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Abstract 

 
Wireless sensor networks (WSNs) consist of a set of sensors distributed over a region of interest that monitor and 
report on conditions within the network. Network reliability of region coverage is often an important performance 
metric, as the status of the network degrades over time due to sensor failures. To facilitate network operation over a 
prolonged period time, failed nodes may be replaced or new sensors deployed to re-establish network capability. We 
explore a condition-based sensor deployment policy, in which new sensors are periodically deployed based on an 
observed network state. The destruction spectrum (D-spectrum) has been utilized to estimate network reliability, and 
offers several advantages over a traditional Monte Carlo approach. While the D-spectrum is a function of the network 
structure, or the number of sensors and their distribution throughout the network, we discuss how the D-spectrum can 
be incorporated into a model that estimates reliability in the presence of a condition-based sensor deployment policy. 
This model is then demonstrated by evaluating various policies with respect to the resulting reliability for region 
coverage. Finally, the performance of these policies is compared to a simpler time-based sensor deployment strategy. 
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1. Introduction 
Wireless Sensor Networks (WSNs) are commonly characterized by a large number of low-cost sensor nodes operating 
in a cooperative manner to monitor a region of interest. Additionally, WSNs require little infrastructure or supporting 
resources (e.g., physical wire connection) for sensors to route information through the network [1]. These features 
enable WSNs to be quickly established by randomly deploying sensors over a target location, which may also be 
necessary when operating in harsh or difficult to access terrain [2]. 
 
Over the course of network operation, sensors consume a finite power supply while monitoring the surrounding region 
and communicating with nearby sensors [3]. Once this power supply is consumed the sensor fails and no longer 
contributes to network operation. The lifetime of a sensor can be further accelerated by software or hardware 
complications, which may arise as a result of external (e.g., environmental) factors [1]. While the WSN can likely 
withstand a few sensor failures with minor impact to network capability, as a larger number of sensors fail the WSN 
becomes increasingly degraded.  
 
Several different methods have been explored to prolong network lifetime in the presence of sensor failures. Topology 
control algorithms commonly aim to extend sensor lifetime by managing power consumption. One approach is to 
modify the communication radius based on the distance of nearby sensors, as a smaller communication range between 
sensors requires less energy [4]. There may also be redundant sensors in the network that provide little additional 
coverage or communication capability. In this situation a sleep/wake schedule can be used to turn sensors on and off 
as necessary, allowing a sensor to conserve energy until needed [5]. Another approach is through the introduction of 
one or more mobile sensors in the network to reposition sensors over time as necessary [6, 7]. However, there is a 
significant cost that accompanies this mobile capability, as the cost of such sensors can be significant compared to 
static sensors [3, 6]. Additionally, the WSN may be in an environment that is not conducive to sensor mobility, such 
as a forest or steep mountain side. 
 
The use of topology control algorithms and mobile sensor nodes aim to extend network lifetime. That is, determining 
a policy to maximize the lifetime of a given WSN deployment. To enable the long-term operation of a WSN, we must 
eventually consider deploying new sensors in the network. The objective of deploying new sensors can be directed 
towards restoring a level of network coverage, and/or improving sensor communication capability. In [8, 9] the 



deployment of new sensors is addressed, in addition to seeking a policy that deploys the fewest number of new sensors. 
This objective adds further complexity to the search for a deployment policy, as problems related to optimal node 
placement commonly fall in the NP-Hard class of problems [10]. It may also be difficult to locate sensors at a specific 
location, particularly if we are forced into a random deployment of sensors due to the operating environment.  
 
Whereas the previous focus has primarily been on the deployment of sensors at a single point in time, in this work we 
consider a problem where the decision to deploy new sensors is made sequentially over a number of time periods. In 
doing so, we address the frequency with which new nodes are deployed in the network and the associated cost. Further, 
throughout the previously mentioned topology control algorithms, introduction of mobile sensor nodes, and single-
stage sensor deployment, the focus has been on extending network lifetime or maintaining a coverage/connectivity 
requirement. We focus on evaluating a node deployment policy with respect to network reliability which commonly 
fall in the #P-Complete class of problems [11], and are therefore routinely estimated by approximate solution methods 
such as a Monte Carlo simulation.  
 
