)  ↵ for all t 2 N under positive dependence

(PRDS).

(b) Reshaped LOND satisfies FDR(t)  ↵ for all t 2 N under arbitrary dependence.

7. Numerical experiments
Here we present the results of several numerical simulations, which show the gradual change in performance
of LORD* and SAFFRON* with the increase of asynchrony and the lags of local dependence.3 We also
compare these solutions to existing procedures with formal FDR guarantees under dependence. The plots in
this section compare the achieved power and FDR of LORDasync, SAFFRONasync, LORDdep, SAFFRONdep,
LORDmini and SAFFRONmini for different problem parameters, in settings with p-values computed from
Gaussian observations. We present additional experiments, including those on real data, in the Appendix.

The justification for focusing on synthetic data is two-fold. First, there is no standardized real data set
for testing online FDR procedures. The quintessential applications of these methods involve testing with
sensitive data, which are not publicly available due to privacy concerns. Second, even when real data are
obtainable, it is unclear how one would evaluate the ground truth.

In all of the simulations we present the FDR is controlled at ↵ = 0.05, and we estimate the FDR and
power by averaging the results of 200 independent trials. The SAFFRON-type algorithms use the constant
candidacy threshold sequence � = 1/2, across all tests. The LORD-type algorithms use the LORD++ update
for test levels. Each figure additionally plots the performance of uncorrected testing, in which the constant
test level ↵t = ↵ = 0.05 is used across all t 2 N, and alpha-spending, whose test levels decay according to
the {�t}

1

t=1 sequence of LORD* and SAFFRON*.
The experiments test for the means of M = 1000 Gaussian observations, and each null hypothesis takes

the form Hi : µi = 0, where µi is the mean of the Gaussian sample. We generate samples {Zi}
M
i=1, where

Zi ⇠ N(µi, 1) and the parameter µi is chosen as µi = ⇠F1, where ⇠ ⇠ Bern(⇡1), for a fixed proportion
of non-nulls in the sequence ⇡1, and some random variable F1. We consider two distributions for F1—a
degenerate distribution with a point mass at µc, where µc is a fixed constant for the whole sequence, or
N(0, 2 log(M)). The motivation for the latter is that

p
2 log(M) is the minimax amplitude for estimation

under the sparse Gaussian sequence model. In the case of the mean coming from a degenerate distribution,
we form one-sided p-values as Pi = �(�Zi), where � is the standard Gaussian CDF. If the mean has a
Gaussian distribution, we form two-sided p-values, i.e., Pi = 2�(�|Zi|).

7.1 Varying asynchrony

First we show the results of simulated asynchronous tests, in which the p-values are independent. At each time
step, the test duration is sampled from a geometric distribution with parameter p: Ei ⇠ i� 1 + Geom(p) for
all i. This implies that p = 1 yields the fully synchronous setting, while, as p gets smaller, the expectation of

3. The code for all experiments in this section is available at: https://github.com/tijana-zrnic/async-online-FDR-code

18

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

Figure 5: Power and FDR of LORDasync and SAFFRONasync with varying the parameter of asynchrony p of
the tests. In all five runs LORDasync and SAFFRONasync have the same parameters ({�j}1j=1,W0). The mean
of observations under the alternative is a point mass at µc = 3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

Figure 6: Power and FDR of LORDasync and SAFFRONasync with varying the parameter of asynchrony p of
the tests. In all five runs LORDasync and SAFFRONasync have the same parameters ({�j}1j=1,W0). The mean
of observations under the alternative is N(0, 2 log(M)).

the test duration grows larger, hence the procedure gets more asynchronous, and consequently less powerful.
Figure 5 shows numerically how changing p affects the achieved power of LORDasync and SAFFRONasync,
across different non-null proportions ⇡1, when the mean of the alternative is fixed as µc = 3. Figure 6 plots
power and FDR of LORDasync and SAFFRONasync against ⇡1 for normally distributed means, showing a more
gradual change in performance with the increase of asynchrony.

Building on our discussion in Section 1.2, we note that certain sequential tests have simpler, less “opti-
mized” counterparts that do not require knowledge of the test level up front. As a result, standard online FDR
algorithms can be applied. This leads to another tradeoff in asynchronous testing—one between the power
gain of optimized tests, which make use of the test level at the beginning of the test, and the accompanying
power loss when running such tests asynchronously. We illustrate this point numerically in Appendix D,
where we simulate A/B tests of varying levels of asynchrony using two approaches: an optimized one which
makes use of ↵i throughout the test, and a naive one which computes a p-value without knowledge of ↵i.

7.2 Varying the lag of dependence

The second set of simulations considers synchronous testing of locally dependent p-values. We take Lt to
be invariant and equal to L, which reduces to lagged dependence. We generate an M -dimensional vector of
Gaussian observations (Z1, . . . , ZM), which are marginally distributed according to the model described at

19

ZRNIC, RAMDAS, AND JORDAN

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

Figure 7: Power and FDR of LORDdep and SAFFRONdep with varying the dependence lag L in the p-value
sequence. In all five runs LORDdep and SAFFRONdep have the same parameters ({�j}1j=1,W0). The mean
of observations under the alternative is a point mass at µc = 3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0
P
ow

er

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

Figure 8: Power and FDR of LORDdep and SAFFRONdep with varying the dependence lag L in the p-value
sequence. In all five runs LORDdep and SAFFRONdep have the same parameters ({�j}1j=1,W0). The mean
of observations under the alternative is N(0, 2 log(M)).

the beginning of the section, and have the following M ⇥M Toeplitz covariance matrix:

⌃(M,L, ⇢) =

2

6666666666666664

1 ⇢ ⇢2 . . . ⇢L 0 . . . 0 0 0
⇢ 1 ⇢ . . . ⇢L�1 ⇢L . . . 0 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 0 . . . 0 0 . . . ⇢ 1 ⇢
0 0 0 . . . 0 0 . . . ⇢2 ⇢ 1

3

7777777777777775

, (9)

where we set ⇢ = 0.5. Figure 7 compares the power and FDR of LORDdep and SAFFRONdep under local
dependence, when the mean of the observations under the alternative is µc = 3 with probability 1. Figure 8
gives the same comparison when the mean of non-null samples is normally distributed, which yields a slower
decrease in performance with increasing the lag.

7.3 Varying mini-batch sizes

Here we analyze the change in performance of LORDmini and SAFFRONmini when the size of mini-batches
varies. We fix the batch size nb ⌘ n for all batches b. Within each batch tests are performed asynchronously,

20

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

Figure 9: Power and FDR of LORDmini and SAFFRONmini with varying the size of mini-batches. In all five
runs LORDmini and SAFFRONmini have the same parameters ({�j}1j=1,W0). The mean of observations under
the alternative is a point mass at µc = 3, and ⇢ = 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0
P
ow

er

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

Figure 10: Power and FDR of LORDmini and SAFFRONmini with varying the size of mini-batches. In all
five runs LORDmini and SAFFRONmini have the same parameters ({�j}1j=1,W0). The mean of observations
under the alternative is N(0, 2 log(M)), and ⇢ = 0.5.

and all p-values within the same batch are dependent. In particular, they follow a multivariate normal distri-
bution, where the marginal distributions are as described at the beginning of this section, and the covariance
matrix is the Toeplitz matrix ⌃(n, n� 1, ⇢) (9), where we fix ⇢ = 0.5. Dependent p-values come in “blocks”
of size n, implying that any two p-values belonging to two different batches are independent. Figure 9 com-
pares the power and FDR of LORDmini and SAFFRONmini for different batch sizes when the mean of the
non-null Zi is a point mass at µc = 3, and Figure 10 plots the same comparison when the mean of the
non-null observations is normally distributed.

