Automated Environment Reduction for Debugging Robotic Systems

Meriel Von Stein! and Sebastian Elbaum?

Abstract— Robot failures often occur in complex environ-
ments. Identifying the key elements of the environment associ-
ated with such failures is critical for a faster fault isolation and,
ultimately, debugging those failures. In this work we present
the first automated approach for reducing the environment
in which a robot failed. Similar to software debugging tech-
niques, our approach systematically performs a partition of
the environment space causing a failure, executes the robot in
each partition containing a reduced environment, and further
partitions reduced environments that still lead to a failure.
The technique is particularly novel in the spatial-temporal
partition strategies it employs, and in how it manages the
potential different robot behaviors occurring under the same
environments. Our study finds that environment reductions of
over 95% are achievable within a 2-hour window.

I. INTRODUCTION

When a robot fails in a complex environment the debug-
ging process is challenging. There are usually large bags of
time-stamped data, interweaving logical and physical states
variables, multiple interconnected subsystems and processes,
many unstated assumptions and unseen variables, and subse-
quently tons of potential hypotheses about what could have
gone wrong [1], [11].

A critical step in this debugging process, and the focus of
this paper, is the minimization of the environment where the
robot failure was observed. Robots sense and act on their en-
vironment, yet it is usually the case that not all the elements
in an environment are relevant to the failure. Simplifying the
environment causing the failure can accelerate debugging by
helping to communicate the essential issues associated with
a failure and reducing the number of debugging hypotheses
to consider [18].

Today, the reduction of the environment while debugging
robot failures is largely a tedious, manual process [10]. We
argue that a cost-effective path forward, borrowing from sim-
ilar software debugging techniques [17], [18], is to re-execute
the test that caused the robot to fail while systematically
manipulating the environment. This cycle of environment
reduction and test execution is repeated as long as a reduced
environment retains the original failure and can be further
manipulated.

In this work, we introduce the first automated approach
to reduce a robot failure-inducing environment that lever-
ages the principles of binary search employed in software
debugging while accounting for the unique characteristics of
the domain. Characteristics unique to robotics that do not
manifest similarly in software include the spatial-temporal
relationships between the elements of the environment and
the nondeterminism associated with the robot operation. As

LUniversity of Virginia, USA, meriel @virginia.edu
2University of Virginia, USA, selbaum@virginia.edu

we show, these characteristics provide new dimensions that

significantly affect how to approach environment reduction.
Our study on a popular open source autonomous ground

vehicle system in three distinct environments shows that this

approach can reduce the number of elements in the envi-

ronment by an average of 78% while retaining the original

failure, and be applied with minimal developer involvement.
The contributions of this paper are as follows:

« an environment reduction technique that leverages non-
determinism, time series data, data with high interde-
pendence, and variables that come from an unknown
distribution.

¢ an automated framework that implements the technique.
This framework is integrated with the Gazebo simulator
for the manipulation of its worlds and incorporates three
partitioning and prioritization schema pairings as well as
a failure characterization based on the robot’s pose that
serves as an oracle. Additionally, it includes a config-
urable deflaking process to deal with nondeterministic
executions.

« a study of 3 scenarios exerting different types of stress
to induce actuation failures on a popular open source
autonomous robot platform to which we apply our
technique. Our findings show that this technique is able
to reduce the size of the environment by a factor as large
as 21 and by a factor of approximately 8 on average.

II. BACKGROUND

Techniques to isolate failure inducing environments, and
more in general debugging, can be organized into two groups,
those focused on software systems, and those tailored to
robotics.

