+

6} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Practical Null Steering in Millimeter Wave Networks

Sohrab Madani and Suraj Jog, University of Illinois Urbana Champaign;
Jesus O. Lacruz and Joerg Widmer, IMDEA Networks;
Haitham Hassanieh, University of Illinois Urbana Champaign

https://www.usenix.org/conference/nsdi21/presentation/madani

This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12-14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

M NetApp’ P

Practical Null Steering in Millimeter Wave Networks

Sohrab Madani*, Suraj Jog*, Jesus O. Lacruz’, Joerg Widmer', Haitham Hassanieh*
*University of Illinois at Urbana Champaign, "IMDEA Networks

Abstract — Millimeter wave (mmWave) is playing a central
role in pushing the performance and scalability of wireless
networks by offering huge bandwidth and extremely high data
rates. Millimeter wave radios use phased array technology
to modify the antenna beam pattern and focus their power
towards the transmitter or receiver. In this paper, we explore
the practicality of modifying the beam pattern to suppress
interference by creating nulls, i.e. directions in the beam pat-
tern where almost no power is received. Creating nulls in
practice, however, is challenging due to the fact that practical
mmWave phased arrays offer very limited control in setting
the parameters of the beam pattern and suffer from hardware
imperfections which prevent us from nulling interference.
We introduce Nulli-Fi, the first practical mmWave null
steering system. Nulli-Fi combines a novel theoretically op-
timal algorithm that accounts for limitations in practical
phased arrays with a discrete optimization framework that
overcomes hardware imperfections. Nulli-Fi also introduces
a fast null steering protocol to quickly null new unforeseen
interferers. We implement and extensively evaluate Nulli-Fi
using commercial off-the-shelf 60 GHz mmWave radios with
16-element phased arrays transmitting IEEE 802.11ad pack-
ets [33] . Our results show that Nulli-Fi can create nulls that
reduce interference by up to 18 dB even when the phased ar-
ray offers only 4 bits of control. In a network with 10 links (20
nodes), Nulli-Fi’s ability to null interference enables 2.68 x
higher total network throughput compared to recent past work.

1 Introduction

Millimeter wave (mmWave) networks introduced a major leap
in data rates and scalability for 5G cellular networks, next
generation wireless LANs, and IoT devices [10,41,46]. At
the heart of millimeter wave technology are phased arrays
which can focus the power of the antenna beam pattern in
real-time towards the client to compensate for the large atten-
uation of mmWave signals. At mmWave frequencies (> 24
GHz), phased arrays can fit many antennas into a small area
due to the mm-scale wavelength of the signal [63], enabling
very narrow directional beams as shown in Fig. 1. Ideally,
using narrow beams would shield a mmWave device from
interference outside the main direction (main lobe) of its
beam. However, phased arrays suffer from side-lobe leakage
as shown in Fig. 1(a). Hence, they still receive interfering
signals even if these signals come from directions outside
the main lobe. Past work has shown that side-lobes can lead
to a significant amount of interference which can degrade

m§ mg m§
Interferer - Interferer - Interferer -

S I | S |
(b) Single Null (c) Wide Null

Figure 1: Directional beams in mmWave networks

=
(a) No Nulling

the data rate and in dense networks reduce the total network
throughput to half (by up to 18 Gbps) [14,27,44,55,61].

To address the above problem, we leverage the fact that
phased array beam patterns exhibit nulls, directions in the
beam pattern where the transmitted or received power is sup-
pressed as shown in Fig. 2(b). Thus, we can substantially
reduce interference by having a null in the direction of the
interferer. However, simply shifting the beam pattern to align
the null with the interferer can misalign the main lobe and
lead to worse performance as we show in section 6. Hence, we
must create a new beam pattern to introduce a null in the di-
rection of the interferer while preserving the alignment of the
main lobe as shown in Fig. 1(b). This problem is commonly
referred to as null steering.

Past mmWave systems research has mainly focused on
beam alignment and steering [13, 17,20,40,51, 56, 65], i.e.
creating and steering the main lobe of the beam. Creating
and steering nulls, however, while ensuring the main lobe is
preserved is significantly harder. To better understand why,
consider the phased array diagram shown in Fig. 2(a). The
beam pattern of the array is created by modifying complex
weights applied to each antenna element of the phased array.
These complex weights alter the magnitude and phase of
the signal received on each antenna. We can adjust these
weights to align signals on the antennas coming from a certain
direction to sum constructively creating a main lobe as shown
in Fig. 2(d). In contrast, to create a null, we must ensure that
the signals sum up destructively to cancel each other.

Setting the complex weights to ensure the signals from the
direction of the interferer cancel each other while signals from
the main lobe direction continue to sum up constructively is
challenging in practice for several reasons. First, commercial
mmWave phased arrays only allow us to change the phase
of the complex weight but do not offer any control over the
amplitude [11, 64]. While it is sufficient to rotate the phase
of the signals to ensure they sum up constructively, it is hard
to ensure signals cancel each other without modifying their

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 903

I l I I
. g (b)
K50 K51 KSz Qv téo <4
O = 2
ejdm ale/% etz oyt g 5 £
m =z g
Vn 1 “%

= 2510‘ eldi

II
~.M=

Beam Pattern in dB

After

(a) Phased Array

Nulling

20 40 60

Angular Direction in degrees

main lobe (75°)

WOOO)
[\,

80

80

NuH 100°)

o,

At Main Lobe (75°)

At Null Point (100°)
(f) i

(d)

100 120 140 160 180

100 120 140

Figure 2: (a) phased arrays weight combination, (b-g) Nulli-Fi’s Nulling Algorithm

amplitude. This is further complicated by the fact that phase
control in practical arrays is highly quantized using at most
2 to 5 bits to control the phase shifts.! Moreover, practical
phased arrays suffer from hardware imperfections [38] which
have little impact on the main lobe but can limit the ability
to null [38,43]. For example, in an array with 8 antennas,
if the phase on one antenna is off by 5°, the received signal
along the main lobe degrades by only 0.004 dB whereas the
interference signal along a null increases by 10 dB as we
describe in more details in section 4.1.

Furthermore, unlike the main lobe which is naturally wide
and, hence, can tolerate small errors in the direction of com-
munication, nulls are narrow as shown in Fig. 2. As a result,
any small error in the direction of the interferer will misalign
the null and prevent us from effectively eliminating interfer-
ence. To address this, we must create wider nulls rather than
point nulls as shown in Fig. 1(c). In addition, in dense net-
works, we would need to null multiple different directions
to account for multiple interferers or multipath reflections.
Creating multiple nulls and wider nulls impose even more
requirements that are hard to meet given the constraints and
hardware imperfections of practical phased arrays.

Due to the above challenges, past work on null steering
remains simulation based [5,32, 53] and has not been imple-
mented on practical mmWave phased arrays. Furthermore,
most past work focuses on creating a single point null and
none of the past work accounts for hardware imperfections.

This paper presents Nulli-Fi, the first practical mmWave
null steering system that is able to null interference on com-
mercial off-the-shelf phased arrays while preserving the main
lobe. Nulli-Fi addresses the above practical challenges by
combining a new theoretically optimal algorithm that ac-
counts for limitations in practical phased arrays with a novel
discrete optimization framework that overcomes hardware
imperfections and enables multiple and wider nulls.

Nulli-Fi’s optimal algorithm is able to create a single null
within the constraints of practical phased arrays. To under-
stand how this algorithm works, consider the example shown
in Fig. 2. The goal is to have the main lobe at 75° and create a
null at 100°. Each vector in Fig. 2(d)-(g) represents the signal

!For example, 802.11ad compliant consumer-grade devices use only 2
bit phase shifters, i.e. we can set the phase only to 0°,90°, 180°, or 270°.

received on a given antenna element. For signals received
along 75°, Nulli-Fi sets the phase shifters to rotate the phase
of each of these signals to sum up constructively as shown
in Fig. 2(d). For signals received along 100°, the signals will
have different phases and the vectors will sum up to some
vector P as shown in Fig. 2(f). Our goal is to rotate these
vectors by changing the phase on the phase shifters in order to
null P while preserving the main lobe. To do so, Nulli-Fi re-
stricts further phase-shifts on each antenna to a limited range.
For example, if we restrict it to =15° on all antennas, the
main lobe does not change by more than 0.3 dB, as shown in
Fig. 2(e). Nulli-Fi then leverages the insight that the vectors
are symmetric around P as shown in Fig 2(f).? By rotating
pairs of symmetric vectors towards —P, as shown in Fig 2(g),
we reduce the amplitude of P. We iteratively rotate the vectors
until we null P or achieve the best possible reduction which
we prove is optimal given the restrictions on the phase shifts.

The above algorithm provides a simple, optimal way to
create nulls under limited phase control but it does not ac-
count for hardware imperfections, nor can it create nulls in
more than one direction. To address this, we introduce a dis-
crete optimization framework customized to null steering.
The framework is inspired by genetic algorithms which have
proven effective in discrete optimizations [19,60]. However,
genetic algorithms are very slow and can take thousands of
iterations to converge [60] which prevents practical realtime
null steering as we discuss in detail in section 7. Like many
other optimization techniques, the initialization and stopping
criterion are among the most contributing factors to the algo-
rithm’s convergence speed [48, 62]. To address this, Nulli-Fi
uses the solution to its optimal algorithm. First, it initializes
the optimization framework using the solution from the above
algorithm which gives Nulli-Fi a significant head-start and
helps it converge faster as we show in section 6. Second, since
Nulli-Fi’s algorithm is optimal, it can serve as a stopping crite-
rion to the optimization framework (i.e., the algorithm knows
if it has reached a reasonable solution). Combining the two
methods gives Nulli-Fi a powerful framework that is both fast
and is able to handle hardware imperfections.

Finally, to enable a practical system, Nulli-Fi develops a

ZWe prove this in lemma 4.2 to be true for any directions of the main lobe
and the null for even number of antennas.

904

18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Past Work Analog Beamforming? | Phase only? | Discrete Phase? | Implemented? | HW Imperfections? | Wide Nulls?
[49] X X X X X X
[52] X v X X X X

(6,25,29,53] v X X X X v

[5,9,30,58] v X X X X X

[32] Ve X v’ (1° Res.) X X X
[12,21,39,50,54,57] v v X X X X

[22,23,35] v v V' (6 bits) X X X
8] v v V" (9 bits) v (at4.5 GHz) X X
[15] v v X v (at 2.5 GHz) X X

Nulli-Fi v | vV | Vedbis [V @eocHy | v v

Table 1: Summary of Related Work on Phased Array Nulling

fast null steering protocol that is able to quickly find the di-
rection in which to create a null whenever a new unforeseen
interferer appears. The protocol leverages the intuition that the
interferer direction is more likely to be at the large side-lobes
shown in Fig. 2(b). Hence, instead of searching all possible
directions, Nulli-Fi starts with a large side-lobe where it cre-
ates a wide null and iterates through the side-lobes until the
interferer is nulled.

