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Abstract—The  accelerated growth of computing
technologies has provided interdisciplinary teams a platform for
producing innovative research at an unprecedented speed.
Advanced scientific cyberinfrastructures, in particular, provide
data storage, applications, software, and other resources to
facilitate the development of critical scientific discoveries. Users
of these environments often rely on custom developed virtual
machine (VM) images that are comprised of a diverse array of
open source applications. These can include vulnerabilities
undetectable by conventional vulnerability scanners. This
research aims to identify the installed applications, their
vulnerabilities, and how they vary across images in scientific
cyberinfrastructure. We propose a novel unsupervised graph
embedding framework that captures relationships between
applications, as well as vulnerabilities identified on
corresponding GitHub repositories. This embedding is used to
cluster images with similar applications and vulnerabilities. We
evaluate cluster quality using Silhouette, Calinski-Harabasz,
and Davies-Bouldin indices, and application vulnerabilities
through inspection of selected clusters. Results reveal that
images pertaining to genomics research in our research testbed
are at greater risk of high-severity shell spawning and data
validation vulnerabilities.

Keywords—Scientific  cyberinfrastructure,  vulnerability
scanning, Graph Embedding, GitHub, virtual machine

I. INTRODUCTION

The rapid advancement and development of computing
technologies over the past decade has allowed for an
unprecedented level of innovative scientific research. From
DNA sequencing to the simulation of planetary formations
and black hole imaging, interdisciplinary research teams have
benefited tremendously from scalable, high performance
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computing environments. The National Science Foundation
(NSF) has funded key Large Facilities (LFs), designated as
scientific cyberinfrastructure (CI), to provide agile computing
platforms to thousands of researchers [1]. Such NSF-funded
installations include the Open Science Grid, TeraGrid,
CyVerse, Jetstream, and Chameleon Cloud [2]-[4]. Users
accessing these environments can develop their own custom-
built virtual machine (VM) images to execute their desired
scientific tasks. Figure 1 illustrates a subset of sample images
that users can launch, e.g., Ubuntu 18.04 GUI XFCE Base.
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Fig. 1. Examples of User-Developed VM Images

These images provide metadata such as image name,
author, date published, description, and tags of keywords
related to the image. In a typical workflow, users review
names, tags and descriptions to identify images most suitable
for their task. Once an image is selected, a user can spawn an
instance of an arbitrary size, ranging from single to multiple



core instances, containing varying levels of RAM. Users often
install open source (e.g., GitHub) packages and applications
on these images to help support their desired analytics.

Despite offering unprecedented convenience, scalability,
and scientific efficiency, applications from public repositories
can contain vulnerabilities undetectable by conventional
scanners (e.g., Nessus) [S]-[7]. These issues can potentially
disrupt high-impact scientific workflows if exploited.

In light of these significant ramifications, this research
aims to identify the installed applications, their relationships
to other applications, their vulnerabilities, and how they vary
across images in scientific cyberinfrastructure. We develop a
novel graph embedding approach that generates low-
dimensional vector representations of each VM image based
on installed applications, their dependencies, and
vulnerabilities. Our results indicate that we can cluster images
with similar applications, providing a more intelligent and
targeted means for assessing and mitigating vulnerabilities.

The remainder of this paper is organized as follows. First,
we review literature related to conventional and
machine/deep learning-based device fingerprinting, and
unsupervised graph embedding. Second, we present our
research testbed and design, as well as our vulnerability
assessment of the image applications within the scientific CI
environment. Finally, we discuss our results and future
direction for this research.

II. LITERATURE REVIEW

We review two key areas of literature. First, we review
literature on conventional and machine/deep learning-based
fingerprinting to identify prevailing techniques and data.
Second, we review unsupervised graph embedding methods
to identify how to generate low-dimensional representations
from unlabeled graph-structured data.

A. Conventional and Machine/Deep Learning-Based OS

Fingerprinting

Operating system (OS) fingerprinting is a commonly used
method for identifying and representing devices on a network.
Two fingerprinting approaches exist: passive and active.
Passive approach identifies the device OS by observing
network traffic, while active approach directly sends packets
to a machine and analyzes the response [8]. These approaches
are used to remotely gather OS data to generate an identifying
signature for inventorying, updating, and/or patching outdated
systems [9], [10], using tools such as Nmap, Ettercap, and pOf
[11]. Generated fingerprints from these tools are useful for
identifying device properties but do not allow for
comprehensive direct comparisons between machines. We
expand our review to gain insight from machine and deep
learning-based fingerprinting techniques.

