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Abstract

We present and investigate a novel application
domain for deep reinforcement learning (RL):
droplet routing on digital microfluidic biochips
(DMFBs). A DMFB, composed of a two-
dimensional electrode array, manipulates discrete
fluid droplets to automatically execute biochemi-
cal protocols such as point-of-care clinical diag-
nosis. However, a major concern associated with
the use of DMFBs is that electrodes in a biochip
can degrade over time. Droplet-transportation op-
erations associated with the degraded electrodes
can fail, thereby compromising the integrity of the
bioassay outcome. We show that casting droplet
transportation as an RL problem enables the train-
ing of deep network policies to capture the under-
lying health conditions of electrodes and provide
reliable fluidic operations. We propose a new RL-
based droplet-routing flow that can be used for
various sizes of DMFBs, and demonstrate reliable
execution of an epigenetic bioassay with the RL
droplet router on a fabricated DMFB. To facilitate
further research, we also present a simulation envi-
ronment based on the OpenAI Gym Interface for
RL-guided droplet-routing problems on DMFBs.

1. Introduction
There has been rapid progress in recent years on using deep
neural networks trained by reinforcement learning (RL).
These systems have outperformed humans in games (Mnih
et al., 2013; Silver et al., 2017), and they have also shown
tremendous promise in robotics (Gu et al., 2017) and natural
language processing (He et al., 2016; Narasimhan et al.,
2015). This is because RL-guided systems that are cast in
dynamic environments can learn from previous experience
and improve their reaction to the environment. In this pa-
per, we show that since the electrode condition of a digital
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microfluidic biochip (DMFB) dynamically changes over
time, we can exploit advances in RL to ensure more reliable
droplet transportation in DMFBs.

1.1. Digital Microfluidic Biochips

A digital microfluidic biochip (DMFB) is composed of a
two-dimensional electrode array that manipulates discrete
fluid droplets. When driven by a sequence of control volt-
ages, the electrode array can perform fluidic operations, such
as dispensing, mixing, and splitting (Choi et al., 2012; Ho
et al., 2010). Because of the precise control over microflu-
idic operations, DMFBs are employed in lab-on-a-chip sys-
tems for high-throughput DNA sequencing and point-of-
care clinical diagnosis (Myers & Lee, 2008; Liu et al., 2013;
Lehotay & Cook, 2015; Perut et al., 2016). Figure 1(a)
shows a DMFB, where two droplets are present on a pat-
terned electrode array.

DMFBs manipulate nanoliter droplets using the principle of
electrowetting-on-dielectric (EWOD) (Pollack et al., 2000).
EWOD refers to the modulation of the interfacial tension
between a conductive fluid and a solid electrode coated with
a dielectric layer by applying an electric field between them.
As shown in Figure 1(b), an imbalance of interfacial tension
is created if an electric field is applied to only one side of the
droplet; this interfacial tension gradient forces the droplet
to move toward to the right.

Illumina, a market leader in DNA sequencing, transitioned
digital microfluidics to the marketplace for sample prepa-
ration in 2015 through NeoPrep—a ∼ $40K instrument to
automate the preparation of up to 16 sequencing libraries
at a time (Illumina, 2015). This technology has also been
deployed by Genmark for infectious disease testing (Pierce
& Hodinka, 2012) and by Baebies to detect lysosomal stor-
age diseases in newborns (Hopkins et al., 2015). These
commercialization success stories highlight the emergence
of DMFB technology in the marketplace.

