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Abstract

Wireless sensor networks (WSNs) consist of a set of sensors distributed over a region of interest that monitor and
report on conditions within the network. Network reliability of region coverage is often an important performance
metric, as the status of the network degrades over time due to sensor failures. To facilitate network operation over a
prolonged period time, failed nodes may be replaced or new sensors deployed to re-establish network capability. We
explore a condition-based sensor deployment policy, in which new sensors are periodically deployed based on an
observed network state. The destruction spectrum (D-spectrum) has been utilized to estimate network reliability, and
offers several advantages over a traditional Monte Carlo approach. While the D-spectrum is a function of the network
structure, or the number of sensors and their distribution throughout the network, we discuss how the D-spectrum can
be incorporated into a model that estimates reliability in the presence of a condition-based sensor deployment policy.
This model is then demonstrated by evaluating various policies with respect to the resulting reliability for region
coverage. Finally, the performance of these policies is compared to a simpler time-based sensor deployment strategy.
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1. Introduction

Wireless Sensor Networks (WSNs) are commonly characterized by a large number of low-cost sensor nodes operating
in a cooperative manner to monitor a region of interest. Additionally, WSNs require little infrastructure or supporting
resources (e.g., physical wire connection) for sensors to route information through the network [1]. These features
enable WSNs to be quickly established by randomly deploying sensors over a target location, which may also be
necessary when operating in harsh or difficult to access terrain [2].

Over the course of network operation, sensors consume a finite power supply while monitoring the surrounding region
and communicating with nearby sensors [3]. Once this power supply is consumed the sensor fails and no longer
contributes to network operation. The lifetime of a sensor can be further accelerated by software or hardware
complications, which may arise as a result of external (e.g., environmental) factors [1]. While the WSN can likely
withstand a few sensor failures with minor impact to network capability, as a larger number of sensors fail the WSN
becomes increasingly degraded.

Several different methods have been explored to prolong network lifetime in the presence of sensor failures. Topology
control algorithms commonly aim to extend sensor lifetime by managing power consumption. One approach is to
modify the communication radius based on the distance of nearby sensors, as a smaller communication range between
sensors requires less energy [4]. There may also be redundant sensors in the network that provide little additional
coverage or communication capability. In this situation a sleep/wake schedule can be used to turn sensors on and off
as necessary, allowing a sensor to conserve energy until needed [5]. Another approach is through the introduction of
one or more mobile sensors in the network to reposition sensors over time as necessary [6, 7]. However, there is a
significant cost that accompanies this mobile capability, as the cost of such sensors can be significant compared to
static sensors [3, 6]. Additionally, the WSN may be in an environment that is not conducive to sensor mobility, such
as a forest or steep mountain side.

The use of topology control algorithms and mobile sensor nodes aim to extend network lifetime. That is, determining
a policy to maximize the lifetime of a given WSN deployment. To enable the long-term operation of a WSN, we must
eventually consider deploying new sensors in the network. The objective of deploying new sensors can be directed
towards restoring a level of network coverage, and/or improving sensor communication capability. In [8, 9] the



deployment of new sensors is addressed, in addition to seeking a policy that deploys the fewest number of new sensors.
This objective adds further complexity to the search for a deployment policy, as problems related to optimal node
placement commonly fall in the NP-Hard class of problems [10]. It may also be difficult to locate sensors at a specific
location, particularly if we are forced into a random deployment of sensors due to the operating environment.

Whereas the previous focus has primarily been on the deployment of sensors at a single point in time, in this work we
consider a problem where the decision to deploy new sensors is made sequentially over a number of time periods. In
doing so, we address the frequency with which new nodes are deployed in the network and the associated cost. Further,
throughout the previously mentioned topology control algorithms, introduction of mobile sensor nodes, and single-
stage sensor deployment, the focus has been on extending network lifetime or maintaining a coverage/connectivity
requirement. We focus on evaluating a node deployment policy with respect to network reliability which commonly
fall in the #P-Complete class of problems [11], and are therefore routinely estimated by approximate solution methods
such as a Monte Carlo simulation.

In the following section, we discuss a condition-based node deployment model where the deployment of new sensors
is based on an observed state of the WSN. The objective is to determine a sensor deployment policy that results in a
highly reliable network given a fixed budget available. A Monte Carlo simulation can be used to evaluate a given
condition-based deployment policy (CBDP), but improving upon and optimizing a policy is a more challenging task.
We illustrate how the network destruction spectrum (D-spectrum), or signature, can be used to estimate reliability in
the presence of a CBDP, alleviating some of the difficulties encountered in network reliability problems. The model
is then illustrated through an example for various policies.