7.4 Comparison with LORD under dependence

The final set of experiments contrasts LORDdep and SAFFRONdep to the original LORD algorithm under
dependence. The latter controls FDR under arbitrary dependence, however, as mentioned earlier, this entails
a similar update to alpha-investing; more precisely, the test levels ↵indep

j of LORD under independence have
to be discounted by a convergent sequence {⇠j}

1

j=1, resulting in new test levels ↵j : = ⇠j↵
indep
j , which

essentially diminishes the effect of ↵indep
j earning extra budget through discoveries. We generate the p-value

sequence using the same scheme as in Subsection 7.2; they are computed from Gaussian observations with
covariance matrix ⌃(M,L, ⇢) (9), where we fix ⇢ = 0.5 and L = 150. By construction, this sequence is
only locally dependent, which implies that the application of our algorithms comes with provable guarantees.
Figure 11 compares the power and FDR of SAFFRONdep, LORDdep, LORD under dependence, and alpha-

21

ZRNIC, RAMDAS, AND JORDAN

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

Figure 11: Power and FDR of SAFFRONdep, LORDdep, LORD under dependence, and alpha-spending. The
decay of test levels in alpha-spending and discount sequence {⇠j}

1

j=1 act according to the sequence {�j}
1

j=1

used for SAFFRONdep and LORDdep. On the left two plots, the mean of observations under the alternative is
a point mass at µc = 3, while on the right two plots, it is distributed as N(0, 2 log(M)). We fix parameters
⇢ = 0.5 and L = 150.

spending when the mean of the non-null Zi is a point mass at µc = 3 (left), as well as in the setting with a
normally distributed mean under the alternative (right).

8. Discussion
We have presented a unified framework for the design and analysis of online FDR procedures for asyn-
chronous testing, as well as testing locally dependent p-values. Our framework reposes on the concept of
“conflict sets,” and we show the value of this concept for the study of both asynchronous testing and local
dependence and for their combination. We derive two specific procedures that make use of conflict sets to
yield algorithms that provide online mFDR and FDR control.

Several technical questions remain open for future work. While we have shown strict FDR control of
our asynchronous procedures under independence, it is still unclear how to prove their FDR control under
local dependence. We believe that it might also be possible to prove FDR control of uncorrected LORD
under positive dependence, similarly to how we proved validity of the plain LOND algorithm under positive
dependence in Section 6. Finally, it would be of great interest to obtain strict FDR control at stopping
times, a problem that remains open even under independence of p-values. In mFDR control, this proof relies
on a martingale-like argument which decouples the numerator and denominator of the FDP. The expected
numerator increments, conditional on the information from past tests, are then controlled by invoking super-
uniformity. When false rejection indicators are coupled with the FDP denominator, however, it is less clear
how to invoke conditional super-uniformity. This is a non-trivial step even when analyzing FDR at fixed
times, as witnessed by many “super-uniformity lemmas” in the literature (Javanmard and Montanari, 2018;
Ramdas et al., 2017, 2018).

22

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Appendix A. Deferred proofs

A.1 Proof of Proposition 1

Fix a time step t 2 N. By this time, exactly t tests have started, and hence at most those t decisions are
known. Therefore, by linearity of expectation:

E [|V(t)|] = E

2

4
X

Ejt,j2H0

1 {Pj  ↵j}

3

5 

X

jt,j2H0

E [1 {Pj  ↵j}] .

Applying the law of iterated expectations by conditioning on F
�X

Ej for each term, we obtain:

X

jt,j2H0

E [1 {Pj  ↵j}] =
X

jt,j2H0

E
h
E
h
1 {Pj  ↵j}

��� F�X
Ej
ii



X

jt,j2H0

E [↵j] ,

which follows due to measurability of ↵j with respect to F
�X

j

✓ F
�X

Ej , and the super-uniformity assump-
tion. If we assume FDP⇤(t) : =

P
jt,j2H0 ↵j

(
P

Ejt Rj)_1  ↵, then it follows that:

X

jt,j2H0

E [↵j] = E

2

4
X

jt,j2H0

↵j

3

5  ↵E

2

4

0

@
X

Ejt

Rj

1

A _ 1

3

5 = ↵E [|R(t)| _ 1] ,

which follows by linearity of expectation and the assumption on FDP⇤(t). Rearranging yields the inequality
mFDR(t) : = E[|V(t)|]

E[|R(t)|_1]  ↵, which completes the proof.

A.2 Proof of Theorem 2

As stated before, the guarantees for LORD* follow directly from Proposition 1, after observing that FDP⇤

conf(t) 
dFDPLORD*(t)  ↵ holds almost surely for all t 2 N. Therefore, in the rest of this proof, we focus on SAF-
FRON*.

Fix a time t. Then, we have:

E [|V(t)|] = E

2

4
X

Ejt,j2H0

1 {Pj  ↵j}

3

5 

X

jt,j2H0

E [1 {Pj  ↵j}] ,

where the inequality follows because the set of rejections made by time t could be at most the set [t]. Note
that ↵j and �j are measurable with respect to S

�X
j

✓ S
�X

Ej ; therefore, applying iterated expectations by
conditioning on S

�X
Ej gives:

X

jt,j2H0

E [1 {Pj  ↵j}] 
X

jt,j2H0

E [↵j] 
X

jt,j2H0

E

↵j

1 {Pj > �j}

1� �j

�
,

where we apply the super-uniformity assumption. If we assume that

dFDPSAFFRON*(t) : =

P
j<t,j 62X t

↵j

1��j
1 {Pj > �j}+

P
j2X t[{t}

↵j

1��j⇣P
j<t,j 62X t Rj

⌘
_ 1

 ↵,

23

ZRNIC, RAMDAS, AND JORDAN

then it follows that:
X

jt,j2H0

E

↵j

1 {Pj > �j}

1� �j

�


X

jt

E

↵j

1 {Pj > �j}

1� �j

�

 E

2

4
X

j<t,j 62X t

↵j

1� �j
1 {Pj > �j}+

X

j2X t[{t}

↵j

1� �j

3

5  ↵E

2

4

0

@
X

j<t,j 62X t

Rj

1

A _ 1

3

5

 ↵E [|R(t)| _ 1] ,

where the first inequality drops the condition j 2 H
0, the second one ignores the condition 1 {Pj > �j} for

some terms, the third inequality applies the assumption on dFDPSAFFRON*(t) and the last inequality uses the
fact that R(t) contains all past rejections that are no longer conflicting. Rearranging the terms in the previous
derivation, we reach the conclusion that mFDR(t)  ↵, which concludes the proof of the theorem.