However, reliability is still a critical concern in DMFB sys-
tems. Illumina announced in February 2017 that it is imme-
diately halting sales of NeoPrep. In its letter to customers,
Illumina cited reliability issues in-house and far worse ones
in the field. While biochips are tested immediately after
production to ensure biochip integrity, biochip defects, such
as electrode degradation, can occur throughout the lifetime
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Figure 1. (a) Top-view of a DMFB. Two droplets are present on the
biochip. (b) Illustration of the side-view of a DMFB. The droplet
is moved to the right using EWOD.

of the system (Su & Chakrabarty, 2006; Dong et al., 2015).
Electrode degradation results from charge trapping in the
dielectric insulator (Chen et al., 2013). A consequence of
electrode degradation is that droplets’ motion is prevented
because of the unwanted variation of surface-tension forces
along their flow path (Su et al., 2006a). An example of
electrode degradation is shown in Figure 2 for a fabricated
biochip. Two droplets are present on the biochip, and one of
them is present over a degraded electrode. In the next time
slot, two electrodes are actuated to move the two droplets.
However, one of the two fluidic operations fails because
unwanted surface-tension force is extended by the degraded
electrode. Detailed analyses of the correlation between elec-
trode defects and fluidic operations have been presented
in (Drygiannakis et al., 2008).

Degraded
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Figure 2. Droplet transportation fails because of electrode degra-
dation. (a) Two droplets are present on the electrode array. Two
electrodes are actuated to move the two droplets. (b) After elec-
trode actuation, the upper droplet cannot be moved to the desired
electrode completely because it was present over a degraded elec-
trode; the lower droplet is transported to the desired electrode
correctly.

1.2. Motivating RL-Guided Droplet Routing

In the DMFB synthesis flow (Su & Chakrabarty, 2004), a
bioassay protocol with specified fluidic operations is first
developed by biologists. Then, a synthesis tool maps fluidic
operations to areas of electrodes, referred to as fluidic mod-
ules, of a biochip to perform the operations (Chakrabarty
et al., 2010). The resultant droplet of one operation is used
for the following operation, and thus the droplet needs to be
transported from the previous module to the next. The prob-
lem of determining paths of droplet transportation between
modules is referred to as droplet routing. Many droplet
routing methods have been proposed to accomplish rout-
ing tasks in bioassay applications (Su et al., 2006b; Xu &
Chakrabarty, 2007; Zhao & Chakrabarty, 2012). However,
these methods are static and they neglect the fact that droplet
transportation may fail if the electrodes associated with the
routing path degrade over time.

Example: Consider a routing path that has been determined
for bioassay execution as shown in Figure 3(a). This route
is the shortest path between the start and the destination. In
this case, the droplet can be transported to the destination
because the biochip is healthy, i.e., no electrode degradation
occured. Conversely, as shown in Figure 3(b), droplet trans-
portation to the destination fails because some degraded
electrodes are involved in the path. The droplet is likely
to be stuck in this nonfunctional area. Assuming that an
online droplet router knows where the degraded electrodes
are, it can generate another route that involves only healthy
electrodes. Figure 3(c) shows this alternative route, which
is also the shortest path and avoids any degraded electrode.

In the above example, the degraded electrodes are marked
with a different color. However, in reality, we cannot identify
degraded electrodes by examining their appearance since
the degradation process results from charge trapped in the
insulator. Therefore, prior work was focused on synthesis
methods that prevent excessive usage over a few electrodes
by evenly distributing the fluidic operations to every elec-
trode (Chen et al., 2013; Zhong et al., 2020). However, no
method has been presented yet to overcome routing failure
associated with electrode degradation. If electrodes degra-
dation happens in a biochip during bioassay execution and
one of the routing tasks is associated with the degraded
electrodes, the bioassay execution will fail, and the bioassay
will need to be re-executed on a new biochip (Huang et al.,
2011). Furthermore, the locations of the degraded electrodes
may vary from one biochip to another because the electrode-
degradation process is affected by geometric variance of the
electrode array and the differences in electrode actuation
times (Ho et al., 2011).