Unlike those tailored to robotics, software debugging
techniques were largely designed for hardware-independent
programs. Zeller et al [18], [19] codified the fundamental
delta debugging(ddmin). This approach formalized the logic
that, given a set of changes to a program that conform
to a set of properties ensuring monotonicity and validity,
a subset of those changes is responsible for introducing a
fault, and it used a variant of binary search to isolate the
failure inducing changes. It implicitly assumes the program
under consideration to be deterministic and without that
assumption, the technique’s effectiveness and efficiency can
suffer dramatically. We base our approach and terminology
on this work and follow up derivations [2], [6] but with a
focus on physical environment in which the robot operates.
These physical input types require specific handling and
manipulation that recognizes physical constraints and ties
to real-world processes. Our deflake process is similar in
its “replay” aspect to [2]. More recently, Johnson et al [8]

devised a manipulationist debugging approach by generating
minimal difference pairs of passing and failing inputs. While
the results were more correlative than causal, they served to
highlight the importance of minimal difference sets in debug-
ging practices. Wong et al [17] provide a and comprehensive
survey of software fault localization techniques, ranging from
logging and assertions to slicing and program spectrum based
techniques. Among those, the slicing techniques that focus
on removing irrelevant parts of a program for debugging are
the closet to our approach.

Using a program state-based technique, Nie et al [13]
involve a similar approach to ours to arrive at minimal failure
causing configurations, focusing on the interactions of those
parameter-value pairs in the configuration. However, their
approach is based on combinatorial testing which limits the
size of the set of parameter-value pairs through resource con-
straints. Most importantly, as a software-focused technique
not geared towards cyberphysical systems, it does not involve
physical aspects of the program, failure, or parameter-value
pairs.

Because robot systems are built on distributed and noisy
hardware and are prepared to operate on uncertain and not
fully observable environments, debugging approaches must
accommodate these characteristics. Khalastchi et al [10]
provides a taxonomy of the techniques for fault detection
and diagnosis in robotic systems. The major families of
this taxonomy are model-based, knowledge-based, and data-
driven approaches. One such model-based technique is that
of Stavrou et al [16], which operates from an a priori model
to detect actuator faults on differential-drive mobile robots
as they operate in a controlled environment, similar to our
approach and study. Popular knowledge-based approaches
involve causal modeling or expert systems. Hamilton et al
[7] use modeling in their RECOVERY fault diagnosis system
for autonomous mobile robots that incorporates knowledge
by way of robot design, sensor data, historical and mission
information, and fault knowledge gathered from field experts.
A data-driven technique is that outlined by Fagogensis et al
[3], which uses a machine learning model to detect actuation
failures and can modify its ability to detect online.

While software approaches to debugging have a great deal
of support from the software engineering community, they
do not directly translate to the context of debugging robotics
failures. And while approaches from the robotics community
have the advantage to be domain-specific, they seem to have
overlooked the problem of automated environment reduction.
We hope to merge the advantages of these two contexts in
our environment reduction framework for robotics.

III. APPROACH

Given an environment E where robot R fails with failure
f, the objective of our approach is to generate a minimal
environment F’ that still causes f where E' C E. We assume
the process starts with a valid F, and a reduction operation
red(E) simply removes elements ¢; from E to render F’,
a valid environment on which the robot can execute. Our
algorithm then runs R on those E’ which may induce the

original failure f, a pass p, or cause a different failure f’
(E’ can cause R to fail in others ways).

Building on delta debugging, given Cg, the set of all
potential reduction changes on F resulting in f, we define a
minimal failure inducing environment change C'rr as Cpr C
Cg,Ve; € E' test(E' —e;) # f. That is, we seek to reduce
the original failure inducing environment E to a minimal
sub-environment £’ where removing any single element e;
will not produce f. Note that there can be multiple minimal
environments that cause failures other than f, and even
multiple minimal environments E’ that produce f. We do
not seek to expend the resources necessary to find the global
minimum environment but rather to obtain a meaningful
environmental reduction within the resources available that
still results in f.

Two unique aspects of reduction for robotic environments
are worth highlighting. First, the elements of E in robotics
are not just types in the cyber world; they are not just ints
or floats, or parts of a grammar. Instead, they are entities
in the real world that have physical properties, and spatial
and temporal dependencies. When our approach partitions
the environment, it is cognizant of such properties and
dependencies. Second, due to the robot’s inherent sensing,
estimation, and actuation noise, test executions of robot
systems can exhibit a high-degree of variability, with the
corresponding variation in revealing a failure. We call such
tests flaky, and they can severely limit existing fault isolation
approaches, making them skip parts of the environment that
matter. Our approach is parameterizable by the number of
test re-executions to improve the chances to expose non-
deterministic failures, mitigating this challenge.