2. Problem Formulation and Methodology

Consider a WSN W that is comprised of a sink node and a collection of sensor nodes. These sensor nodes are deployed
throughout some region of interest R, which is partitioned into a number of smaller subregions {1,2, ..., n,.}. The main
tasks of a sensor node are communicating with neighboring sensors to route information through the network directed
toward the sink node, in addition to monitoring nearby targets. These sensor capabilities are defined by a
communication radius d; > 0, and a monitoring radius d, > 0.

Due to the failure of sensors the WSN evolves over time, impacting the ability of sensors to communicate with each
other and diminishing the collection of targets covered. For a target to be covered at any given time it must be within
the coverage radius of a functioning sensor, and there must exist a communication path from this monitoring sensor
bask to the sink node. At time t > 0, the network W consists of sensors that have been deployed in the network and
remain functioning at time t. The condition of the network is then defined in relation to network coverage, C(W), and
represents the proportion of targets in the network currently covered.

To maintain adequate coverage over a prolonged period of time, new sensors are deployed in the WSN. First, the
network is observed and degraded portions of the network can be detected, which informs the deployment of new
sensors. It may be impractical or costly to constantly monitor the state of the network [12], but it is assumed that every
6 time units the network can be observed. The time intervals between observations now correspond to a series of
missions, where mission m refers to the period of time between mé and (m + 1)4. If one or more sensors are deployed
in the network, a fixed cost ¢y is incurred in addition to a variable cost ¢, per sensor deployed. It is assumed that all
sensors are deployed with an independent and identically distributed (i.i.d.) life distribution, F, and that sensor
capabilities are identical.

The observed state of the network is denoted S, = (Sm1, Smzs -+ » Smn, ), Where Sp,; is the number of sensors
functioning in subregion i € R at the beginning of mission m. After the network is observed, a decision x,, =
(Xm1, Xm2s -+ » Xmn,.) is made on how new sensors are deployed in the network, where x,,,; is the number of sensors
deployed to subregion i € R during mission m. Due to the difficulty encountered when attempting to deploy a sensor
to a specific coordinate location, the initial deployment of sensors, along with all future deployments, is random within
a subregion. A sensor deployment decision is faced repeatedly over a series of missions, and the decision made during
mission m may impact the decision of how sensors are deployed in missions m’ > m. However given the stochastic
nature of sensor failures and the potentially enormous state and deployment decision space, we focus on a myopic
condition-based deployment policy (M-CBDP) that focuses on the impact on reliability for the current mission.



2.1. Myopic Condition-Based Sensor Deployment

In the myopic formulation of the condition-based sensor deployment problem, a fixed budget § is available each
mission and the objective is to maximize the probability of mission success. An individual mission is successful if
network coverage over the duration of the mission satisfies a given coverage requirement, a. Equivalently, mission m
is successful if coverage at the end of the mission (time (m + 1)4) is at least a. The reliability of the network during
mission m is defined as the probability the coverage requirement is satisfied for the duration of the mission, and is
denoted R(S,,, x,,) if we observe network state S, and deploy sensors according to action X,,. The objective in the
myopic condition-based sensor deployment problem is therefore

max R (S, Xm), (D
subject to a constraint that the cost of deploying sensors, ¢z + ¢y * x,,,, not exceed the budget available.

Equation (1) selects an optimal action to maximize network reliability. As previously mentioned, network reliability
problems commonly fall in the #P-Complete class of problems. Network reliability can be estimated through the use
of a Monte Carlo method by simulating sensor failures over the next § time units, determining network coverage at
the end of the mission, and recording if the mission is successful or not. Repeating this process over a large number
of replications allows for an estimation of reliability upon completion. One deterrent of this approach is the unbounded
growth of the relative error for highly reliable and highly unreliable networks [13]. Further, improving upon and
optimizing a policy through a Monte Carlo method requires significant computational effort.

2.2. Destruction Spectrum

The D-spectrum has been introduced to estimate network reliability [14], and offers several advantages over a
traditional Monte Carlo algorithm. First, the D-spectrum yields an efficient representation of the network’s reliability
but depends only on the system structure. Additionally, while the D-spectrum is also commonly estimated using a
Monte Carlo method, it is more efficient than a Monte Carlo algorithm that estimates network reliability [13]. If we
consider a network of n sensors subject to failure, the D-spectrum is a probability distribution on the number of failed
sensors necessary to cause network failure. Let s* be the probability that in a network of n sensors, the ith sensor
failure results in network coverage falling below the requirement a. For the initial WSN that is deployed, every sensor
follows an i.i.d. failure distribution F, and network reliability at time t can be estimated by

r(t;a,n) = zn s{'B(i—1;n,F(t)), @
=0

i=

where B(i — 1,n,F(t)) is the cumulative binomial probability of no more than i — 1 successes in n trials with
probability of success F(t) [15].