An RL-based droplet router can, however, overcome the
electrode-degradation problem and provide more reliable
bioassay executions in three ways. First, the RL-based
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Figure 3. Droplet-routing paths from a start point to an end point.
Healthy electrodes are colored gray; degraded electrodes are col-
ored brown. (a) A pre-determined path for a healthy DMFB.
(b) A DMFB has been used for a while, and some electrodes
have degraded. Some degraded electrodes are involved in the
pre-determined path. Droplet transportation may fail. (c) A more
reliable path for the aged DMFB.

droplet router provides real-time decisions for droplet routes.
Second, the RL-based droplet router can “learn” from the
past experience associated with electrodes that start malfunc-
tioning. Therefore, the droplet router can generate routing
paths that involve healthy electrodes. Third, the online RL-
based droplet router can adapt to any degradation conditions.
Even though degradation processes on one DMFB may be
different from that of another, the droplet router can gen-
erate different, yet reliable, routing paths on two distinct
DMFBs given the same routing task.

1.3. Paper Contributions
Our research is the first attempt to apply RL to emerging
microfluidic systems. The key contributions of this paper
are as follows.

• We formulate a novel framework for RL-based droplet
routing on DMFBs. We discuss the challenges involved
with casting droplet routing as an RL task.
• We present an online droplet routing framework that

employs deep RL to generate a policy, which maps real-
time observations of a DMFB, to dynamically choose
droplet paths. In our framework, the policy is first
trained in a simulated DMFB. The pre-trained policy is
then loaded on the controller associated with a DMFB,
and the policy generates real-time droplet routing paths.

• We demonstrate the routing scheme by executing an
epigenetic bio-protocol on a fabricated DMFB. We
show that the policy can learn the underlying degrada-

tion of electrodes and generate reliable routes for the
bioassays.

• We develop a DMFB simulator in OpenAI Gym en-
vironment. We open-source the simulator to the RL
community for future research1.

2. RL Approach to Droplet Router on DMFBs
In this section, we provide an overview of RL and formulate
the droplet routing on DMFBs as an RL problem.

2.1. Background

In RL, an agent is situated in an environment. The agent’s
goal is to accomplish a given task with the best performance
given a set of small actions. At each step, the agent takes one
of the given actions, and the agent receives an observation
and reward from the environment (Sutton & Barto, 2018).

RL problems can be mathematically described using
Markov decision processes (MDPs). An MDP contains
two sets, namely S and A, a probability function f , a re-
ward model R, and a variable γ. The observations made by
the agent are included in a set S, and an observation is also
referred to as a state. An element st ∈ S is an observation
made by the agent at time t toward the environment. We
use A to denote a set of actions that are made by the agent.
An action at ∈ A denotes the action made by the agent
at time t. We use P (st+1|at, st) as the transition model,
which describes what the next state st+1 will be after the
agent takes action at while in the current state st. The re-
ward model is denoted by R(st); it describes the reward
that the agent receives when it enters the state st. The pa-
rameter γ is a discount factor, where 0 ≤ γ ≤ 1 and γ ∈ R.
This factor represents the relative importance between im-
mediate and future rewards. The agent’s goal is to pick the
best policy π that will maximize the total reward received
from the environment from the start state to an end state.
The expected cumulative discounted reward is expressed
as U(t) = E[

∑
t γ

t · R(st)]. For large or continuous state
and action spaces, this problem is intractable, but recent
advances in deep RL employ deep neural networks to ap-
proximate the optimal policy (Silver et al., 2017; Schulman
et al., 2017).

2.2. Formulation of Droplet Routing as RL
We formulate the droplet-routing problem in DMFBs as
a sequence of decision-making problems within the RL
framework. We consider a droplet-routing agent that is able
to make real-time observations of the DMFB. The agent can
move the droplet to an adjacent electrode at a time step, and
the agent’s goal is to transport the droplet from a given start
electrode to a given destination electrode. We reward or
punish the agent based on the state-transition result after an

1https://github.com/tcliang-tw/dmfb-env.
git

https://github.com/tcliang-tw/dmfb-env.git
https://github.com/tcliang-tw/dmfb-env.git
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Figure 4. The RL framework for droplet routing on DMFBs. (a) Real-time images of the DMFB are captured using the CCD camera. (b)
Locations of the droplet are processed by the controller. The information is translated to an array as the input for the RL agent. (c) The RL
agent chooses an action. (d) The controller actuates electrodes based on the action. (e) The RL agent receives a reward accordingly.

action is taken.