We have implemented and extensively evaluated Nulli-Fi
using commercial 60 GHz, 16 element phased arrays trans-
mitting IEEE 802.11ad packets [33]. Our results show that for
4 bit phase shifters, Nulli-Fi is able to create 3° narrow nulls
that suppress interference by 18 dB and 10° wide nulls that
supress interference by 10.5 dB while maintaining the main
lobe within 1 dB. For 2 bit phase shifters, Nulli-Fi is still able
to null interference by 12.6 dB. Nulli-Fi is also able null up
to 5 different directions. We further compare Nulli-Fi with
past null forming algorithms and demonstrate up to 10 dB
better nulling and 37 x faster convergence. We also evaluate
NullFi’s fast null steering protocol on top of the mm-Flex
platform [33] to show that Nulli-Fi can find the direction of
an unknown interference and null it within 290 ns. Finally, to
demonstrate the effectiveness of Nulli-Fi in dense mmWave
networks, we compare Nulli-Fi to past work that leverages the
directionality of mmWave radios to enable many concurrent
transmissions [27]. By nulling interference from side lobes,
Nulli-Fi is able to achieve 2.6 x higher data rate when 10
mmWave links (20 nodes) are transmitting concurrently.

Contributions: The paper has the following contributions:

* The paper presents the first practical system that can create
nulls on mmWave phased arrays.

* The paper introduces a theoretically optimal algorithm for
creating nulls and a novel discrete optimization framework
that account for practical challenges in mmWave systems.

* The paper develops a fast null steering protocol to deliver a
practical system.

* The system is built and evaluated on real phased arrays to
demonstrate significant gains in suppressing interference.

* We have open sourced implementations of our algorithms
and baselines on our git repository [36].

2 Related Work

There is a significant literature on millimeter wave beam shap-
ing and steering. Past mmWave systems research, however,
has mainly focused on beam alignment, i.e. developing proto-
cols to quickly find the best direction to align the beams of a
transmitter and receiver or to switch the beam to a different
path to avoid blockage [17,20,27,40,56,65,66]. Some works
also explore the problem of beam pattern synthesis [13,42,51].
However, these works focus on shaping the main lobe of the
beam to achieve good antenna gain along the direction of com-
munication. In contrast, we focus on forming and steering
nulls to suppress interference.

Past work on mmWave networks proposes leveraging the
directionality of mmWave links to enable dense spatial reuse
and maximize the number links that can transmit simultane-
ously [27,28]. However, the work shows that side lobe leakage
from practical mmWave phased arrays limits the ability to
enable spatial reuse. In section 6, we compare with this work
to show that Nulli-Fi can enable 2.43x higher throughput
than [27] when 10 links are transmitting concurrently. An-
other work [59] mitigates interference by aligning the natural
nulls in the beam pattern toward the interferer. This, however,
comes at the cost misaligning the mainlobe [59]. In section 6,
we show that this can reduce the SNR by up to 10 dB. In
contrast, Nulli-Fi creates new nulls that suppress interference
while preserving the main lobe alignment.

Previous work on null forming in phased arrays is simu-
lation based and to the best of our knowledge has not been
implemented on practical mmWave phased arrays. Most of the
past work ignores many of the practical limitations. Table 1
summarizes past work. Specifically, most methods assume
that it is possible to arbitrarily set the phase and amplitude of
the complex weights. Others do not require amplitude control
but assume phase control is continuous and can be set arbi-
trary. However, mmWave phased control is highly quantized
offering only 2 to 5 bits to control the phase [2, 11,47]. Two
works [49, 52] assume a digital phased array, i.e. each an-
tenna is connected to a district transmitter or receiver and the
complex weights can be set arbitrary in digital. Commercial
mmWave phased arrays are mostly analog and have a single
digital transmitter or receiver as shown in Fig. 2(a) [2—4,33].

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 905

The closest to our work are [22,23,35] which use genetic al-
gorithms to create nulls in case of discrete phase only control
with 6 bits of quantization. However, these systems are not
implemented in practice, ignore hardware imperfections, take
many iterations to converge and can only create a point null
for which Nulli-Fi has a closed-form solution. In section 6,
we implement and compare with these methods to show that
even if they account for hardware imperferections, Nulli-Fi
still achieves 10 dB better nulling with the same running time,
and is 37 x faster with the same performance.

Authors in [8, 15] implement nulling on custom built
phased arrays. However, they operate in the sub-6 GHz fre-
quency range where it is significantly easier to build phased
arrays with flexible control. In particular, [8] works at 4.5
GHz and uses phase shifters with a 9-bit control, i.e. it is pos-
sible to set the phase at a resolution of 0.7°. They first solve
the nulling problem in the continuous phase domain using gra-
dient descent and then round off the continuous values to the
9-bit discrete space. Millimeter wave phase shifters, however,
typically support 2 to 5 bits phase shifters for which the quan-
tization error become too large. In section 6, we implement
and compare with this work and show that its performance sig-
nificantly degrades as the number of bits decreases. Another
work [15] operates at 2.4 GHz and use deep neural networks
to create the nulls. However, the DNN architecture can only
output continuous values and can suffer from over-fitting.
In contrast, this paper presents and extensively evaluates a
solution that works for highly quantized phase on practical
mmWave phased array.

Some works propose changing the positions of the anten-
nas to create nulls in the beam pattern or reduce the side
lobes [7,24,26,31]. However, these techniques require new
custom built hardware and are only suitable only for static
applications with a fixed beam pattern and null locations.
Finally, there is a large body of work that proposes inter-
ference nulling using MIMO techniques at sub 6 GHz fre-
quencies [16, 18,34,37,45]. These works are complementary
to Nulli-Fi as they require multiple digital transmitters or
receivers to perform digital beamforming and set arbitrary
complex weights in digital to null the signals.

3 Primer

In this section, we provide a primer on phased arrays as well
as genetic algorithms on which we base our optimization.

1. Phased Arrays: In analog phased arrays, an array of anten-
nas is connected to a single transmitter or receiver through a
single chain. The signal on each antenna n is multiplied with
a complex weight a, = |a,|e/% as shown in Fig. 2(a). By
changing these weights, we can change the beam pattern and
steer the main lobe of the beam in any direction. The beam

3Specifically, the paper mostly provides simulation results and only shows
three examples of nulls created on real hardware.

Population of Chromosomes

Natural Selection

[oo JLcon f oo

- Mutations
Not Converged | ™) — 100010001001

110011001001

Cross Over (Offspring)

[no11noW«wnoo1]

(0011001011001) (0110010011001

Figure 3: Overview of genetic algorithm

pattern along a direction ¢ can be written as:
N—1 4
P(9) =} ane®™/ine®) (1)
n=0

where N is the number of antennas, A is the wavelength of the
signal, and d is the separation between adjacent antennas. We
can steer the main lobe towards the direction ¢ by setting the
complex weights to a, = e~ 2%/ %no5(9) \which will cause the
signals coming from direction ¢ to sum up constructively. For
example, by setting ¢ = 75°, we get the beam pattern shown
in Fig. 2(b). The beam pattern exhibits natural nulls where
P(¢) = 0 and no signal is received along that direction. In
practice, however, such perfect nulls are not possible. Hence,
we define a null as a point in the beam pattern where P(¢) is
extremely small (e.g. —25 dB relative to the main lobe). The
deeper the null, the more effective it is at suppressing interfer-
ence. Our goal is to find a setting of the complex weights to
create a null along a certain angle @y,;; while maintaining the
amplitude level of the pattern at @main 1obe-

If we are able to control both amplitude and phase of the
complex weights in a continuous manner, then we can easily
create any beam pattern. In particular, we can transform Eq. 1
into a Fourier Transform by setting f = —d /A cos(¢9). We
can then construct any desired pattern and take its inverse
Fourier transform to find the set of complex weights that we
should use. Most practical phased arrays, however, do not
support controlling the amplitude of the complex weights
especially since modifying the phase is sufficient to steer the
main lobe of the beam. These phased arrays use a component
called a phase shifter to shift the phase of the signal on each
antenna element. Hence, the problem is restricted to having
la,| = 1,i.e. a, = e/% . Unfortunately, the problem becomes
even harder when we are limited to a quantized set of phase
shifts, especially when the number of control bits used to set
the phase shifter is small as the problem becomes non-convex
and the search space is exponentially large. For example, for
a 16 element array, and 4 bits (= 16 values) of resolution in
phase-shifters, we get 16'® ~ 1.8e19 possible patterns.

2. Genetic Algorithms: Genetic Algorithms (GAs) are a fam-
ily of evolution-inspired algorithms designed to solve opti-
mization problems. They are particularly useful when the
search space is discrete and has many local maxima [60]. A

906 18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

high-level overview of the algorithm structure is depicted in
Fig. 3. The algorithm starts by considering a set of initial
chromosomes referred to as the population. Each chromo-
some represents one possible solution of the problem e.g. a
setting of complex weights (ap, a1, ,a,—1). The first stage
of the algorithm is natural selection where the chromosomes
are ranked using a fitness function that evaluates how well
each chromosome solves the problem e.g. how good of a null
it creates. Fraction of chromosomes that are most fit to solve
the problem are then selected and the rest are discarded. The
remaining chromosomes give rise to new potentially fitter,
chromosomes, which repopulate the population via mutation
and crossover. In mutation, random bits used to represent
the chromosomes are flipped to create new chromosomes
whereas in crossover, two random parents give birth to two
new chromosomes as shown in Fig. 3. Once the population
reaches its original size, the fitness of the chromosomes is
re-evaluated and the best chromosome is selected. The en-
tire process keeps repeating until the algorithm converges,
i.e. reaches some stopping criteria. While genetic algorithms
work surprisingly well, they are completely arbitrary and do
not exploit the underlying structure of the problem. As a result
they take a long time to converge and can give sub-optimal
results. Nulli-Fi builds on the high-level structure of such al-
gorithms to design a new optimization framework customized
to the problem of null steering.

4 Nulli-Fi
4.1 Nulling Algorithm

Assumptions: To begin, we state the set of assumptions un-
der which we optimally solve the nulling problem. We will
assume that the number of antenna elements, N, is even, and
that the physical distance of adjacent antenna elements is
d < A /2, where A is the wavelength. We further assume that
we only have phase control over antenna elements, and before
nulling, all the antenna elements are beamforming towards
some direction @y, i.e. the phase shifts o, = —27nd /A cos ¢y
as descirbed in Eq. 1 4.