A.3 Proof of Theorem 3

We first prove the theorem for LORD*, and then we move on to proving the SAFFRON* guarantees.

LORD*. For all t 2 N, define the process A(t) as:

A(t) : = �
X

it,i2H0

1 {Ei  t} (1 {Pi  ↵i}� ↵i) = A(t� 1)�
X

it,i2H0

1 {Ei = t} (1 {Pi  ↵i}� ↵i),

where we take A(0) = 0. Let H(t) : = 1 {T � t}. Since T is a stopping time, it holds that {T � t + 1} =

{T  t}
c
2 F

�X
t+1

, therefore H(t + 1) is predictable, that is it is measurable with respect to F
�X

t+1

.
Define the transform (H ·A) of H by A as follows:

(H ·A)(t) : =
tX

m=1

H(m)(A(m)�A(m� 1))

=
tX

m=1

H(m)

0

@�

X

im,i2H0

1 {Ei = m} (1 {Pi  ↵i}� ↵i)

1

A .

By taking conditional expectations, we can obtain:

E
h
(H ·A)(t+ 1)

��� F�X
t+1

i

= E
h
(H ·A)(t)

��� F�X
t+1

i
+ E

h
H(t+ 1)(A(t+ 1)�A(t))

��� F�X
t+1

i

= E
h
(H ·A)(t)

��� F�X
t+1

i

+H(t+ 1)E

2

4�
X

it+1,i2H0

1 {Ei = t+ 1} (1 {Pi  ↵i}� ↵i)

������
F

�X
t+1

3

5

= E
h
(H ·A)(t)

��� F�X
Et
i

+H(t+ 1)
X

it+1,i2H0

1 {Ei = t+ 1}E
h
�(1 {Pi  ↵i}� ↵i)

��� F�X
t+1

i
,

where the first and last equality follow by linearity of expectation, and the second one uses the predictability
of H(t+ 1). Now we can apply the super-uniformity condition (3), since we are summing over null indices:
E
h
�1 {Pi  ↵i}+ ↵i

��� F�X
Ei
i
� �↵i + ↵i = 0. Therefore, additionally applying the law of iterated

24

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

expectations, it follows that E [(H ·A)(t+ 1)] � E [(H ·A)(t)]. Iteratively applying the same argument, we
reach the conclusion that, for all t 2 N:

E [(H ·A)(t)] � 0. (10)

So far we have only used the predictability of H(t); observe that, by its definition, and the definition of
A(t), (H · A)(t) = A(T ^ t) � A(0) = A(T ^ t), and hence by equation (10), we obtain E [(H ·A)(t)] =
E [A(T ^ t)] � 0.

Since A(T ^ t) ! A(T) almost surely as t ! 1, by boundedness of T and dominated convergence we
can conclude that E [A(T ^ t)] ! E [A(T)] as t ! 1. With this we obtain a useful intermediate result:

E [A(T)] � 0. (11)

Recall that R(t) denotes the set of all rejections made by time t, and V(t) denotes the set of false rejections
made by time t. Consider the following process:

B(t) : = ↵(|R(t)| _ 1)� |V(t)|+
X

jt

↵j � ↵

0

@
X

j<t,j 62X t

Rj _ 1

1

A

� �|V(t)|+
X

jt

↵j � A(t),

where the final inequality applies the definition of A(t) together with the fact that
P

jt ↵j �
P

jt 1 {Ej  t}↵j .
Now take a stopping time T such that the conditions of the theorem are satisfied, then:

E [↵(|R(T)| _ 1)� |V(T)|] = E

2

4B(T)�
X

jT

↵j + ↵

0

@
X

j<T,j 62XT

Rj _ 1

1

A

3

5

� E [B(T)] � E [A(T)] � 0,

where the first inequality follows by definition of the LORD* FDP estimate, the second one by the relationship
already established between A(t) and B(t), and the third inequality applies the intermediate result (11).
Rearranging the terms we have that mFDR(T)  ↵, as desired.

SAFFRON*. We begin the proof using similar tools as in the LORD* section of the proof. For all t 2 N,
define the process A(t) as:

A(t) : = �

X

it,i2H0

1 {Ei  t}

✓
1 {Pi  ↵i}� 1 {Pi > �i}

↵i

1� �i

◆

= A(t� 1)�
X

it,i2H0

1 {Ei = t}

✓
1 {Pi  ↵i}+ 1 {Pi > �i}

↵i

1� �i

◆
,

where we take A(0) = 0. Let H(t) : = 1 {T � t}. Since T is a stopping time, it holds that {T � t + 1} =

{T  t}
c
2 F

�X
t+1

, therefore H(t + 1) is measurable with respect to F
�X

t+1

. Define the following
transform of H by A:

(H ·A)(t) : =
tX

m=1

H(m)(A(m)�A(m� 1))

=
tX

m=1

H(m)

0

@�

X

im,i2H0

1 {Ei = m}

✓
1 {Pi  ↵i}+ 1 {Pi > �i}

↵i

1� �i

◆1

A .

25

ZRNIC, RAMDAS, AND JORDAN

By taking conditional expectations, we can obtain:

E
h
(H ·A)(t+ 1)

��� F�X
t+1

i

= E
h
(H ·A)(t)

��� F�X
t+1

i
+ E

h
H(t+ 1)(A(t+ 1)�A(t))

��� F�X
t+1

i

= E
h
(H ·A)(t)

��� F�X
t+1

i

+H(t+ 1)E

2

4�
X

it+1,i2H0

1 {Ei = t+ 1}

✓
1 {Pi  ↵i}+ 1 {Pi > �i}

↵i

1� �i

◆ ������
F

�X
t+1

3

5

= E
h
(H ·A)(t)

��� F�X
t+1

i

+H(t+ 1)
X

it+1,i2H0

1 {Ei = t+ 1}E

�

✓
1 {Pi  ↵i}+ 1 {Pi > �i}

↵i

1� �i

◆ ���� F
�X

t+1

�
,

where the first equality follows by linearity of expectation and the definition of the transform and the second
one uses measurability of H(t+1). The term �1 {Ei = t+ 1} (1 {Pi  ↵i}+1 {Pi > �i}

↵i
1��i

) is clearly
non-negative when Ei 6= t + 1. If Ei = t + 1 however, we can invoke the super-uniformity condition (3),
since we are summing over null indices:

E

�(1 {Pi  ↵i}+ 1 {Pi > �i}

↵i

1� �i
)

���� F
�X

Ei

�
� �↵i + (1� �i)

↵i

1� �i
= 0.

Therefore, additionally applying the law of iterated expectations, it follows that E [(H ·A)(t+ 1)] � E [(H ·A)(t)].
Iteratively applying the same argument, we reach the conclusion that, for all t 2 N:

E [(H ·A)(t)] � 0. (12)

So far we have only used the predictability of H(t); observe that, by its definition, and the definition of
A(t), (H · A)(t) = A(T ^ t) � A(0) = A(T ^ t), and hence by equation (12), we obtain E [(H ·A)(t)] =
E [A(T ^ t)] � 0.