Actions: At any time step, a droplet can be transported
to any one of the four directions: north, south, east, and
west. The action set is defined as A = {an, as, ae, aw},
where each element defines a direction that the droplet can
be moved to.

States: A state st consists of the location of the transported
droplet, the destination of the droplet, and electrodes that
are occupied by other concurrent fluidic operations. Dur-
ing bioassay execution, multiple fluidic operations may be
carried out concurrently to achieve high throughput. If a
droplet is being transported while a concurrent mixing oper-
ation is also being carried out on a DMFB, the electrodes
that are used for the mixing operation cannot be used for
droplet transportation to avoid undesirable contamination.

Rewards: The agent is rewarded if the droplet is transported
to the destination. Let ei,j be the ith row and the jth column
electrode of the DMFB. We assume that at state st, a droplet
is present at ei,j , and its destination is at ek,m. We define
D(st) as the Manhattan distance of the droplet from the
destination on the electrode array at state st, whereD(st) =
|i− k|+ |j −m|. After an action at is taken, the agent is
rewarded if D(st+1) < D(st). On the contrary, the agent
is punished if D(st+1) ≥ D(st) after at is taken.

3. Online Droplet Router
We consider a bioassay that is executed on a cyberphysical
DMFB, wherein the droplet location is captured in real-time
with a CCD camera (Luo et al., 2012; Willsey et al., 2019).
A controller is connected to the DMFB and loaded with all
the droplet-routing tasks to achieve the bioassay-synthesis
result (Su et al., 2006a). Figure 4 provides an illustration of
the overall system.

We propose an online droplet router, as the agent in the
RL framework, that can accomplish all the droplet-routing
tasks. To train the agent, we developed an OpenAI-Gym
environment named DMFB-Env to simulate a cyberphysical
DMFB. The DMFB matrix consists of N ×M electrodes,
where N and M are inputs to DMFB-Env.

3.1. DMFB Environment

States: At any given time step, the DMFB observation is
processed as a simple RGB image. The locations of on-chip
droplets are identified using control software (Luo et al.,
2012). The resolution of the RGB image is the number of
electrodes on the DMFB. A droplet-containing electrode
is interpreted as a blue pixel. The destination electrode is
interpreted as a green pixel. The electrodes that are occupied
by all the other concurrent operations are interpreted as
red pixels. An example of an RGB image is shown in
Figure 4(b).

Transition model: DMFB-Env can be simulated in two
modes: (1) healthy and (2) degrading. We first consider the
healthy mode. Let ei,j be defined as earlier, an electrode at
the ith row and the jth column of the DMFB. We denote the
location of the droplet using ei,j . The transition function is
defined as

T (ei,j , at) =


ei−1,j if at = aN

ei+1,j if at = aS

ei,j+1 if at = aE

ei,j−1 if at = aW

where 1 < i < N and 1 < j < M . If the droplet is
present at the boundary of the electrode array and the action
is toward the outside of the biochip, the droplet will remain
at the same location. For example, if the droplet is present at
e0,0 and the action is either aN or aW , the droplet remains
at e0,0. Similarly, if the next location of the droplet is in
the electrodes that are used for the other concurrent fluidic
operations, the droplet stays at the same electrode.

In the degrading mode, we define a function d(ei,j) that
describes the degradation status of an electrode, where 0 ≤
d(ei,j) ≤ 1. If the electrode ei,j is healthy, d(ei,j) = 1;
if the electrode ei,j has degraded, d(ei,j) = 0. The study
in (Dong et al., 2015) showed that in some extreme cases,
an electrode can only be actuated up to 200 times before it
is completely degraded. Therefore, we define a degradation
factor τ , where 0.6 ≤ τ < 1, and the degradation function
d(ei,j) is defined as

d(ei,j) = τ bn/50c
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where n is the number of actuations. Each electrode is
randomly assigned a different value of τ to simulate the
geometric variance of the electrode array.