In the following section, we discuss a condition-based node deployment model where the deployment of new sensors 
is based on an observed state of the WSN. The objective is to determine a sensor deployment policy that results in a 
highly reliable network given a fixed budget available. A Monte Carlo simulation can be used to evaluate a given 
condition-based deployment policy (CBDP), but improving upon and optimizing a policy is a more challenging task. 
We illustrate how the network destruction spectrum (D-spectrum), or signature, can be used to estimate reliability in 
the presence of a CBDP, alleviating some of the difficulties encountered in network reliability problems. The model 
is then illustrated through an example for various policies. 
 
2. Problem Formulation and Methodology 
Consider a WSN 𝑊 that is comprised of a sink node and a collection of sensor nodes. These sensor nodes are deployed 
throughout some region of interest 𝑅, which is partitioned into a number of smaller subregions {1,2, … , 𝑛𝑟}. The main 
tasks of a sensor node are communicating with neighboring sensors to route information through the network directed 
toward the sink node, in addition to monitoring nearby targets. These sensor capabilities are defined by a 
communication radius 𝑑1 > 0, and a monitoring radius 𝑑2 > 0. 
 
Due to the failure of sensors the WSN evolves over time, impacting the ability of sensors to communicate with each 
other and diminishing the collection of targets covered. For a target to be covered at any given time it must be within 
the coverage radius of a functioning sensor, and there must exist a communication path from this monitoring sensor 
bask to the sink node. At time 𝑡 ≥ 0, the network 𝑊 consists of sensors that have been deployed in the network and 
remain functioning at time 𝑡. The condition of the network is then defined in relation to network coverage, 𝐶(𝑊), and 
represents the proportion of targets in the network currently covered. 
 
To maintain adequate coverage over a prolonged period of time, new sensors are deployed in the WSN. First, the 
network is observed and degraded portions of the network can be detected, which informs the deployment of new 
sensors. It may be impractical or costly to constantly monitor the state of the network [12], but it is assumed that every 
𝛿 time units the network can be observed. The time intervals between observations now correspond to a series of 
missions, where mission 𝑚 refers to the period of time between 𝑚𝛿 and (𝑚 + 1)𝛿. If one or more sensors are deployed 
in the network, a fixed cost 𝑐𝐹 is incurred in addition to a variable cost 𝑐𝑉 per sensor deployed. It is assumed that all 
sensors are deployed with an independent and identically distributed (i.i.d.) life distribution, 𝐹, and that sensor 
capabilities are identical.  
 
The observed state of the network is denoted 𝑆𝑚 = (𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚𝑛𝑟

), where 𝑆𝑚𝑖  is the number of sensors 
functioning in subregion 𝑖 ∈ 𝑅 at the beginning of mission 𝑚. After the network is observed, a decision 𝑥𝑚 =
(𝑥𝑚1, 𝑥𝑚2, … , 𝑥𝑚𝑛𝑟

) is made on how new sensors are deployed in the network, where 𝑥𝑚𝑖   is the number of sensors 
deployed to subregion 𝑖 ∈ 𝑅 during mission 𝑚. Due to the difficulty encountered when attempting to deploy a sensor 
to a specific coordinate location, the initial deployment of sensors, along with all future deployments, is random within 
a subregion. A sensor deployment decision is faced repeatedly over a series of missions, and the decision made during 
mission 𝑚 may impact the decision of how sensors are deployed in missions 𝑚′ > 𝑚. However given the stochastic 
nature of sensor failures and the potentially enormous state and deployment decision space, we focus on a myopic 
condition-based deployment policy (M-CBDP) that focuses on the impact on reliability for the current mission. 
 



2.1. Myopic Condition-Based Sensor Deployment  
In the myopic formulation of the condition-based sensor deployment problem, a fixed budget 𝛽 is available each 
mission and the objective is to maximize the probability of mission success. An individual mission is successful if 
network coverage over the duration of the mission satisfies a given coverage requirement, 𝛼. Equivalently, mission 𝑚 
is successful if coverage at the end of the mission (time (𝑚 + 1)𝛿) is at least 𝛼. The reliability of the network during 
mission 𝑚 is defined as the probability the coverage requirement is satisfied for the duration of the mission, and is 
denoted 𝑅(𝑆𝑚, 𝑥𝑚) if we observe network state 𝑆𝑚 and deploy sensors according to action 𝑥𝑚. The objective in the 
myopic condition-based sensor deployment problem is therefore 
 

 max 𝑅(𝑆𝑚 , 𝑥𝑚), (1) 
 
subject to a constraint that the cost of deploying sensors, 𝑐𝐹 + 𝑐𝑉 ∗ 𝑥𝑚, not exceed the budget available. 
 
