
Automated Environment Reduction for Debugging Robotic Systems

Meriel Von Stein1 and Sebastian Elbaum2

Abstract— Robot failures often occur in complex environ-
ments. Identifying the key elements of the environment associ-
ated with such failures is critical for a faster fault isolation and,
ultimately, debugging those failures. In this work we present
the first automated approach for reducing the environment
in which a robot failed. Similar to software debugging tech-
niques, our approach systematically performs a partition of
the environment space causing a failure, executes the robot in
each partition containing a reduced environment, and further
partitions reduced environments that still lead to a failure.
The technique is particularly novel in the spatial-temporal
partition strategies it employs, and in how it manages the
potential different robot behaviors occurring under the same
environments. Our study finds that environment reductions of
over 95% are achievable within a 2-hour window.

I. INTRODUCTION

When a robot fails in a complex environment the debug-

ging process is challenging. There are usually large bags of

time-stamped data, interweaving logical and physical states

variables, multiple interconnected subsystems and processes,

many unstated assumptions and unseen variables, and subse-

quently tons of potential hypotheses about what could have

gone wrong [1], [11].

A critical step in this debugging process, and the focus of

this paper, is the minimization of the environment where the

robot failure was observed. Robots sense and act on their en-

vironment, yet it is usually the case that not all the elements

in an environment are relevant to the failure. Simplifying the

environment causing the failure can accelerate debugging by

helping to communicate the essential issues associated with

a failure and reducing the number of debugging hypotheses

to consider [18].

Today, the reduction of the environment while debugging

robot failures is largely a tedious, manual process [10]. We

argue that a cost-effective path forward, borrowing from sim-

ilar software debugging techniques [17], [18], is to re-execute

the test that caused the robot to fail while systematically

manipulating the environment. This cycle of environment

reduction and test execution is repeated as long as a reduced

environment retains the original failure and can be further

manipulated.

In this work, we introduce the first automated approach

to reduce a robot failure-inducing environment that lever-

ages the principles of binary search employed in software

debugging while accounting for the unique characteristics of

the domain. Characteristics unique to robotics that do not

manifest similarly in software include the spatial-temporal

relationships between the elements of the environment and

the nondeterminism associated with the robot operation. As

1University of Virginia, USA, meriel@virginia.edu
2University of Virginia, USA, selbaum@virginia.edu

we show, these characteristics provide new dimensions that

significantly affect how to approach environment reduction.

Our study on a popular open source autonomous ground

vehicle system in three distinct environments shows that this

approach can reduce the number of elements in the envi-

ronment by an average of 78% while retaining the original

failure, and be applied with minimal developer involvement.

The contributions of this paper are as follows:

• an environment reduction technique that leverages non-

determinism, time series data, data with high interde-

pendence, and variables that come from an unknown

distribution.

• an automated framework that implements the technique.

This framework is integrated with the Gazebo simulator

for the manipulation of its worlds and incorporates three

partitioning and prioritization schema pairings as well as

a failure characterization based on the robot’s pose that

serves as an oracle. Additionally, it includes a config-

urable deflaking process to deal with nondeterministic

executions.

• a study of 3 scenarios exerting different types of stress

to induce actuation failures on a popular open source

autonomous robot platform to which we apply our

technique. Our findings show that this technique is able

to reduce the size of the environment by a factor as large

as 21 and by a factor of approximately 8 on average.

II. BACKGROUND

Techniques to isolate failure inducing environments, and

more in general debugging, can be organized into two groups,

those focused on software systems, and those tailored to

robotics.

Unlike those tailored to robotics, software debugging

techniques were largely designed for hardware-independent

programs. Zeller et al [18], [19] codified the fundamental

delta debugging(ddmin). This approach formalized the logic

that, given a set of changes to a program that conform

to a set of properties ensuring monotonicity and validity,

a subset of those changes is responsible for introducing a

fault, and it used a variant of binary search to isolate the

failure inducing changes. It implicitly assumes the program

under consideration to be deterministic and without that

assumption, the technique’s effectiveness and efficiency can

suffer dramatically. We base our approach and terminology

on this work and follow up derivations [2], [6] but with a

focus on physical environment in which the robot operates.