A Bernoulli random variableXi,j is defined as the transition
outcome when the droplet is present at ei,j : when Xi,j = 1,
the transition is successful as T (ei,j , at); when Xi,j = 0,
the transition fails, and the droplet remains at the same
electrode. The probability mass function of Xi,j is defined
as {

P (Xi,j = 1) = d(ei,j)

P (Xi,j = 0) = 1− d(ei,j)

Reward function: LetD(st) be as defined earlier, the Man-
hattan distance from the droplet to the destination on the
electrode array at state st. After an action at is taken, if
D(st+1) = 0, the agent receives a positive reward of +1.0.
Otherwise, the reward is computed as follows

Rt =


+0.5 if D(st+1) < D(st)

−0.3 if D(st+1) = D(st)

−0.8 if D(st+1) > D(st)
In the first case, the action leads to a state in which the
droplet is closer to the destination. Therefore, we reward the
agent with a positive value. Note that any positive value used
here can lead to agent convergence because the agent will
always maximize the total reward. In the second case, the
agent is punished with a negative value because the action
does not result in a better state. In the third case, the agent
is punished with a value of −0.8 because it leads to a worse
state. This negative value needs to be less than the negative
value of the reward for the first case. Assuming that the
negative value is −0.3, the agent can earn a positive reward
by repeatedly leaving and re-entering a state (−0.3 + 0.5 =
0.2), i.e., this undesirable behavior is encouraged.

3.2. RL Agent

As shown in Figure 4, the RL agent is a deep neural network.
It observes images as input and chooses an action at ∈ A.
The agent receives a reward value based on the result of the
previous action.

Neural network: Over the past few years, many neural
network architectures have been proposed (LeCun et al.,
1998; Simonyan & Zisserman, 2014; Howard et al., 2017).
Because DMFBs commercially available today typically in-
clude a few hundred electrodes (Zhao & Chakrabarty, 2012),
we evaluate the effectiveness of RL-based adaptation using
DMFBs of size N ×M , where 25 ≤ N ×M ≤ 1, 225. We
first evaluated several fully-connected neural networks. We
found out that while fully-connected neural networks are
effective for the droplet-routing problem for small DMFB
instances (less than 100 electrodes), they do not converge
for large DMFBs. We found that convolutional neural net-
works (CNNs) are effective for all the DMFB instances

Table 1. The convolutional neural network configuration.
Layer Type depth Activation Stride Padding
1 Convolution 32 ReLU 3 1
2 Convolution 64 ReLU 3 1
3 Convolution 64 ReLU 3 1
4 Fully-Connected 256 ReLU N/A N/A
5 Fully-Connected 4 ReLU N/A N/A

that we considered. However, because the network needs
to be loaded on a cyberphysical DMFB, the computational
resources on the associated controller may be limited com-
pared to a server. For example, in (Willsey et al., 2019), the
cyberphysical DMFB includes only a quad-core 1.2 GHz
ARMv7 processor with 1 GB RAM, and it does not contain
a GPU, therefore large CNNs are not feasible in this appli-
cation scenario. We tested several options for the number of
hidden layers and number of neurons per layer. We found
that a simple CNN, as described in Table 1, can solve the
droplet-routing problem for large DMFBs with more than
1, 000 electrodes.

3.3. RL Training

We first trained our model in DMFB-Env in the healthy
mode using the proximal policy optimization (PPO) algo-
rithm (Schulman et al., 2017). The PPO algorithm combines
the idea of having multiple workers to stabilize the training
process (Mnih et al., 2016) and the idea of using a trust
region to improve the actor (Schulman et al., 2015). We
tested two significant parameters in PPO to find the best
performance of our RL agent for different sizes of DMFBs,
the number of concurrent environments, and the number of
steps for each update.

Figure 5 shows the training rewards for agents with varying
number of concurrent environments and number of steps
for each update. Here, we show the training rewards for a
20× 20 DMFB and a 30× 30 DMFB2. We observe that the
training is not stable when there are only a few concurrent
environments. For example, we see that when there are four
environments, the performance of the training model (up-
dated every 16 steps) drops significantly after a few training
epochs. We also observe that when there are eight environ-
ments, no matter what update step-interval is chosen, the
performance of the model is consistently better. Similar
trends are observed in training for other sizes of DMFBs.
Therefore, we chose eight concurrent environments as the
PPO setting for model training.