A. Detailed Approach

Algorithm 1 takes in the robot under test R, the environ-
ment it is being tested in E’, partitioning and prioritization
schema as well as starting number of partitions (to be
discussed later), and original failure f. We assume that
there is some knowledge of how consistent f is on the
part of the developer, as the sought-after failure must be
deflakeable within the parameterized number of iterations,
the parameterized timeout is reasonable, and the predicates
on state variables that characterize f that distinguish a
successful run from a failure are capturable.

As validity is not an available condition to prune the set of
possible sub-environments, Algorithm 1 implements a depth-
first search for the first minimal environment it finds. As
shown in lines 2 and 3, we implement several schema for
partitioning and prioritization of sub-environments generated
from the original environment in order to better separate en-
vironments into equivalent parts. These are further explained
in Table I and Algorithms 2 and 3.

After original environment E is partitioned and ordered,
runs are conducted upon each E’ in Algorithm 1, lines 5
to 10. The resulting artifacts are adjudicated as a similar
failure to the failure f induced by the original environment,
or a distinct failure f’ or successful run p. The high degree
of noise introduced by localization, the environment, and the

Name Description
a0 model2model Spatial-proximity of models based on k-means clustering.
‘= timeseg Evenly subdivide trajectory by timestamp and length of execution.
2 trajectoryseg Trajectory-partitioning into segments based on changes in angular velocity > delta.
"g learner Dynamic learner trained to detect failures from a feature vector.
-
random Subenvironments prioritized in random order.
g sequential The order in which subenvironment elements were added to the original environment.
E failure-proximal Proximity of the centroid of partitions to the failure pose of the robot.
= avg. trajectory-proximal Average proximity of the centroids of partitions to robot trajectory.
=5 min. trajectory-proximal | Minimum proximity of the centroids of partitions to robot trajectory.
E timestep Timestep at which any model in the environment was sensed on the previous run.

TABLE I: Partitioning and prioritization schema.

simulator means that the system can produce a dissimilar run
even on the original environment. Runs producing f’ or p
are considered flaky, rerun three times, and the results are
evaluated against f. Our current approach to determine the
result of each run is based on a simple a priori model of the
system based on onboard sensors, navigation planning, and
an oracle based on periodic transformation sampling.

Whether or not a new minimal environment has been
found, partition granularity is incremented and a stopping
condition is checked. The stopping condition for determining
a minimal environment checks whether the current set of sub-
environments produced only dissimilar results to the original
and whether there was no further opportunity to increase
granularity of the partitioning.

B. Partitioning and Prioritization Schemas

Partitioning and prioritization schemas leverage the
spatial-temporal relations of robotic systems to more ef-
fectively prune environmental input. Algorithm 1 is sup-
plemented by partitioning and prioritization schemas that
integrate various aspects of the original and current run. Two
of those schemas are used in the study and shown in greater
detail in Algorithm 2 for partitioning and Algorithm 3 for
ordering.

Algorithm 2 shows a k-means clustering of models’ poses
in relation to each other in the environment; effectively a
model to model clustering. K-means is a predictable tech-
nique for vector quantization by a specified set of attributes
[9], requires a relatively low amount of data to perform well
and is established as being effective at clustering based on
spatial and temporal distance.

A different partitioning scheme, the timeseg partitioning
schema separates the robot trajectory evenly according to
the value of n_partitions in order to separate the models that
are closer in time to the failure. Assuming the models closer
in time to the failure are more likely to have induced the
failure, this should group together models with the greatest
influence to induce the failure. Because k-means will not
force data to fit to the specified number of clusters, this
method will occasionally generate empty clusters or cluster
all data together. To circumvent an early termination, we
partition the environment into 1-model clusters on lines 3-
6, which does not disrupt the clustering but rather serves to
skip several iterations.