Preserving the Main Lobe: In order to preserve the main
lobe of the beam directed towards ¢y, we limit any additional
phase-shifts on each antenna element to +o/*, i.e. |Aoy,| < a*
for all n. We show that this limits the loss in the main lobe to
at most sin>(or*). In particular, we prove the following lemma
in Appendix A.5:

Lemma 4.1 If o < 90°, a maximum phase shift restricted
to +a* for each antenna element will result in a loss of at
most sin”(a*) in the main lobe.

This would mean that for a* = 15° (or 30° of freedom), the
main lobe changes by at most 0.3 dB.

“In a discrete phase scenario, aligning towards any angle ¢ is not possible
and we must set all elements to the closest discrete value to ¢.

Figure 4: Example Nulli-Fi’s nulling algorithm for N = 6 antenna
elements with the main lobe at 90° an nulling at 73°.

Problem Formulation: Given the restrictions on the phase
shifts to preserve the main lobe and the above assumptions,
our problem becomes: Given an angle @, find a set of addi-
tional phase-shifts Aay, such that |P(9)| is zero (or as close
to zero as possible), subject to |Aa,| < o,

Algorithm: Our algorithm works by representing the signal
on each antenna as a vector in the complex plane. This repre-
sentation is particularly useful since applying a phase shift is
equivalent to rotating these vectors. Thus, our goal is to rotate
these vectors to null the signal in the direction of ¢. To bet-
ter understand how this works, consider the example shown
in Fig. 4. In this example, we have N = 6 antenna elements
beamforming towards ¢p = 90°. The vectors v, representing
the signal on each element are indexed by: 0,1,---,5, and our
goal is to create a null at ¢ = 73°.

Initially, the vectors are aligned to sum up constructively
to P_q;o along 90° as shown in Fig. 4(al). 3 However, they are
aligned differently along 73° and sum up to 13¢ as the sig-
nals come with a different phase at that direction as shown
in Fig. 4(bl). To create a null along 73°, we will rotate each
vector by an additional Ao, to minimize the 13(}, The restric-
tion |Aay,| < o will ensure that P_‘i;() along the main lobe is
preserved as shown in Fig. 4(a2—a4). However, it will prevent
us from arbitrarily rotating the vectors along 73°. To address
this, we leverage the following key observation: At any direc-
tion ¢, all the vectors summing up to the pattern ﬁ;b come in
pairs symmetrically located around the pattern. For example,
in Fig. 4(b1), the following pairs: {0,5}, {1,4} and {2,3} are
symmetrically located around F_’Zp

The following lemma formalizes this observation. The
proof of the lemma can be found in Appendix A.S.

Lemma 4.2 At any direction @, if Aoy, = 0 for all n, then
Vy and Vy_1_p, are symmetrical around Py for all n. That is,
%(417’,, + ZVN_1_p) is the same as 4ﬁ¢ or éﬁq, + 7.

Given this observation, the algorithm proceeds as follows.
Choose a pair of symmetrical vectors around the pattern ﬁ¢
and symmetrically rotate them towards —I3¢ as much as pos-
sible (i.e. until o degrees, or until a null is achieved). This

5Tn fact, P = 6¢/° but we have downscaled it by 6 for better visualization.

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 907

will reduce the beam pattern amplitude along ¢ as shown in
Fig. 4 (b2) but it will not change its angle. This means that
all the vectors remain symmetrical around the ﬁ¢. If anullis
achieved, we stop. If not, we repeat with another symmetrical
pair as shown in Fig. 4 (b3,b4). Note that the same rotations
are also applied at the main lobe in Fig. 4 (a2-a4). While these
rotations result in a null at 73°, they cause only a 0.2 dB loss
at 90°.

A pseudocode of the algorithm can be found in Alg. 1 in
Appendix A.1. We also prove the following theorem regarding
the optimality of our algorithm in Appendix A.5.

Theorem 4.3 Given the constraint |Aoy,| < o, Alg. 1 gives
the best nulling performance at any angle ¢.

It is worth noting that given the constraints, it is not always
possible to achieve a perfect null i.e. F’q, = 0. In such cases,
the above algorithm yields the deepest possible null. This
also allows the algorithm to identify directions that can be
perfectly nulled from those that cannot. In Appendix A.4,
we provide further analysis and closed form solutions for the
bounds of achievable nulling performance as a function of the
direction of the null.

4.2 Optimization Framework

In this section, we show how to account for hardware imper-
fections and achieve multiple and wider nulls. We extend our
definition of a null to be an interval 23 degrees wide around ¢
i.e., [¢ — B, + B] where the magnitude of the beam pattern
is lower than a certain threshold. The input to our optimiza-
tion are multiple such intervals ([¢; — fB;, ¢; + ;]) where we
wish to null interference. A pseudocode of our optimization
framework can be found in Alg. 3.

Encoding: We will encode the solution i.e. the setting of
the phase shifts ¢, into chromosomes that form the basis
of the genetic algorithm. Suppose the phase shifts are quan-
tized using g bits, then each o, can be represented as a bit
string (b1, -+ ,bnq) Where by, ; is the i most significant bit
of o,,. A chromosome A can then be encoded as a concate-
nation of the N binary representations of the phase shifts:
A= (bo1, - ,bog,b1,1, - ,b1g,bN-1,1, " ,bn—14). We de-
fine P4 as the beam pattern associated with chromosome A.

Initialization: While genetic algorithms generally start from
a set of randomly generated chromosomes, we use the output
of Alg. 1 to initialize our genetic algorithm. Specifically, for
each null region ([¢; — B;, ¢ + Bi]), we run Alg. 1 and find the
optimal setting of o, to create a null along ¢;. Each solution
will give us a single initial chromosome. We then slightly
perturb the values of the phase shifts to create a larger pop-
ulation of initial chromosomes. This dramatically improves
the optimization’s performance as we show in section 6.2.

Fitness function F(A): This function evaluates the perfor-
mance of any given chromosome A. In our problem setup, we

A1‘ Ao, qq,q2,A3, ", AN-1 ‘

4 (r ’ r r r
B, e L T

n " n ” n
A3 [ao,al,az,a3,v-~,a N-1 ‘

" 1 I
i =5 (@ +aj)

(b)

Figure 5: Nulli-Fi’s crossover operation using buckets

define the fitness function as

2
- 1010%10(|PA(¢)|)’
¢ € [9i—Bi ¢ + Bi]

where P4(¢) can be calculated from Eq. 1 by setting the
complex weights to e/%. This fitness function F(A) opti-
mizes for the worst nulling performance in dB across all
the regions we wish to null. In particular, the min point
of —10log,o (|P4(¢)|?) is the max point in |Ps(¢)[* which
is the least nulled point. Hence, the fittest chromosome,
A* = argmaxy F(A), will give the best nulling performance
across all directions since we optimized for the worst case.

Natural Selection: At each iteration, we evaluate the fitness
function for every chromosome and keep the ones with the
best performance.In our implementation, we typically keep
the top 50% of the chromosomes.

Cross-over. Recall from section 3, this operation is meant to
combine two parent chromosomes A and A,, to give birth to
a new, potentially fitter chromosome, A3. Typically, the two
parents A; and A, are chosen randomly. However, Nulli-Fi
employs a more intelligent selection criteria. For simplicity,
let us consider a single null point and use the same vector
representation we used in section 4.1 to explain Nulli-Fi’s
Cross-over operation.

To begin, we first group chromosomes into different buck-
ets 1,---,2B. Bucket i contains all chromosomes A with
(i—1)% < /P, < i%.Fig. 5 (a) shows an example of these
buckets for B = 4, where buckets on the opposite sides of each
other have the same color. In our cross-over operation, two
parents A and A, are then chosen at random, under the con-
straint that I3A1 and ﬁAz are in opposing buckets (for example,
B3 and B7). Then, a new chromosome A3 is created by averag-
ing the phase shifts of A; and A, as shown in Fig. 5 (b). The
intuition behind this is that by taking the average phase shift
of the two parents, the new chromosome will approximately
have a pattern vector equal to the sum of its parents. Since the
parents come from opposing buckets, the summation of their
patterns will likely result in a smaller vector. This is depicted
in Fig. 5 (a) where the red vector corresponding to the child
chromosome A3, is smaller than the pattern of either parent
(depicted black and blue vectors). By exploiting the struc-
ture of the problem, Nulli-Fi is able to quickly generate fitter

908 18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

20 90
120 60 120 60

180 0 180 o

Figure 6: Non uniform radiation patterns of antenna elements

chromosomes with smaller |P4(¢)] i.e. deeper nulls which
improves the results as we show in section 6.2.

Mutation. In this step, we randomly flip bits in the parent
chromosome with some probability to give rise to a new chro-
mosome. Note that we preserve the current best chromosome
A* which remains unchanged during mutation.

Convergence. The algorithm converges once the best perform-
ing chromosome reaches a fitness threshold, or a maximum
number of iterations has been reached. In the case of a sin-
gle null, this threshold is directly governed by the output of
Alg. 1. For multiple nulls, as one would expect, the perfor-
mance usually does not reach the theoretical performance of
a single null. In our implementation, we reduce the threshold
by around 1 dB for every extra null region.

Preserving the main lobe. Similar to the optimal algorithm,
we maintain |Aq,| < a* to preserve the main lobe. This can
be done by simply fixing the g —log, (7 /a*) most significant
bits of o, and not changing them throughout the optimiza-
tion. However, in cases where ¢ is very small, e.g. 2 bit phase
shifters, such an approach does not hold. To address this,
Nulli-Fi sets aside a subset of the antenna elements and does
not change their phase shift throughout the entire optimiza-
tion. This subset will contribute to the main lobe whereas the
remaining antennas will contribute to create the null. Nulli-Fi
dynamically chooses the antenna elements that are contribut-
ing the most to the main lobe to be in this subset and allows
phase shifts for the ones that are contributing the least to the
main lobe. A pseudocode for this process can be found in
Alg. 2 in section A.l of the appendix.

Accounting for Hardware Imperfections: There are two
types of hardware imperfections: (1) phase offsets due to
different wire lengths or paths that the signals traverse, and
(2) non-uniform antenna element radiation patterns. In par-
ticular, the signal on each antenna incurs an additional §,
and signals coming from a direction ¢ incur an additional
attenuation of R,(¢). Fig. 6 shows the radiation patterns of
two antenna elements on our hardware setup described in
section 5. As can be seen, antennas do not receive the signal
uniformly across all directions. While these factors do not
severely affect the quality of the main lobe, they have a more
significant impact on the nulling performance of the phased
array, as we show in section 6. This is because the beam pat-
tern computed using Eq. 1 and used for evaluating the fitness
function is no longer valid in practice. We can measure these
imperfections using a simple calibration procedure outlined in
detail in appendix A.2. Once measured we can modify Eq. 1

»L signal ‘L interference
'f side lobe ‘l' nulled side lobe

30 500 70

Figure 7: Illustration of Nulli-Fi’s nulling alignment and interfer-
ence suppression.

as follows:

N-—1
P(¢) = Z a”Rn((]))ejéne—zzrj%ncos(q;)7)
n=0

We observe these imperfections to be stable and, hence, can
be measured once. By modifying the fitness function to ac-
count for these hardware imperfections, we can generate beam
patterns that achieve good nulling performance in practice.