These physical input types require specific handling and

manipulation that recognizes physical constraints and ties

to real-world processes. Our deflake process is similar in

its “replay” aspect to [2]. More recently, Johnson et al [8]



devised a manipulationist debugging approach by generating

minimal difference pairs of passing and failing inputs. While

the results were more correlative than causal, they served to

highlight the importance of minimal difference sets in debug-

ging practices. Wong et al [17] provide a and comprehensive

survey of software fault localization techniques, ranging from

logging and assertions to slicing and program spectrum based

techniques. Among those, the slicing techniques that focus

on removing irrelevant parts of a program for debugging are

the closet to our approach.

Using a program state-based technique, Nie et al [13]

involve a similar approach to ours to arrive at minimal failure

causing configurations, focusing on the interactions of those

parameter-value pairs in the configuration. However, their

approach is based on combinatorial testing which limits the

size of the set of parameter-value pairs through resource con-

straints. Most importantly, as a software-focused technique

not geared towards cyberphysical systems, it does not involve

physical aspects of the program, failure, or parameter-value

pairs.

Because robot systems are built on distributed and noisy

hardware and are prepared to operate on uncertain and not

fully observable environments, debugging approaches must

accommodate these characteristics. Khalastchi et al [10]

provides a taxonomy of the techniques for fault detection

and diagnosis in robotic systems. The major families of

this taxonomy are model-based, knowledge-based, and data-

driven approaches. One such model-based technique is that

of Stavrou et al [16], which operates from an a priori model

to detect actuator faults on differential-drive mobile robots

as they operate in a controlled environment, similar to our

approach and study. Popular knowledge-based approaches

involve causal modeling or expert systems. Hamilton et al

[7] use modeling in their RECOVERY fault diagnosis system

for autonomous mobile robots that incorporates knowledge

by way of robot design, sensor data, historical and mission

information, and fault knowledge gathered from field experts.

A data-driven technique is that outlined by Fagogensis et al

[3], which uses a machine learning model to detect actuation

failures and can modify its ability to detect online.

While software approaches to debugging have a great deal

of support from the software engineering community, they

do not directly translate to the context of debugging robotics

failures. And while approaches from the robotics community

have the advantage to be domain-specific, they seem to have

overlooked the problem of automated environment reduction.

We hope to merge the advantages of these two contexts in

our environment reduction framework for robotics.

III. APPROACH

Given an environment E where robot R fails with failure

f , the objective of our approach is to generate a minimal

environment E′ that still causes f where E′ ⊂ E. We assume

the process starts with a valid E, and a reduction operation

red(E) simply removes elements ei from E to render E′,

a valid environment on which the robot can execute. Our

algorithm then runs R on those E′ which may induce the

original failure f , a pass p, or cause a different failure f ′

(E′ can cause R to fail in others ways).

Building on delta debugging, given CE , the set of all

potential reduction changes on E resulting in f , we define a

minimal failure inducing environment change CE′ as CE′ ⊆

CE , ∀ei ∈ E′, test(E′ − ei) 6= f . That is, we seek to reduce

the original failure inducing environment E to a minimal

sub-environment E′ where removing any single element ei
will not produce f . Note that there can be multiple minimal

environments that cause failures other than f , and even

multiple minimal environments E′ that produce f . We do

not seek to expend the resources necessary to find the global

minimum environment but rather to obtain a meaningful

environmental reduction within the resources available that

still results in f .

Two unique aspects of reduction for robotic environments

are worth highlighting. First, the elements of E in robotics

are not just types in the cyber world; they are not just ints

or floats, or parts of a grammar. Instead, they are entities

in the real world that have physical properties, and spatial

and temporal dependencies. When our approach partitions

the environment, it is cognizant of such properties and

dependencies. Second, due to the robot’s inherent sensing,

estimation, and actuation noise, test executions of robot

systems can exhibit a high-degree of variability, with the

corresponding variation in revealing a failure. We call such

tests flaky, and they can severely limit existing fault isolation

approaches, making them skip parts of the environment that

matter. Our approach is parameterizable by the number of

test re-executions to improve the chances to expose non-

deterministic failures, mitigating this challenge.

A. Detailed Approach

Algorithm 1 takes in the robot under test R, the environ-

ment it is being tested in E′, partitioning and prioritization

schema as well as starting number of partitions (to be

discussed later), and original failure f . We assume that

there is some knowledge of how consistent f is on the

part of the developer, as the sought-after failure must be

deflakeable within the parameterized number of iterations,

the parameterized timeout is reasonable, and the predicates

on state variables that characterize f that distinguish a

successful run from a failure are capturable.