For each training game of DMFB-Env, a random routing task
is generated. During droplet routing, DMFB-Env also gen-
erates some random concurrent modules to simulate high-
throughput bioassay execution. The training processes for
different sizes of DMFBs are shown in Figure 6. A training

2We show the training rewards for other sizes of DMFBs in the
supplementary file.
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Figure 5. Training rewards for agents with different hyper-parameter settings. Score is the total reward that the RL agent receives in a
game. (a) Training rewards for DMFBs of size 20× 20 electrodes. (b) Training rewards for DMFBs of size 30× 30 electrodes.
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Figure 6. Training process corresponding to the models for different sizes of DMFBs. Score is the total reward that the RL agent receives
in a game. The performance is compared with a static (offline) routing method in (Zhao & Chakrabarty, 2012). (a) 10× 10 DMFB. (b)
15× 15 DMFB. (c) 20× 20 DMFB. (d) 25× 25 DMFB. (e) 30× 30 DMFB. (f) 35× 35 DMFB.

epoch contains 20, 000 games. From the results, we observe
that, for any size of DMFBs, the model is able to achieve
the performance of an offline optimization method (Zhao &
Chakrabarty, 2012), i.e., the agent is able to transport the
droplet to its destination using the shortest path. Intuitively,
for larger DMFBs, it takes more epochs to train the model in
order to achieve the same performance as the offline method,
as the state space is larger for large DMFBs. Although it
takes several hours to train a model to perform as well as
the offline method, e.g., it takes ∼ 4 hours to train a model

for the 20× 20 DMFB, the training process only needs to
be carried out once, and the trained model can be used for
all 20× 20 DMFBs in the future.

We recorded a video of droplet routing by the agent for a
5× 8 DMFB during training, and it can be found in (Liang
et al., 2020). From the video we see that, at first, the agent
moved the droplet randomly without knowing the right pol-
icy needed to reach the destination. After 200K training
epochs, the agent started to “learn” from past experience;
Early on, after 400K training epochs, it could transport the



Adaptive Droplet Routing in Digital Microfluidic Biochips Using Deep Reinforcement Learning

(a)
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Figure 7. Evaluation of the trained models in degrading mode of DMFB-Env. The performance, expressed as the required number of
actuation (clock) cycles, is compared with the static routing method from (Zhao & Chakrabarty, 2012). In each sub-figure, three plots
(from the left to the right) consider that 10% of the electrodes degrade over time, 50% of the electrodes degrade over time, and 90% of
the electrodes degrade over time, respectively. (a) The performance for DMFBs of size 5× 5 electrodes. (b) The performance for DMFBs
of size 10× 10 electrodes.

droplet to the destination using the shortest path for just
some of the routing tasks. However, after 800K training
epochs, the agent could complete all the routing tasks using
the shortest paths.

4. Evaluation
To evaluate our RL framework, we considered seven
DMFBs with the number of electrodes ranging from 25
to 1, 225. For each DMFB, we first trained three models
with the same network architecture (as described in Ta-
ble 1) using DMFB-Env, and the models were trained in the
healthy mode to achieve the same performance as that of the
baseline (Zhao & Chakrabarty, 2012). After training, we
evaluated the performance of the models in the degrading
mode of DMFB-Env. We also evaluated the RL framework
by executing an epigenetic bioassay on a fabricated biochip.