In Algorithm 3 the subenvironments are expressed as a set
of environments defined by the presence or absence of mod-
els from the original environment. Distance is calculated in
three dimensions due to many environments having a height
component to them, such as hills and terraced surfaces, and
for robots able to plan and actuate along the z-axis. The
intuition here is to prioritize those models spatially proximal
to the crash pose of the robot, as they could have greater
correlation to inducing the failure.

Table I lists some other partitioning and prioritization
schema that seek to structure environmental inputs to the
system by leveraging temporal and spatial characteristics
of robotics scenarios. Model2model partitioning is system-
independent and partitions by the spatial relationships of
the environment only. Timeseg and trajectoryseg partitioning
leverage separate aspects of the system execution in relation
to the environment and learner synthesizes all three. As
per prioritization schema, random and sequential involve no
information external to the environment. Failure-proximal
ordering orders partitions by the minimum distance from the
partition centroid to the failure pose of the robot. Minimum
trajectory-proximal ordering finds the minimum distance
from the partition centroid to any point on the trajectory and
average trajectory-proximal ordering weights the trajectory
according to the average distance of the centroid from the
trajectory over the course of system execution. Timestep
ordering leverages time series nature of the system execution
to order by models by the first timestep in which they are
sensed by the system.

C. Limitations

The deflake process assumes the failure to be present
in a failure-inducing environment at least m of the
time or greater. Lower probabilities of f can cause ddenv
to ignore valuable partitions, leading to missed reduction
opportunities. If an environment is configured with dynamic
elements that have the ability to change pose, it cannot
deduce pose dependency; i.e. if a plank leans against a wall,
it may detect a point of contact between two models but
cannot yet deduce that the plank’s position depends on the
presence of the wall.

Software input dependence is addressed in [12] but the
process differs significantly from that of model dependence
in a simulated environment in that the models are not directly

linked but rather can be correlated by collision boxes, pose,
and their static or dynamic attributes.

D. Implementation

We implemented 3 instances of the approach to automati-
cally simulate in Gazebo and collect test metrics. The Gazebo
simulator [4] is a environment-building and simulation tool
with hooks to Robot Operating System (ROS) [5] and for
which models of many popular ROS robots are maintained
and widely used. Environments are termed worlds that con-
sist of compositions of discrete objects with configurable
attributes, termed models.

These instances of the approach differ in their combina-
tion of partitioning and prioritization schema. Model2model
partitioning was combined with two different prioritization
schema, failure-proximal and average trajectory-proximal.
The prioritization schema with the better performance,
failure-proximal, was combined with the following timeseg
partitioning schema. The reduction algorithm was automated
by scripts that trigger test runs, partitioning and prioritization,
world reduction, and an oracle to perform failure analysis.

Algorithm 1: ddenv algorithm for robotics

Input: R, E, f, partition_schema, prior_schema, n_partitions,
iterations, timeout

Output: E’

1 while E’ not reached do

2 subenvironments <— partition(E, f, n_partitions,
partition_schema);

3 subenvironments <— prioritization(subenvironments,
prior_schema);

4 for s in subenvironments do

5 result <—R(s,f, timeout)

6 if is_new_failure(result, f) or is_success(result) then

7 results <— deflake(s, R, iterations, timeout);

8 result < find_similar_failure(results, f);

9 end

10 if is_similar_failure(result, f) then

1 FE «s;

12 break;

13 end

14 n_partitions <— n_partitions + 1;

15 if no similar failure produced by subenvironments and
n_partitions == FE.size then

16 | E' < FE; break;

17 else if n_partitions > FE.size then

18 | n_partitions < FE.size;

19 end

20 end

21 return E’

IV. STUDY

We have applied our approach to the widely used Husky
ground vehicle [15] and deployed it into three scenarios
to assess the potential of our approach to simplify the
environment associated with a failure. Our research questions
are:

o RQ1: How cost-effective is our approach in reducing
the size of the environment that led to a failure?

o RQ2: How do variations of partitioning and prioritiza-
tion schema affect cost-effectiveness?

