
This paper is included in the

Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the

18th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

One Protocol to Rule Them All: Wireless Network-
on-Chip using Deep Reinforcement Learning

Suraj Jog, Zikun Liu, Antonio Franques, and Vimuth Fernando,

University of Illinois at Urbana Champaign; Sergi Abadal,

Polytechnic University of Catalonia; Josep Torrellas and

Haitham Hassanieh, University of Illinois at Urbana Champaign

https://www.usenix.org/conference/nsdi21/presentation/jog

One Protocol to Rule Them All: Wireless Network-on-Chip using Deep

Reinforcement Learning
Suraj Jog†, Zikun Liu†, Antonio Franques†, Vimuth Fernando†, Sergi Abadal?, Josep Torrellas†, Haitham Hassanieh†

University of Illinois at Urbana Champaign†, Polytechnic University of Catalonia?

Abstract– Wireless Network-on-Chip (NoC) has emerged

as a promising solution to scale chip multi-core processors

to hundreds and thousands of cores. The broadcast nature

of a wireless network allows it to significantly reduce the

latency and overhead of many-to-many multicast and broad-

cast communication on NoC processors. Unfortunately, the

traffic patterns on wireless NoCs tend to be very dynamic and

can change drastically across different cores, different time

intervals and different applications. New medium access pro-

tocols that can learn and adapt to the highly dynamic traffic in

wireless NoCs are needed to ensure low latency and efficient

network utilization.

Towards this goal, we present NeuMAC, a unified approach

that combines networking, architecture and deep learning to

generate highly adaptive medium access protocols for wire-

less NoC architectures. NeuMAC leverages a deep reinforce-

ment learning framework to create new policies that can learn

the structure, correlations, and statistics of the traffic patterns

and adapt quickly to optimize performance. Our results show

that NeuMAC can quickly adapt to NoC traffic to provide

significant gains in terms of latency, throughput, and overall

execution time. In particular, for applications with highly dy-

namic traffic patterns, NeuMAC can speed up the execution

time by 1.37×−3.74× as compared to 6 baselines.

1 Introduction

Recently, there has been an increasing interest from both

industry and academia to scale network-on-chip (NoC) mul-

ticore processors to hundreds and thousands of cores [11,

21, 25, 49]. To enable such massive networks on chip, com-

puter architects have proposed to augment NoC multicore

processors with wireless links for communication between

the cores [7, 9, 54, 65, 91]. The broadcast nature of wireless

networks enables the NoC to significantly reduce the num-

ber of packets that the cores need to communicate to each

other as well as the latency of packet delivery [1, 38]. Both

aspects play a central role in scaling the number of cores on

an NoC multicore processor (See Background Section 3 for

details) [1, 8, 38, 50, 56]. These benefits have motivated RF

circuits designers to build and test wireless NoC transceivers

and antennas that can deliver multi-Gbps links while impos-

ing a modest overhead (0.4–5.6%) on the area and power

consumption of a chip multiprocessor [31, 93, 99, 100].

While the use of wireless can significantly benefit NoCs, it

brings on new challenges. In particular, the wireless medium

is shared and can suffer from packet collisions. Design-

ing efficient medium access protocols for wireless NoCs

is, however, difficult. The traffic patterns in NoCs tend to

change drastically across applications. Even during the exe-

cution of a single application the traffic pattern can change

as fast as tens of microseconds [4, 38]. As a result static

MAC protocols such as TDMA, FDMA and CSMA perform

poorly [17, 33, 35, 61, 70, 71, 89]. Further, due to thread syn-

chronization primitives likes barriers and locks in parallel

programming, the wireless NoC exhibits complex hard-to-

model dependencies between packet delivery on the network

and execution time. As a result, even adaptive protocols that

try to switch between TDMA and CSMA or optimize for long-

term throughput [40, 65, 66], perform poorly in the context

of wireless NoCs since they remain agnostic to these domain

specific and intricate dependencies. Hence, the design of ef-

ficient medium access protocols has been identified as a key

bottleneck for realizing the full potential of a wireless NoC

multiprocessor [6, 12].

In this paper, we present NeuMAC, a unified approach

that combines networking, architecture and deep learning

to generate highly adaptive medium access protocols for a

wireless network on chip architecture. NeuMAC leverages a

reinforcement learning framework with deep neural networks

to generate new MAC protocols that can learn traffic patterns

and dynamically adapt the protocol to handle different appli-

cations running on the multi-core processor. Reinforcement

Learning (RL) has proved to be a very powerful tool in AI for

generating strategies and policies that can optimize for com-

plex objectives [68, 81]. RL allows NeuMAC to make better

decisions by learning from experience. In particular, many

basic functions, like FFT, graph search, sorting, shortest path,

etc., tend to repeatedly appear in many applications. Past work

also shows that a number of unique periodic traffic patterns

emerge in multiple different programs, and as the number

of cores increases, the traffic patterns show increasingly pre-

dictable spatiotemporal correlations and dependencies [3, 4].

NeuMAC learns these statistics and correlations in the traf-

fic patterns, to be able to both predict future traffic patterns

based on traffic history and adapt its MAC protocol to best

suit the predicted future traffic. Furthermore, RL enables Neu-

MAC to account for hard-to-model complex dependencies

between execution time and delivery of packets. In particular,

we carefully engineer the reward function in RL to optimize

for execution time rather than to simply improve the latency

and throughput of the network.

Indeed, RL has been leveraged for wireless MAC protocols

in the context of heterogenous wireless networks [43, 101],

sensor networks [41], and IoT networks [62]. However, bring-

ing these benefits to wireless networks on chip faces a num-

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 973

ber of unique challenges. First, past work runs RL inference

for every packet at each time step, which is not feasible for

WNoCs since the time scale of operation in a multicore pro-

cessor is in the order of nanoseconds. Hence, per time-slot

inference would significantly delay every packet transmission.

Second, due to compute resource constraints, it is also not

feasible to run RL inference at every core of the wireless

NoC. While the second challenge can be addressed using a

centralized controller for the RL model, it would still incur

significant communication overhead and latency to collect the

states from the nodes (e.g. traffic injections or buffer occu-

pancy) and to inform the nodes when to transmit.

NeuMAC addresses these challenges by designing a frame-

work where the controller is trained to generate high-level

MAC policies simply by listening to on-going transmissions

on the wireless medium. This allows NeuMAC to eliminate

any communication from the cores to the controllers. More-

over, to amortize the overhead of inference and policy updates,

NeuMAC only updates the cores with a new MAC policy once

every interval spanning many execution cycles (e.g. ten thou-

sand cycles). We also train NeuMAC to learn policies that are

highly adaptive and simple to update, to reduce communica-

tion overhead from the controller to cores.

Finally, NeuMAC also needs to operate within the strict

timing and resource constraints of the multicore processor.

Modern deep neural networks, however, are designed with up

to a billion tunable parameters and operate on high dimen-

sional input spaces [47, 80]. Consequently, they require large

amounts of memory and computational resources, and also

suffer high inference latencies (tens of milliseconds) [46, 63].

To address this, we design NeuMAC’s RL framework such

that the input and output of the neural network scale linearly

with the number of cores. This ensures that NeuMAC is ex-

pressive enough to service the highly dynamic network traffic

while at the same time operate under the limited memory

and computational resources. Specifically, NeuMAC’s neural

network requires three orders of magnitude less parameters,

and adds a small area overhead to the multicore processor. It

also has an inference latency that is small enough to meet the

strict timing constraints of the multicore during run-time as

we show in detail in Appendix A.

We evaluate NeuMAC by integrating it with a cycle-level

architectural simulator for CPU-GPU heterogeneous com-

puting that faithfully models the intricacies of multi-core

processors [87]. We augmented the simulator with an on-

chip wireless network that accurately models transmissions,

collision handling and packet losses. We test NeuMAC’s per-

formance on real applications chosen from diverse domains

such as graph analytics, vision and numerical simulations. We

compare NeuMAC against six baselines including wired NoC,

standard CSMA, TDMA, optimal CSMA protocols [79], adap-

tive protocols [38, 65], and an optimal oracle. Our evaluation

reveals the following:

• For a 64-core NoC, NeuMAC is capable of learning traffic

patterns and adapting the medium access protocol at a

granularity of 10µs to achieve a median gain of 2.56×
−9.18× in packet latency and 1.3×−17.3× in network

throughput over different wireless NoC baselines.

• NeuMAC’s throughput and latency gains translate into an

average of 10%−47% speedup in execution time over wire-

less NoC baselines which goes up to 1.37×−3.74× for

certain applications. The results also show a 3.4× speedup

on average over a purely wired NoC.