4.1. Simulation Results

We compared the performance of the agent with the work
in (Zhao & Chakrabarty, 2012). We set different percentages
of the degrading electrodes for DMFBs, and the results
are shown in Figure 73. Here, we show the number of
actuation cycles required in a game as the performance.
The fewer actuation cycles required in a game, the better

3The complete simulation results for various sizes of DMFBs
are provided in the supplementary file.

the performance is. We observe that the agent performs
similar to the static (offline) method when the DMFBs start
to degrade. This is because the RL agent has been trained
to perform as well as the baseline in the healthy mode of
DMFB-Env. After a small number of training games, the RL
agent sometimes performs slightly worse because the agent
may explore other alternative routes to avoid the degraded
electrodes, and the alternative solutions may be worse than
the original route. However, as DMFBs degrade further, the
agent can outperform the baseline. We also observe that
the proposed solution is more effective for smaller DMFBs.
This is because, in our experimental setting, the DMFB
with 25 electrodes is the most dynamic environment. The
performance of the baseline method decreases if electrode
degradation occurs in a DMFB. We see that the performance
of the baseline method significantly decreases in the 5× 5
DMFB. The experimental results show that the agent can
adapt to all sizes of DMFBs, including the most dynamic
environment, i.e., the 5× 5 DMFB.

We recorded a video of droplet transportation in a degraded
environment; the video can be found in (Liang et al., 2020).
As some electrodes started to degrade, the agent can still use
them to transport the droplet. However, the agent is able to
learn the changing health conditions of these electrodes. For
subsequent tasks, the agent transports the droplet without
using these degraded electrodes.
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4.2. Bioassay Execution on a Fabricated Biochip

The RL framework can be used for any bioassay. We de-
signed and executed an epigenetic bioassay on a fabricated
DMFB because benchtop epigenetic bioassays require large
sample volumes, long execution time, and highly labor in-
tensive. Previous work has shown the effectiveness of epi-
genetic bioassays on DMFBs (Ibrahim et al., 2016). The
executed epigenetic bioassay contains 19 routing tasks, and
we used the trained RL droplet router to transport droplets.

4.2.1. EPIGENETIC BIOASSAY

Although all the cells in the human body have the same
DNA, or genotype, the differences in cell type and function,
or phenotype, arise from the selective expression and sup-
pression of certain genes. This phenotypic control is carried
out by various epigenetic mechanisms. These are processes
and environmental factors that alter genomic behavior and
its subsequent expression without any changes to the actual
DNA. Epigenetics is the study of these factors and mecha-
nisms of control both in healthy and diseased populations.
Chromatin immunoprecipitation (ChIP) is one method of
studying the epigenetic relationship between DNA and its
supporting proteins (Collas, 2010). Currently, running a full
ChIP protocol on a single sample requires a large starting
volume of cells (which are not always available), several
days to run the assay, and is highly labor intensive. We pro-
pose a method of nucleosome immunoprecipitation (NuIP)
on magnetic beads as a step towards translating ChIP from
the benchtop onto automated DMFBs in the hope of re-
ducing sample sizes, decreasing run times, and increasing
throughput.

The NuIP protocol is modified from the traditional ChIP
assay (Collas, 2010; Nelson et al., 2006). It consists of first
functionalizing a magnetic bead off-chip with an antibody
that targets one of the histone proteins in the nucleosome
of interest. This is the capture complex as shown in Fig-
ure 8. The nucleosome-containing sample is then mixed
and incubated with the capture complex followed by mag-
netic splitting and washing steps. Meanwhile, off-chip, an
antibody specific to a different histone protein in the nucle-
osome is incubated with a fluorescent secondary antibody.
This forms the detection complex reagent. Next, the beads
are incubated with the detection complex. Should there be
any nucleosomes attached to the beads, these will bind with
the detection complex. After washing away excess detec-
tion complex, ensuring that there are no false positives, the
beads are resuspended in a droplet and routed to the detec-
tion region. An LED tuned to the excitation wavelength
of the fluorescent antibody shines on the beads which are
imaged using a CCD camera outfitted with the appropriate
emission wavelength filter. A fluorescing sample confirms
the presence of the nucleosome of interest.

D1

Capture
Complex (beads)

D2

Nucleosome

M1 S1

With Magnetic
Fields

M2

Wash

Wash

D3

Wash Buffer

x3

D4

Detection
Complex

M3 DeM4 S2

D5

Wash Buffer

With Magnetic
Fields • D: dispensing operation

• M: mixing operation
• S: splitting operation
• M: mixing operation
• De: detection operation

Figure 8. The steps involved in a nucleosome immunoprecipitation
assay.