Algorithm 2: model2model partitioning algorithm

Input: E, n_clusters
Output: environment_clusters
model_poses < [] for model in E.models do
\ model_poses <— model_poses += model.pose
end
environment_clusters <— kmeans.cluster(model_poses,
n_clusters).labels;
5 if contains_empty_clusters(environment_clusters) then
6 for model in models do
7 \ environment_clusters <— new_cluster(model);
8
9

N

end
end

Algorithm 3: failure-proximal prioritization algo-
rithm
Input: environment_clusters, f
Output: ordered_environments
1 crash_pose < get_crash(f);
2 distances < [];
3 for cluster in environment_clusters do
4 dist < calc_distance_3D(cluster.centroid, crash_pose);
5
6
7

cluster.distance_from_crash <— dist;
end
ordered_environments <— sort_by_distance(environment_clusters);

A. Setup

To answer these questions, we have designed three sce-
narios and configured the Husky to run within them. The
Husky was chosen for its use as a generic ground vehicle
suited for many environments and appendant open source
navigation packages. This system and scenarios were evalu-
ated under the Gazebo simulator. Three pairs of partitioning
and prioritization schemas were chosen from Table I to test
our minimal world reduction approach on three scenarios.

Similar to ddmin, we begin ddenv with n_partitions=2 and
deflake() iterations=3. Enums for partitioning and prioriti-
zation schema are provided as parameters, conforming to
three schema pairings, model2model and failure-proximal,
model2model and average trajectory-proximal, and timeseg
and average trajectory-proximal.

These scenarios were selected for being common occur-
rences in robotic environments. [14] They were designed
to highlight variance of types of failures: a static failure in
ditch, a dynamic failure in rubble, and a failure over time
in friction. Each takes 45 seconds or less to reach its goal
given a passing variation of the failing world.

The first scenario depicted in Figure 1a, ditch, consists of
43 models total with two asphalt planes with a 1m wide, 2m
deep gap between them and patches of static rough terrain
on each side. When approach at the right angle, the gap
presents a high probability for the robot to get irretrievably
stuck. The Husky uses just its compass, IMU, and odometry
data to navigate from one plane to another.

The second scenario depicted in Figure 1b, rubble, con-
sists of 36 models total with a pile of dynamic 2x4 boards
with a narrow, cluttered path through the rubble. There are
two cinder blocks in the narrow path supporting two boards
each. The robot is given a goal that forces it to navigate a

(a) Ditch scenario failure; husky stuck
in ditch between spawning position and
goal.

(b) Rubble scenario failure; husky caught
atop a cinderblock.

(c) Friction scenario failure; husky can-
not navigate precisely enough to pass
between two barrels.

Fig. 1: Three failing scenarios

path through the rubble, but it often gets stuck on the hidden
cinder blocks such that no wheel is touching the ground. The
Husky uses its lmslxx laser scanner, compass, IMU, and
odometry data to navigate from one plane to another.

The last scenario depicted in Figure lc, friction, consists
of 25 models total with a surface covered in patches of terrain
with varying friction coefficients. The friction of the red
patches is 1000 times greater than those of the green patches,
and the friction of the asphalt plane that they are set into is in
between. The robot is given a goal that forces it to navigate
between narrow openings between construction barrels. due
to the changes in friction of the patches it traverses before
attempting to traverse the barrels, the control module might
not able to line up the robot properly and it frequently gets
stuck in the opening.

B. Results

Tables II-IV group results by scenario. The implementa-
tion to reproduce these results is available here.!

The ditch scenario results in Table IT were comparable for
techniques 1 and 3 and saw the greatest reduction in envi-
ronment and runtime in technique 2. The model2model clus-
tering and averaged trajectory-proximal ordering schemas’
strong performance is attributable to the fact that it incor-
porates a greater amount of failure information about the
failure and captures the rough terrain that perturbs actuation
of the Husky before a catastrophic failure is induced by the
ditch. Because this scenario prioritizes models by proximity
to the trajectory, the raised plane and raised patches of rough
terrain on the opposite side of the ditch are retained, whereas
the first and third techniques respectively do not retain the
asphalt plane because its center point is far from the crash, or
because the robot spends most of its time stuck in the ditch
which is, again, far from the center point of the asphalt plane.