• NeuMAC’s gains in execution time are close to the upper

bound that can be achieved by a wireless network with

infinite capacity and zero latency.

• As the number of cores scale up to 1024 cores, NeuMAC’s

performance gain increases to 3 orders of magnitude lower

latency and up to 64× higher throughput over baseline

protocols.

• NeuMAC is robust to lossy channels, and sees minimal

degradation in performance with upto 10% packet losses.

We also test NeuMAC’s sensitivity to noise in the observed

state and show almost no loss in performance.

Contributions: We make the following contributions:

• We introduce the first MAC protocol that can learn and

adapt to the highly dynamic traffic at very fine granularity

in a wireless NoC processor. The protocol also accounts

for non-trivial dependencies between packet delivery and

computation speedups by optimizing for execution time.

• We design a lightweight deep reinforcement learning frame-

work that introduces little overhead to the multi-core pro-

cessor and can operate within tight timing, power and area

constraints of chip multicore processors.

• We extensively evaluate our design and demonstrate signif-

icant improvement in network performance and reduction

in the overall execution time on the multicore processor.

2 Motivation and Insights

The wireless traffic patterns on a multicore processor have

been shown to vary significantly across different applications.

Even for a single application, the traffic can vary across dif-

ferent cores (spatially) and across different time intervals

(temporally) [4, 6, 12, 38, 83].

Fig. 1(a) shows examples of traffic traces captured from a

cycle-level architectural simulator for three different common

benchmark applications on a 16-core multiprocessor. The

x-axis shows the time in clock cycles, the y-axis shows the

core ID, and the scatter points show the injection of traffic at

each core. For clarity, we only show a portion of the execu-

tion spanning ten thousand cycles. Some applications, like

PageRank shown in Fig. 1(a)(i), have almost constant traffic

on all cores and can benefit from a contention-free protocol

like TDMA. Other applications, like computing the Short-

est Path in a Graph shown in Fig. 1(a)(ii), have very bursty

traffic and can benefit from a contention-based protocol like

974 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To address this, we design NeuMAC’s RL framework such

that the state space (input to the neural network) and action

space (output) scale linearly with the number of cores. Our

design ensures that NeuMAC is expressive enough while at

the same time can operate under NoC’s resource constraints.

4.3 NeuMAC’s MAC Policy

As discussed above, the MAC policy that the agent dictates

to the cores should have the following properties:

1. The policy should span a wide range of protocols, all the

way from TDMA to CSMA.

2. It should be possible to describe the policy with few pa-

rameters to reduce the communication overhead and the

output of the neural network.

3. It should allow for a simple neural network architecture to

learn a mapping from observed traffic patterns to the most

efficient MAC protocol.

In order to achieve these properties, we adopt a two-layer

protocol design. The first layer consists of a deterministic

underlying TDMA schedule, where each core is assigned a

unique time slot for transmission in a round-robin fashion. For

example, for time slots j ∈ [1, · · · ,L], core i is assigned the

slots { j | j mod N = i}where N is the number of cores. The

second layer consists of a probabilistic transmission sched-

ule like CSMA, where each core is assigned a contention

probability. Specifically, during its assigned time slot, core i

transmits on the channel with probability 1 if it has an out-

standing packet in its buffer. During other cores’ assigned

time slots, core i can transmit with probability pi. In the event

of a collision, exponential backoff is implemented by halving

pi of the colliding cores similar to CSMA. On the other hand,

if a transmission is successful, pi is reset to it’s initial value.

To generate this policy for an NoC with N cores, the RL

neural network needs to output an action space that can be de-

fined as at = [a1,t ,a2,t , . . . ,aN,t] where ai,t ∈ [0,1] represents

the initial contention probability of core i during “Listening

Interval” t (i.e., time step t in the RL framework). The con-

tention probability of core i is then initialized as pi = ai,t .

Different choices of at result in different protocols on the

multicore. For instance, setting ai,t = 0 for all i results in

a simple TDMA protocol since every core only transmits

on the channel during its assigned slot. On the other hand,

ai,t = c > 0 for all i mimics a CSMA-like protocol with vary-

ing degrees of aggressiveness on the channel. The pseudo

code for NeuMAC’s protocol is presented in Alg. 1.

The above formulation satisfies our design objectives. First,

it enables NeuMAC to gracefully shift between a pure TDMA

and a CSMA scheme, while supporting all intermediate pro-

tocols. The design also gives the flexibility to control each

core individually, so that the NeuMAC can potentially in-

crease contention probabilities for cores that observe high

traffic intensity. Second, since the MAC protocol at core i is

Algorithm 1 NeuMAC Protocol

L← Number of Clock Cycles in Listening Interval

[a1,t ,a2,t , . . . ,aN,t]← Action space generated by RL agent at time stept

[p1, p2, . . . , pN]← [a1,t ,a2,t , . . . ,aN,t]

At core i:

for j ∈ {1, · · · ,L} do

Bu f f eri(j)← Outstanding packet in the buffer for core i

if Bu f f eri(j) 6= /0 then

if j mod N = i then . TDMA Slot Assigned to Core i

Transmit with probability 1

else

Transmit with probability pi

if Transmission from Core i collides then

pi = pi/2

else

pi = ai,t

characterized by only one number (the contention probability

ai,t), there is very small communication overhead during the

Update Interval, where the NeuMAC agent has to transmit a

single broadcast packet with N numbers. Each core, receives

the packet and extracts it own contention probability. Finally,

the design keeps the action space constrained and linear in

the number of cores which allows for a simple neural network

that can be easily trained and is more likely to converge.

4.4 RL Formulation and Training

Given the above design, we now formalize the state space,

reward, policy and training of NeuMAC’s RL framework.

• State Space Design: The NeuMAC agent takes state infor-

mation st as input and generates a MAC policy characterized

by the action space at described above. The state informa-

tion is generated purely by listening to ongoing transmissions

on the channel. As described earlier, this allows us to elim-

inate all communication overhead from the cores to the RL

agent. However, it only provides information about the ac-

tivity on the channel rather than the traffic injection into the

network. Moreover, in the event of a collision, NeuMAC can-

not know which cores attempted to transmit. Despite these

limitations, NeuMAC’s state space retains enough informa-

tion to infer traffic patterns. In particular, during each CPU

cycle, NeuMAC will either detect an idle channel, a collision,

or a successful transmission from some core i. We define our

state at time step t, st , as an (N+1)×1 vector that keeps track

of the number of successful transmissions from each core and

the number of collisions observed during the cycles in the RL

time step (Listening Interval). Specifically, the ith element of

st counts the number of successful packet transmissions by

core i, and the N + 1th element counts the number of colli-

sions. The number of idle slots is implicitly encoded in the

state since it is equal to L−∑N+1
i=1 si,t where L is the number

of cycles in a Listening Interval. The state st is then used by

the NeuMAC agent to generate the MAC protocol policy for

the next time step.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 979

• Reward Engineering: The reward signal is designed to

guide the agent towards policies that optimize for the desired

objective. Most past work that uses RL for learning network-

ing protocols employs network-level metrics like throughput

or latency as the reward signal. However, in our case, we need

the reward signal to directly represent our end goal, which is

to optimize for speedups in application execution time on the

multicore. While network-level metrics like throughput are

correlated to the execution time, they do not always capture

the intricate dependencies between the execution on threads

and packet delivery on the network. In Section 6, we see that

there are instances where a protocol performs significantly

worse in terms of average network throughput, but still has

better end-to-end application execution time.

As a result, we design our reward signal to reflect our

high level objective of minimizing application execution time.

Specifically, for each time step t, the reward is set to −Lt

where Lt represents the number of clock cycles where the

application was executing. Hence, for all but the last time

step, the reward signal rt is set to −L. For the last time step,

reward is set to −k, where k is the number of clock cycles

at which the application terminates execution. The intuition

behind this choice for the reward signal is as follows. Recall

that the objective of reinforcement learning is to maximize

the cumulative reward, i.e. −∑t Lt . This is equivalent to mini-

mizing ∑t Lt , which ultimately means the application utilizing

fewer CPU clock cycles for execution. While this choice of

reward signal does correlate with improving network-level

metrics such as packet latency and throughput, it is not the

central objective and thus it is possible that sometimes the

NeuMAC agent compromises on network performance for

improvement in execution time. Note that in our formulation,

we set the discount factor γ = 1.

• Policy: We represent our policy π as a deep neural network

(also called policy network) which takes as input the state st ,

and maps it to at in the action space. Note that in our problem,

the action space is continuous. In such cases it is common

to discretize the continuous action space a ∈ [0,1]N similar

to [52], and convert the problem into a classification problem

where the agent now chooses which combination of ai’s to

pick. However, an obvious issue with this approach is the

curse of dimensionality. Even with 2 quantization levels for

each ai, the total number of discretized actions in a ∈ [0,1]N

becomes 2N . Thus the neural network architecture needs to

have an output dimension of 2N which becomes infeasible for

our resource constrained environment.