Under a M-CBDP sensors will be deployed in the network over a series of missions based on the budget f available
leading not only to a variable network size, but also changing the age composition of sensors in the network. As a
result, sensors that were deployed in previous missions and remain functioning now have a residual life distribution,
denoted T,, where x > 0 represents a sensor’s age, and fail according to the cdf

F(t)_F(x+t)—F(x) 3)
A F(x) '

We can use Equation (3) to determine the residual lifetime of a sensor randomly selected in the network, while
considering the randomness of its age, as follows. Since network reliability increases along with the number of sensors
in the network, the entire budget will be utilized each mission to deploy new sensors. We can now use the cost
constraint, ¢ + ¢y * X, < 8, to determine the maximum number of sensors that can be deployed each mission by
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Every § time units 8 sensors will be pushed into the network, eventually resulting in a stable mix of sensors where
the probability distribution on the age k of a randomly selected sensor does not change from on mission to the next.
From [16], this probability distribution is described by

Pk=ﬂk€220- ®
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With Equation (3) and (5), the residual lifetime of a sensor in the network, considering the randomness of its age, is
now described by the cdf
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The D-spectrum is independent on the failure distribution, but it is impacted by the size of the network. Due to a fixed
number of sensors 3 deployed in the network each mission and variability in the number of sensor failures, the number
of sensors in the WSN will also fluctuate over time. However immediately after new sensors have been deployed, the
network consists of

=8>  F(8), ®
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sensors, on average. The significance of Equation (8) is that we have an expression for the expected size of a WSN in
the presence of a M-CBDP with budget 8 available per mission. Additionally, the remaining life of a sensor randomly
selected in the WSN is an i.i.d. random variable with cdf given by Equation (7).

Finally, to apply the D-spectrum to a M-CBDP we must have knowledge about the system structure, or distribution
of sensors in the network. For a fixed budget § available we now know this corresponds to a network with
approximately ng sensors. With an expectation on network size we can now search for the allocation of ng sensors to
each of the subregions to maximize network reliability. Let Y be some policy that determines how the ng sensors are
distributed to each subregion. For example, one policy is to distribute sensors so that each subregion contains
approximately the same number of sensors. A policy informs the overall configuration of sensors in the network (i.e.,
the structure of a network that consist of ng sensors), in addition to how new sensors are deployed in the network
based on the observed state. Policy Y now provides a consistent network structure between missions (that is, after the
deployment of sensors each mission the network contains ng distributed throughout the network in a similar manner),
and the D-spectrum can be used to estimate network reliability. Let s} be the probability the ith sensor failure results
in C(W) falling below a when following the M-CBDP Y. Network reliability is estimated by

(8, B,Y) = zn_ﬁo SYB(i — 1;n5,G(5; 8)) . ©)
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Using the network D-spectrum, Equation (9) can be applied to efficiently evaluate network reliability when new
sensors are deployed in the network according to a given M-CBDP Y. In the following section we compare the
performance of various policies, after which the best policy from those evaluated can be selected.

3. Computational Results

In this section we compare the performance of various M-CBDPs for a varying budget, 5, and observation interval,
6. To model the failure of sensors, the lifetime of each sensor is distributed according to a Weibull distribution with a
shape parameter 1.5 and scale parameter 10. Sensor capabilities are defined based on a common communication radius
of d; = 0.075 and a monitoring radius of d, = 0.075. The region of interest R is a [0,1] X [0,1] square that is
partitioned into n, = 16 equal sized regions (i.e., each subregion is of size 0.25 X 0.25), with a single sink node



located centrally in R. The coverage requirement is selected as & = 0.8, meaning the WSN must cover 80% of the
region to be successful. The fixed cost of deploying sensors is set to ¢, = 100, with a variable cost ¢, = 1.