4.2.2. EXPERIMENTAL SETUP

Fabricated DMFB: We designed a PCB-based DMFB for
the experiment, and fabricated the biochip using services
at (OSH, 2020). The DMFB contains a 6 × 6 electrode-
array, as shown in Figure 9(a). A reservoir module is placed
on each side of the array, and the modules can dispense
different reagent droplets. Each electrode can be controlled
individually, and these control signals come from the pin
heads that are solder on the boundary of the board.

Control board: For the fabricated DMFB, the activation/de-
activation status of each electrode is controlled by a high
voltage relay (Part No. Panasonic AQW212). As shown
in Figure 9(b), a total of 44 relay ICs are soldered on the
control board (36 for electrode array and 8 for reservoir
modules). Each high-voltage relay IC is controlled by a
configuration bit, and these configuration bits are stored in
the register ICs (Part No. Texas Instrument SN74AHC595).
Besides these ICs, four pin-header modules (shown within

33 mm

33
 m
m

(a) (b)

Micro-
computer

DMFB
& Control Board

Voltage
Amplifier

Camera
Module

(c)

Figure 9. (a) The fabricated DMFB. (b) The control board for the
DMFB. (c) The experimental setup.
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the red rectangles) are used as the DMFB socket, which
allows DMFB replacement on the control board.

Overall system: The hardware setup used to operate the
digital microfluidic biochip is shown in Figure 9(c). The
DMFB is installed above the control board using the pin-
header socket. A micro-computer (Part No. Raspberry Pi
3B+) on the left is used to generate control signals to the
control board, and the RL agent is installed in the micro-
computer. An amplifier board as well as the functional
generator are used to generate a voltage source of 1 KHz
and 200 Vpp. The voltage source provides actuation signals
for the electrodes. A camera module is placed on top of the
DMFB to capture droplet locations. The images are utilized
by the micro-computer for making real-time decisions.

4.2.3. EXPERIMENTAL RESULTS

We executed the droplet transportation of the bioassay on the
fabricated DMFB. To show that the RL agent can adapt to
the degrading DMFB environment, we emulated a degraded
electrode, the fourth row and the third column electrode, by
constantly supplying a lower voltage of 150 Vpp. In the
third routing task, the agent used this degraded electrode to
transport a droplet, and it experienced the malfunction of the
electrode. In the subsequent tasks, the RL agent used other
electrodes to transport droplets. We recorded the routing
tasks in a video; it can be viewed in (Liang et al., 2020).

5. Discussion
Note that mixing operations are ubiquitous in bio-protocols.
On DMFBs, a mixing operation is achieved in two steps:
1) Two droplets are transported to a specific electrode in
a mixer module and thus merged into one droplet. 2) The
merged droplet is transported in a loop repeatedly until mix-
ing is complete. Therefore, a mixing operation is composed
of several routing tasks, and we have considered electrode
degradation during mixing. The proposed method makes
mixing more reliable when microelectrode degradation oc-
curs in a biochip.

6. Conclusion
We have presented a novel framework for RL-based droplet
routing on DMFBs. We have also developed an OpenAI-
Gym environment that can be used to train the RL droplet
router for various DMFB sizes. The experimental results
showed that even though electrodes on a DMFB degrade
over time, the RL droplet router can learn the degradation be-
havior and transport droplets using only healthy electrodes.

We have also demonstrated that using the RL framework, an
epigenetic bio-protocol (NuIP) can run much faster and use
smaller volumes than with the traditional benchtop protocol.

A failure of the DMFB results in costly sample and reagent
loss. However, the proposed RL framework minimizes
the need to discard biochips with degraded electrodes and
abort bioassay protocols. This increases the lifespan of a
biochip’s utility and allows for the adaptation of a plethora
of immunoprecipitation assays on to the DMFB platform.
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