4.3 Fast Null Steering Protocol

Now that we have a framework to form nulls at any desired
direction, we need to find a practical way to align and suppress
nulls in a real network. In this section, we present a simple
yet fast and practical protocol to do so. The protocol finds and
suppresses interferers in succession, by enforcing wide nulls
at the high-level side-lobes of the pattern.

We begin with a simple example, where there is only one
interferer. Consider the pattern in Fig. 7. As can be seen, the
pattern has a number of significant side lobes, denoted by
upwards brown arrows, which are the most likely to receive
interference from other links in the network. Nulli-Fi finds
these side-lobes, and computes corresponding patterns that
have nulls at each side lobe as shown on the second row in Fig.
7, while keeping the main lobe. The hardware then quickly
sweeps through these patterns, computing the Received Signal
Strength (RSS) corresponding to each pattern. If the RSS
drops for one of these patterns, it means that the interference
was suppressed. This way, we can eliminate the interferer.
To make the algorithm even faster, Nulli-Fi checks the SINR
value at after each beam switch, and stops if the SINR is
within a threshold of its original value.

Following this example in case of multiple interferers, we
first suppress the one with the highest power. Once this in-
terferer is nulled, we keep a null at its direction at all times,

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 909

TX antennas

Beam Pattern (dB)

RXantennas

20 40
(a) (b)

Figure 8: Hardware used in Nulli-fi.

and search for the next interferer with the highest power. We
repeat this process until all interferers are suppressed. We
note that since our protocol only looks for interferences at
high-level side lobes of the pattern, it will be much faster than
a full scan, while remaining effective in improving the SINR,
as we show in section 6.4.

S Implementation

Nulli-Fi’s Setup. Nulli-Fi is implemented using the off-the-
shelf Sivers IMA EVK06002 platform [3], equipped with a
60 GHz 16-element linear phased array shown in Fig. 8(b).
In order to measure the beam patterns, we mount the phased
array radios on a steerable platform controlled through an
Arduino as shown in Fig. 8(a). Our testbed also includes a
60 GHz Pasternack PEMO009-KIT [1] equipped with a di-
rectional 3-degree horn antenna (Fig. 8(c)) which we use
to transmit signals in order to measure the generated beam
patterns. All hardware devices were connected to a machine
running Ubuntu 18.04 through USRP N210 software defined
radios. The center frequency in all experiments was 60.48
GHz. We run our experiments in 4 different rooms in 8 dif-
ferent locations, and in each location, we test 125 distinct
combinations of directions of communication and interfer-
ence. The EVK06002 platform offers flexible phase control
for each of the antenna element weights which allows us to
experiment using different number of bits. We evaluate Nulli-
Fi using at most 4 bits of phase resolution, i.e. 16 distinct
phase shift values per antenna element. We also show Nulli-
Fi’s performance for more coarse-grained control on phase,
specifically 2 bit and 3 bit phase resolution. We also calibrate
the array as described in Appendix A.2.

Nulli-Fi + mm-Flex Setup. We also implemented Nulli-Fi
on top of the mm-Flex platform [33], to evaluate our null steer-
ing protocol. We transmitted IEEE 802.11ad control frames,
where we use 10 Golay sequences to switch beam patterns.
Our setup can switch between beam patterns once every 54.5
nanoseconds, during which we are able to measure RSS val-
ues corresponding to that pattern. This way, sweeping through
10 beam patterns takes less than 0.55us. Further details of
this setup can be found in Appendix A.3.

-30 null region | |

60

-1 -0.5 0 0.5 1 1.5 2
Main lobe loss (dB)

Figure 10: Main lobe loss in Nulli-Fi.

80 100 120 140
Angular Direction (°)

Figure 9: Defining the evaluation metrics.

6 Results

6.1 Evaluation Metrics

We start by describing the evaluation metrics used to quantify
Nulli-Fi’s performance. Fig. 9 illustrates some of the metrics
on an example beam pattern created by Nulli-Fi.

e Null Width: Since we create wide nulls, we define the null
width as the region of directions nulled in the beam pattern.
» Worst-point nulling performance: Minimum amount of
nulling in the target null region, measured as the difference
between the peak of the main lobe and maximum point in the
null region as shown in Fig. 9.

* Median nulling performance: Median amount of nulling in
the target nulling region measured as the difference between
the peak of the main lobe and median point in the null region.
* SINR Gain: Gain in Signal-to-Interfernce plus Noise Ratio
before and after nulling the interferer.

* Main Lobe Loss: Loss in the main lobe power compared to
a beam pattern without the imposed nulls.

e Number of Nulls: Number of different directions in which
nulls are created.

e Quantization Level: Number of control bits used to set the
phase on the phase shifters.

* Number Iterations: Number of iterations it takes for the
optimization to converge.

* Null Steering Latency: Time it takes to steer the null towards
an interferer once the interferer appears.

6.2 Baselines

We compare Nulli-Fi to the following baselines:

(1) Quantize-Continuous [8] — This baseline solves the prob-
lem in the continuous domain and then quantizes the phase
solution to the nearest available discrete phase values.

(2) Genetic-Algorithms [22] — We compare Nulli-Fi to past
work that uses genetic algorithms to create nulls.

(3) Shift-Pattern [59] — This baseline steers the main lobe
a bit away from the direction of communication in order to
align the natural nulls in the signal with the interferer.

(4) BounceNet [27] — This work aims to enable dense spatial
reuse in mmWave networks by leveraging the directionality
of mmWave beam patterns.

910

18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

) 'av) M
g 1 (), ' . S 10 (b}\ ~ Al
£ o \ S oV N\ YW n
7] | | |f ARl \ | v |f \(\
g0 /Y | 18 10 |~ | W
< 20 i | e 20 ‘ \f | ‘Ww
£ £ I
3 -30 3 -30
“ 40 a0
70 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Angular Direction (°) Angular Direction (°)
20
~ P ~\
g 1 (e) ~ g -~ o~ [\
=~ n/ =~ o / \
£ o~ AN VYA £ ~NA N\
3] AV \/ O\] \n[|
= \ / [A =1 \A(|
g0/ Vo B I !
-20 \ -
£ i £ !
3 -30 3 -
® 40 “ 40
"0 20 40 60 80 100 120 140 "0 20 40 60 80 100 120 140
Angular Direction (°) Angular Direction (°)
Figure 11:
1 an 1
0.8 0.8
L 06 L 06
] 8
0.4 0.4
0.2 Nullifi 4 bits = 0.2 Nullifi 4 bits ———
Nullifi 3 bits Nullifi 3 bits
0 / Nullifi 2 bits =—— 0 Nullifi_2 bits =———
10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45
Nulling in dB Nulling in dB

(a) worst-point performance (b) median performance

Figure 12: Nulli-Fi’s performance using fewer bits.

6.3 Nulling Performance

We start by evaluating Nulli-Fi’s ability to create nulls and
compare it with past work.

1. Nulli-Fi’s Nulling Performance: Fig. 11 shows a few ex-
amples of beam patterns with nulls created by Nulli-Fi on our
phased array for different null directions, main lobe directions,
null widths, and number of nulls using 4-bit phase shifters. As
can be seen in Fig. 11(e, h), Nulli-Fi can create nulls as deep
as —20 dB and —35 dB (40 dB and 55 dB below the main
lobe respectively). Nulli-Fi can also create nulls that are as
wide as 20° while maintaining a median nulling performance
that is 20 to 25 dB below the main lobe as shown in Fig. 11(b,
g). It can create up to 5 different nulls as shown in Fig. 11(d).
Fig. 12 shows a CDF of the median and worst-point nulling
performance in more than 1000 experiments. Nulli-Fi’s 50"
percentile is about 29 dB for the median nulling and 25 dB for
the worst-point nulling. Since commercial 802.11ad hardware
today, like laptops and tablets, comes equipped with only 2
bit phase control in the phased arrays [2, 11], we evaluate
Nulli-Fi’s performance using fewer bits of phase resolution.
Fig. 12 also plots the CDF of the nulling performance with
Nulli-Fi using 2 and 3 bits of phase control. While the nulling
performance degrades with fewer bits, Nulli-Fi is still able
to achieve a 24.1 dB median and 21.1 dB worst-point perfor-
mance using only 2 bits, and 26.2 dB median and 24.3 dB
worst-point performance using 3 bits of phase resolution.
Finally, we measure the main lobe loss suffered due to

Beam Pattern (dB)

Beam Pattern (dB)

-30
-40

2
1

-10
-20

Beam Pattern (dB)

0 20 40 60 80 100 120 140 "0 20 40 60 80 100 120 140
Angular Direction (°) Angular Direction (°)
20 20
0 ®) e
0 rv"N\’/ﬁ\\ ”f‘/ g /&/’\,\//\\/
0 an o™ Y
-20 Y e / \\ /
-30 g—BO M’
4% 20 40 60 8 100 120 140 4010 30 50 70 90 110 130 150

Angular Direction (°) Angular Direction (°)

Examples of nulls created in hardware with different null with, number of nulls, direction of the null, and direction of the main lobe.

creating nulls, and plot the empirical CDF in Fig. 10. As can
be seen, the median and the 90" percentile values of the main
lobe power loss are only 0.58 dB and 1.46 dB respectively,
demonstrating Nulli-Fi’s ability to preserve the main lobe
while creating nulls.

2. Nulling Performance vs. Null Width: There is a natural
trade-off between the width of the null created and its median
(or worst-point) performance. To examine this, we evaluate
Nulli-Fi’s ability to create very narrow nulls like the ones
shown in Fig. 11 (a, h) as well as very wide null regions like
the ones shown in Fig. 11 (b, ¢). We run experiments where
we create nulls of different widths ranging from 1° to 50°, and
plot the median and worst-point performance in Fig. 13(a).

While the median nulling performance remains more than
25 dB even for nulls as wide as 50°, the worst-point perfor-
mance deteriorates much more quickly. This point becomes
clear when we consider the fact that the total radiated power
in the beam pattern has to be conserved, implying that nulling
one region will cause other regions to have an amplification
in power. Therefore, while it may be possible to keep the
median point in the target null region low for wide nulls, it
becomes increasingly difficult to ensure that the worst-point
in the target null region remains low as well.