Equation (1) selects an optimal action to maximize network reliability. As previously mentioned, network reliability 
problems commonly fall in the #P-Complete class of problems. Network reliability can be estimated through the use 
of a Monte Carlo method by simulating sensor failures over the next 𝛿 time units, determining network coverage at 
the end of the mission, and recording if the mission is successful or not. Repeating this process over a large number 
of replications allows for an estimation of reliability upon completion.  One deterrent of this approach is the unbounded 
growth of the relative error for highly reliable and highly unreliable networks [13]. Further, improving upon and 
optimizing a policy through a Monte Carlo method requires significant computational effort. 
 
2.2. Destruction Spectrum  
The D-spectrum has been introduced to estimate network reliability [14], and offers several advantages over a 
traditional Monte Carlo algorithm. First, the D-spectrum yields an efficient representation of the network’s reliability 
but depends only on the system structure. Additionally, while the D-spectrum is also commonly estimated using a 
Monte Carlo method, it is more efficient than a Monte Carlo algorithm that estimates network reliability [13]. If we 
consider a network of 𝑛 sensors subject to failure, the D-spectrum is a probability distribution on the number of failed 
sensors necessary to cause network failure. Let 𝑠𝑖

𝑛 be the probability that in a network of 𝑛 sensors, the ith sensor 
failure results in network coverage falling below the requirement 𝛼. For the initial WSN that is deployed, every sensor 
follows an i.i.d. failure distribution 𝐹, and network reliability at time 𝑡 can be estimated by  
 

 
𝑟(𝑡; 𝛼, 𝑛) =  ∑ 𝑠𝑖

𝑛𝐵(𝑖 − 1; 𝑛, 𝐹(𝑡))
𝑛

𝑖=0
 , (2) 

 
where 𝐵(𝑖 − 1, 𝑛, 𝐹(𝑡)) is the cumulative binomial probability of no more than 𝑖 − 1 successes in 𝑛 trials with 
probability of success 𝐹(𝑡) [15].  
 
Under a M-CBDP sensors will be deployed in the network over a series of missions based on the budget 𝛽 available 
leading not only to a variable network size, but also changing the age composition of sensors in the network. As a 
result, sensors that were deployed in previous missions and remain functioning now have a residual life distribution, 
denoted 𝑇𝑥 where 𝑥 > 0 represents a sensor’s age, and fail according to the cdf  
 

 
𝐹𝑥(𝑡) =

𝐹(𝑥 + 𝑡) − 𝐹(𝑥)

𝐹̅(𝑥)
. 

(3) 

 
We can use Equation (3) to determine the residual lifetime of a sensor randomly selected in the network, while 
considering the randomness of its age, as follows. Since network reliability increases along with the number of sensors 
in the network, the entire budget will be utilized each mission to deploy new sensors. We can now use the cost 
constraint, 𝑐𝐹 + 𝑐𝑉 ∗ 𝑥𝑚 ≤ 𝛽, to determine the maximum number of sensors that can be deployed each mission by 
 

 
𝛽̅ = ⌊

𝛽 − 𝑐𝐹

𝑐𝑉

⌋ . 
(4) 

 



Every 𝛿 time units 𝛽̅ sensors will be pushed into the network, eventually resulting in a stable mix of sensors where 
the probability distribution on the age 𝑘 of a randomly selected sensor does not change from on mission to the next. 
From [16], this probability distribution is described by 
 

 
𝜌𝑘 =

𝐹̅(𝑘𝛿)

∑ 𝐹̅(𝑗𝛿)∞
𝑗=0

, 𝑘 ∈ 𝕫≥0 . 
(5) 

 
With Equation (3) and (5), the residual lifetime of a sensor in the network, considering the randomness of its age, is 
now described by the cdf 
 

 
𝐺(𝑡; 𝛿) =  ∑

𝐹(𝑘𝛿 + 𝑡) − 𝐹(𝑘𝛿)

𝐹̅(𝑘𝛿)

∞

𝑘=0
𝜌𝑘  , 

(6) 

  
=

∑ [𝐹(𝑘𝛿 + 𝑡) − 𝐹(𝑘𝛿)]∞
𝑘=0

∑ 𝐹̅(𝑗𝛿)∞
𝑗=0

 . 
(7) 

 
The D-spectrum is independent on the failure distribution, but it is impacted by the size of the network. Due to a fixed 
number of sensors 𝛽̅ deployed in the network each mission and variability in the number of sensor failures, the number 
of sensors in the WSN will also fluctuate over time. However immediately after new sensors have been deployed, the 
network consists of  
 

 
𝑛𝛽 = 𝛽̅ ∑ 𝐹̅(𝑗𝛿)

∞

𝑗=0
 , (8) 

 
sensors, on average. The significance of Equation (8) is that we have an expression for the expected size of a WSN in 
the presence of a M-CBDP with budget 𝛽 available per mission. Additionally, the remaining life of a sensor randomly 
selected in the WSN is an i.i.d. random variable with cdf given by Equation (7).  
 
