international Society of
the Learning Sciences

Supporting Third Graders’ Use of Subroutines in Programming
through Play Versus Worked Examples

Sezai Kocabas, Purdue University, SKocabas@purdue.edu
Laura Bofferding, Purdue University, LBofferd@purdue.edu

Abstract: We conducted an in-depth analysis to better understand the role of playing versus
analyzing worked examples when learning programming commands. Our findings, focused on
two pairs of third graders, demonstrated that students did not use complex programming
commands when only playing; whereas, when supported through analysis of worked examples,
they did use subroutines. Both pairs started to identify repeating patterns in their code once they
had a worked example where a subroutine was used to repeat a set of commands. Yet, having
time to play before analyzing worked examples in programming contexts may provide subtle
benefits, especially for more abstract commands such as subroutines. Unlike prior studies, our
findings suggest that looping concepts can be taught within the concept of subroutines, even
with young students.

Tangible programming devices are popular for introducing younger students how to program because students
can see the direct results of the commands they program (e.g., Horn & Jacob, 2007). Depending on the type of
device, students might program a robot (or other object) to make noises, light up, turn, and move forward or
backward (e.g., Sullivan & Bers, 2016); all of these actions are easy to hear or see. However, some elements of
programming, such as conditionals, loops, and subroutines, are still abstract in tangible forms because some of
the steps or logic are not heard or seen in the same way. For example, Sullivan and Bers (2016) explored pre-
kindergarten through second grade students’ learning of programming involving KIBO robotic kits combined
with a CHERP tangible programming language. At the end of the eight-week robotics curriculum, students
struggled more with loop and conditional tasks than sequencing tasks.

There are several ways to help young students make sense of programming commands. One option,
based on a constructionist philosophy, is to let students play and explore with the device, providing them with the
opportunity to question and discover on their own (Monga et al., 2018). In a study where first and third graders
played versus explained their program and goals while playing a tangible programming game, just playing the
game supported students’ (particularly females’) improvement the most (Bofferding et al., 2020). On the other
end of the spectrum, students could receive explicit instruction on commands and how to use them and then have
targeted practice using the concepts. However, Lee et al. (2013) explored kindergarten students’ social interactions
through unstructured and structured programming curricula and did not find an impact of instruction on robotic
skills and programming concepts. In the middle of the spectrum, students could use worked examples to reason
about how a particular command works. In one case, worked-examples supported nine- to ten- year-old students’
learning to program. (Joentausta & Hellas, 2018). To better understand such practices, we used an in-depth
analysis of two pairs of third graders, unpacking their understanding of subroutines and programs depending on
whether they engaged in playing or analyzing worked examples.

Play versus worked examples

If students have sufficient domain knowledge, play might be at least as good or even better than using worked
examples (Tuovinen & Sweller, 1999). Playing that involves no explicit instruction would be helpful to learn
programming (McCoy-Parker et al., 2017; Mitamura et al., 2012; Monga et al., 2018) by reducing extraneous
cognitive load (Hawlitschek & Joeckel, 2017). However the benefits of play might differ based on the context;
playing was more effective on first and fifth graders’ creative scores on robot programming but less effective on
their technical scores than explicit instruction (McCoy-Parker et al., 2017).

On the other hand, worked examples are guided instruction techniques which provide students with step-
by-step problem-solving instructions used to teach problem-solving processes (Atkinson et al., 2000) and can help
students focus on understanding, reasoning, and encoding (Ward & Sweller, 1990); they are appropriate to guide
students to solutions for difficult problems (Pirolli & Anderson 1985) so that students do not waste time on
unhelpful strategies. However, the design of worked examples is important (Sweller et al., 1998). Examples with
errors (i.e., incorrect worked examples) support students to use more self-explanations when interpreting the
concept, identifying errors, and correcting bugs (Zhi et al., 2018). Zhi and colleagues (2018) found that analyzing
incorrect examples can effectively support older students’ learning about loops; however, analyzing a mixture of

ICLS 2021 Proceedings 637 ©ISLS

P

“/ X International Society of
.
AT isis the Learning Sciences
A st

K B

3

correct and incorrect worked examples can be helpful for students who have sufficient prior knowledge (Grofle
& Renkl, 2007).

Current study

In this study, we used play and worked examples to help third graders understand and reason about programming
commands, with an emphasis on abstract concepts related to subroutines and loops. Although worked examples
can help middle school students learn more abstract programming commands (e.g., Zhi et al., 2018) and play can
help younger students learn more concrete programming commands (e.g., Mitamura et al., 2012), our aim in this
study was to identify the relative benefits of both methods for third grade students and determine when either
method is most helpful. Therefore, a further aim was to gain clarity on whether analyzing worked examples was
more beneficial during their initial exposure to programming or after given some time to play as we explored two
research questions: How do students, depending on their prior experience playing the tangible programming
game, interpret the worked examples and the meaning of the subroutine programming block? How do they use
information from the worked examples in their pair and their own programming?