It is worth noting that such overly wide nulls might not be
needed in practice and nulls with width of 5° to 10° might be
more than enough to account for inaccuracy in the estimating
the direction of interferer. One could, however, use very wide
null to preemptively supress less powerful interferers.

3. Nulling Performance vs. Number of Nulls: As men-
tioned previously, in practical networks there could be mul-
tiple sources of interference (separate signals or multipath),
each occurring at a different angle. Thus, we test Nulli-Fi’s
ability to create [simultaneous null regions for 1 </ <5. We
run 200 experiments for each / by randomly assigning the null
regions. We constrain all null regions to be at most 10° wide,
and in the case of multiple nulls, any two null regions should
be at least 10° apart (otherwise, we observe that the two nulls

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation

911

N
o

~ 30 40

o a ~ median b o N ulli-fi

T 28 @ g3 worst-point s (®) T35 QC baseline (c)

26 30 l l 30| | 1

g 24 £ i i ! 25 '

E22 £ §zo

£ 20 520 8

@ 18 . T15 @15

Q median g 20

216 worst-point oo'? 2

=S 14 £ 55

Z 12 > Zo -
0 5 10 15 20 25 30 35 40 45 50 2Z 0 9 bits 8 bits 7 bits 6 bits 5 bits 4 bits 2 bits

Null width (degrees) 1nul 2 nulls

3 nulls 4 nulls 5 nulls

Figure 13: (a) Null performance versus width of the null. (b) Null performance versus number of nulls. (¢) Nulli-Fi verus baseline as a function

of number of quantization bits.

0.8
w 0.6 06
8 5
04 0.4
—_gain over genetic _)
genetic
0.2 gain over Nulli-fi 0.2

Nulli-fi (No optimal)
—Nulli-fi

0
5 10 15 0 10 100 1000
(a) Gain in nulling performance (dB) (b) Iterations to reach target performance

(No optimal)

Figure 14: performance of Nulli-Fi’s algorithm against baselines

merge into one wider null). Fig. 13(b) shows the median and
worst-point nulling performance for different numbers of null
regions. Note that for multiple null regions, we present the
median and worst-point performance numbers for the poorest
performing null in the beam pattern. As can be seen in Fig.
13(b), even with 5 null regions, Nulli-Fi is able to achieve 25.8
dB median and 19.1 dB worst-point performance. Fig. 11(d)
shows an example of 5 null regions generated by Nulli-Fi.

4. Nulling Performance vs. Baselines: We run more than
1000 experiments for creating nulls at different angles, with
different main lobe directions and null widths. Our nulling
angles and main lobe directions range from the 30° to 150°
region, and null widths range from 5° to 20° width. In all
of the experiments, the target null region does overlap with
the £10° region around the main lobe direction. In these
experiments, we focus on the performance for creating a sin-
gle null. In Fig. 13(c), we compare Nulli-Fi’s performance
against the Quantize-Continuous baseline. The continuous
solutions are quantized to b = 5,6, --- ,9 bits of phase resolu-
tion, whereas Nulli-Fi is implemented on real hardware with
4 bits of phase resolution. Nulli-Fi’s performance exceeds
Quantize-Continuous even with 9 bits of phase resolution
compared to Nulli-Fi’s 4 bits. This shows that simply quan-
tizing the continuous phase solution (especially quantizing to
less than 7 bits) does not work for practical phased arrays.
We also compare Nulli-Fi with genetic algorithm [22] (Ge-
netic) as well as with Nulli-Fi’s optimization framework with-
out initializing it with the solution of our optimal algorithm
(Nulli-Fi No optimal). We run experiments where each al-
gorithm is required to create single nulls at 200 different
directions. We fix a target nulling performance of —20 dB
and record the number of iterations required to achieve the
desired nulling. Fig. 14(a) plots a CDF of the No. of iterations,

1 , @30
‘ c
0.8 ; s
! 5
L 06 ' .0
[=] 1 =
o . £
o4 ! Nullf g
:’ Ideal ga‘ﬂ ;1 5 2 bits phase shifters
02 I Coarse cal £ | $4bits phase shifters
! Nocal - - - 510
0 L z 2 5 10 20 30
-5 0 5 10 15 20 25 30 35 40 . . o
Nulling in dB Error in calibration in degrees
(@ (b)

Figure 15: Importance of accounting for hardware imperfections
and sensitivity to calibration errors.

showing that Nulli-Fi converges almost two orders of magni-
tude faster than Genetic. The figure also shows that Nulli-Fi’s
optimal algorithm enables much faster convergence and in
many cases already gives a nulling performance of —20 dB.
Hence, Nulli-Fi converges in a single iteration.® Moreover,
By comparing the 99" percentile of Genetic and Nulli-Fi(No
optimal), which comprises cases where it is more difficult
to create nulls, we can see that Nulli-Fi’s novel crossover
scheme helps in pushing the algorithm faster towards the
desired nulling performance. Next, we fix the number of it-
erations to 10 for all three algorithms and plot the CDF of
the nulling gain achieved by Nulli-Fi over each algorithm
in Fig. 14(a). Nulli-Fi achieves a median gain in nulling of
10 dB over Genetic and 4 dB over Nulli-Fi (No optimal).

5. Sensitivity to Calibration & Hardware Imperfections
To show the significance of accounting for hardware imper-
fections, we run experiments to evaluate nulling performance
using coarse and absent calibration on the phased array front-
end. We also run experiments without accounting for non-
uniform antenna radiation patterns discussed in Section 4. As
mentioned previously, such imperfections have little effect
on the location and power of the main lobe, but will lead to
significant errors in null forming [43]. Fig. 15a, shows a CDF
of the nulling performance. Without accounting for hardware
imperfections, the median nulling is only 10 dB which is 17
dB worse than Nulli-Fi. With simple coarse calibration, the
performance already improves by 7 dB. The figure also shows
that while ignoring the non-uniform radiation patterns is not
as severe, it still reduces the median nulling performance by 3
dB compared to Nulli-Fi. Finally, Fig. 15b shows the sensitiv-

6The baselines might also converge in a single iteration if the desired null
happens to align with a natural null in the beam pattern.

912 18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

N
~
N

—Nulli-Fi
0.8 Shift-Pattern L 08
(perfect) aQ
: (@]
0.6/ — shift-Pattern ®©0.6
2
=y
€04
L
0.2
0
-20 -10 0 10 20
SINR gain (dB) SINR in dB

SINR (No Int)
T SINR (Int, no nulling)
“~SINR (Int, narrow nulling)
“~SINR (Int, wide nulling)

0 2 4 6 8 10 12 14 16 18 20 22

30 -FBounceNet with Phased Array and Nulli-fi
~I-BouceNet with Phased Array

Network throughput (Gbps)

1 2 3 4 5 6 7 8 9 10
Number of concurrent links

Figure 16: (a) Nulli-Fi’s SINR gain over shifting the pattern baseline. (b) Nulli-Fi’s ability to steer to and suppress interference. Int in the
legend indicates the presence of interference. (c) Nulli-Fi’s network throughput gains in dense networks

ity of Nulli-Fi’s performance to errors in calibration. While
the performance degrades as the calibration error increases,
the figure shows that Nulli-Fi is robust to calibration errors
less than 5° and can still null even if the calibration errors are
30°. It is worth noting that the degradation is less sharp in the
case of 2 bit phase shifters. This is likely due to the fact that
the phase is highly quantized and hence any calibration error
is within the quantization errors.

6.4 Suppressing Interference & Improving
Throughput

In this section, we present results for Nulli-Fi’s ability to steer
the null to suppress interference.

1. Null Steering Algorithm: Here we show the performance
of Nulli-Fi’s ability to suppress new, unforeseen interferences.
To this end, we implemented Nulli-Fi on mm-Flex [33], and
we ran close to 700 experiments with different relative lo-
cations, power levels for the interference. The experimental
setup of this part was explained in section 5.

Fig. 16(b) shows the CDF of Signal to Interference plus
Noise (SINR) ratio under four different conditions. As re-
vealed by the figure, throughout all experiments, we set the
SINR for when there is no interference to around 21 dB. By
introducing the interference (shown by the maroon curve)
whose location and power is unknown to the system, the
SINR drops to as low as < 1 dB. Then, by running Nulli-Fi’s
null steering algorithm as described in section 4.3, Nulli-Fi
chose and suppressed the side lobes one by one in order to
restore the original SINR. The algorithm would stop once it
reached within 1 dB of the original SINR, or it suppressed
each side-lobe once (up to 10 side lobes).

We did this experiment in two regimes of narrow (2°) and
wide (10°) nulls, shown by green and dark blue curves re-
spectively. As seen in both curves, Nulli-Fi can improve the
SINR by a median of 13 dB and 15 dB for narrow and wide
nulls respectively 7. We therefore see that Nulli-Fi is able to
bring the SINR very close to its original value in the absence

"These experiments were run in the IMDEA networks lab. We found that
the SINR gains of Nulli-Fi + mm-Flex is around 3-5 dB larger than Nulli-Fi
alone due to a slightly different hardware setup and a lower noise floor

of the interferer in all cases. This shows that it is sufficient
to look for interference only at the side lobes, as opposed to
performing a full scan.

We mention a trade-off between using narrow (2°) and wide
(10°) nulls. We expect wide nulls to have a higher chance
of capturing the interference, albeit with lower suppressing
power as we showed in section 6.3. We see here that this is
indeed the case: Compared to narrow nulls, wide nulls have
a higher chance of capturing the interference, while narrow
nulls suppress the interference better. This is also reflected
by the tails of the green and the dark blue curves in Fig. 16
(b). We also compare the runtime of Nulli-Fi’s algorithm
against the baseline of fully scanning all angles. The numbers
are reported using the fast beam switching and RSS measure-
ment technique implemented in [33]. We see that Nulli-Fi’s
algorithm run on average in 290 nano-seconds, with a stan-
dard deviation of 115ns, which is more than 10x faster than
a full search scheme, whose average and standard deviation
for running time are 3.280 and 1.616 us, respectively.

Finally, we compare Nulli-Fi’s performance in gaining
SINR with the Shift-Pattern baseline. We fix the signal and
the interference power, and we move the interferer to different
angles, and run 100 experiments to measure the gain in SINR.
We compare Nulli-Fi with this baseline in two cases. In the
first case, Shift-Pattern (perfect), we assume perfect knowl-
edge of the beam pattern, in which case Shift-Pattern chooses
the best (deepest) null direction out of all direction within an
interval of 10 degrees around the current pattern. We note that
although this always reduces the power at the desired null
location, it may lead to significant losses in the mainlobe, as
we can see in Fig. 16(a). Things get even worse once we use
the theoretical beam pattern to predict the optimum shifting
amount (Shift-Pattern), which almost always results in a loss
of SINR, due to inaccuracy of the theoretical beam pattern in
predicting the real one. Nulli-Fi, on the other hand, always
gives at least 8dB improvement in SINR, outperforming both
versions of the baselines in almost all cases. This shows that
simply shifting the pattern does not work in a practical system,
since by shifting towards a null, we also shift the main lobe
away from the direction of communication.