Since A(T ^ t) ! A(T) almost surely as t ! 1, by boundedness of T and dominated convergence we
can conclude that E [A(T ^ t)] ! E [A(T)] as t ! 1. As in the LORD* argument, we reach the result that
states:

E [A(T)] � 0. (13)

Recall R(t), the set of all rejections made by time t, and V(t), the set of false rejections made by time t.
Consider the following process:

B(t) : = ↵(|R(t)| _ 1)� |V(t)|+
X

j<t,j 62X t

1 {Pj > �j}
↵j

1� �j
+

X

j2X t[{t}

↵j

1� �j
�

0

@
X

j<t,j 62X t

Rj _ 1

1

A↵

� �|V(t)|+
X

jt

1 {Pj > �j}
↵j

1� �j
� A(t),

where the second inequality applies the definition of A(t) together with 1 {Ej  t}  1.
Now taking a stopping time T that satisfies the conditions of the theorem, we have:

E [↵(|R(t)| _ 1)� |V(t)|]

= E

2

4B(T)�
X

j<T,j 62XT

1 {Pj > �j}
↵j

1� �j
�

X

j2XT[{T}

↵j

1� �j
+

0

@
X

j<T,j 62XT

Rj _ 1

1

A↵

3

5

� E [B(T)] � E [A(T)] � 0,

26

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

where the first inequality follows by construction of the SAFFRON* empirical FDP estimate, the second
inequality uses the proved relationship between A(t) and B(t), and the third inequality applies equation (13).
Rearranging the terms we have that mFDR(T)  ↵, as desired.

A.4 Proof of Lemma 4

We begin by focusing on the first inequality. Letting P1:M = (P1, . . . , PM) be the original vector of p-values,
we define a “hallucinated” vector of p-values eP t!1

1:M : = (eP1, . . . ,
ePM) that equals P1:M , except that the t-th

component is set to one:

ePi =

(
1 if i = t,
Pi if i 6= t.

Further, denote by eEj the finish times of the tests that yield ePj , and let eEj be equal to Ej for all 1 

j  M . Denote the set of candidates and rejections in the hallucinated sequence at time i by eCi and eRi,
respectively, and let e↵i be the test level for ePi. Also, let R1:M = (R1, . . . ,RM) and eRt!1

1:M = (eR1, . . . ,
eRM)

denote the vectors of the numbers of rejections using P1:M and eP t!1
1:M , respectively. Similarly, let C1:M =

(C1, . . . , CM) and eCt!1
1:M = (eC1, . . . , eCM) denote the vectors of the numbers of candidates using P1:M and

eP t!1
1:M , respectively.

By construction, we have the following properties:

1. eEj = Ej , 8j implies ↵i = e↵i for all i  Et.

2. eRi = Ri and eCi = Ci for all i < Et, since the p-values from the finished tests and the respective test
levels are the same in the original and hallucinated setting.

3. eREt ✓ REt and eCEt ✓ CEt , and hence eRi ✓ Ri also for all i > Et, due to monotonicity of the test
levels ↵i and candidacy thresholds �i.

Therefore, on the event {Pt > �t}, we have REt = eREt and CEt = eCEt , and hence also R1:M = eRt!1
1:M and

C1:M = eCt!1
1:M . This allows us to conclude that:

↵t1 {Pt > �t}

(1� �t)g(|R|1:M)
=

↵t1 {Pt > �t}

(1� �t)g(| eR|
t!1
1:M)

.

Since the null p-values are mutually independent and independent of the non-nulls, we conclude that
eRt!1
1:M is independent of Pt conditioned on F

�X
Et

async . With this, we can obtain:

E


↵t1 {Pt > �t}

(1� �t)g(|R|1:M)

���� F
�X

Et

async

�
= E

"
↵t1 {Pt > �t}

(1� �t)g(| eR|
t!1
1:M)

����� F
�XEt

async

#
� E

"
↵t

g(| eR|
t!1
1:M)

����� F
�X

Et

async

#

� E


↵t

g(|R|1:M)

���� F
�X

Et

async

�
,

where the first inequality follows by taking an expectation only with respect to Pt by invoking the asyn-
chronous super-uniformity property (6), and the second inequality follows because g(|R|1:M) � g(| eR|

t!1
1:M)

since |Ri| � | eRi| for all i by monotonicity of the test levels and candidacy thresholds. This concludes the
proof of the first inequality.

The second inequality uses a similar idea of hallucinating tests with identical finish times, only now the
p-values that these tests result in are:

ePi =

(
0 if i = t,
Pi if i 6= t,

where Pi are the p-values in the original sequence. In a similar fashion, the following observations hold:

27

ZRNIC, RAMDAS, AND JORDAN

1. eEj = Ej implies ↵i = e↵i for all i  Et.

2. eRi = Ri and eCi = Ci for all i < Et, since the p-values from the finished tests and the respective test
levels are the same in the original and hallucinated setting.

3. eREt ◆ REt and eCEt ◆ CEt , and hence eRi ◆ Ri also for all i > Et, due to monotonicity of the test
levels ↵i.

Then, on the event {Pt  ↵t}, we have REt = eREt and CEt = eCEt , and hence also R1:M = eRt!1
1:M and

C1:M = eCt!1
1:M . From this we conclude that:

1 {Pt  ↵t}

g(|R|1:M)
=

1 {Pt  ↵t}

g(| eR|
t!1
1:M)

.

As in the first part of the proof, we use the fact that the null p-values are mutually independent and
independent of the non-nulls, which allows us to conclude that eRt!1

1:M is independent of Pt conditioned on
F

X
Et

async . This observation results in the following:

E

1 {Pt  ↵t}

g(|R|1:M)

���� F
X

Et

async

�
= E

"
1 {Pt  ↵t}

g(| eR|
t!1
1:M)

����� F
X

Et

async

#
 E

"
↵t

g(| eR|
t!1
1:M)

����� F
X

Et

async

#

 E


↵t

g(|R|1:M)

���� F
X

Et

async

�
,

where the first inequality follows by taking an expectation only with respect to Pt by invoking the asyn-
chronous super-uniformity property (6), and the second inequality follows because g(|R|1:M)  g(| eR|

t!1
1:M)

since |Ri|  | eRi| for all i by monotonicity of the test levels. This concludes the proof of the lemma.

A.5 Proof of Theorem 5

LORDasync. Fix a time step t. First we show the claim for LORDasync, so suppose that

dFDPLORDasync(t) : =

P
jt ↵jP

jt 1 {Pj  ↵j , Ej  t} _ 1
 ↵.