Therefore, we avoid discretizing the action space and, in-

stead, model the actions as following a Gaussian distribution

with mean µ and variance σ. The deep learning model is now

trained to output the parameters of this Gaussian distribution,

as described in [84]. The NeuMAC agent picks the action for

the next time step simply by sampling from the distribution

N (µ,σ). In NeuMAC, the policy network outputs N param-

eters µi corresponding to N distributions, one for each core

i. The variance σ is set to 1 at the start of training to encour-

age exploration, and annealed down to 0.05 as NeuMAC’s

policy improves. Finally, during inference, the variance σ is

set to 0.05, the action ai,t for core i is sampled from the cor-

responding distribution N (µi,σ), and clipped to ensure that

ai,t ∈ [0,1].

• Training Algorithm: We train our policy network end-to-

end in an episodic setting. In each episode, an instance of

an application is executed on the multicore, and the wireless

network on chip follows the MAC protocol as dictated by the

NeuMAC’s policy network. The episode terminates when the

application completes execution. In order to learn a policy that

generalizes well, we train the network for multiple episodes

with each episode observing a different application trace. For

every episode, we run M separate Monte Carlo simulations to

explore the probabilistic space of possible actions using the

current policy, and use the resulting data to improve the policy

for all applications. Specifically, we record the state, action,

and reward information for all time steps of each episode.

We then use this data to train our policy using the popular

REINFORCE algorithm along with a baseline subtraction

step, as described in [67].

4.5 Neural Network Architecture

Our network is composed of three fully connected layers with

128, 128 and 64 neurons respectively. The first two layers are

followed by ReLU activation units, whereas the final layer

is followed by a sigmoid unit to output the probability val-

ues ai’s between 0 and 1. During training, the weights use

16 bit floating points. Once trained, the learned weights are

quantized to 8 bit fixed points for the inference stage. This is

standard for run-time optimization in deep learning [53], and

does not adversely affect performance.

The proposed fully connected network architecture here is

simple and ties in very well with our design objectives. Recall

that NeuMAC performs one inference step every 10,000 CPU

clock cycles, and we require the inference step to add little

overhead. The architecture here is composed of 32,000 learn-

able parameters, and at 8-bit quantization, it can be stored in a

32 KB on-chip SRAM cache to ensure fast memory accesses.

Since inference latencies in most neural network architectures

tend to be memory bound (including Fully connected and

CNN architectures) [26, 53], improving memory access laten-

cies plays a big role in speeding up overall inference time.

Further, the simple structure of a fully connected network

allows for straightforward memory access patterns, since the

inference step is a straightforward computation amounting

to consecutive matrix multiplications. In Appendix A we

provide energy-delay characterization of this architecture.

One point to note is that NeuMAC’s deep RL agent is

trained offline, and does not undergo any training during run-

time since training is resource intensive. However, retraining

can be triggered periodically depending on performance re-

980 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Name Description

BFS [13] Breadth-first search

Bodytrack [20] Tracking a body-pose through images

Canneal [20] Compute optimal routing for gates on a chip

CC [13] Compute connected components of a graph

Pagerank [13] Compute pagerank for nodes in a graph

SSSP [13] Single source shortest path

Volrend [96] Rendering of 3D objects

StreamCluster [20] Cluster streams of points

Community [13] Compute modularity of a graph

Table 1: Summary of Applications

quirements and this retraining will be performed offline. The

updated model parameters can then be migrated to the neural

hardware accelerator by simply rewriting the SRAM memory

blocks on the accelerator corresponding to the neural net-

work’s model parameters. This update can happen through

the multicore’s wireless NoC communication channel and

won’t add much overhead since our model is restricted to just

32,000 parameters, each of 8 bits.

5 Implementation

Evaluation Environment: We evaluate NeuMAC on a cycle-

level execution-driven architectural simulator, Multi2sim [87].

Multi2sim is a popular end-to-end heterogenous system sim-

ulator tool used in the architecture community to test and

validate new hardware designs with standard benchmarks. We

evaluate NeuMAC for multicores with core count n = 64 at

22nm technology running at 1GHz. We use the same archi-

tecture parameters as [38]. We augment Multi2sim with an

on-chip wireless network that accurately models transmis-

sions, collision handling and packet losses.

While NeuMAC could be potentially trained directly us-

ing multi2sim, it is extremely slow and would result in pro-

hibitively large training times. Therefore, for NeuMAC’s

training phase, we use a light-weight custom-built Wireless

Network-on-Chip simulator along with traffic traces captured

from Multi2sim. Our custom simulator models the data de-

pendencies and synchronization primitives (such as locks and

barriers) in the applications, so as to faithfully mimic the

behavior of multi-threaded applications.

In order to evaluate NeuMAC’s generalizability and effec-

tiveness for a broad use case, we test NeuMAC on 9 differ-

ent applications chosen from diverse domains such as graph

analytics, vision, and numerical simulations (Summary in

Table 1). Additionally, we also test with multi-application

jobsets where different groups of cores are executing different

multithreaded applications. While training is performed using

our custom simulator, we evaluate NeuMAC using Multi2sim.

We integrate Multi2sim with NeuMAC’s trained RL agent,

and our evaluations account for the RL agent’s DNN inference

latency and communication latency between the multicore

and RL agent.

Training and Evaluation Details: For each application, we

collect 500 different traces, each generated with different in-

puts to the applications in order to capture the variations

between different runs. We evaluate NeuMAC using k-fold

cross validation, where we train the model on 8 applications

and test performance on the ninth application. Thus, we en-

sure that the NeuMAC agent is never explicitly trained on

the application it is being evaluated on, and our results show

that NeuMAC can generalize well to different applications.

We train NeuMAC for a total of 4000 episodes, and for each

episode we run M = 16 Monte Carlo simulations in parallel.

The policy network is trained using ADAM optimizer [55]

with a learning rate of 0.001.

6 Evaluation Results

6.1 Baselines

We compare with the following baselines:

(1) CSMA with Exponential Backoff: CSMA/CA protocol

from 802.11 networks, with backoff window ranging from 1

to 1024. [1, 71] use CSMA MAC in the context of WNoCs.

(2) TDMA: Cores are allocated fixed slots for transmission

in round-robin fashion. [5, 34] evaluate TDMA for WNoCs.

(3) Switch-thresh: [38, 65] propose a protocol that switches

between a static CSMA and a static TDMA protocol based on

per-core preset thresholds for channel activity and buffer occu-

pancy. The optimal threshold values vary across applications

and we choose values that are best in the average case.

(4) Optimal CSMA Algorithm: There is a large body of

work that designs throughput optimal CSMA algorithms.

However, most of these works are theoretical, and make sim-

plifying assumptions like ignoring collisions or static traffic

arrival rates, due to which they perform significantly worse

than even regular CSMA protocols in practice. Among the

optimal CSMA algorithms we tested, we found queue-based

algorithms to perform best. We implement an extension of the

popular Q-CSMA algorithm [79], where each node uses its

buffer queue buildup to infer its transmission aggressiveness

on the channel. While this algorithm is not truly distributed

in nature, we ignore the global communication overheads in

evaluations to favor the baseline performance.

(5) Wired Baseline: We also compare performance against

a purely wired baseline, where all cache coherency traffic is

serviced through the wired network-on-chip.

(6) Infinite Capacity Channel: We also compare Neu-

MAC’s performance against an oracle with infinite channel

capacity where the wireless medium can support multiple con-

current transmissions without suffering collisions, and every

packet can be transmitted immediately without any channel

contention delays. This baseline gives us an upper bound

on how much improvement in end-to-end execution time is

possible from improving the wireless NoC performance.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 981

 1

 2

 4

 8

 16

CC BFS Pagerank SSSP VolrendStrmClstrCannealBodyTrckCommunity

TDMA Q-CSMA

 1

 2

 4

 8

 16

CC BFS Pagerank SSSP VolrendStrmClstrCannealBodyTrckCommunity
CC BFS

PageRnk
SSSP

Volre
nd

Strm
Clst

r

Canneal

BdyTrck

Commnty

32.1x

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

G
a

in

Over CSMA
Over TDMA

Over Switch-thres
Over Q-CSMA

Over CSMA
Over TDMA

Over Switch-thresh
Over Q-CSMA

Figure 5: Gains in Wireless Network Throughput. (y axis in logscale)

6.2 Quantitative Results

We first evaluate NeuMAC’s performance against baselines on

single application executions, followed by evaluations on the

more realistic scenarios where multiple applications are run-

ning on the multicore. We also test NeuMAC’s performance

under lossy network conditions, and conclude by presenting

scaling results where we demonstrate that NeuMAC’s gains

increase as the multicore scales to thousands of cores.