Figure 2 shows the reduction in the world over the course
of running our algorithm for technique 2. The steep dropoff
in the first iteration indicates that a large partition was
removed from the world and the world was still able to
produce a failure. As the algorithm nears a minimal world,
smaller partitions consisting of one model per partition are
removed, causing a steady decline in the size of the reduced
world shown in Figure 3.

The rubble scenario has comparable results using the
first two schema pairs in Table III, with improved runtime
and deflaking performance. The best technique in terms of
runtime and reduction was timeseg partitioning. This schema
was designed to leverage the time series aspect of the data
collected from the run. The rubble scenario performed well
with this segmentation because the Husky very quickly gets
stuck on the rubble and remains stuck until timeout once the
failure occurs, thus proportionately weighting the pieces of
rubble that cause the failure. Because so much of the world
surrounding the crash and trajectory is occupied by rubble,
techniques 1 and 2 would include slightly more elements than
necessary, showing smaller increments in world reduction.

Of all scenarios, friction saw the longest and second
longest runtime of all experiments in the first and third tech-
niques of Table IV, and second shortest runtime in technique
3. The model2model clustering and failure-proximal ordering
performed exceptionally poorly on the friction scenario be-
cause the friction scenario was designed to exhibit ongoing
system impedance that eventually led to a failure condition.
The friction scenario environment exerted small perturba-
tions on the Husky as it actuated over the in-ground patches
of high friction differentials, creating small deviations in
navigation over the course of the run. As a result, technique
1 weighted models solely in terms of what was near the
crash in space and time, and thus its partitions were not
directed along the trajectory but rather covered an equidistant
cluster in space and time from the crash. Averaged trajectory-
proximal ordering takes in the entire weighted trajectory

1 github.com/Anon06160006/DDEnv

while the other partitioning schemas split it up, causing
the algorithm to require higher numbers of iterations and
deflaking to eliminate small partitions of models at a time.

Overall, the first technique did consistently poorly across
all scenarios because these scenarios, while they do induce
the failure in a specific place, tend to have some environmen-
tal input leading up to the failure that the robot cannot get
out of. This technique discludes all of the information about
the robot execution leading up to the failure. Conversely, for
ditch and friction, the model2model partitioning and aver-
aged trajectory-ordering technique offers the best reduction
because it includes all of the execution information that the
first technique ignores. For all scenarios and techniques, most
of the reduction runtime was spent deflaking as evinced by
the number of runs compared to size of the environment
and percent reduction. Considered as a portfolio of reduc-
tion techniques, our approaches can offer an averaged 8x
reduction across all scenarios.

Partltlo'nn.lg' . # Tests | % Reduction | Time (min)
and Prioritization

model2model, 268 84% 420
failure-proximal

model2model, 82 95% 108
avg. trajectory-proximal

timeseg, . 359 84% 487
avg. trajectory-proximal

TABLE II: Ditch scenario (original environment size of 43)

Partltlo.nn.lg . # Tests | % Reduction | Time (min)
and Prioritization

model2model, 179 81% 274
failure-proximal

modelZmodel, ' 178 78% 277

avg. trajectory-proximal

timeseg, . 162 89% 231

avg. trajectory-proximal

TABLE III: Rubble scenario (original environment size of
36)

Partlthnll}g . # Tests % Reduction | Time (min)
and Prioritization

model2model, 727 44% 1098
failure-proximal

modeIZmodel,] 116 76% 183

avg. trajectory-proximal

timeseg, . 430 68% 641

avg. trajectory-proximal

TABLE IV: Friction scenario (original environment size of
25)

V. CONCLUSIONS

This research introduces the first approach to address the
problem of environment reduction with the use of physical
and temporal knowledge unique to the environments of
robotic systems. The study highlighted the potential value of
the proposed approach to assist the robot debugging process.
Our findings open up many avenues for continued study.