As validity is not an available condition to prune the set of

possible sub-environments, Algorithm 1 implements a depth-

first search for the first minimal environment it finds. As

shown in lines 2 and 3, we implement several schema for

partitioning and prioritization of sub-environments generated

from the original environment in order to better separate en-

vironments into equivalent parts. These are further explained

in Table I and Algorithms 2 and 3.

After original environment E is partitioned and ordered,

runs are conducted upon each E′ in Algorithm 1, lines 5

to 10. The resulting artifacts are adjudicated as a similar

failure to the failure f induced by the original environment,

or a distinct failure f ′ or successful run p. The high degree

of noise introduced by localization, the environment, and the



Name Description

P
a

rt
it

io
n

in
g model2model Spatial-proximity of models based on k-means clustering.

timeseg Evenly subdivide trajectory by timestamp and length of execution.
trajectoryseg Trajectory-partitioning into segments based on changes in angular velocity > delta.
learner Dynamic learner trained to detect failures from a feature vector.

P
ri

o
ri

ti
za

ti
o

n

random Subenvironments prioritized in random order.

sequential The order in which subenvironment elements were added to the original environment.

failure-proximal Proximity of the centroid of partitions to the failure pose of the robot.
avg. trajectory-proximal Average proximity of the centroids of partitions to robot trajectory.

min. trajectory-proximal Minimum proximity of the centroids of partitions to robot trajectory.

timestep Timestep at which any model in the environment was sensed on the previous run.

TABLE I: Partitioning and prioritization schema.

simulator means that the system can produce a dissimilar run

even on the original environment. Runs producing f ′ or p

are considered flaky, rerun three times, and the results are

evaluated against f . Our current approach to determine the

result of each run is based on a simple a priori model of the

system based on onboard sensors, navigation planning, and

an oracle based on periodic transformation sampling.

Whether or not a new minimal environment has been

found, partition granularity is incremented and a stopping

condition is checked. The stopping condition for determining

a minimal environment checks whether the current set of sub-

environments produced only dissimilar results to the original

and whether there was no further opportunity to increase

granularity of the partitioning.

B. Partitioning and Prioritization Schemas

Partitioning and prioritization schemas leverage the

spatial-temporal relations of robotic systems to more ef-

fectively prune environmental input. Algorithm 1 is sup-

plemented by partitioning and prioritization schemas that

integrate various aspects of the original and current run. Two

of those schemas are used in the study and shown in greater

detail in Algorithm 2 for partitioning and Algorithm 3 for

ordering.

Algorithm 2 shows a k-means clustering of models’ poses

in relation to each other in the environment; effectively a

model to model clustering. K-means is a predictable tech-

nique for vector quantization by a specified set of attributes

[9], requires a relatively low amount of data to perform well

and is established as being effective at clustering based on

spatial and temporal distance.

A different partitioning scheme, the timeseg partitioning

schema separates the robot trajectory evenly according to

the value of n partitions in order to separate the models that

are closer in time to the failure. Assuming the models closer

in time to the failure are more likely to have induced the

failure, this should group together models with the greatest

influence to induce the failure. Because k-means will not

force data to fit to the specified number of clusters, this

method will occasionally generate empty clusters or cluster

all data together. To circumvent an early termination, we

partition the environment into 1-model clusters on lines 3-

6, which does not disrupt the clustering but rather serves to

skip several iterations.

In Algorithm 3 the subenvironments are expressed as a set

of environments defined by the presence or absence of mod-

els from the original environment. Distance is calculated in

three dimensions due to many environments having a height

component to them, such as hills and terraced surfaces, and

for robots able to plan and actuate along the z-axis. The

intuition here is to prioritize those models spatially proximal

to the crash pose of the robot, as they could have greater

correlation to inducing the failure.

Table I lists some other partitioning and prioritization

schema that seek to structure environmental inputs to the

system by leveraging temporal and spatial characteristics

of robotics scenarios. Model2model partitioning is system-

independent and partitions by the spatial relationships of

the environment only. Timeseg and trajectoryseg partitioning

leverage separate aspects of the system execution in relation

to the environment and learner synthesizes all three. As

per prioritization schema, random and sequential involve no

information external to the environment. Failure-proximal

ordering orders partitions by the minimum distance from the

partition centroid to the failure pose of the robot. Minimum

trajectory-proximal ordering finds the minimum distance

from the partition centroid to any point on the trajectory and

average trajectory-proximal ordering weights the trajectory

according to the average distance of the centroid from the

trajectory over the course of system execution. Timestep

ordering leverages time series nature of the system execution

to order by models by the first timestep in which they are

sensed by the system.