A. Single Application Wireless Network Performance:

We begin by evaluating the wireless network performance

against baselines along three metrics – (i) Wireless network

throughput, (ii) Packet latency on the wireless network, and

(iii) Number of collisions on the channel. We note that while

NeuMAC is not explicitly trained to optimize for network

metrics, their performance is correlated to faster execution

times on the NoC.

(i) Network Throughput: In Fig. 5, we plot the gains in

average network throughput achieved by NeuMAC against

the baselines. Compared to CSMA and TDMA, NeuMAC

achieves a mean improvement of 1.8× and 9.63× respectively

across the benchmarks, and a maximum improvement of 3.3×
and 32.1× respectively. TDMA has poor performance for av-

erage network throughput since cores have to wait for their

turn to transmit even when the traffic is sparse, which leads

to underutilization of channel.

Compared to Switch-thresh and Q-CSMA, NeuMAC

achieves a mean improvement of 1.2× and 1.33×, and a max-

imum improvement of 1.7× and 1.9× respectively. While

these protocols are improve over CSMA and TDMA, they

still cannot react and adapt quickly enough to accommodate

the fast changing traffic patterns on the multicore.

(ii) Packet Latency: In Fig. 6, we plot the CDF of packet

latency due to queuing in the Wireless Network-on-Chip

across all applications. It is interesting to note that while

at the tail TDMA performs better than CSMA, in the me-

dian case TDMA performs significantly worse than CSMA.

This is because the high packet latencies at the tail are due

to dense traffic in the network which TDMA is better suited

for, whereas at the median where traffic is less dense, TDMA

leads to much higher packet latencies. NeuMAC, on the other

hand, is able to adapt to all these different scenarios and pro-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

CSMA

TDMA

Switch-thresh

Q-CSMA

NeuMAC

CSMA

TDMA

Q-CSMA
Switch-thresh

NeuMAC

C
D

F

Packet Latency in Clock Cycles x103

NeuMAC

Figure 6: CDF of packet latency

Apps CSMA Switch-thresh Q-CSMA NeuMAC

CC 75.30% 55.58% 76.24% 8.72%

BFS 50.42% 28.28% 49.57% 3.81%

Pagernk 77.36% 11.26% 77.79% 2.19%

SSSP 11.08% 9.48% 9.44% 8.88%

Volrend 44.17% 7.93% 46.11% 2.49%

Strmclstr 62.57% 19.21% 62.69% 31.24%

Canneal 2.55% 2.87% 2.09% 2.04%

Bdytrck 30.5% 29.06% 29.8% 28.87%

Cmmnty 46.76% 32.02% 49.24% 5.8%

Table 2: % of Collisions

vides an improvement in packet latency across all baselines.

Over CSMA and TDMA, NeuMAC improves median packet

latency by 4.11× and 9.18×, and improves 90th percentile

latency by 3.89× and 1.92× respectively. Over Switch-thresh

and Q-CSMA, the gains respectively are 4.66× and 2.56× at

the median, and 1.47× and 2.13× at 90th percentile.

(iii) Collisions on Wireless Channel: In Table 2 we show %

of collisions on the wireless channel across different bench-

marks. We omit TDMA here since TDMA by design does

not suffer from collisions. As observed, NeuMAC has signifi-

cantly fewer collisions than the CSMA algorithms. Switch-

thresh is the next best performing protocol, but NeuMAC in

most cases still has fewer collisions.

B. Single Application End-to-End Execution Speedup:

(i) Speedups over Purely Wired Network-on-Chip: In Table 3,

we show application speed-ups achieved by NeuMAC and

the Infinite Capacity baseline respectively, over the purely

wired NoC. NeuMAC can speed up benchmarks by up to

9.7× for StreamCluster and 6.53× for BFS, and on average

provides a speedup of 3.42× across benchmarks. Addition-

ally, we see that NeuMAC gets very close to the upper bound

of the speedup value, achieving up to 99.5% of the maximum

speedup possible in the case of BFS, and 98% of the maxi-

mum speedup possible on average. This result demonstrates

that NeuMAC is able to fully exploit the potential offered by

the wireless NoC.

(ii) Speedups over Baselines: Fig. 7 shows execution time

gains of NeuMAC over the baselines on the wireless NoC.

As can be observed, there is no one baseline protocol that

performs well across all applications. While in applications

982 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 1.2

 1.4

 1.6

 1.8

 1

 1.2

 1.4

 1.6

 1.8

CC BFS
PageRnk

SSSP

Volre
nd

Strm
Clst

r

Canneal

BdyTrck

Commnty

E
xe

cu
ti

o
n

 T
im

e
 S

p
e

e
d

u
p

 3.74x
Over CSMA
Over TDMA

Over Switch-thresh
Over Q-CSMA

Figure 7: Execution Time Results (y axis in logscale)

Apps NeuMAC Inf. Cap. baseline % Achieved

CC 1.96x 2.06x 95%

BFS 6.53x 6.56x 99.5%

Pagerank 1.07x 1.11x 96.4%

SSSP 2.24x 2.25x 99.5%

Volrend 1.32x 1.33x 99.2%

Strmclstr 9.70x 9.77x 99.28%

Canneal 1.14x 1.15x 99.13%

Bodytrack 1.37x 1.38x 99.3%

Community 3.77x 3.82x 98.6%

Table 3: Speedups over Purely Wired Network-on-Chip.

like Pagerank, TDMA performs the best, in other applications

such as BFS it is significantly worse. NeuMAC, on the other

hand, performs well across all benchmarks. In Table 4, we

see that NeuMAC achieves a maximum of 69.18% speedup

over CSMA for CC and 274.56% speedup over TDMA for

Community, and compared to Switch-thresh and Q-CSMA,

NeuMAC offers speedups up to 37.09%-55.94%.

C. Multi-Application Jobs: In Table. 5, we present execu-

tion time speedup results for multiapplication runs on the

multicore. For each run, we randomly choose one application

among the 9, and execute it using either 4, 16 or 32 threads.

We choose a sufficient number of applications such that all

64 cores are utilized, and in total we test on 100 different

multiapplication jobsets. Note that the NeuMAC agent was

never explicitly trained on such multiapplication traffic traces.

From Table. 5, we can see that NeuMAC’s gains increase over

the baselines compared to single benchmark experiments (Ta-

ble. 4), and goes as high as 6.15× (515.04%) speedup over

TDMA. These higher gains in multiapplication jobsets can be

attributed to the more complex nature of packet dependencies

between threads, which NeuMAC can exploit to further speed

up execution time as illustrated in Section 2.

C. Lossy Networks: To evaluate NeuMAC’s robustness to

varying channel conditions, we conduct experiments in lossy

network settings. We vary the packet loss rates in the wireless

NoC from 0% up to 10%, and in the event of a loss, the

packet is retransmitted. In Fig. 9, we compare the average

application speedup achieved over the baselines as the loss

rate increases. We observe that NeuMAC is able to generalize

very well to varying channel conditions and loss rates, and

Speedups CSMA TDMA Switch-thresh Q-CSMA

Max 69.18% 274.56% 37.09% 55.94%

Min 1.26% 4.88% 0.63% 1.12%

Mean 18.21% 46.90% 9.73% 11.94%

Table 4: Summary of Execution Time Speedups by NeuMAC. The per-

application speedups are shown in Fig. 7.

Speedups CSMA TDMA Switch-thresh Q-CSMA

Max 93.18% 515.04% 48.16% 26.78%

Min 13.3% 24.72% 4.41% 5.82%

Mean 33.93% 166.32% 19.97% 17.48%

Table 5: Summary of Execution Time Speedups by NeuMAC for Multiap-

plication runs

can maintain the same gains over the baselines throughout.

Note that NeuMAC was never trained explicitly for lossy

network settings. Despite this, it is able to generalize since it

can implicitly infer the channel conditions from the channel

activity like increased number of collisions.

We also test NeuMAC’s sensitivity to errors in the ob-

served state caused by packet losses at the NeuMAC agent’s

transceiver during the "Listening Interval". We conduct ex-

periments where we vary the packet loss rate from 0% to 2%

in order to introduce noise in the observed state. We find that

even under 2% loss rate, NeuMAC’s suffers a median per-

formance degradation of only 0.85% across all benchmarks

compared to its performance with perfect state information.