Then:

FDR(t) : = E


|V(t)|

|R(t)| _ 1

�
= E

"P
jt,j2H0 1 {Pj  ↵j , Ej  t}

P
jt 1 {Pj  ↵j , Ej  t} _ 1

#



X

it,i2H0

E
"

1 {Pi  ↵i}P
jt 1 {Pj  ↵j , Ej  t} _ 1

#
,

where the second equality follows by definition of V(t) and R(t), and the inequality drops the condition
Ei  t from the numerator and applies linearity of expectation. Now we can apply Lemma 4 with g(|R|1:t) =
(
Pt

i=1 |Ri|) _ 1, together with iterated expectations, to obtain:

X

it,i2H0

E
"

1 {Pi  ↵i}P
jt 1 {Pj  ↵j , Ej  t} _ 1

#


X

it,i2H0

E
"

↵iP
jt 1 {Pj  ↵j , Ej  t} _ 1

#

 E
h
dFDPLORDasync(t)

i
 ↵,

where the second inequality follows by dropping the condition i 2 H
0. This completes the proof for

LORDasync.

28

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

SAFFRONasync. Now we move on to SAFFRONasync. Using the same steps as above, for any fixed time t,
we can conclude the following inequality:

FDR(t) 
X

it,i2H0

E
"

↵iP
jt 1 {Pj  ↵j , Ej  t} _ 1

#
.

Here we additionally apply the other inequality of Lemma 4, with the same choice g(|R|1:t) = (
Pt

i=1 |Ri|)_
1, again with iterated expectations:

X

it,i2H0

E
"

↵iP
jt 1 {Pj  ↵j , Ej  t} _ 1

#


X

it,i2H0

E
"

↵i1 {Pi > �i}

(1� �i)(
P

jt 1 {Pj  ↵j , Ej  t} _ 1)

#
.

Assuming that the inequality

dFDPSAFFRONasync(t) : =

P
jt

↵j

1��j
(1 {Pj > �j , Ej  t}+ 1 {Ej > t})

P
jt 1 {Pj  ↵j , Ej  t} _ 1

 ↵

holds, it follows that:

X

it,i2H0

E
"

↵i1 {Pi > �i}

(1� �i)(
P

jt 1 {Pj  ↵j , Ej  t} _ 1)

#

 E
"P

jt
↵j

1��j
(1 {Pj > �j , Ej  t}+ 1 {Ej > t})

P
jt 1 {Pj  ↵j , Ej  t} _ 1

#
= E

h
dFDPSAFFRONasync(t)

i
 ↵,

where the first inequality follows by dropping the conditions j 2 H
0 and {Pj > �j} for some rounds. The

second inequality follows by assumption, hence proving the theorem.

A.6 Proof of Theorem 6

For statement (a), we begin by noting that for any t 2 N:

FDR(t) = E
P

it,i2H0 1 {Pi  ↵i}

|R(t)| _ 1

�


X

it,i2H0

E


1 {Pi  ↵i}

|R(i� 1)| _ 1

�
=

X

it,i2H0

�i↵E

1 {Pi  ↵i}

↵i

�
,

where the first equality follows by definition of FDR, the sole inequality follows because the number of
rejections can only increase with time, and the second equality follows by definition of the LOND rule for
↵i. Lemma 1 from Ramdas et al. (2019) now asserts that the term in the expectation is bounded by one under
PRDS. Hence, by also noting that

P
it �i  1 we immediately deduce statement (a).

For statement (b), we follow almost the same sequence of steps to note that:

FDR(t) = E
P

it,i2H0 1 {Pi  e↵i}

|R(t)| _ 1

�


X

it,i2H0

E


1 {Pi  e↵i}

|R(i� 1)| _ 1

�

=
X

it,i2H0

�i↵E

1 {Pi  �i↵�i(|R(i� 1)| _ 1)}

�i↵(|R(i� 1)| _ 1)

�
.

We now apply Lemma 1 from Ramdas et al. (2019) with c = �i↵ and f(P) = |R(i� 1)| _ 1 to again assert
that the term in the expectation is bounded by one under arbitrary dependence, hence establishing statement
(b).

29

ZRNIC, RAMDAS, AND JORDAN

Appendix B. Different instantiations of LORD* and SAFFRON*
Here we give explicit statements of different instances of LORD* and SAFFRON* described in Section 3,
Section 4 and Section 5. All of the following algorithms are special instances of Algorithms 1-4, given in
Section 2.

First we state LORDasync and SAFFRONasync explicitly, by taking X
t = X

t
async in the statement of LORD*

and SAFFRON*. Algorithm 5 and Algorithm 6 state the LORD++ and LOND versions of LORDasync, Al-
gorithm 7 states SAFFRONasync for constant candidacy thresholds, i.e. {�j} ⌘ �, and Algorithm 8 states
asynchronous alpha-investing, i.e. SAFFRONasync when �j = ↵j . Recall the definition of rk, which in this
setting takes the form:

rk = min{i 2 [t] :
iX

j=1

Rj1 {Ej  i} � k}.

Algorithm 5 The asynchronous LORD++ algorithm as a version of LORDasync

input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that
P

j �j = 1, initial wealth W0  ↵
↵1 = �1W0

for t = 1, 2, . . . do
start t-th test with level ↵t

↵t+1 = �t+1W0 + �t+1�r1 (↵�W0) +
⇣P

j�2 �t+1�rj

⌘
↵

end

Algorithm 6 The asynchronous LOND algorithm as a version of LORDasync

input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that
P

j �j = 1
W0 = ↵
↵1 = �1W0

for t = 1, 2, . . . do
start t-th test with level ↵t

↵t+1 = ↵�t+1

⇣
(
Pt

j=1 1 {Pj  ↵j , Ej  t}) _ 1
⌘

end

Algorithm 7 The SAFFRONasync algorithm for constant �
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, candidate threshold � 2 (0, 1), initial

wealth W0  ↵
↵1 = (1� �)�1W0

for t = 1, 2, . . . do
start t-th test with level ↵t

↵t+1 = min

⇢
�, (1� �)

✓
W0�t+1�C#

0+
+ (↵�W0)�t+1�r1�C#

1+
+
P

j�2 ↵�t+1�rj�C#
j+

◆�
,

where C#
j+ =

Pt
i=rj+1 |Ci|

end

Algorithm 8 The asynchronous alpha-investing algorithm as a special case of SAFFRONasync

input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that
P

j �j = 1, initial wealth W0  ↵
s1 = �1W0

↵1 = s1/(1 + s1)
for t = 1, 2, . . . do

start t-th test with level ↵t

st+1 = W0�t+1�R#
0 +

+ (↵�W0)�t+1�r1�R#
1+

+
P

j�2 ↵�t+1�rj�R#
j+

, where R#
j+ =

Pt
i=rj+1 |Ri|

↵t+1 = st+1/(1 + st+1)
end

30

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Below we give explicit statements of LORDdep and SAFFRONdep as special cases of LORD* and SAF-
FRON*. Algorithm 9 and Algorithm 10 state LORD++ and LOND under local dependence, both as instances
of LORDdep. Algorithm 11 states SAFFRONdep for the constant sequence {�j} ⌘ �, and Algorithm 12 states
alpha-investing under local dependence, which is a particular instance of SAFFRONdep obtained by taking
�j = ↵j . The definition of rk under local dependence simplify to:

rk = min{i 2 [t] :

i�Li+1X

j=1

Rj � k}.