Device fingerprinting has seen widespread adoption of
machine and deep learning techniques in recent years. These
techniques have been popularized due to the exponentially
increasing number of Internet of Things (IoT) devices. New
methods have been developed to generate fingerprints for
endpoint and device identification [12]-[14], and device
localization/positioning  [15]{18].  Researchers  have
successfully leveraged data testbeds consisting of [oT devices,
their network traffic data, and radio frequency data for input
into machine/deep learning models [19].

While fingerprinting has been performed using a variety
of features and sources, prevailing techniques omit host
features such as installed applications and their dependencies
[20]. These applications can include vulnerabilities linked to
certain features (e.g. dependencies) [21]. In scientific CI, it is
imperative to understand inter-application relationships
within each VM image. This requires a method that captures
application relationships to create a holistic representation.

B. Unsupervised Graph Embedding Methods

Graph analytics are a group of methods that can capture
information that is hidden within graphs. Graph embedding
methods are effective in generating fixed representations of
entire graphs in a Euclidean space while still preserving the
graph structures [22]. This representation can then be used for
subsequent tasks, such as clustering or classification. There
are four levels of granularity for graph embedding methods:
node, edge, substructure, and whole graph embedding. Given
our task of creating a representation of an entire image
utilizing unlabeled data, we review relevant unsupervised
whole-graph embedding methods.

Graph embedding methods can be split into two major
categories based on their operations. Graph2vec and GL2vec
are graph kernel-based, whereas NetLSD, GeoScattering, SF,
and FGSD use spectral fingerprinting methods based on
extracted graph statistics [23]. Inspired by doc2vec, graph2vec
uses negative sampling to create rooted subgraphs of the nodes
within a graph and trains a skip-gram model to maximize the
probability of predicting subgraphs [24]. GL2vec is an
extension of graph2vec that can handle edge labels [25].
NetLSD [26], GeoScattering [27], SF [28], and FGSD [29] all
rely on statistical characteristics of the graph and spectral
features. Kernel-based methods are often preferred as they
create whole graph and feature embeddings jointly.
Consequently, they are suitable for downstream clustering or
classification algorithms.

Graph embedding methodology is similar to deep learning
methods found in device fingerprinting, as it uses data features
to create a single representation. Therefore, they can be
leveraged to capture representations that provide more
comprehensive views of a device or system.
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Fig. 2. Proposed Graph Embedding Framework for Images

III. RESEARCH GAPS AND QUESTIONS

We have identified several limitations from previous
literature. First, ML/DL-based fingerprinting has been used
for downstream tasks such as device positioning yet omits
vulnerability information. Second, prevailing fingerprinting
techniques have primarily used temporal data and have not
been applied on datasets to capture application relationships
and their features. Third, graph embedding methods have not
yet been formulated for system fingerprinting. These
limitations motivate the following research questions:

1) How can we develop an unsupervised deep learning
framework to automatically generate a representation of a
VM image in scientific cyberinfrastructure?

2) How can we capture the image applications, their
relationships, and detected vulnerabilities using a graph
embedding?

IV. RESEARCH DESIGN AND TESTBED

We propose a novel unsupervised graph embedding
framework to answer these questions. The framework, shown
in Figure 2, has three components: (1) Data Extraction and
Pre-Processing; (2) Graph Transformation and Embedding;
and (3) Embedding Evaluation. We describe each component
in further detail in the following sub-sections.

A. Data Extraction and Pre-Processing

We collected user system data from a major NSF-funded
scientific cyberinfrastructure platform with more than 7,000
participating institutions and 45,000 users in life sciences. To
protect their privacy, we have anonymized their name. The
data collection has two phases: extracting application data
from the VM images and vulnerability assessment on the
collected applications. We describe both in turn.

1) Image Data Collection

Using the Advanced Package Tool (APT), we collected
software application data from each launchable image hosted
on the CI platform, including current and previous versions
of images. This resulted in 148 total images. Of these images,
126 were Ubuntu-based Linux distributions. Given the
distribution of Linux variants, we use the subset of Ubuntu-

based images. Over 6 million packages were collected from
these images. Most applications provide a URL to the
homepage where the application is maintained. We
summarize the application homepage distribution in Table 1.

TABLE 1. APPLICATION HOMEPAGES PER IMAGE
Application Number of Percent of Total
Homepage Applications Applications
GitHub 817,646 11.96%
Gnu 631,254 9.23%
Sourceforge 444,254 6.5%
Metacpan 257,842 3.77%
Haskell 158,013 2.31%
kde 151,451 2.21%
launchpad 145,707 2.13%
null 1,321,399 19.32%
Other 2,911,046 42.57%

The leading domain is GitHub, an open social coding
repository, which more than 800,000 applications reference.
19.32% of our applications do not have homepages, and
42.57% lead to other homepages with less than 2% of total
applications. Given GitHub’s prevalence, we analyze the
relevant GitHub repositories that maintain the collected
applications. We summarize our findings in Table 2.