D. Scaling Trends: We believe that a learning based approach

like NeuMAC can greatly benefit the wireless NoC perfor-

mance as the number of cores scale to thousands of cores. To

demonstrate this we show the gains that NeuMAC achieves

over baseline protocols for different metrics as the cores vary

from 4 to 1024 in Fig. 8. Since multi2sim and other archi-

tectural simulators cannot scale beyond a hundred cores, we

evaluate these results in our custom simulator by training a

separate NeuMAC model for each core count. From Fig. 8,

we can see that NeuMAC’s gains over the baselines scale

favorably with the number of cores. This is because NeuMAC

is able to generate fine-grained MAC protocols by controlling

the actions of each core individually, and thus can generate

highly optimized protocols that improve substantially upon

the baselines at high core counts.

7 Related Work

A. Wireless Network-on-Chip Protocols: The majority of

past networking research on wireless NoC does not leverage

the broadcast nature of wireless to enable instantaneous cache

synchronization and instead focuses on using wireless only

between far apart cores to reduce the latency. These comple-

mentary works focus on problems related to optimizing net-

work topology [32, 35,105], packet routing [61,90,106], flow

control [18,42] and improving the reliability of the PHY layer

for far apart cores [76, 85, 86]. However, such designs have

limited gains over wired NoCs [4]. More recent work in archi-

tecture research exploits the broadcast nature of wireless to

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 983

G
a

in
 i

n
 N

e
tw

o
rk

T
h

ro
u

g
h

p
u

t

1

3

10

30

100

4 16 64 256 512 1024
1

3

10

30

100

300

1000

4 16 64 256 512 1024
1

3

10

30

100

300

1000

4 16 64 256 512 1024

Number of Cores Number of CoresNumber of Cores

G
a

in
 i

n
 M

e
d

ia
n

P
k
t

La
te

n
cy

G
a

in
 i

n
 9

0
th

 P
e

rc

P
k
t

La
te

n
cy

(a) (b) (c)

Over CSMA
Over TDMA

Over Switch-thresh
Over Q-CSMA

Over CSMA
Over TDMA

Over Switch-thresh
Over Q-CSMA

Over CSMA
Over TDMA

Over Switch-thresh
Over Q-CSMA

Figure 8: Scaling Trends in NeuMAC’s Gains for (a) Wireless Network Throughput (b) Median Packet Latency and (c) 90th Percentile Packet Latency

 10

 20

 30

 40

 50

 60

 10

 20

 30

 40

 50

 60

0% Pkt Loss

0.1% Pkt Loss

1% Pkt Loss

5% Pkt Loss

10% Pkt Loss

Over CSMA Over TDMA Over Switch-

thresh
Over Q-CSMA

A
v
e

ra
g

e
 A

p
p

li
ca

ti
o

n

S
p

e
e

d
u

p
 i

n
 P

e
rc

e
n

ta
g

e
 (

%
)

Figure 9: Effect of Packet losses on NeuMAC’s application speedup per-

formance compared to Baselines.

boost the performance of wireless enable NoCs [34,38,65,71].

These systems either use contention-free mechanisms such

as token passing [34] or contention-based mechanisms such

as carrier sense with exponential backoff [29, 71]. The clos-

est to our work are [38, 65] which attempt to adapt to traffic

patterns by switching between a CSMA or a token passing

protocol based on a preset threshold. However, hand tuning

the threshold values is a challenging task and does not pro-

vide the flexibility and expressibility of NeuMAC to support

complex and highly variable traffic patterns.

B. Network-on-Chip Technologies: Past work on wired

NoCs proposes the use of deep learning and RL to learn

efficient packet routing protocols [98], learn memory access

patterns to reduce cache misses [103], and reduce static and

dynamic power consumption on an NoC [36]. To the best of

our knowledge, ours is the first work that attempts to exploit

deep reinforcement learning techniques to generate medium

access protocols for Wireless NoCs.

C. Deep Learning in Wireless Networks: Deep RL has re-

cently been applied in wireless networks to optimize duty

cycling in sensor networks [64], resource allocation in cel-

lular networks [22, 27], dynamic spectrum access [72, 92],

rate adaptation in CSMA networks [69],and control policies

at the PHY layer [52]. [104] provides an extensive survey of

deep learning in wireless networks. The closest to our work

are [14,16,19,101] which use reinforcement learning to mod-

ify the backoff parameters in CSMA or decide whether to

transmit or not for every packet at every time step. However,

such designs are not applicable in the context of wireless

NoCs owing to the unique set of constraints imposed by the

NoC, such as the much smaller time-scale of operation render-

ing neural network inference per transmission slot infeasible,

the limited SRAM memory to store model parameters and the

enormous action space to explore. These constraints require

significant redesign to NeuMAC’s deep RL framework where

it has to now generate high-level, versatile and adaptable pro-

tocols that can be deployed for thousands of clock cycles,

and generating such protocols cannot be reduced to a simple

classification task per transmission-slot (e.g. transmit or not).

8 Limitations and Discussion

Some points are worth noting: First, given the enormous costs

and engineering efforts involved in prototyping a full chip

with integrated processors, memory, and NoC, it is outside the

scope of this work to implement NeuMAC in hardware. As a

result, we evaluate NeuMAC on a full-system cycle-accurate

architectural simulator, as is the norm among computer archi-

tecture researchers. These full-system simulators exhaustively

model all components of a CPU and also ensure that all timing

dependencies are simulated accurately [87]. As a result, the

trends and insights obtained from such architectural simula-

tions often carry over to full fledged prototypes. Moreover,

the wireless channel in this WNoC application domain is in

fact very stable as opposed to WLAN channels which are

extremely dynamic. This is because the multicore is isolated

in a chip package, and the wireless channel can be precisely

measured and characterized, thus allowing compensation for

multipath fading and other artifacts. As a result, the wire-

less BER in these environments can be as low as 10−16 [33],

making such a simulation based evaluation representative.

Second, in parallel programming for multicore processors,

programmers today try hard to avoid broadcast transmissions

as the overhead of running the cache coherency protocol is

high. With wireless NoC, the overhead of broadcast traffic is

now limited which opens the door to rewriting applications

in a manner that embraces broadcast, and can in turn benefit

even more from an adaptive protocol like NeuMAC.

Lastly, in this paper we focus on the MAC layer since it is

considered a roadblock to realize the full potential of wireless

NoCs. However, studying the challenges and opportunities at

the other layers such as PHY remains exciting and promising

avenue which we leave for future work.

Acknowledgements: We thank the shepherd and anonymous

reviewers for their feedback and comments. We also thank

Ameya Patil for helping guide the hardware accelerator design

and characterization. The work is funded in part by NSF

Award 1750725.

984 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] S. Abadal, A. Cabellos-Aparicio, E. Alarcon, and J. Torrellas.

Wisync: An architecture for fast synchronization through

on-chip wireless communication. ACM SIGOPS Operating

Systems Review, 50(2):3–17, 2016.

[2] S. Abadal, M. Iannazzo, M. Nemirovsky, A. Cabellos-

Aparicio, H. Lee, and E. Alarcón. On the area and energy scal-

ability of wireless network-on-chip: A model-based bench-

marked design space exploration. IEEE/ACM Transactions

on Networking (TON), 23(5):1501–1513, 2015.

[3] S. Abadal, R. Martínez, J. Solé-Pareta, E. Alarcón, and

A. Cabellos-Aparicio. Characterization and modeling of mul-

ticast communication in cache-coherent manycore processors.

In Computers & Electrical Engineering, 2016.

[4] S. Abadal, A. Mestres, R. Martínez, E. Alarcon, and

A. Cabellos-Aparicio. Multicast on-chip traffic analysis tar-

geting manycore noc design. In 2015 23rd Euromicro Inter-

national Conference on Parallel, Distributed, and Network-

Based Processing, pages 370–378. IEEE, 2015.

[5] S. Abadal, A. Mestres, M. Nemirovsky, H. Lee, A. González,

E. Alarcón, and A. Cabellos-Aparicio. Scalability of broad-

cast performance in wireless network-on-chip. IEEE Transac-

tions on Parallel and Distributed Systems, 27(12):3631–3645,

2016.

[6] S. Abadal, A. Mestres, J. Torrellas, E. Alarcón, and

A. Cabellos-Aparicio. Medium access control in wireless

network-on-chip: a context analysis. IEEE Communications

Magazine, 56(6):172–178, 2018.

[7] S. Abadal, M. Nemirovsky, E. Alarcón, and A. Cabellos-

Aparicio. Networking challenges and prospective impact

of broadcast-oriented wireless networks-on-chip. In Proceed-

ings of the 9th International Symposium on Networks-on-

Chip, page 12. ACM, 2015.