C. Limitations

The deflake process assumes the failure to be present

in a failure-inducing environment at least 1

itertions
of the

time or greater. Lower probabilities of f can cause ddenv

to ignore valuable partitions, leading to missed reduction

opportunities. If an environment is configured with dynamic

elements that have the ability to change pose, it cannot

deduce pose dependency; i.e. if a plank leans against a wall,

it may detect a point of contact between two models but

cannot yet deduce that the plank’s position depends on the

presence of the wall.

Software input dependence is addressed in [12] but the

process differs significantly from that of model dependence

in a simulated environment in that the models are not directly



linked but rather can be correlated by collision boxes, pose,

and their static or dynamic attributes.

D. Implementation

We implemented 3 instances of the approach to automati-

cally simulate in Gazebo and collect test metrics. The Gazebo

simulator [4] is a environment-building and simulation tool

with hooks to Robot Operating System (ROS) [5] and for

which models of many popular ROS robots are maintained

and widely used. Environments are termed worlds that con-

sist of compositions of discrete objects with configurable

attributes, termed models.

These instances of the approach differ in their combina-

tion of partitioning and prioritization schema. Model2model

partitioning was combined with two different prioritization

schema, failure-proximal and average trajectory-proximal.

The prioritization schema with the better performance,

failure-proximal, was combined with the following timeseg

partitioning schema. The reduction algorithm was automated

by scripts that trigger test runs, partitioning and prioritization,

world reduction, and an oracle to perform failure analysis.

Algorithm 1: ddenv algorithm for robotics

Input: R, E, f , partition schema, prior schema, n partitions,
iterations, timeout

Output: E′

1 while E′ not reached do

2 subenvironments ← partition(E, f , n partitions,
partition schema);

3 subenvironments ← prioritization(subenvironments,
prior schema);

4 for s in subenvironments do

5 result ←R(s,f, timeout)
6 if is new failure(result, f ) or is success(result) then

7 results ← deflake(s, R, iterations, timeout);
8 result ← find similar failure(results, f );
9 end

10 if is similar failure(result, f ) then

11 E ← s;
12 break;
13 end

14 n partitions ← n partitions + 1;
15 if no similar failure produced by subenvironments and

n partitions == E.size then

16 E′
← E; break;

17 else if n partitions > E.size then

18 n partitions ← E.size;
19 end

20 end

21 return E′

IV. STUDY

We have applied our approach to the widely used Husky

ground vehicle [15] and deployed it into three scenarios

to assess the potential of our approach to simplify the

environment associated with a failure. Our research questions

are:

• RQ1: How cost-effective is our approach in reducing

the size of the environment that led to a failure?

• RQ2: How do variations of partitioning and prioritiza-

tion schema affect cost-effectiveness?

Algorithm 2: model2model partitioning algorithm

Input: E, n clusters
Output: environment clusters

1 model poses ← [] for model in E.models do

2 model poses ← model poses += model.pose
3 end

4 environment clusters ← kmeans.cluster(model poses,
n clusters).labels;

5 if contains empty clusters(environment clusters) then

6 for model in models do

7 environment clusters ← new cluster(model);
8 end

9 end

Algorithm 3: failure-proximal prioritization algo-

rithm
Input: environment clusters, f
Output: ordered environments

1 crash pose ← get crash(f );
2 distances ← [];
3 for cluster in environment clusters do

4 dist ← calc distance 3D(cluster.centroid, crash pose);
5 cluster.distance from crash ← dist;
6 end

7 ordered environments ← sort by distance(environment clusters);

A. Setup

To answer these questions, we have designed three sce-

narios and configured the Husky to run within them. The

Husky was chosen for its use as a generic ground vehicle

suited for many environments and appendant open source

navigation packages. This system and scenarios were evalu-

ated under the Gazebo simulator. Three pairs of partitioning

and prioritization schemas were chosen from Table I to test

our minimal world reduction approach on three scenarios.