The first M-CBDP we consider is to evenly distribute sensors to each subregion, denoted policy Y;. That is, after

. . . . n
observing the state of the network new sensors are deployed so that each subregion contains approximately p /nr

sensors. As a result, if we observe a subregion that has suffered more failures compared to another, more sensors will
be deployed to this subregion. The second myopic policy, Y;, is to deploy new sensors to a subregion based on a
weight, w;, assigned to each subregion. Since sensors located closer to the sink node are relied upon more often to
route information we may wish to place a larger weight on subregions around the sink in order to deploy a larger
number of sensors, providing a level of redundancy and maintaining a communication path in the presence of failures.
The weights now influence how new sensors are deployed in the network, where even if we observe a large number
of sensors that remain functioning in a subregion it might be advantageous to deploy sensors to this subregion if it is
near the sink. For M-CBDP Y,, the weight of each subregion is inversely proportional to the distance from the sink
node to the center of a subregion, and each subregion now contains approximately (w;/ Z:Zl w;) * ng sensors. Note
that policy ¥; and Y, are not necessarily optimal policies resulting from Equation (1). However they are anticipated to
be high quality policies and selected to demonstrate the use of the D-spectrum to estimate the reliability of a CBDP.
Future work will be directed on efficient methods to determine an optimal policy beyond an enumeration strategy.

These two M-CBDPs are compared against a simpler time-based deployment policy (TBDP), TB. In policy TB, rather
than deploy sensors based on a budget available, sensors are deployed to reach a constant network size. Additionally,
only the number of sensors functioning in the network is observed and sensors are then randomly deployed throughout
the entire region, instead of specifying the subregion a sensor is deployed in. A TBDP is explained in more detail in
[17]. Results for the two M-CBDPs along with the TBDP are provided in Table 1, where the values under each policy
correspond to the resulting network reliability estimated using Equation (9), given § and §.

Table 1: Network Reliability for Various Sensor Deployment Policies

B 5 Y, Y, TB B 5 Y, Y, TB
278 2.5 09998 09999 0.9998 ||| 388 5.7  0.8004 0.8123  0.7359
364 50 09499 09598 09227 383 57 07503 0.7667  0.6820
353 50  0.8999 09136 0.8557(]| 594 82 07003 0.7200  0.6542
353 51 08507 08719 0.7981[]| 438 65 07002 0.7199  0.6357

In each of the test instances, M-CBDP Y, results in the largest reliability, followed by M-CBDP Y;, and finally the
TBDP TB. One of the primary differences between policy Y; and Y, with TB is that in ¥; and Y, we are able to observe
the state of the network and determine how new sensors are deployed in the region (i.e., which subregion sensors are
deployed in). This is a significant improvement over policy TB, particularly as the time between network observation
increases. For example, in the instance with (8, ) = (388, 5.7), this results in an improvement in network reliability
from 0.7359 for the TBDP to 0.8004 for M-CBDP Y;. By weighting each subregion and influencing the M-CBDP
through this method (policy Y,), network reliability is improved further.

The test instances also help illustrate the impact of f and § on each policy. For example, consider the (353, 5.0)
instance and the (353, 5.1) instance. The observation interval in the latter instance is slightly larger, but this results in
a drop in network reliability from 0.9136 to 0.8719 for policy Y,, with a similar impact on policy Y;. In the following
set of test instances, (388, 5.7) and (383, 5.7), the observation interval is the same but the mission budget has slightly
decreased. With a variable cost ¢, = 1, this corresponds to 5 fewer sensors available to deploy per mission in the
second scenario. However, this again results in a drop in network reliability from 0.8123 to 0.7667 for policy Y.

Finally, because we are using an estimate of the D-spectrum for an approximate size of the network to estimate
reliability under a CBDP, we are interested in how accurate this estimate is compared to a traditional Monte Carlo
simulation. Although a Monte Carlo simulation is more computationally expensive, it provides the ability to model
the fluctuation in network size and in the age of sensors over time. For a Monte Carlo simulation of 10000 replications
on the (353, 5.0) instance, the resulting reliability estimate is 0.8993 and 0.9151 for policy Y; and Y, respectively. A



Monte Carlo simulation for the remaining test instances yields a similar performance comparison, demonstrating the
suitability of the D-spectrum to estimate reliability of a M-CBDP.

4. Conclusion

To maintain a WSN over a prolonged period of time, new sensors must be deployed in the network to re-establish
network coverage and communication capabilities. Towards this goal, we have discussed a myopic condition-based
sensor deployment problem in which the network is observed prior to a decision on how new sensors are deployed in
the network. We have also demonstrated how the network D-spectrum can be used to estimate network reliability as
new sensors are deployed, and compare the performance of different sensor deployment policies. With this insight to
a M-CBDP, future work is focused on a model that considers the impact on future mission reliability as well.
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