2. Throughput in Dense Networks: Fig. 16(c) demonstrates

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 913

No.of [Max [907 Perc. | Median || No.of | Max | 907 Perc. | Median
Links Gain Gain Gain Links Gain Gain Gain
1 1% 1x 1% 6 3.60x 2.83x 2.33%x
2 2x 2x 1.58x 7 3.50x 2.72x 2.38x
3 3% 3x 1.8x 8 3.38x 2.94 % 2.41x
4 4x 2.86x% 2.12x% 9 2.97x 2.77% 2.44 %
5 4.16x 2.81x 2.27x% 10 3.09x 2.68 % 243 x

Table 2: Gains in Total Network Data Rate from Nulli-Fi

Nulli-Fi’s performance gains in dense networks. To do so,
we implement and compare with BounceNet [27] which ex-
ploits the directionality of mmWave phased arrays to enable
dense spatial resuse. We incorporate Nulli-Fi’s nulling into
BounceNet. Fig. 16(c) plots the total network data rate as the
number of links in the network increases from 1 to 10. We
compare Nulli-Fi against a regular phased array testbed using
standard codebook-based beam patterns without interference
nulling. As seen in the figure, due to significant interference
in dense networks caused by side lobe leakages and multipath,
a regular phased array equipped testbed can achieve only up
to 11.31 Gbps network data rate for 10 links. Nulli-Fi, on the
other hand, can effectively null out interference at each link
and can increase the total data rate for the same phased array
testbed to 29.1 Gbps, providing a gain of 2.6x.

In Table 2, we present further statistics on the gains in total
data rate achieved by Nulli-Fi over a regular phased array
testbed for different number of links » in the network. For
each n we perform 100 different experiments by randomizing
the client and AP positions. The result shows that for up ton =
4 communication links, Nulli-Fi can achieve the maximum
possible gain of nx over the vanilla phased array testbed.
Thus, in certain experiments Nulli-Fi was able to get all 4 links
to communicate simultaneously by nulling out interferences,
whereas the regular phased arrays were not able to exploit
any spatial reuse whatsoever due to side lobe leakages and
interference. Note that this gain saturates and begins to fall as
the number of links increases due to increased interference.
Nonetheless, Nulli-Fi is still able to achieve gains as high as
3.09x in network data rate for 10 links in the network. Table 2
also shows results for 90" percentile and median gains.

7 Discussion and Limitations

In this paper, we introduced novel algorithms that signifi-
cantly boost the convergence speed and improved the nulling
performance compared to past work. Furthermore, the system
enabled the first practical implementation of null steering by
accounting for hardware restrictions, incorporating hardware
imperfections and achieving wide and multiple nulls.

Importance of Convergence Speed: One might wonder,
however, why having a faster algorithm is important in practi-
cal network deployments. The reason has to do with today’s
commercial phased array hardware. In particular, the hard-
ware typically stores a codebook of different beam patterns
in the on-board memory, and the mmWave radio beams to-
wards different directions by reading the precomputed phase
shift values from the codebook. As such, it is not possible

to store precomputed beam patterns for all combinations of
main-lobes and nulling directions. For instance, if we consider
beam patterns with just one null, we would need to store a
beam pattern corresponding to each main-lobe direction and
each null direction, so a total of 180x 180 beam patterns to
achieve a null accuracy of 1 degree. This requirement grows
exponentially with the number of nulls and would require
gigabytes of memory for more than 2 nulls. Compare this
to today’s millimeter wave phase array that can store 16 to
256 codebooks. Hence, pre-computing and storing the beam
patterns is not feasible. This is precisely why it is important
to have an efficient algorithm that can converge quickly and
compute the required beam patterns in real-time operation.
This can allow even further optimization of the beam pattern
at run-time which was not possible earlier in the codebook
approach. Therefore, the speed of convergence is an important
metric in evaluating the different nulling algorithms.

Limitations. We point out a few matters worth considering.

¢ In this paper, Nulli-Fi enables nulling the interference at
the receiver. This is because it is easy for receivers to sense
the direction of interference and change their beam pattern
to suppress it. That said, there is an opportunity to perform
nulling from the transmitter side where the transmitter cre-
ates a null in its beam pattern to suppress its own signal in
direction of other receivers. This, however, would require an
efficient protocol that allows the transmitter to discover the
direction of those other receivers at which it is creating inter-
ference. Performing nulling from both transmitter and receive
side would further improve the performance of the network.
However, we leave that for future work.

* Once Nulli-Fi successfully nulls an interferer, it may not
sense when it disappears. As a result, if new interferers appear,
Nulli-Fi may not know whether to create more nulls or to
switch the direction of the null. This can potentially be solved
by periodically checking each nulled region for the presence
of interference when it is not receiving packets.

* Nulli-Fi’s framework is designed for phase shifters that use
analog beamforming, which is common for commercial, prac-
tical phased arrays. While digital beamforming introduces a
substantial overhead in terms of cost and power consumption,
the in-between class of hybrid beamforming allows for more
flexibility in terms of nulling. Exploring nulling in hybrid
beamforming is left for future work.

Acknowledgement

We would like to thank our shepherd Bo Chen as well as the
reviewers for their feedback. We would also like to thank
Sepehr Madani and Junfeng Guan for their comments. We
are also grateful to NSF (award numbers: 1750725, 1824320),
Google, Facebook Connectivity Lab, and the Sloan Founda-
tion for partially funding this research.

914 18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Pasternack pem009-kit.
//www.pasternack.com/
60-ghz—development-systems—category.
aspx. Accessed: 2020-09-17.

https:

Qualcomm 802.11ad products to lead the wayfor multi-
band wi-fi ecosystem. bit.ly/2Fy2CnM. Accessed:
2020-09-17.

Sivers ima evk06002 platform.
siversima.com/product/evk-06002-00/.

Accessed: 2020-09-17.

O. Abari, H. Hassanieh, M. Rodreguiz, and D. Katabi.
Poster: A millimeter wave software defined radio plat-
form with phased arrays. In Proceedings of the 22nd

Annual International Conference on Mobile Computing
and Networking, pages 419-420, 2016.

O. P. Acharya, A. Patnaik, and S. N. Sinha. Null steer-
ing in failed antenna arrays. Applied Computational
Intelligence and Soft Computing, 2011:4, 2011.

K. Akdagli. Null steering of linear antenna arrays using
a modified tabu search algorithm. Progress In Electro-
magnetics Research, 33:167-182, 2001.

A. Alphones and V. Passoupathi. Null steering in phased
arrays by positional perturbations: a genetic algorithm
approach. In Proceedings of International Symposium
on Phased Array Systems and Technology, pages 203—
207. IEEE, 1996.

C. Baird and G. Rassweiler. Adaptive sidelobe nulling
using digitally controlled phase-shifters. IEEE Trans-
actions on Antennas and Propagation, 24(5):638—649,
1976.

G. C. Bower. Simulations of narrow-band phased-array
null formation for the ata. ATA Memo Series, 37, 2001.

L. Chettri and R. Bera. A comprehensive survey on
internet of things (iot) toward 5g wireless systems. IEEE
Internet of Things Journal, 7(1):16-32, 2019.

N. Choubey and A. Panah. Introducing facebook’s new
terrestrial connectivity systems-terragraph and project
aries. Facebook Research, 2016.

D. A. Day. Fast phase-only pattern nulling for large
phased array antennas. In 2009 IEEE Radar Conference,
pages 1-4. IEEE, 2009.

D. De Donno, J. Palacios, and J. Widmer. Millimeter-
wave beam training acceleration through low-
complexity hybrid transceivers. IEEE Transactions on
Wireless Communications, 16(6):3646-3660, 2017.

https://www.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

F. Firyaguna, J. Kibilda, C. Galiotto, and N. Marchetti.
Coverage and spectral efficiency of indoor mmwave net-
works with ceiling-mounted access points. In GLOBE-
COM 2017-2017 IEEE Global Communications Confer-
ence, pages 1-7. IEEE, 2017.

R. Ghayoula, N. Fadlallah, A. Gharsallah, and M. Ram-
mal. Phase-only adaptive nulling with neural networks
for antenna array synthesis. IET microwaves, antennas
& propagation, 3(1):154-163, 20009.

S. Gollakota, S. D. Perli, and D. Katabi. Interference
alignment and cancellation. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication,
pages 159-170, 2009.

M. K. Haider, Y. Ghasempour, and E. W. Knightly.
Search light: Tracking device mobility using indoor lu-
minaries to adapt 60 ghz beams. In Proceedings of the
Eighteenth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, pages 181-190,
2018.

E. Hamed, H. Rahul, M. A. Abdelghany, and D. Katabi.
Real-time distributed mimo systems. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 412-425,
2016.

G. R. Harik, F. G. Lobo, and D. E. Goldberg. The
compact genetic algorithm. IEEE transactions on evo-
lutionary computation, 3(4):287-297, 1999.

H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany,
D. Katabi, and P. Indyk. Fast millimeter wave beam
alignment. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
pages 432445, 2018.

R. L. Haupt. Adaptive nulling in monopulse anten-

nas. IEEE transactions on antennas and propagation,
36(2):202-208, 1988.

R. L. Haupt. Phase-only adaptive nulling with a ge-
netic algorithm. IEEE Transactions on Antennas and
Propagation, 45(6):1009-1015, 1997.

R. L. Haupt. Adaptive nulling with weight constraints.
Progress In Electromagnetics Research, 26:23-38, 2010.

J. A. Hejres. Null steering in phased arrays by control-
ling the positions of selected elements. IEEE transac-
tions on antennas and propagation, 52(11):2891-2895,
2004.

H. M. Ibrahim. Null steering by real-weight control-a
method of decoupling the weights. IEEE transactions
on antennas and propagation, 39(11):1648-1650, 1991.

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation

915

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Ismail and M. M. Dawoud. Null steering in phased ar-
rays by controlling the element positions. IEEE Transac-
tions on Antennas and Propagation, 39(11):1561-1566,
1991.

S. Jog, J. Wang, J. Guan, T. Moon, H. Hassanieh, and
R. R. Choudhury. Many-to-many beam alignment in
millimeter wave networks. In /6th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 19), pages 783-800, 2019.

S. Jog, J. Wang, H. Hassanieh, and R. R. Choudhury.
Enabling dense spatial reuse in mmwave networks. In
Proceedings of the ACM SIGCOMM 2018 Conference
on Posters and Demos, pages 18-20. ACM, 2018.