TABLE II. APPLICATION GITHUB REPOSITORY SUMMARY
Data Type Root Repositories
Number of Repositories (distinct) 8,701
Number of Forks 1,258,075
Number of Commits 5,200,563
Size (files) 43,358,089
Number of Issues 225,327
Number of Languages 69
Top Programming Languages Python (1,811), C (1,536)

We identified 8,701 distinct repositories containing over
43 million files from GitHub that are related to the
applications found on collected images. Python and C are the
most frequent, for approximately 40% of all repositories.
GitHub vulnerability scanners are then assessed based on
functionality with those programming languages.

2) Application Vulnerability Assessment

We reviewed 14 GitHub vulnerability scanners and
selected two based on coverage and usage. Bandit and



FlawFinder are both scanners designed to identify secrets,
insecurities, and attack vulnerabilities that exist within
Python and C code hosted on GitHub. Both tools categorize
vulnerabilities into High, Medium, and Low severities. High
vulnerabilities include SSL with bad versions, blacklisted
Python input calls, and deprecated libraries. Medium
vulnerabilities include hardcoded SQL expressions,
paramiko calls in Python, and various XML methods. Finally,
Low vulnerabilities include try/except functions, blacklisted
Python imports, and certain subprocess spawns. We scanned
each repository in our testbed for vulnerabilities and
summarize selected results in Table 3.

TABLE III. VULNERABILITY ASSESSMENT RESULTS FOR BANDIT
Vulnerable Vulnerabilities Most Frequent Vulnerable| Number of
Applications Repository/Application | Vulnerabilities

usit-gd/zabbix 104
47,932 High | 1,634 CoreSecurity/impacktct 77
ctuning/ck 30
PacificBiosciences/pbcore 1,599
91,571 Medium| 9,959 annulen/webkit 373
feist/pcs 293
sympy/sympy 66,344
144,481 Low (221,869 annulen/webkit 9,559
dask/dask 4,581

In total, 233,642 vulnerabilities were detected through
Bandit, while 25,170 vulnerabilities were detected by
FlawFinder. 1,634 vulnerabilities are identified as high
severity, propagating across 47,932 applications for each
image. In the nmedium severity results, both
PacificBiosciences/pbcore and feist/pcs are directly linked to
biology/health APIs. These tools report and detect individual
vulnerabilities but do not provide a means to assess which
images contain vulnerable applications or their dependencies.
A different method is required to capture inter-application
relationships that the vulnerability scanners overlook.

B. Graph Transformation and Embedding

A graph embedding-based approach can capture inter-
application relationships and provide a fine-grained
representation of the images for downstream clustering tasks.
The installed applications on an image can be represented as
a graph. Relationships are created between applications based
on shared dependencies. Following this principle, we define
our graphs as G=(4,E,F), where G is an undirected graph, 4
is the node set, {ui, uz, us, ... u,}, of GitHub-maintained
applications in an image, E is the edge set, {ei, €2, 3, ...en},
of all edges between applications based on shared
dependencies, and F is a feature matrix of all vulnerabilities
for that application.

As indicated in the literature review, selection of graph
embedding algorithm 1is contingent upon the data
characteristics, task, and research objective. The described

graph formulation includes nodal features and undirected
edges. Our proposed analytics requires a method that operates
without prior knowledge of the graph and incorporates nodal
features. Therefore, we select graph2vec. The embedding
generation process with graph2vec follows five steps [24]:

e Step 1: Nodes are negatively sampled and relabeled
to create rooted subgraphs in the graph.

e Step 2: A skip-gram model is trained to maximize the
probability of predicting subgraphs that exist in the
input graph.

o Step 3: The embedding is then learned from the
extracted subgraphs over several epochs.

e Step 4: A final embedding is produced as a one-hot
vector.

e Step 5: Steps 1-4 repeat for each graph in a given set.

In our case, subgraphs are generated around each
application, capturing its dependencies with other
applications. Images that have similar applications and
dependencies will thus have similar embeddings.

C. Embedding Evaluation

The generated image embeddings are subsequently
clustered using K-means, a prevailing partitional clustering
algorithm. We evaluate these clusters using Silhouette (SI),
Calinski-Harabasz (CH), and Davies-Bouldin (DBI) indices
to help identify the optimal number of clusters by measuring
cluster quality, maximizing intra-cluster similarities and
minimizing inter-cluster differences. SI uses average
dissimilarity between points to show the structure of the data
and its possible clusters [30]. CH represents the ratio of
within-cluster and between cluster dispersion, where a higher
number represents well separated and compact clusters [31].
DBI measures the ratio of within-cluster to between-cluster
distances [32]. Each metric has been used extensively in
previous clustering research [33], [34].