[8] S. Abadal, B. Sheinman, O. Katz, O. Markish, D. Elad,

Y. Fournier, D. Roca, M. Hanzich, G. Houzeaux, M. Ne-

mirovsky, et al. Broadcast-enabled massive multicore archi-

tectures: A wireless rf approach. IEEE micro, 35(5):52–61,

2015.

[9] S. Abadal, J. Torrellas, E. Alarcón, and A. Cabellos-Aparicio.

Orthonoc: a broadcast-oriented dual-plane wireless network-

on-chip architecture. IEEE transactions on parallel and dis-

tributed systems, 29(3):628–641, 2018.

[10] S. Abadal, et al. OrthoNoC: A Broadcast-Oriented Dual-

Plane Wireless Network-on-Chip Architecture. IEEE Trans.

Parallel Distrib. Syst., 2018.

[11] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G.

Dreslinski, D. Blaauw, and T. Mudge. Scaling towards kilo-

core processors with asymmetric high-radix topologies. In

Proceedings of the HPCA-19, pages 496–507, 2013.

[12] A. B. Achballah, S. B. Othman, and S. B. Saoud. Problems

and challenges of emerging technology networks- on- chip: A

review. Microprocessors and Microsystems, 53:1–20, 2017.

[13] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A bench-

mark suite for multithreaded graph algorithms executing on

futuristic multicores. In 2015 IEEE International Symposium

on Workload Characterization, pages 44–55. IEEE, 2015.

[14] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim.

Deep reinforcement learning paradigm for performance op-

timization of channel observation–based mac protocols in

dense wlans. IEEE Access, 7:3500–3511, 2018.

[15] Altera. An alternative to bus-based interconnects for large-

scale design. In White Paper, 2008.

[16] S. Amuru, Y. Xiao, M. van der Schaar, and R. M. Buehrer. To

send or not to send-learning mac contention. In 2015 IEEE

Global Communications Conference (GLOBECOM), pages

1–6. IEEE, 2015.

[17] M. Baharloo, A. Khonsari, P. Shiri, I. Namdari, and D. Rah-

mati. High-average and guaranteed performance for wireless

networks-on-chip architectures. In 2018 IEEE Computer So-

ciety Annual Symposium on VLSI (ISVLSI), pages 226–231.

IEEE, 2018.

[18] J. H. Bahn and N. Bagherzadeh. Efficient parallel buffer struc-

ture and its management scheme for a robust network-on-chip

(noc) architecture. In Computer Society of Iran Computer

Conference, pages 98–105. Springer, 2008.

[19] H. Bayat-Yeganeh, V. Shah-Mansouri, and H. Kebriaei. A

multi-state q-learning based csma mac protocol for wireless

networks. Wireless Networks, 24(4):1251–1264, 2018.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench-

mark suite: Characterization and architectural implications.

In Proceedings of the 17th international conference on Par-

allel architectures and compilation techniques, pages 72–81.

ACM, 2008.

[21] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas,

B. Liu, A. Tran, E. Adeagbo, and B. Baas. A 5.8 pj/op 115

billion ops/sec, to 1.78 trillion ops/sec 32nm 1000-processor

array. In 2016 IEEE Symposium on VLSI Circuits (VLSI-

Circuits), pages 1–2. IEEE, 2016.

[22] U. Challita, L. Dong, and W. Saad. Deep learning for proac-

tive resource allocation in lte-u networks. In European wire-

less technology conference, 2017.

[23] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and

J. McDonald. Parallel programming in OpenMP. Morgan

kaufmann, 2001.

[24] H. M. Cheema and A. Shamim. The last barrier: On-chip

antennas. IEEE Microw. Mag., 14(1):79–91, 2013.

[25] Y.-h. Chen, J. Emer, and V. Sze. Eyeriss v2: A Flexible and

High-Performance Accelerator for Emerging Deep Neural

Networks. IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, 9(2):292–308, 2019.

[26] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolu-

tional neural networks. IEEE journal of solid-state circuits,

52(1):127–138, 2016.

[27] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra,

M. Pavone, and S. Katti. Cellular network traffic scheduling

with deep reinforcement learning. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[28] D. Culler, J. P. Singh, and A. Gupta. Parallel computer ar-

chitecture: a hardware/software approach. Gulf Professional

Publishing, 1999.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 985

[29] P. Dai, J. Chen, Y. Zhao, and Y.-H. Lai. A study of a wire–

wireless hybrid noc architecture with an energy-proportional

multicast scheme for energy efficiency. Computers and Elec-

trical Engineering, 45:402–416, 2015.

[30] G. De Micheli and L. Benini. Networks on chips: 15 years

later. Computer, (5):10–11, 2017.

[31] S. Deb, K. Chang, X. Yu, S. P. Sah, M. Cosic, A. Ganguly,

P. P. Pande, B. Belzer, and D. Heo. Design of an energy-

efficient cmos-compatible noc architecture with millimeter-

wave wireless interconnects. IEEE Transactions on Comput-

ers, 62(12):2382–2396, 2012.

[32] S. Deb, A. Ganguly, K. Chang, P. Pande, B. Beizer, and

D. Heo. Enhancing performance of network-on-chip architec-

tures with millimeter-wave wireless interconnects. In ASAP

2010-21st IEEE International Conference on Application-

specific Systems, Architectures and Processors, pages 73–80.

IEEE, 2010.

[33] S. Deb, A. Ganguly, P. P. Pande, B. Belzer, and D. Heo. Wire-

less noc as interconnection backbone for multicore chips:

Promises and challenges. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 2(2):228–239, 2012.

[34] D. DiTomaso, A. Kodi, S. Kaya, and D. Matolak. iWISE:

Inter-router wireless scalable express channels for network-

on-chips (NoCs) architecture. In 2011 IEEE 19th Annual

Symposium on High Performance Interconnects, pages 11–18.

IEEE, 2011.

[35] D. DiTomaso, A. Kodi, D. Matolak, S. Kaya, S. Laha, and

W. Rayess. A-winoc: Adaptive wireless network-on-chip

architecture for chip multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 26(12):3289–3302, 2014.

[36] D. DiTomaso, A. Sikder, A. Kodi, and A. Louri. Machine

learning enabled power-aware network-on-chip design. In

Proceedings of the Conference on Design, Automation & Test

in Europe, pages 1354–1359. European Design and Automa-

tion Association, 2017.

[37] R. K. Dokania and A. B. Apsel. Analysis of challenges for

on-chip optical interconnects. In Proceedings of the 19th

ACM Great Lakes symposium on VLSI, pages 275–280. ACM,

2009.

[38] V. Fernando, A. Franques, S. Abadal, S. Misailovic, and J. Tor-

rellas. Replica: A Wireless Manycore for Communication-

Intensive and Approximate Data. In ASPLOS, 2019.

[39] D. Fritsche, et al. A Low-Power SiGe BiCMOS 190-GHz

Transceiver Chipset With Demonstrated Data Rates up to

50 Gbit/s Using On-Chip Antennas. IEEE Trans. Microw.

Theory Techn., 65(9):3312–3323, 2017.

[40] S. H. Gade, S. S. Rout, M. Sinha, H. K. Mondal, W. Singh, and

S. Deb. A utilization aware robust channel access mechanism

for wireless nocs. In 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

[41] S. Galzarano, A. Liotta, and G. Fortino. Ql-mac: A q-learning

based mac for wireless sensor networks. In International

Conference on Algorithms and Architectures for Parallel Pro-

cessing, pages 267–275. Springer, 2013.

[42] A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and

C. Teuscher. Scalable hybrid wireless network-on-chip ar-

chitectures for multicore systems. IEEE Transactions on

Computers, 60(10):1485–1502, 2011.

[43] A. Gomes, D. F. Macedo, and L. F. Vieira. Automatic mac

protocol selection in wireless networks based on reinforce-

ment learning. Computer Communications, 149:312–323,

2020.

[44] S. K. Gonugondla, B. Shim, and N. R. Shanbhag. Perfect error

compensation via algorithmic error cancellation. In 2016

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 966–970. IEEE, 2016.

[45] W. Gropp, W. D. Gropp, E. Lusk, A. D. F. E. E. Lusk, and

A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface, volume 1. MIT press,

1999.

[46] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen,

V. Hirvisalo, and A. Ylä-Jääski. Latency and throughput

characterization of convolutional neural networks for mobile

computer vision. In Proceedings of the 9th ACM Multimedia

Systems Conference, pages 204–215, 2018.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016.

[48] M. Horowitz. 1.1 computing’s energy problem (and what we

can do about it). In 2014 IEEE International Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), pages

10–14. IEEE, 2014.

[49] Jack Clark. Intel: Why a 1,000-core chip is feasible, Press

Release, 2010.

[50] N. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual circuit tree

multicasting: A case for on-chip hardware multicast support.