N. Karaboga, K. Giiney, and A. Akdagli. Null steering
of linear antenna arrays with use of modified touring ant
colony optimization algorithm. International Journal
of RF and Microwave Computer-Aided Engineering,
12(4):375-383, 2002.

S. Karimkashi and A. A. Kishk. Antenna array synthesis
using invasive weed optimization: A new optimization
technique in electromagnetics. In 2009 IEEE Anten-
nas and Propagation Society International Symposium,
pages 1-4. IEEE, 2009.

M. M. Khodier and C. G. Christodoulou. Linear array
geometry synthesis with minimum sidelobe level and
null control using particle swarm optimization. /EEE
transactions on antennas and propagation, 53(8):2674—
2679, 2005.

L. Kogan. A minimum gradient algorithm for phased-
array null formation. Radio science, 40(2), 2005.

J. O. Lacruz, D. Garcia, P. J. Mateo, J. Palacios, and
J. Widmer. mm-flex: an open platform for millimeter-
wave mobile full-bandwidth experimentation. In Pro-
ceedings of the 18th International Conference on Mobile
Systems, Applications, and Services, pages 1-13, 2020.

K. C.-J. Lin, S. Gollakota, and D. Katabi. Random
access heterogeneous mimo networks. ACM SIG-
COMM Computer Communication Review, 41(4):146—
157, 2011.

C. Lu, Y. Wu, R. Mahmoudi, M. K. Matters-Kammerer,
and P. G. Baltus. A mm-wave analog adaptive array
with genetic algorithm for interference mitigation. In
2012 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 2373-2376. IEEE, 2012.

S. Madani.
steering.

Nullfi
Git

null
2021.

code for
Repository,

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H.
Nguyen, L. Li, and K. Haneda. Hybrid beamforming
for massive mimo: A survey. IEEE Communications
Magazine, 55(9):134-141, 2017.

T. Moon, J. Gaun, and H. Hassanieh. Online millimeter
wave phased array calibration based on channel estima-
tion. IEEE Design & Test, 2020.

M. Mouhamadou, P. Vaudon, and M. Rammal. Smart
antenna array patterns synthesis: Null steering and multi-
user beamforming by phase control. Progress In Elec-
tromagnetics Research, 60:95-106, 2006.

T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer.
Steering with eyes closed: mm-wave beam steering with-
out in-band measurement. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pages 2416—
2424. TEEE, 2015.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos. A
survey of millimeter wave communications (mmwave)
for 5g: opportunities and challenges. Wireless networks,
21(8):2657-2676, 2015.

J. Palacios, D. De Donno, and J. Widmer. Lightweight
and effective sector beam pattern synthesis with uniform
linear antenna arrays. IEEE Antennas and Wireless
Propagation Letters, 16:605-608, 2016.

L. Poli, L. Manica, P. Rocca, E. Giaccari, and A. Massa.
Tolerance analysis with phase errors in linear arrays by
means of interval arithmetic. In EuCAP 2014. 1IEEE,
2014.

J. Qiao, L. X. Cai, X. Shen, and J. W. Mark. Stdma-
based scheduling algorithm for concurrent transmissions
in directional millimeter wave networks. In 2012 IEEE

International Conference on Communications (ICC),
pages 5221-5225. IEEE, 2012.

H. S. Rahul, S. Kumar, and D. Katabi. Jmb: scaling wire-
less capacity with user demands. ACM SIGCOMM Com-
puter Communication Review, 42(4):235-246, 2012.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar,
K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and
F. Gutierrez. Millimeter wave mobile communications
for 5g cellular: It will work! IEEE access, 1:335-349,
2013.

M. E. Rasekh, Z. Marzi, Y. Zhu, U. Madhow, and
H. Zheng. Noncoherent mmwave path tracking. In
Proceedings of the 18th International Workshop on Mo-
bile Computing Systems and Applications, pages 1318,

gitlab.engr.illinois.edu/smadani2/nulling-python. 2017.

916

18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. Safe, J. Carballido, I. Ponzoni, and N. Brignole. On
stopping criteria for genetic algorithms. In Brazilian
Symposium on Artificial Intelligence, pages 405—413.
Springer, 2004.

R. Schreiber. Implementation of adaptive array algo-
rithms. [EEE transactions on acoustics, speech, and
signal processing, 34(5):1038-1045, 1986.

R. Shore. Nulling a symmetric pattern location with
phase-only weight control. IEEE Transactions on An-
tennas and Propagation, 32(5):530-533, 1984.

G. H. Sim and J. Widmer. Finite horizon opportunistic
multicast beamforming. IEEE Transactions on Wireless
Communications, 16(3):1452-1465, 2016.

S. T. Smith. Optimum phase-only adaptive nulling.
IEEE Transactions on Signal Processing, 47(7):1835—
1843, 1999.

H. Steyskal. Synthesis of antenna patterns with pre-
scribed nulls. IEEE Transactions on Antennas and
Propagation, 30(2):273-279, 1982.

H. Steyskal. Simple method for pattern nulling by phase
perturbation. IEEE Transactions on Antennas and Prop-
agation, 31(1):163-166, 1983.

C.-S. Sum, Z. Lan, R. Funada, J. Wang, T. Baykas,
M. Rahman, and H. Harada. Virtual time-slot allocation
scheme for throughput enhancement in a millimeter-
wave multi-gbps wpan system. IEEE Journal on
Selected Areas in Communications, 27(8):1379-1389,
2009.

S. Sur, X. Zhang, P. Ramanathan, and R. Chandra. Beam-
spy: enabling robust 60 ghz links under blockage. In
13th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 16), pages 193-206,
2016.

R. Vescovo. Null synthesis by phase control for antenna
arrays. Electronics Letters, 36(3):198-199, 2000.

T. Vu. Simultaneous nulling in sum and difference
patterns by amplitude control. /EEFE transactions on
antennas and propagation, 34(2):214-218, 1986.

T. Wei and X. Zhang. Pose information assisted 60
ghz networks: Towards seamless coverage and mobility
support. In Proceedings of the 23rd Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 42-55, 2017.

D. Whitley. A genetic algorithm tutorial. Statistics and
computing, 4(2):65-85, 1994.

[61]

[62]

[63]

[64]

[65]

[66]

Y. Yang, H. S. Ghadikolaei, C. Fischione, M. Petrova,
and K. W. Sung. Fast and reliable initial access with
random beamforming for mmwave networks. arXiv
preprint arXiv:1812.00819, 2018.

D. Z. Yong Deng, Yang Liu. An improved genetic
algorithm with initial population strategy for symmetric
tsp. Mathematical Problems in Engineering, pages 1-6,
2015.

J. Zhang, X. Ge, Q. Li, M. Guizani, and Y. Zhang. 5¢g
millimeter-wave antenna array: Design and challenges.
IEEE Wireless communications, 24(2):106-112, 2016.

R. Zhao, T. Woodford, T. Wei, K. Qian, and X. Zhang.
M-cube: a millimeter-wave massive mimo software
radio. In Proceedings of the 26th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1-14, 2020.

A. Zhou, L. Wu, S. Xu, H. Ma, T. Wei, and X. Zhang.
Following the shadow: Agile 3-d beam-steering for 60
ghz wireless networks. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pages 2375-
2383. IEEE, 2018.

A. Zhou, X. Zhang, and H. Ma. Beam-forecast: Facili-
tating mobile 60 ghz networks via model-driven beam
steering. In IEEE INFOCOM 2017-1EEE Conference
on Computer Communications, pages 1-9. IEEE, 2017.

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation

917

A Appendix
A.1 Pseudocode

Here we present pseudo codes to Nulli-Fi’s algorithms dis-
cussed in section 4.

Algorithm 1: OPTIMALNULLING(N, ¢, ¢o,d, A,)

0« 271'% (cos(¢) — cos((])o));
vp < exp(j¥516);
for n in range(N):
vp <—exp(jn6);
Aay, < 0;
for n in range(%):
if |Z(vp,vn) — | < o™
Aoy, =1 — ZL(vp,vy);
Aoy_p—1 = l(VP;Vn) -7
elseif Z(vp,v,) < 7w — ™

Aoy, = o, Aoy_p—1 = —a”;
elseif Z(vp,v,) >+ ™

Aan = _a*; Aaanfl = (x*;
if Z(vp, X5 0 vaexp(jAay)) # 0:

return O;

s

return | YV~ v, exp(jAa,)

Algorithm 2: CHOOSESUBSET(N,q)
S« 0;
(o, -+, 0n—1) < ideal phase shifts for main lobe;
for n fromOto N —1:
if oy, is within 7 degs of an available phase shift:
add n to S;
return S;

A.2 Phase Calibration

Here we explain Nulli-Fi’s phase calibration in detail. In
order to calibrate for the difference in the lengths of the wires
coming out of each antenna element, we pick one reference
antenna element i*, and calibrate the remaining antennas with
respect to this reference. Note that, the process of calibration
is finding the additional phase shift one has to apply to
antenna j in order to bring it in phase with the reference
antenna i*. To do so, we run a series of simple experiments as
follows. We note that throughout the all of these experiments,
transmitter and receiver are directly facing each other.

* First, for a fixed i, 0 <i < 15, we turn off all antenna ele-
ments except i. We then apply phase shifts to the weight of
antenna element i over time to cover all the possible phase

Algorithm 3: NULLI-FI-GENETIC

Initialize & = {A1,--- ,Ap} using
OPTIMALNULLING(N, ¢, ¢o,d, A, at*);
if g <3:
S <+ CHOOSESUBSET(N, q);
else:
S+ {1,2,--- N}
Limit the adaptive elements to S;
while not converged:
for i from 1 to M:
fi — F(Ai);
sort A; according to f;;
keep &7 = {Ay,--- ,Apm} and discard others;
while |.&7| < M:
Randomly choose two chromosomes A;, Aj;
perform CROSSOVER(A;,A);
Randomly mutate some A’s with prob. p,,;
output A;.

Normalized amplitude
Normalized amplitude

= Fxpected curve
mmmm Received curve
0 60 120 180 240 300 360

Degrees of phase shift

= Fxpected curve
mmmm Received curve

0 60 120 180 240 300 360
Degrees of phase shift

Figure 17: Expected versus measured power of two antenna
elements before and after calibration.

values, and capture the received power over time. For an-
tenna element i and its n'" phase shift o;[n], we denote the
received signal amplitude by a;[n].

We repeat this for all i from O to 15.

We repeat the previous phase for all antennas i save for
a chosen reference, i*. Throughout these experiments, we
keep element i* turned on with a constant amplitude ag, and
for the experiment with element i and n'" phase shift, we
call the corresponding received amplitude b;[n]. Now b;[n]
is the sum of the signals received from i* and i. If there is
a ¢ ;+ phase shift between the two elements, then we must
have

bi(l‘) = |a,'(t) + % a0|,

Therefore we can find o; ;+ by performing a simple binary
search over all possible values in [0,360] degrees. An ex-
ample of the two normalized curves, before and after cali-
bration, is shown in Figure 17.