Similar to ddmin, we begin ddenv with n partitions=2 and

deflake() iterations=3. Enums for partitioning and prioriti-

zation schema are provided as parameters, conforming to

three schema pairings, model2model and failure-proximal,

model2model and average trajectory-proximal, and timeseg

and average trajectory-proximal.

These scenarios were selected for being common occur-

rences in robotic environments. [14] They were designed

to highlight variance of types of failures: a static failure in

ditch, a dynamic failure in rubble, and a failure over time

in friction. Each takes 45 seconds or less to reach its goal

given a passing variation of the failing world.

The first scenario depicted in Figure 1a, ditch, consists of

43 models total with two asphalt planes with a 1m wide, 2m

deep gap between them and patches of static rough terrain

on each side. When approach at the right angle, the gap

presents a high probability for the robot to get irretrievably

stuck. The Husky uses just its compass, IMU, and odometry

data to navigate from one plane to another.

The second scenario depicted in Figure 1b, rubble, con-

sists of 36 models total with a pile of dynamic 2x4 boards

with a narrow, cluttered path through the rubble. There are

two cinder blocks in the narrow path supporting two boards

each. The robot is given a goal that forces it to navigate a







[3] G. Fagogenis, V. De Carolis, and D. M. Lane. Online fault detection
and model adaptation for underwater vehicles in the case of thruster
failures. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 2625–2630, 2016.
[4] Open Source Robotics Foundation. Gazebo robotics simulator. http:

//gazebosim.org, 2019.
[5] Open Source Robotics Foundation. Robot operating system. https:

//www.ros.org/, 2019.
[6] Florian Gross, Gordon Fraser, and Andreas Zeller. Search-based

system testing: High coverage, no false alarms. In Proceedings of

the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, page 67–77, New York, NY, USA, 2012. Association for
Computing Machinery.

[7] K. Hamilton, D. Lane, N. Taylor, and K. Brown. Fault diagnosis on au-
tonomous robotic vehicles with recovery: an integrated heterogeneous-
knowledge approach. In Proceedings 2001 ICRA. IEEE International

Conference on Robotics and Automation (Cat. No.01CH37164), vol-
ume 4, pages 3232–3237 vol.4, 2001.

[8] Brittany Johnson, Yuriy Brun, and Alexandra Meliou.
http://people.cs.umass.edu/brun/pubs/pubs/Johnson20icse.pdfCausal
Testing: Understanding Defects’ Root Causes. In Proceedings of

the 42nd International Conference on Software Engineering (ICSE),
Seoul, Republic of Korea, May 2020.

[9] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu. An efficient k-means clustering algorithm:
analysis and implementation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 24(7):881–892, 2002.
[10] Eliahu Khalastchi and Meir Kalech. On fault detection and diagnosis

in robotic systems. ACM Comput. Surv., 51(1), January 2018.
[11] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu,

Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu.
Rvfuzzer: Finding input validation bugs in robotic vehicles through
control-guided testing. In Proceedings of the 28th USENIX Conference

on Security Symposium, SEC’19, page 425–442, USA, 2019. USENIX
Association.

[12] Ghassan Misherghi and Zhendong Su. Hdd: Hierarchical delta debug-
ging. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, page 142–151, New York, NY, USA, 2006.
Association for Computing Machinery.

[13] Changhai Nie and Hareton Leung. The minimal failure-causing
schema of combinatorial testing. ACM Trans. Softw. Eng. Methodol.,
20(4), September 2011.

[14] Graz University of Technology. Husky ugv used for 3d map-
ping in mars simulation. https://clearpathrobotics.com/
husky-ugv-used-3d-mapping-mars-simulation/, 2019.

[15] Clearpath Robotics. Husky unmanned ground ve-
hicle. https://clearpathrobotics.com/

husky-unmanned-ground-vehicle-robot/, 2019.
[16] D. Stavrou, Demetrios G. Eliades, C. Panayiotou, and M. Polycarpou.

Fault detection for service mobile robots using model-based method.
Autonomous Robots, 40:383–394, 2016.

[17] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineer-

ing, 42(8):707–740, 2016.
[18] Andreas Zeller. Yesterday, my program worked. today, it does not.

why? SIGSOFT Softw. Eng. Notes, 24(6):253–267, October 1999.
[19] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-

inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, February
2002.