Finally, to apply the D-spectrum to a M-CBDP we must have knowledge about the system structure, or distribution 
of sensors in the network. For a fixed budget 𝛽 available we now know this corresponds to a network with 
approximately 𝑛𝛽 sensors. With an expectation on network size we can now search for the allocation of 𝑛𝛽 sensors to 
each of the subregions to maximize network reliability. Let 𝑌 be some policy that determines how the 𝑛𝛽 sensors are 
distributed to each subregion. For example, one policy is to distribute sensors so that each subregion contains 
approximately the same number of sensors. A policy informs the overall configuration of sensors in the network (i.e., 
the structure of a network that consist of 𝑛𝛽 sensors), in addition to how new sensors are deployed in the network 
based on the observed state. Policy 𝑌 now provides a consistent network structure between missions (that is, after the 
deployment of sensors each mission the network contains 𝑛𝛽 distributed throughout the network in a similar manner), 
and the D-spectrum can be used to estimate network reliability. Let 𝑠𝑖

𝑌 be the probability the ith sensor failure results 
in 𝐶(𝑊) falling below 𝛼 when following the M-CBDP 𝑌. Network reliability is estimated by 
 

 
𝑟(𝛿; 𝛼, 𝛽, 𝑌) = ∑ 𝑠𝑖

𝑌𝐵(𝑖 − 1; 𝑛𝛽 , 𝐺(𝛿; 𝛿))
𝑛𝛽

𝑖=0
 . (9) 

 
Using the network D-spectrum, Equation (9) can be applied to efficiently evaluate network reliability when new 
sensors are deployed in the network according to a given M-CBDP 𝑌. In the following section we compare the 
performance of various policies, after which the best policy from those evaluated can be selected. 
 
3. Computational Results 
In this section we compare the performance of various M-CBDPs for a varying budget, 𝛽, and observation interval, 
𝛿. To model the failure of sensors, the lifetime of each sensor is distributed according to a Weibull distribution with a 
shape parameter 1.5 and scale parameter 10. Sensor capabilities are defined based on a common communication radius 
of 𝑑1 = 0.075 and a monitoring radius of 𝑑2 = 0.075. The region of interest 𝑅 is a [0,1] × [0,1] square that is 
partitioned into 𝑛𝑟 = 16 equal sized regions (i.e., each subregion is of size 0.25 × 0.25), with a single sink node 



located centrally in 𝑅. The coverage requirement is selected as 𝛼 = 0.8, meaning the WSN must cover 80% of the 
region to be successful. The fixed cost of deploying sensors is set to 𝑐𝐹 = 100, with a variable cost 𝑐𝑉 = 1. 
 
The first M-CBDP we consider is to evenly distribute sensors to each subregion, denoted policy 𝑌1. That is, after 
observing the state of the network new sensors are deployed so that each subregion contains approximately 

𝑛𝛽
𝑛𝑟

⁄  
sensors. As a result, if we observe a subregion that has suffered more failures compared to another, more sensors will 
be deployed to this subregion. The second myopic policy, 𝑌2, is to deploy new sensors to a subregion based on a 
weight, 𝑤𝑖 , assigned to each subregion. Since sensors located closer to the sink node are relied upon more often to 
route information we may wish to place a larger weight on subregions around the sink in order to deploy a larger 
number of sensors, providing a level of redundancy and maintaining a communication path in the presence of failures. 
The weights now influence how new sensors are deployed in the network, where even if we observe a large number 
of sensors that remain functioning in a subregion it might be advantageous to deploy sensors to this subregion if it is 
near the sink. For M-CBDP 𝑌2, the weight of each subregion is inversely proportional to the distance from the sink 
node to the center of a subregion, and each subregion now contains approximately (𝑤𝑖/ ∑ 𝑤𝑖) ∗ 𝑛𝛽

𝑛𝑟
𝑖=1  sensors. Note 

that policy 𝑌1 and 𝑌2 are not necessarily optimal policies resulting from Equation (1). However they are anticipated to 
be high quality policies and selected to demonstrate the use of the D-spectrum to estimate the reliability of a CBDP. 
Future work will be directed on efficient methods to determine an optimal policy beyond an enumeration strategy. 
 