918 18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

B Transmitter

I Receiver
B Interference

Figure 18: Different locations where we ran our experiments.

A.3 Experimental Setup

Experiment Locations. We ran our experiments in 4 differ-
ent rooms shown in Fig. 18. Two locations (a, ¢) were inside a
lab environment with many metal cabinets that contributed to
multi path reflections. The other 2 locations (b, d) were differ-
ent rooms inside apartments with many indoor objects. In all
rooms, there were human subjects in the background during
the experiment, thus constituting dynamic environments.
Nulli-Fi + mm-Flex. One transmitter/receiver pair are imple-
mented using a single FPGA device in a full-duplex manner,
i.e. transmitter and receiver functionalities are used at the
same time. This pair corresponds to the transmitter and the
receiver implementing Nulli-Fi.

We use a second FPGA (mounted on the same hosting
chassis) which serves as the interferer. Since both FPGAs are
mounted on the same chassis, long cables (5m) are used to
carry the baseband signals to the corresponding transmitting
antennas (the one transmitting the packets of interest and the
one from the interferer). Therefore, with this setup, we are
able to easily cover indoor scenarios.

Both FPGAs are managed from a control and management
processor integrated in the same hosting chassis. This is used
to send/receive frames to/from each baseband processor, con-
figure ADCs/DACs, IP blocks, as well as the setup for the
60GHz Siversima RF-frontends.

A.4 Further Analysis of Nulling Performance

Closed Form Solutions. Alg. 1 offers a step by step solution
to find nulls. It is also possible to find closed form solutions
for bounds of achievable nulling performance as a function
using the algorithm. This can be done by going thorough
the algorithm with by keeping the symbol ¢ as opposed to

setting it to a specific value. Doing so will result in explicit
formulas for the angles for which perfect nulling is possible.
For the angles that perfect nulling is not possible, we can find
explicit formulas that determine the deepest possible nulls as
a Piecewise-defined function of the angle ¢. Different cases of
this piecewise-defined function are separated by the naturally
occurring nulls in the original beam pattern. An example of
this for N = 8 antennas is shown in Fig. 19(a) where there are
four cases separated by natural nulls, with each case having its
own piecewise formula. For example, Theorems A.1 and A.2
show examples of closed form solutions for nulling around
the main lobe as a function of number of elements N, angle
of nulling ¢, the main lobe angle ¢y, and the maximum phase
shift allowed on each antenna a*:

Theorem A.1 The two closest perfect nulls to the main lobe
given a maximum phase shift of o for each element are given
by ¢* = arccos (cos(¢) + 1%(- 2%))

Theorem A.2 For the area around the main lobe that perfect
nulling is not possible, the deepest possible null at direction ¢
is given by N cos(§ 6 +a*), where 6 = Zl—d (cos(@) —cos(¢p)).

Specifically, Theorem A.1 determines the areas where per-
fect nulling is possible, and Theorem A.2 determines the
deepest possible nulls for angles where perfect nulling cannot
be achieved. For N = 8, these formulas correspond to the
case 1 in Fig. 19(a). Following similar methods demonstrated
in the proofs of these theorems in section A.5 we can find
explicit formulas for other cases too.

Using the closed form formulas, we have plotted the best
achievable nulling performance (i.e., the lowest possible value
of the pattern P for each angle) for N = 8§ antennas, and
a* = 10,15 and 25 degrees in Fig. 19(b). As revealed by

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 919

ok
ran

0 20 40 60

pattern (dB)

80 90100 120 140 160 180
angle (degrees)

(@)

N
o
T

— original pattern
o = 10 degrees

—a* = 15 degrees
= 25 degrees

o
T

smallest possible pattern (dB)

80 90100 120 140 160 180
angle (degrees)

(b)

0 20 40 60

Figure 19: (a) The closed form solutions for the single null problem are piecewise-defined functions, with the cases separated by the nulls

naturally occurring in the original pattern. Here there are four color-coded cases each corresponding to their own explicit formulas. For instance,
Theorems A.1 and A.2 determine the best possible nulling for case 1. (b) Best achievable nulling performance for N = 8 elements are depicted
for different angles and values of a*. when a curve is not present at an angle, perfect null (i.e. P = 0) is achievable there.

the figure, there is a trade-off between how much we lose in
the main lobe, and how strongly we can null different angles.
For instance, while oc* = 15° ensures a maximum main lobe
loss of 0.3 dB, there are certain regions depicted by the green
curve that cannot be nulled. As can be seen, for lower o*
(orange curve) there are more regions that cannot be nulled,
while a higher o* (blue) shows only an area around the main
lobe that cannot be nulled. Since Alg. 1 is optimal, we believe
it can help decide the degree of trade-off in different appli-
cations. This is especially useful as these curves also define
as a stopping criterion for our algorithms especially when
we lump in the hardware imperfections into the optimization
problem. For example if we know that it is not possible to
get a nulls stronger than 20 dB in the ideal case (i.e., without
hardware imperfections), we can expect that with hardware
imperfections the nulling performance cannot get far beyond
20 dB, as we explain in section 4.2.

Alternative Algorithms. In the walk-through example with 6
antennas in section 4.1, the final configuration of the antennas
is shown in Fig. 4 (b4). As can be seen from the figure, pairs
{0,3}, {1,4} and {2,5} are perfectly canceling each other,
yielding a null. Looking at this configuration, one might won-
der if we can always try and create pairs of opposing vectors,
such that the sum of every pair is zero. However, it is possible
to construct examples where this solution does not work, but
Alg. 1 achieves a perfect null. In fact, for larger values of N,
it is possible to construct examples in which no set of K < N
vectors sum to zero while the sum of all N vectors is still zero.
For further information, we refer the interested reader to our
git repository where we have implement and compare these
algorithms.

A.5 Proofs

Proof of lemma 4.1. We align the main lobe toward some
angle ¢y, and therefore the signal coming from that angle will

sum up coherently. Specifically,

‘P|2 Ze 27[];}'1C05 o) e]a” :NZ’

n=0

Imposing additional phase shifts Ao, in order to enable
nulling would give us:

2 Nz_*j iA ’
PR L e

n=0
N-1 2 /N 2

= Zcos(Aan) + Zsin(Aan)
n=0 n=0
N-1 2

> Zcos(a*) +0=N?cos?(a*)
n=0

since |Ady,| < o < 90°. Hence, |P'|> > |P|?cos?(a*) and
the loss in the main lobe power is at most 1 — cos?(a*) =
sin®(a*).

Proof of lemma 4.2. Replacing 0, we get v, = /"%, Since
they are unit vectors, v and vy_j_ are symmetric around
their sum. Further, we have

L(vi+vN—ik) = Z(e"0 4 I N=17m0)
= L(ﬁ%e X ZCOS(WD
= Lej¥9+4005(#9))
= NT_lein,

where the last line follows from the fact that the phase of a
real number is either O or 7. Since the phase of these vector
pair sums are the same (up to £7), so is the sum of all of
them, P. This concludes the proof of the lemma.

920 18th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Proof of Theorem 4.3. For a given nulling angle ¢, we iden-
tify two possible cases. First, if it is not possible to create
a perfect null at ¢, and second, if it is possible to create a
perfect null at ¢.

¢ In the first case, Alg. 1 does not stop until all vectors
vo,- -+ ,VN—1 have rotated by o *. In this case, follow-
ing the exact same argument in the proof of Theorem
4.4, Eq. 6 hold with equality, which means that the best
nulling performance is achieved.

e In the second case Alg. 1 where nulling is
possible, at some point in the algorithm, v =
Z(vp, Zf:’;o] vaexp(jAa,)) # 0 should at some point re-
turn m. Otherwise, it remains O until the end, in which
case nulling should not be possible, contradicting our
assumption. Therefore, a some point in the algorithm,
v # 0, so the output of the algorithm will be 0, meaning
it predicts a perfect null.

In both cases, the output of the algorithm gives the best
nulling performance, proving that the Alg. 1 is optimal.

Proof of theorem A.1. For a given ¢, assume an X-y coor-
dinate for the complex plane, such that ZP(¢) = 0. In this
coordinate, let each vector v; have the representation (xg, yx).
We are looking for the first possible ¢ for which there exists
a set of additional phase shifts, Aoy, such that P(¢) = (0,0).
In its general form, P is expressed as

P(¢9) = ZvnejAan

Further, we can bound the absolute value of the pattern P as
follows.

P(0)]” = (Zn‘,xn)er (Zn',yn)2

(6)
> (L)

where we have bounded the second term with zero. This
inequality holds as long as Y, x;; is positive, which is true
around the main lobe, before the first possible null.

Let us rotate each vector v, to get x as its x component.
Using lemma 1, v, rotates by ¢ if and only if vy_;_, is
rotated by Fo. This means that the two vectors remain sym-
metrical around the x axis. Therefore, we will necessarily
have }°,, v, = 0, bringing equation 6 to an equality. Hence, as
long as Y, x; > 0, nulling is not possible.

The first point at which nulling becomes possible can there-
fore be derived by finding the solution to), x;; = 0. Using
equation 5 combined with lemma 1, we get

N-1 -1

— Z N-—-1

Y x =2 Zcos((n—i2)0+a*)=0, (7
n=0 n=0

= (Leos(n— NT_I)e 1 Aa), Y sin((n— NT_l)e +Aa,))

= (;xn;;yn)a

where 0 is defined according to section 4.1. Note that

“

N-1
x; :=min{cos((n— T)G +Aw,) |—a" <Aoo, < a*}

€ {—1,cos((n— ?)Qi(x*)}.
®)

The solution to which is 6 = j:%(rc —a*), or its correspond-
ing ¢ value given in the theorem.

Proof of Theorem A.2. Using Theorem 4.3, we have to run
the output of the algorithm for the assumptions in this theorem.
Since nulling is not possible, the algorithm will run from O to
N — 1, yielding vectors cos(nf + a*) for 0 <n < % +1, and
cos(n® — a*) for § +1 < n <N — 1. Summing them up, we
get the result in stated in the theorem.

USENIX Association

18th USENIX Symposium on Networked Systems Design and Implementation 921

	Introduction
	Related Work
	Primer
	Nulli-Fi
	Nulling Algorithm
	Optimization Framework
	Fast Null Steering Protocol

	Implementation
	Results
	Evaluation Metrics
	Baselines
	Nulling Performance
	Suppressing Interference & Improving Throughput

	Discussion and Limitations
	Appendix
	Pseudocode
	Phase Calibration
	Experimental Setup
	Further Analysis of Nulling Performance
	Proofs