40 A

35 A

30 4

254

20 A

Environment size

15 A

10 A

S
01 2 3

4 5 6 7 8 9 1011 12 13 14 15 16 17
Iterations

Fig. 2: Reduction in world size by number of models over

iterations to find minimal world for ditch scenario.

Fig. 3: Minimal world for ditch failure reached from
model2model partitioning and averaged trajectory-proximal
ordering.

Firstly, we would like to apply our approach to larger and
more complex environments with thousands of elements to
further advance its sophistication. Second, there are several
other sources of information that we seek to exploit. For
example, a likeness analysis of the other failures found by
the analysis can provide further partition and prioritization
insights according to the similarity of failures produced.
Third, we can dramatically improve the efficiency of the
approach by adding early cutoffs based on preconditions that
environments must keep, such as the robot spawn location,
in order to hasten the reproduction of the failure.

REFERENCES

[1] Kevin Boos, Chien-Liang Fok, Christine Julien, and Miryung Kim.
Brace: An assertion framework for debugging cyber-physical systems.
In Proceedings of the 34th International Conference on Software
Engineering, ICSE *12, page 1341-1344. IEEE Press, 2012.

[2] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread
schedules. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA °02, page
210-220, New York, NY, USA, 2002. Association for Computing
Machinery.

[3]

[4]
[5]
[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

G. Fagogenis, V. De Carolis, and D. M. Lane. Online fault detection
and model adaptation for underwater vehicles in the case of thruster
failures. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 2625-2630, 2016.

Open Source Robotics Foundation. Gazebo robotics simulator. http:
//gazebosim.org, 2019.

Open Source Robotics Foundation. Robot operating system. https:
//www.ros.org/, 2019.

Florian Gross, Gordon Fraser, and Andreas Zeller. Search-based
system testing: High coverage, no false alarms. In Proceedings of
the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, page 67-77, New York, NY, USA, 2012. Association for
Computing Machinery.

K. Hamilton, D. Lane, N. Taylor, and K. Brown. Fault diagnosis on au-
tonomous robotic vehicles with recovery: an integrated heterogeneous-
knowledge approach. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.0ICH37164), vol-
ume 4, pages 3232-3237 vol.4, 2001.

Brittany ~ Johnson, Yuriy Brun, and Alexandra Meliou.
http://people.cs.umass.edu/brun/pubs/pubs/Johnson20icse.pdfCausal
Testing: Understanding Defects’ Root Causes. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE),
Seoul, Republic of Korea, May 2020.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu. An efficient k-means clustering algorithm:
analysis and implementation. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):881-892, 2002.

Eliahu Khalastchi and Meir Kalech. On fault detection and diagnosis
in robotic systems. ACM Comput. Surv., 51(1), January 2018.
Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu.
Rvfuzzer: Finding input validation bugs in robotic vehicles through
control-guided testing. In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, page 425-442, USA, 2019. USENIX
Association.

Ghassan Misherghi and Zhendong Su. Hdd: Hierarchical delta debug-
ging. In Proceedings of the 28th International Conference on Software
Engineering, ICSE °06, page 142-151, New York, NY, USA, 2006.
Association for Computing Machinery.

Changhai Nie and Hareton Leung. The minimal failure-causing
schema of combinatorial testing. ACM Trans. Softw. Eng. Methodol.,
20(4), September 2011.

Graz University of Technology. Husky ugv used for 3d map-
ping in mars simulation. https://clearpathrobotics.com/
husky-ugv-used-3d-mapping-mars—simulation/, 2019.
Clearpath Robotics. Husky unmanned ground ve-
hicle. https://clearpathrobotics.com/
husky-unmanned-ground-vehicle-robot/, 2019.

D. Stavrou, Demetrios G. Eliades, C. Panayiotou, and M. Polycarpou.
Fault detection for service mobile robots using model-based method.
Autonomous Robots, 40:383-394, 2016.

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineer-
ing, 42(8):707-740, 2016.

Andreas Zeller. Yesterday, my program worked. today, it does not.
why? SIGSOFT Softw. Eng. Notes, 24(6):253-267, October 1999.
Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183-200, February
2002.