Algorithm 9 The LORD++ algorithm under local dependence as a version of LORDdep

input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that
P

j �j = 1, initial wealth W0  ↵
↵1 = �1W0

for t = 1, 2, . . . do
run t-th test with level ↵t

↵t+1 = �t+1W0 + �t+1�r1 (↵�W0) +
⇣P

1

j=2 �t+1�rj

⌘
↵

end

Algorithm 10 The LOND algorithm under local dependence as a version of LORDdep

input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that
P

j �j = 1
W0 = ↵
↵1 = �1W0

for t = 1, 2, . . . do
run t-th test with level ↵t

↵t+1 = ↵�t+1

⇣
(
Pt�Lt+1

i=1 Ri) _ 1
⌘

end

Algorithm 11 The SAFFRONdep algorithm for constant �
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, candidate threshold � 2 (0, 1), initial

wealth W0  ↵
↵1 = �1W0

for t = 1, 2, . . . do
run t-th test with level ↵t

↵t+1 = min
n
�, (1� �)

⇣
W0�t+1�C0+ + (↵�W0)�t+1�r1�C1+ + ↵(

P
j�2 �t+1�rj�Cj+)

⌘o
,

where Cj+ =
Pt�Lt+1

i=rj+1 Ci

end

Algorithm 12 The alpha-investing algorithm under local dependence as a special case of SAFFRONdep

input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that
P

j �j = 1, initial wealth W0  ↵
s1 = �1W0

↵1 = s1/(1 + s1)
for t = 1, 2, . . . do

run t-th test with level ↵t

st+1 = W0�t+1�R0+ + (↵�W0)�t+1�r1�R1+ +
P

j�2 ↵�t+1�rj�Rj+ , where Rj+ =
Pt�Lt+1

i=rj+1 Ri

↵t+1 = st+1/(1 + st+1)
end

Algorithms 13 and 14 describe the mini-batch versions of LORD++ and LOND respectively, both as
cases of LORDmini. Algorithm 15 is a variant of SAFFRONmini with �j chosen constant and equal to some

31

ZRNIC, RAMDAS, AND JORDAN

� 2 (0, 1), and Algorithm 16 is the alpha-investing version of SAFFRONmini, in which �j = ↵j . In this
setting, the definition of rk is slightly tweaked in order to satisfy the convention of double indexing; rk refers
to the batch in which the k-th non-conflicting rejection occurs:

rk : = min{i 2 [b� 1] :
iX

j=1

|Rj | � k}.

Algorithm 13 The mini-batch LORD++ algorithm as a version of LORDmini
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, initial wealth W1,0  ↵

↵1,1 = �1W1,0

for b = 1, 2, . . . do
if b > 1 then

Wb,0 = Wb�1,n + ↵|Rb�1|�W1,01 {r1 = b� 1}
end
for t = 1, 2, . . . , nb do

start t-th test in the b-th batch with level ↵b,t

↵b,t+1 = �Pb�1
i=1 ni+t+1

W1,0 + �Pb�1
i=1 ni+t+1�

Pr1
i=1 ni

(↵�W1,0) +

✓P
1

j=2 �Pb�1
i=1 ni+t+1�

Prj
i=1 ni

◆
↵

end
end

Algorithm 14 The mini-batch LOND algorithm as a version of LORDmini
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1

↵1,1 = �1↵
for b = 1, 2, . . . do

for t = 1, 2, . . . , nb do
start t-th test in the b-th batch with level ↵b,t

↵b,t+1 = ↵�Pb�1
i=1 ni+t+1

⇣
(
Pb�1

j=1 |Rj |) _ 1
⌘

end
end

Algorithm 15 The SAFFRONmini algorithm for constant �
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, initial wealth W1,0  ↵, constant �

↵1,1 = (1� �)�1W1,0

for b = 1, 2, . . . do
for t = 1, 2, . . . , n do

start t-th test in the b-th batch with level ↵b,t

↵b,t+1 = (1 � �)(�Pb�1
i=1 ni�|C

+
0 |+t+1

W1,0 + �Pb�1
i=1 ni�|C

+
1 |+t+1�

Pr1
i=1 ni

(↵ � W1,0) +
✓P

1

j=2 �Pb�1
i=1 ni�|C

+
j |+t+1�

Pr1
i=1 ni

◆
↵), where |C+

j | =
Pb�1

j=rj+1 |Cj |

end
end

32

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Algorithm 16 The mini-batch alpha-investing as a special case of SAFFRONmini
input: FDR level ↵, non-negative non-increasing sequence {�j}1j=1 such that

P
j �j = 1, initial wealth W1,0  ↵

s1,1 = �1W1,0

↵1,1 = s1,1/(1 + s1,1)
for b = 1, 2, . . . do

for t = 1, 2, . . . , n do
start t-th test in the b-th batch with level ↵b,t

sb,t+1 = �Pb�1
i=1 ni�|C

+
0 |+t+1

W1,0 + �Pb�1
i=1 ni�|C

+
1 |+t+1�

Pr1
i=1 ni

(↵ � W1,0) +
✓P

1

j=2 �Pb�1
i=1 ni�|C

+
j |+t+1�

Prj
i=1 ni

◆
↵, where |C+

j | =
Pb�1

j=rj+1 |Cj |

↵b,t+1 = sb,t+1/(1 + sb,t+1)
end

end

Appendix C. Experiments on real data with local dependence

We perform an additional case study on a high-throughput phenotypic data set from the International Mouse
Phenotyping Consortium (IMPC) data repository. This database documents gene knockout experiments on
mice and annotates every protein coding gene by exploring the impact of the gene knockout on the resulting
phenotype. This is an example of a continuously growing data set, as the family of hypotheses and the new
knockouts grow with time. Karp et al. (2017) tested the role of genotype and the role of sex as a modifier of
genotype effect. In this section, we focus on the p-values resulting from the analysis of genotype effects. This
set of p-values exhibits local dependence—the same set of mice is used to test multiple hypotheses adjacent
on the time horizon, while p-values computed at sufficiently distant time points are statistically independent.

We use the subset of the database organized by Robertson et al. (2019), which is available at https://zenodo.org/record/2396572.
Hypotheses belonging to the same batch have the same experimental ID. For the sake of computational ef-
ficiency, we only analyze the hypotheses whose experimental ID is in the interval [36700, 37000). This
results in 4275 distinct hypotheses and their corresponding p-values, split into 172 batches of varying sizes.
For different target FDR levels, we report the number of discoveries made by SAFFRONdep, LORDdep, and
alpha-spending. Since we expect a small number of truly relevant genes, for SAFFRONdep we set � = 0.1;
all other parameters for all three algorithms are as in Section 7. We cannot evaluate the FDR and power due
to lack of ground truth, but theoretically all three procedures control the FDR at the target level.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

FDR level

0

200

400

600

800

nu
m

b
er

of
re

je
ct

io
ns

SAFFRONdep

LORDdep

Alpha-spending

Figure 12: Number of rejections made by SAFFRONdep, LORDdep, and alpha-spending, for different target
FDR levels.

33

ZRNIC, RAMDAS, AND JORDAN

Appendix D. Additional experiments with varying asynchrony

We illustrate the tradeoff between the power gain of optimized tests, which make use of the test level ↵i at
the beginning of the test, and the accompanying power loss when running such tests asynchronously. We do
so by contrasting optimized sequential tests with their simpler counterparts which compute p-values without
knowledge of ↵i in a simulated A/B testing environment.