These two M-CBDPs are compared against a simpler time-based deployment policy (TBDP), 𝑇𝐵. In policy 𝑇𝐵, rather 
than deploy sensors based on a budget available, sensors are deployed to reach a constant network size. Additionally, 
only the number of sensors functioning in the network is observed and sensors are then randomly deployed throughout 
the entire region, instead of specifying the subregion a sensor is deployed in. A TBDP is explained in more detail in 
[17]. Results for the two M-CBDPs along with the TBDP are provided in Table 1, where the values under each policy 
correspond to the resulting network reliability estimated using Equation (9), given 𝛽 and 𝛿.  
 

Table 1: Network Reliability for Various Sensor Deployment Policies 
 

 𝛽 𝛿 𝑌1 𝑌2 𝑇𝐵 𝛽 𝛿 𝑌1 𝑌2 𝑇𝐵 
278 2.5 0.9998 0.9999 0.9998 388 5.7 0.8004 0.8123 0.7359 
364 5.0 0.9499 0.9598 0.9227 383 5.7 0.7503 0.7667 0.6820 
353 5.0 0.8999 0.9136 0.8557 594 8.2 0.7003 0.7200 0.6542 
353 5.1 0.8507 0.8719 0.7981 438 6.5 0.7002 0.7199 0.6357 

 
In each of the test instances, M-CBDP 𝑌2 results in the largest reliability, followed by M-CBDP 𝑌1, and finally the 
TBDP 𝑇𝐵. One of the primary differences between policy 𝑌1 and 𝑌2 with 𝑇𝐵 is that in 𝑌1 and 𝑌2 we are able to observe 
the state of the network and determine how new sensors are deployed in the region (i.e., which subregion sensors are 
deployed in). This is a significant improvement over policy 𝑇𝐵, particularly as the time between network observation 
increases. For example, in the instance with (𝛽, 𝛿) = (388, 5.7), this results in an improvement in network reliability 
from 0.7359 for the TBDP to 0.8004 for M-CBDP 𝑌1. By weighting each subregion and influencing the M-CBDP 
through this method (policy 𝑌2), network reliability is improved further.  
 
The test instances also help illustrate the impact of 𝛽 and 𝛿 on each policy. For example, consider the (353, 5.0) 
instance and the (353, 5.1) instance. The observation interval in the latter instance is slightly larger, but this results in 
a drop in network reliability from 0.9136 to 0.8719 for policy 𝑌2, with a similar impact on policy 𝑌1. In the following 
set of test instances, (388, 5.7) and (383, 5.7), the observation interval is the same but the mission budget has slightly 
decreased. With a variable cost 𝑐𝑉 = 1, this corresponds to 5 fewer sensors available to deploy per mission in the 
second scenario. However, this again results in a drop in network reliability from 0.8123 to 0.7667 for policy 𝑌2. 
 
Finally, because we are using an estimate of the D-spectrum for an approximate size of the network to estimate 
reliability under a CBDP, we are interested in how accurate this estimate is compared to a traditional Monte Carlo 
simulation. Although a Monte Carlo simulation is more computationally expensive, it provides the ability to model 
the fluctuation in network size and in the age of sensors over time. For a Monte Carlo simulation of 10000 replications 
on the (353, 5.0) instance, the resulting reliability estimate is 0.8993 and 0.9151 for policy 𝑌1 and 𝑌2, respectively. A 



Monte Carlo simulation for the remaining test instances yields a similar performance comparison, demonstrating the 
suitability of the D-spectrum to estimate reliability of a M-CBDP. 
 
4. Conclusion 
To maintain a WSN over a prolonged period of time, new sensors must be deployed in the network to re-establish 
network coverage and communication capabilities. Towards this goal, we have discussed a myopic condition-based 
sensor deployment problem in which the network is observed prior to a decision on how new sensors are deployed in 
the network. We have also demonstrated how the network D-spectrum can be used to estimate network reliability as 
new sensors are deployed, and compare the performance of different sensor deployment policies. With this insight to 
a M-CBDP, future work is focused on a model that considers the impact on future mission reliability as well. 
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