V. RESULTS AND DISCUSSION

We evaluate for cluster sizes from 3 to 20 to identify the
optimal number of clusters. SI scores closer to one, a DBI
score closer to zero, and high CH ratio indicate stronger
performance. We summarize evaluation results in Table 4.
The best performance is highlighted in boldface.

TABLE 1IV. IMAGE CLUSTER EVALUATION METRICS
Evaluation Metrics
K Clusters Silhouette Calinski-Harabasz Davies-Bouldin
3 0.429 58.526 1.116
6 0.709 158.762 0.625
9 0.824 415.824 0.37
10 0.808 466.881 0.398
20 0.622 992.431 0.440




Evaluation results indicate that nine-clusters provides the
highest SI at 0.824, and lowest DBI score at 0.37, while still
maintaining a high CH ratio. Given these results, we run k-
means for nine clusters and plot the results in Figure 3. The
numbers are the ID for each image. Clusters are color-coded,
circled, and labeled.
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Fig. 3. Selected Image Clusters

The image clusters are relatively self-contained, with
some overlap. Cluster B contains the highest number of
images with 31, and cluster H contains the lowest number
with six images. The average cluster size was 14 images.
Cluster C contains images that are primarily base Ubuntu
distributions. Cluster E contains images primarily loaded
with RStudio. Clusters A, F, and G contain images designed
for RNA and hybridized genome sequencing. We present the
average number of vulnerabilities per cluster for each
vulnerability in Figure 4.
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Fig. 4. Average Number of Vulnerabilities by Type Per Cluster

The most frequent type of vulnerability is related to
insecure functions implemented in the code. This issue has

over 8,000 counts in clusters A, E, G, and I. Clusters E and I
possessed the highest number of average vulnerabilities.
These clusters contained significantly higher counts of
insecure function, input, and module vulnerabilities, at
11,954, 8,433, and 6,269, respectively. Cluster H contained
the minimum, at 459, 394, and 350. Cluster H contained
1,500 total vulnerabilities, the lowest average number.

We further examine clusters H and I based on the
difference in total number and severities of vulnerabilities.
Cluster H contains six images with low severity
vulnerabilities. 462 vulnerabilities were related to spawning
subprocesses without shells and 210 vulnerabilities pertained
to data validation. Cluster I contains seven images with high-
severity insecure input and insecure function vulnerabilities
that seldom occur in cluster H. These include 1,129 shell
spawning issues and 612 data input functions. Vulnerabilities
that spawn shells pose tremendous risk, as hackers can exploit
these shells to execute arbitrary commands and disrupt
operations. For example, 7m -rf /’ can be passed as a
parameter to a spawned shell to delete all files in the root
directory. This destructive attack shell injection command
that can set back scientific workflows by months if data and
custom developed programs are erased. In cluster I, these
specifically affect images that provide computational
resources for genomics-related scientific workflows. Given
the frequency and severity of these vulnerabilities, images in
cluster I are at a much higher risk of disruption compared to
those in cluster H.

These results suggest that images in clusters E and I
should be prioritized for vulnerability mitigation, followed
closely by those in clusters A and G. Scientific CI
administrators can follow two strategies to remediate the
detected vulnerabilities. First, issues should be opened on
corresponding GitHub repositories to alert the maintainer of
the specific insecure functions. Second, automated
notifications can be sent to image users of the identified
vulnerable applications and/or by specific vulnerability types.
For shell spawning vulnerabilities, users should ensure that
they change the shell parameter to ‘False’ within the related
Python file. For input validation vulnerabilities, users should
ensure that they properly sanitize their data, omitting
potential arbitrary code prior to execution.

VI. CONCLUSION AND FUTURE DIRECTIONS

Scientific CI provides environments to thousands of
scientists that enable them to execute high-impact scientific
inquiries and discovery. However, these environments may
contain unconventional vulnerabilities, which expose users to
potential disruption of high-impact scientific workflows. Our
proposed research framework provides a novel approach for
automatically detecting and grouping unconventional
vulnerabilities applicable to multiple scientific CI. User



images are grouped together based on similar applications
and vulnerabilities. As a result, they can facilitate targeted
mitigation and remediation activities.

There are several promising directions for future work.

First, we intend to incorporate multiple data sources from
other CI’s to further demonstrate the generalizability of the
proposed approach. Second, we plan to create a more holistic
representation through a multi-view learning strategy
incorporating additional image features. Both directions can
further help improve scientific CI cybersecurity.
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