In 2008 International Symposium on Computer Architecture,

pages 229–240. IEEE, 2008.

[51] L. Jiang and J. Walrand. A distributed csma algorithm

for throughput and utility maximization in wireless net-

works. IEEE/ACM Transactions on Networking, 18(3):960–

972, 2009.

[52] S. Joseph, R. Misra, and S. Katti. Towards Self-Driving

Radios: Physical-Layer Control using Deep Reinforcement

Learning. In Proceedings of the 20th International Workshop

on Mobile Computing Systems and Applications, pages 69–74.

ACM, 2019.

[53] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-

datacenter performance analysis of a tensor processing unit.

In Proceedings of the 44th Annual International Symposium

on Computer Architecture, pages 1–12, 2017.

[54] A. Karkar, T. Mak, K.-F. Tong, and A. Yakovlev. A survey

of emerging interconnects for on-chip efficient multicast and

broadcast in many-cores. IEEE Circuits and Systems Maga-

zine, 16(1):58–72, 2016.

[55] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

986 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[56] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt.

Towards the ideal on-chip fabric for 1-to-many and many-

to-1 communication. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture,

pages 71–82. ACM, 2011.

[57] T. Krishna, et al. Towards the ideal on-chip fabric for 1-to-

many and many-to-1 communication. In Proceedings of the

MICRO-44, 2011.

[58] R. Kumar, T. Mattson, G. Pokam, and R. V. D. Wijngaart.

The case for message passing on many-core chips. In Multi-

processor System-on-Chip, pages 115–123. Springer, 2011.

[59] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in

multi-core architectures: Understanding mechanisms, over-

heads and scaling. In 32nd International Symposium on Com-

puter Architecture (ISCA’05), pages 408–419. IEEE, 2005.

[60] S. Laha, et al. A New Frontier in Ultralow Power Wire-

less Links: Network-on-Chip and Chip-to-Chip Interconnects.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

34(2):186–198, 2015.

[61] S.-B. Lee, S.-W. Tam, I. Pefkianakis, S. Lu, M. F. Chang,

C. Guo, G. Reinman, C. Peng, M. Naik, L. Zhang, et al. A

scalable micro wireless interconnect structure for CMPs. In

Proceedings of the 15th annual international conference on

Mobile computing and networking, pages 217–228. ACM,

2009.

[62] T. Lee, O. Jo, and K. Shin. Corl: Collaborative reinforcement

learning-based mac protocol for iot networks. Electronics,

9(1):143, 2020.

[63] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang. Opti-

mizing {CNN} model inference on cpus. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19), pages

1025–1040, 2019.

[64] Z. Liu and I. Elhanany. Rl-mac: a reinforcement learning

based mac protocol for wireless sensor networks. Interna-

tional Journal of Sensor Networks, 1(3-4):117–124, 2006.

[65] N. Mansoor and A. Ganguly. Reconfigurable wireless

network-on-chip with a dynamic medium access mecha-

nism. In Proceedings of the 9th International Symposium

on Networks-on-Chip, page 13. ACM, 2015.

[66] N. Mansoor, S. Shamim, and A. Ganguly. A Demand-Aware

Predictive Dynamic Bandwidth Allocation Mechanism for

Wireless Network-on-Chip. In Proceedings of the SLIP ’16,

2016.

[67] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource

management with deep reinforcement learning. In Proceed-

ings of the 15th ACM Workshop on Hot Topics in Networks,

pages 50–56. ACM, 2016.

[68] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng,

and M. Alizadeh. Learning scheduling algorithms for data

processing clusters. arXiv preprint arXiv:1810.01963, 2018.

[69] N. Mastronarde, J. Modares, C. Wu, and J. Chakareski.

Reinforcement learning for energy-efficient delay-sensitive

csma/ca scheduling. In 2016 IEEE Global Communications

Conference (GLOBECOM), pages 1–7. IEEE, 2016.

[70] D. W. Matolak, A. Kodi, S. Kaya, D. DiTomaso, S. Laha, and

W. Rayess. Wireless networks-on-chips: architecture, wire-

less channel, and devices. IEEE Wireless Communications,

19(5):58–65, 2012.

[71] A. Mestres, S. Abadal, J. Torrellas, E. Alarcón, and

A. Cabellos-Aparicio. A mac protocol for reliable broadcast

communications in wireless network-on-chip. In Proceed-

ings of the 9th International Workshop on Network on Chip

Architectures, pages 21–26. ACM, 2016.

[72] O. Naparstek and K. Cohen. Deep multi-user reinforcement

learning for distributed dynamic spectrum access. IEEE

Transactions on Wireless Communications, 18(1):310–323,

2018.

[73] J. Ni, B. Tan, and R. Srikant. Q-csma: Queue-length-based

csma/ca algorithms for achieving maximum throughput and

low delay in wireless networks. IEEE/ACM Transactions on

Networking, 20(3):825–836, 2011.

[74] J. Oh, M. Prvulovic, and A. Zajic. Tlsync: support for multiple

fast barriers using on-chip transmission lines. In 2011 38th

Annual International Symposium on Computer Architecture

(ISCA), pages 105–115. IEEE, 2011.

[75] S. Pasricha and N. Dutt. On-chip communication architec-

tures: system on chip interconnect. Morgan Kaufmann, 2010.

[76] M. Rahaman and M. Chowdhury. Improved bit error rate

performance in intra-chip rf/wireless interconnect systems.

In Proc. ACM/IEEE Great Lake Symp. VLSI, 2008.

[77] S. Rajagopalan, D. Shah, and J. Shin. Network adiabatic

theorem: an efficient randomized protocol for contention res-

olution. In Proceedings of the eleventh international joint

conference on Measurement and modeling of computer sys-

tems, pages 133–144, 2009.

[78] D. Sánchez, et al. An Analysis of On-Chip Interconnection

Networks for Large-Scale Chip Multiprocessors. ACM T.

Archit. Code Op., 7(1), 2010.

[79] D. Shah, J. Shin, et al. Randomized scheduling algorithm

for queueing networks. The Annals of Applied Probability,

22(1):128–171, 2012.

[80] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and

B. Catanzaro. Megatron-lm: Training multi-billion parameter

language models using model parallelism. arXiv preprint

arXiv:1909.08053, 2019.

[81] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneer-

shelvam, M. Lanctot, et al. Mastering the game of go with

deep neural networks and tree search. nature, 529(7587):484,

2016.

[82] Y. Solihin. Fundamentals of parallel multicore architecture.

CRC Press, 2015.

[83] V. Soteriou, H. Wang, and L. Peh. A Statistical Traffic Model

for On-Chip Interconnection Networks. In Proceedings of

MASCOTS ’06, 2006.

[84] R. S. Sutton and A. G. Barto. Reinforcement learning: An

introduction. MIT press, 2018.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 987

[85] X. Timoneda, S. Abadal, A. Cabellos-Aparicio, D. Manessis,

J. Zhou, A. Franques, J. Torrellas, and E. Alarcón. Millimeter-

wave propagation within a computer chip package. In 2018

IEEE International Symposium on Circuits and Systems (IS-

CAS), pages 1–5. IEEE, 2018.

[86] X. Timoneda, S. Abadal, A. Franques, D. Manessis, J. Zhou,

J. Torrellas, E. Alarcón, and A. Cabellos-Aparicio. Engi-

neer the channel and adapt to it: Enabling wireless intra-chip

communication. arXiv preprint arXiv:1901.04291, 2018.

[87] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2sim:

a simulation framework for cpu-gpu computing. In 2012

21st International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 335–344. IEEE, 2012.

[88] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,

J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erra-

guntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar. An

80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS.

IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[89] V. Vijayakumaran, M. P. Yuvaraj, N. Mansoor, N. Nerurkar,

A. Ganguly, and A. Kwasinski. Cdma enabled wireless

network-on-chip. ACM Journal on Emerging Technologies in

Computing Systems (JETC), 10(4):28, 2014.

[90] C. Wang, W.-H. Hu, and N. Bagherzadeh. A wireless network-

on-chip design for multicore platforms. In 2011 19th Inter-

national Euromicro conference on parallel, distributed and

network-based processing, pages 409–416. IEEE, 2011.

[91] S. Wang and T. Jin. Wireless network-on-chip: A survey. The

Journal of Engineering, 2014(3):98–104, 2014.

[92] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. Deep

reinforcement learning for dynamic multichannel access in

wireless networks. IEEE Transactions on Cognitive Commu-

nications and Networking, 4(2):257–265, 2018.

[93] N. Weissman and E. Socher. 9mw 6gbps bi-directional 85–

90ghz transceiver in 65nm cmos. In 2014 9th European Mi-

crowave Integrated Circuit Conference, pages 25–28. IEEE,

2014.