We test null hypotheses of the form Hi : µ
(i)
treatment�µ

(i)
control = 0, and for each test we collect samples from

N(µ(i)
control, 1) and N(µ(i)

treatment, 1). We collect samples by uniformly sampling from the treatment and control
distribution; at every sampling step j of test i we draw a single sample from both distributions, X(i,j)

treatment ⇠

N(µ(i)
treatment, 1), X

(i,j)
control ⇠ N(µ(i)

control, 1), akin to allocating one of two matched patients to each of those arms.
We contrast two approaches: in one, we fix the number of per-test draws n from each distribution, and simply
calculate a p-value by computing Pi = 1��(

p
n/2(µ̂(i)

treatment�µ̂
(i)
control)), where µ̂(i)

treatment =
1
n

Pn
j=1 X

(i,j)
treatment

and µ̂
(i)
control = 1

n

Pn
j=1 X

(i,j)
control. This approach does not require an asynchronous correction. In the other

approach, we use the test level ↵i and the law of the iterated logarithm to adaptively stop sample collection
once a rejection is admissible; as in the first approach, we collect at most n samples from each distribution,
but we stop and make a rejection after k  n draws if

kX

j=1

⇣
X(i,j)

treatment �X(i,j)
control

⌘
>

p
k(4 log(1/(↵i ^ 0.1)) + 12 log(log(1/(↵i ^ 0.1))) + 6 log(log(ek))).

Validity of this stopping rule follows from Theorem 8 in Kaufmann et al. (2016). For other stopping rules
that can be employed in nonparametric situations, see Howard et al. (2021).

Rather than fixing the total number of tests, we fix the total sample budget B. In the simpler strategy, this
corresponds to fixing the total number of tests one can perform, namely bB/(2n)c. In the adaptive approach,
the number of tests is lower bounded by bB/(2n)c, but can be higher if rejections are made with fewer than
n samples drawn per distribution.

For each test, with equal probability we let µ(i)
treatment � µ

(i)
control = 0, in which case the null hypothesis is

true, or we draw the margin from an exponential distribution, µ(i)
treatment � µ

(i)
control ⇠ Exp(1), in which case the

null is false. We set ↵ = 0.05 and average all results over 200 trials. In each trial, all considered algorithms
observe the same sequence of average treatment effects, {µ(i)

treatment �µ
(i)
control}, but draw independent Gaussian

samples. In Figure 13, we plot the number of true discoveries made by LORD against different values of the
sample budget B for several different values of n (varying n changes the false negative rate). The adaptive
stopping strategy with a low level of asynchrony generally outperforms the naive approach; however, if the
level of asynchrony is high (relative to other problem parameters), the naive approach dominates, as expected.

Appendix E. Positive regression dependency on a subset (PRDS)

We briefly review the definition of positive regression dependency on a subset (PRDS).

Definition 7 Let D ✓ [0, 1]n be any non-decreasing set, meaning that x 2 D implies y 2 D, for all y

such that yi � xi for all i 2 [n]. We say that a vector of p-values P = (P1, . . . , Pn) satisfies positive

dependence (PRDS) if for any null index i 2 H
0

and arbitrary non-decreasing D ✓ [0, 1]n, the function

t ! Pr{P 2 D | Pi  t} is non-decreasing over t 2 (0, 1].

Clearly, independent p-values satisfy PRDS. Another important example is given for Gaussian obser-
vations. Suppose Z = (Z1, . . . , Zn) is a multivariate Gaussian with covariance matrix ⌃, and let P =
(�(Z1,), . . . ,�(Zn)) be a vector of p-values, where � is the standard Gaussian CDF. Then, P satisfies
PRDS if and only if, for all i 2 H

0 and j 2 [n], ⌃ij � 0.

34

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

50000 100000 150000 200000 250000

sample budget

50

100

150

200

nu
m

b
er

of
tr

ue
re

je
ct

io
ns

LORD w/ simple p-values

LORDasync, p = 1/50

LORDasync, p = 1/500

LORDasync, p = 1/1000

50000 100000 150000 200000 250000

sample budget

25

50

75

100

125

nu
m

b
er

of
tr

ue
re

je
ct

io
ns

LORD w/ simple p-values

LORDasync, p = 1/50

LORDasync, p = 1/500

LORDasync, p = 1/1000

50000 100000 150000 200000 250000

sample budget

20

40

60

80

100

nu
m

b
er

of
tr

ue
re

je
ct

io
ns

LORD w/ simple p-values

LORDasync, p = 1/50

LORDasync, p = 1/500

LORDasync, p = 1/1000

Figure 13: Number of true discoveries made by LORD with simple p-values and LORDasync with a sequential
strategy, against the sample budget B. The values of n are 400 (left), 800 (middle), 1200 (right). The duration
of asynchronous tests is sampled as in Section 7.

Appendix F. Examining the difference between mFDR and FDR

In Section 7, we plotted strict FDR estimates, obtained by averaging the false discovery proportion over
200 independent trials; on the other hand, the main guarantees of this paper apply to mFDR control. For
this reason, here we provide the plot of both mFDR and FDR estimates, for all experiments in Section 7.
We estimate mFDR by computing the ratio of the average number of false discoveries and the average total
number of discoveries.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

LORDasync, p = 1

LORDasync, p = 1/50

LORDasync, p = 1/100

LORDasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONasync, p = 1

SAFFRONasync, p = 1/50

SAFFRONasync, p = 1/100

SAFFRONasync, p = 1/150

Alpha-spending

Uncorrected

Figure 14: The left plots reproduce FDR from Figure 5 and Figure 6, while the right plots show mFDR for
the same experiments.

35

ZRNIC, RAMDAS, AND JORDAN

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R
LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

LORDdep, L = 0

LORDdep, L = 50

LORDdep, L = 100

LORDdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R
SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONdep, L = 0

SAFFRONdep, L = 50

SAFFRONdep, L = 100

SAFFRONdep, L = 150

Alpha-spending

Uncorrected

Figure 15: The left plots reproduce FDR from Figure 7 and Figure 8, while the right plots show mFDR for
the same experiments.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

Figure 16: The left plots reproduce FDR from Figure 9 and Figure 10, while the right plots show mFDR for
the same experiments.

36

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R
SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D

R

SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
F
D

R

SAFFRONdep

LORDdep

LORD under dependence

Alpha-spending

Uncorrected

Figure 17: The left plots reproduce FDR from Figure 11, while the right plots show mFDR for the same
experiments.

References
Ehud Aharoni and Saharon Rosset. Generalized ↵-investing: definitions, optimality results and application

to public databases. Journal of the Royal Statistical Society, Series B (Statistical Methodology), pages
771–794, 2014.

Arthur E Albert. The sequential design of experiments for infinitely many states of nature. The Annals of

Mathematical Statistics, pages 774–799, 1961.

Akshay Balsubramani and Aaditya Ramdas. Sequential nonparametric testing with the law of the iterated
logarithm. In Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence, 2016.

Jay Bartroff and Tze Leung Lai. Generalized likelihood ratio statistics and uncertainty adjustments in efficient
adaptive design of clinical trials. Sequential Analysis, 27(3):254–276, 2008.

Jay Bartroff and Jinlin Song. Sequential tests of multiple hypotheses controlling type I and II familywise
error rates. Journal of statistical planning and inference, 153:100–114, 2014.

Jay Bartroff, Tze Leung Lai, and Mei-Chiung Shih. Sequential experimentation in clinical trials: design and

analysis, volume 298. Springer Science & Business Media, 2012.

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman. Algorithmic
stability for adaptive data analysis. In Proceedings of the 48th Annual ACM Symposium on Theory of

Computing, pages 1046–1059. ACM, 2016.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57(1):289–300,
1995.

Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing under
dependency. Annals of Statistics, pages 1165–1188, 2001.

Gilles Blanchard and Etienne Roquain. Two simple sufficient conditions for FDR control. Electronic Journal

of Statistics, 2:963–992, 2008.

Avrim Blum and Moritz Hardt. The Ladder: A reliable leaderboard for machine learning competitions. In
Proceedings of the 32nd International Conference on Machine Learning, pages 1006–1014, 2015.

Herman Chernoff. Sequential design of experiments. The Annals of Mathematical Statistics, 30(3):755–770,
1959.

37

ZRNIC, RAMDAS, AND JORDAN

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Roth. The
reusable holdout: Preserving validity in adaptive data analysis. Science, 349(6248):636–638, 2015a.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon Roth.
Preserving statistical validity in adaptive data analysis. In Proceedings of the 47th Annual ACM Symposium

on Theory of Computing, pages 117–126. ACM, 2015b.

Dean P Foster and Robert A Stine. ↵-investing: a procedure for sequential control of expected false discov-
eries. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 70(2):429–444, 2008.

Christopher Genovese and Larry Wasserman. Operating characteristics and extensions of the false discovery
rate procedure. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 64(3):499–517,
2002.

Max Grazier G’Sell, Stefan Wager, Alexandra Chouldechova, and Robert Tibshirani. Sequential selection
procedures and false discovery rate control. Journal of the Royal Statistical Society, Series B (Statistical

Methodology), 78(2):423–444, 2016.

Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, nonparametric,
nonasymptotic confidence sequences. The Annals of Statistics (to appear), 2021.

John PA Ioannidis. Why most published research findings are false. PLoS medicine, 2(8):e124, 2005.

Kevin Jamieson and Lalit Jain. A bandit approach to multiple testing with false discovery control. In Proceed-

ings of the 32nd International Conference on Neural Information Processing Systems, pages 3664–3674,
2018.

Adel Javanmard and Andrea Montanari. On online control of false discovery rate. arXiv preprint

arXiv:1502.06197, 2015.

Adel Javanmard and Andrea Montanari. Online rules for control of false discovery rate and false discovery
exceedance. The Annals of Statistics, 46(2):526–554, 2018.

Natasha A Karp, Jeremy Mason, Arthur L Beaudet, Yoav Benjamini, Lynette Bower, Robert E Braun,
Steve DM Brown, Elissa J Chesler, Mary E Dickinson, Ann M Flenniken, et al. Prevalence of sexual
dimorphism in mammalian phenotypic traits. Nature Communications, 8(1):1–12, 2017.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification in
multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

Lihua Lei and William Fithian. Power of ordered hypothesis testing. In Proceedings of the 33rd International

Conference on Machine Learning, pages 2924–2932, 2016.

Ang Li and Rina Foygel Barber. Accumulation tests for FDR control in ordered hypothesis testing. Journal

of the American Statistical Association, 112(518):837–849, 2017.

Gavin Lynch, Wenge Guo, Sanat K Sarkar, and Helmut Finner. The control of the false discovery rate in fixed
sequence multiple testing. Electronic Journal of Statistics, 11(2):4649–4673, 2017.

Mohammad Naghshvar and Tara Javidi. Active sequential hypothesis testing. The Annals of Statistics, 41(6):
2703–2738, 2013.

Aaditya Ramdas, Fanny Yang, Martin J Wainwright, and Michael I Jordan. Online control of the false
discovery rate with decaying memory. In Proceedings of the 31st Conference on Neural Information

Processing Systems, pages 5655–5664, 2017.

38

ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

Aaditya Ramdas, Tijana Zrnic, Martin Wainwright, and Michael Jordan. SAFFRON: an adaptive algorithm
for online control of the false discovery rate. In Proceedings of the 35th International Conference on

Machine Learning, pages 4286–4294, 2018.

Aaditya K Ramdas, Rina F Barber, Martin J Wainwright, Michael I Jordan, et al. A unified treatment of
multiple testing with prior knowledge using the p-filter. The Annals of Statistics, 47(5):2790–2821, 2019.

David S Robertson and James Wason. Online control of the false discovery rate in biomedical research. arXiv

preprint arXiv:1809.07292v1, 2018.

David S Robertson, Jan Wildenhain, Adel Javanmard, and Natasha A Karp. onlinefdr: An R package to
control the false discovery rate for growing data repositories. Bioinformatics, 35(20):4196–4199, 2019.

John D Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B

(Statistical Methodology), 64(3):479–498, 2002.

John D Storey, Jonathan E Taylor, and David Siegmund. Strong control, conservative point estimation and
simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal

Statistical Society, Series B (Statistical Methodology), 66(1):187–205, 2004.

Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. Overlapping experiment infrastructure:
More, better, faster experimentation. In Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 17–26, 2010.

Edwin JCG van den Oord. Controlling false discoveries in genetic studies. American Journal of Medical

Genetics Part B: Neuropsychiatric Genetics, 147(5):637–644, 2008.

Abraham Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2):
117–186, 1945.

Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. From infrastructure to culture:
A/B testing challenges in large scale social networks. In Proceedings of the 21th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 2227–2236, 2015.

Fanny Yang, Aaditya Ramdas, Kevin G Jamieson, and Martin J Wainwright. A framework for multi-A
(rmed)/B (andit) testing with online FDR control. In Proceedings of the 31st Conference on Neural Infor-

mation Processing Systems, pages 5957–5966, 2017.

39

	Introduction
	Technical preliminaries
	Problem formulation and contribution
	Related work

	Conflict sets: the unifying approach
	The LORD* algorithm
	The SAFFRON* algorithm
	Oracle estimate under conflict sets

	Example 1: Asynchronous online FDR control
	Example 2: Online FDR control under local dependence
	Example 3: Controlling FDR in asynchronous mini-batch testing
	Controlling mFDR and FDR at fixed and stopping times
	mFDR control
	FDR control

	Numerical experiments
	Varying asynchrony
	Varying the lag of dependence
	Varying mini-batch sizes
	Comparison with LORD under dependence

	Discussion
	Deferred proofs
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of Theorem 6

	Different instantiations of LORD* and SAFFRON*
	Experiments on real data with local dependence
	Additional experiments with varying asynchrony
	Positive regression dependency on a subset (PRDS)
	Examining the difference between mFDR and FDR