[94] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,

C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and

A. Agarwal. On-chip interconnection architecture of the

tile processor. IEEE Micro, 27(5):15–31, 2007.

[95] H.-S. P. Wong and S. Salahuddin. Memory leads the way to

better computing. Nature nanotechnology, 10(3):191, 2015.

[96] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The splash-2 programs: Characterization and methodological

considerations. ACM SIGARCH computer architecture news,

23(2):24–36, 1995.

[97] X. Xiang, et al. A model for application slowdown estimation

in on-chip networks and its use for improving system fairness

and performance. In ICCD ’16, 2016.

[98] J. Yin, Y. Eckert, S. Che, M. Oskin, and G. H. Loh. Toward

more efficient noc arbitration: A deep reinforcement learning

approach. In Proc. IEEE 1st Int. Workshop AI-assisted Des.

Architecture, 2018.

128 8-b

MULTWeights

SRAM

(32 KB)

Carry Save

Adder Tree

Output

Buffer

REG

ReLU

Comparator

Read REG

128 8-bit Activation

REG

8-bit

Figure 10: Illustrative Block Diagram of hardware macro employed for

overhead characterization of NeuMAC’s deep network

[99] X. Yu, J. Baylon, P. Wettin, D. Heo, P. P. Pande, and S. Mirab-

basi. Architecture and design of multichannel millimeter-

wave wireless noc. IEEE Design & Test, 31(6):19–28, 2014.

[100] X. Yu, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo.

An 18.7-gb/s 60-ghz ook demodulator in 65-nm cmos for

wireless network-on-chip. IEEE Transactions on Circuits

and Systems I: Regular Papers, 62(3):799–806, 2015.

[101] Y. Yu, T. Wang, and S. C. Liew. Deep-reinforcement learning

multiple access for heterogeneous wireless networks. IEEE

Journal on Selected Areas in Communications, 37(6):1277–

1290, 2019.

[102] S.-Y. Yun, Y. Yi, J. Shin, and D. Y. Eun. Optimal CSMA: A

survey. In ICCS, pages 199–204, 2012.

[103] Y. Zeng and X. Guo. Long short term memory based hardware

prefetcher: A case study. In Proceedings of the International

Symposium on Memory Systems, pages 305–311. ACM, 2017.

[104] C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile

and wireless networking: A survey. IEEE Communications

Surveys & Tutorials, 2019.

[105] D. Zhao and Y. Wang. Sd-mac: Design and synthesis of a

hardware-efficient collision-free qos-aware mac protocol for

wireless network-on-chip. IEEE Transactions on Computers,

57(9):1230–1245, 2008.

[106] D. Zhao, Y. Wang, J. Li, and T. Kikkawa. Design of multi-

channel wireless noc to improve on-chip communication ca-

pacity. In Proceedings of the Fifth ACM/IEEE International

Symposium on Networks-on-Chip, pages 177–184. IEEE,

2011.

A Energy and Latency Overhead Characteri-

zation

It is widely acknowledged that deep learning inference has

high latency and energy overheads. However, since NeuMAC

needs to optimize the performance of a multicore CPU, it

needs to operate at very small time scales. As a result, it is

imperative that NeuMAC’s inference step be efficient in time

and energy. In this appendix, we characterize the overheads

of running inference on NeuMAC’s Deep RL agent.

Towards this end, we design an illustrative hardware macro

for NeuMAC’s neural accelerator (shown in Fig. 10). The

trained quantized weights of NeuMAC’s network are stored

988 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in the 32 KB on-chip SRAM. The primary compute elements

in the macro are the (i) 128 element 8-bit multiplier, that can

perform 128 parallel multiplications of 8-bit numbers, (ii)

followed by a 7-layer carry save adder tree, which can add up

to 128 8-bit numbers. Thus, the multiplier block and adder

tree block together can implement either one 128 dimensional

dot product, or two 64 dimensional dot products in a one iter-

ation. The ReLU non-linear activation is implemented using

comparators, which finally writes the result into an output

buffer. It is important to note that this hardware macro is sig-

nificantly simpler than a full scale neural network accelerator,

such as [53].

Next, we elaborate on the pipeline for computing one infer-

ence step on NeuMAC’s RL agent. Note that computing the

value of one element in the first hidden layer of NeuMAC’s

neural network requires one 64 dimensional dot product3.

Therefore, computing the values of all elements in the first

hidden layer requires a total of 128 counts of 64 dimensional

dot products. Similarly, computing the values at the second

hidden layer requires 128 counts of 128 dimensional dot prod-

ucts, and computing the final layer requires 64 counts of 128

dimensional dot products. Hence, to compute one inference

step in NeuMAC’s deep network, we need to perform a total

of 192 counts of 128-element dot products, and 128 counts

of 64-element dot products. Further, since we can implement

two 64-element dot products in parallel, one inference step

requires an equivalent of 256 counts of 128 dimensional dot

products to compute the output. Using this above macro de-

sign along with conservative and widely accepted hardware

estimates, we next show that the design of NeuMAC’s neural

network architecture adds only marginal overheads, allow-

ing it to operate under the resource constrained setting of a

wireless NoC.

Latency Overhead: Here we estimate the latency of comput-

ing one inference step on NeuMAC’s RL agent. The memory

array is organized as 16 blocks of 64 by 256 memory elements,

making a total of 32 KB storage. For 45nm technology, read

access time from such memory sizes can be conservatively

estimated to be around 2 ns [95]. Similarly, a 32-dimensional

dot product can be computed within 2 ns [44]. Hence, we

pipeline the data flow in three stages, first after the memory

read, second after adding the outputs of 32 multipliers, and

third at the output of the comparator bank. Hence, each stage

3Although NeuMAC’s input has 65 elements, for simplicity sake we

perform calculations with 64 element input.
4Our CPU clock is 1 GHz.

has a maximum latency of 2 ns. As a result of such pipelining,

one 128 element dot product is computed every 2 ns, that is,

every 2 clock cycles4. As noted previously, one inference step

requires 256 counts of 128 dimensional dot products. Hence,

the total latency for one inference step is 256× 2 = 512 ns

(512 clock cycles). This inference latency of 512 cycles re-

sults in a small overhead of less than 6% per time step in

our RL formulation. One point to note is that, the final deep

network output is quantized to 8 bits. Hence, the sigmoid fil-

ter after the last layer can be implemented via a 256 element

look-up table at a negligible latency overhead.

Energy Overhead: Next, we estimate energy consumption

of the hardware macro. We use the energy values from the

widely-cited paper [48], which approximately characterizes

energy consumption of various compute elements and mem-

ory accesses. The dominant energy consumption steps are the

reads from the memory array and the computations on the

MAC (Multiply-ACcumulate) unit. From [48], 8 bit multi-

plies consume 0.2 pJ, and 8-bit additions consume 0.03 pJ.

One 128 dimensional dot product on the MAC unit involves

128 multiplications and 127 additions. Thus the total energy

comes to 29.41 pJ. Memory reads of 64 bits from 2 KB mem-

ory blocks requires 5 pJ. Thus, the 128 bit memory reads for

each dot product requires 10 pJ. As a result, one 128 element

dot product on the hardware accelerator requires 39.41 pJ, and

with 256 counts, the energy consumed for a single inference

step is 10088.96 pJ. Given that we require one inference ev-

ery 10,000 ns, the neural accelerator consumes approximately

only 1 mW of power on average. In comparison, a single

transceiver on the multicore consumes 16 mW [38]. Lastly,

note that the numbers in [48] are at 45 nm technology, so 1

mW is a conservative estimate.

Area Overhead: Lastly, the area overhead of the hardware

macro is small. Since area is dominated by memory, the 32

KB of SRAM and few registers in the hardware accelerator

impose a small overhead in comparison to the 512 KB of

cache memory at each of the 64 cores. Thus we envision that

such a hardware macro can reside on the same die and share

the same clock as the multicore processor.

Thus, even a simple accelerator like the one demonstrated

in Fig. 10 can enable NeuMAC’s agent to operate under the

resource constrained setting of a wireless NoC. Note that we

do not employ any other advanced hardware optimization

techniques and rely on reported hardware numbers that are

widely accepted rather than the state-of-the-art today.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 989

	Introduction
	Motivation and Insights
	Background
	Wireless Network on Chip
	Deep Reinforcement Learning

	NeuMAC Design
	Overview
	Design Challenges
	NeuMAC's MAC Policy
	RL Formulation and Training
	Neural Network Architecture

	Implementation
	Evaluation Results
	Baselines
	Quantitative Results

	Related Work
	Limitations and Discussion
	Energy and Latency Overhead Characterization