Methods

Setting, participants, study design, and materials

This study took place at a school in a midwestern district of the United States where approximately 45% of
students qualified for free or reduced-price lunch. To elevate the voices of females in early programming, we
selected two female pairs of third graders for this in-depth analysis (out of 26 students). We chose the two pairs
from the same classroom and who both attempted to use the subroutine block the most in their sessions. Students
Sheep7 and Sheep8 played during sessions 1-3 and analyzed worked examples in sessions 4-6. Students Sheep5
and Sheep6 analyzed worked examples in sessions 1-3 and played in sessions 4-6.

To examine the role of worked examples versus play, we employed a repeated-measures, between-groups
design (see Figure 1). For this paper, we report on students’ descriptions of the subroutine programming block as
well as on their programs to move Awbie to a specific spot (on the posttest, they wrote a second version of their
program using the subroutine block). Additionally, we report on an item where students explained a program
involving grab and walk blocks repeated within a subroutine. Between the pretest and midtest, students worked
in pairs to either play the programming game or analyze worked examples plus play, and students switched
activity-foci between the midtest and posttest.

A B

(Pretest)
Sessions 1, 2, 3 (20 min. each)
@ Analyze Worked D
Examples then Play
Coding Awbie each
Q session J
Immediate-Worked- Delayed-Worked-
Example Group Example Group
(Midtest)
(ion (30 min.))
Sessions 4, 5, 6 (20 min. each)
Analyze Worked
Examples then Play
Coding Awbie each
session

Play Coding Awbie
each session

YouRTURN:

Play Coding Awbie
each session

Immediate-Worked- Delayed-Worked-
Example Group Example Group

(Posttest) s | N
Figure 1. Study design. Figure 2. Example (A) incomplete and (B) incorrect worked examples.

In the worked example sessions, students spent the first 5-8 minutes analyzing and answering questions
about worked examples. In session 2 (or 5), students analyzed a correct, worked example to show how to use a
subroutine block to repeat a set of grab and walk movements. Then they had to identify missing problem blocks
in an incomplete worked example (see Figure 2A), and they found and fixed an error with a subroutine (see Figure
2B). In session 3 (or 6), students analyzed a correct worked example about using a warning block within a
subroutine, and they fixed a worked example that incorrectly repeated a jump within a subroutine.

Analysis

ICLS 2021 Proceedings 638 ©ISLS

international Society of
the Learning Sciences

Across subroutine items, we identified shifts in students’ explanations (focusing on accuracy and conceptual
understanding) and differences between the two pairs (i.e., the subroutine block can be programmed to do a set of
commands or the subroutine can be repeated by adding numbers to the subroutine block or by making a subroutine
of the subroutine). In order to characterize how pairs used the information from the worked examples, we
identified the extent to which the pairs implemented subroutine ideas (and their effectiveness in doing so) within
the sessions. Finally, at the individual level, we performed a similar analysis to the sessions using a programming
item from the pretest, midtest, and posttest.

Findings

Overall, students showed a better understanding of subroutines after analyzing worked examples (see Table 1).

Table 1: Students interpretations and use of the subroutine on pretest, midtest, and posttest

Group: Pretest Midtest Posttest
Intervention Explaining the Function of the Subroutine
-First - Repeating (Sheep5, Sheep6) Repeating (Sheep5, Sheep6)
-Second Related to repeating = ----—-- Can be programmed, involves repeating
(Sheep7) (Sheep7, Sheep8)
Intervention Programming the Character, Awbie
-First Correct (Sheep5, Sheep6) Correct, recognized repeating pattern

but did not program subroutine block
(Sheep5, Sheep6)

-Second Correct, not efficient ~ Correct (Sheep7, Sheep8) Correct, programmed subroutine with
(Sheep7); Debug full program, did not have it repeat
(Sheep8) (Sheep7, Sheep8)

During sessions one to three, when analyzing the worked examples, Sheep5 and Sheep6 explained that
the subroutine could repeat programmed commands by adding number blocks to the block; however, they did not
explain that the subroutine block can be programmed to do a set of commands. They did not find the correct
commands to complete the program in Figure 2A; but they were able to explain the problem with the program in
Figure 2B. When they tried to fix an incorrect worked example that repeated a jump too many times within a
subroutine. They explained the subroutine and fixed the bugs, although they created a new program that did not
involve a subroutine. When playing, although the intervention-second group did not recognize repeating patterns,
the intervention-first group started to recognize repeating patterns after analysis of the worked examples (which
emphasized repeating patterns in the code). However, rather than programming the subroutine block with the part
to repeat (“walk right 1, walk down 1) and putting a number on the subroutine button, they placed the blocks to
repeat after the subroutine button in the sequence of code. Sometimes they tried to use the subroutine button but
forgot to program it first.

During sessions four to six, when analyzing the worked examples, Sheep7 and Sheep8 now explained
that the subroutine could repeat programmed commands by adding number blocks to the block, and they
mentioned they could repeat the programmed commands by using number blocks on the subroutine. Due to an
implementation error, Sheep5 and Sheep6 reanalyzed one set of worked examples and, this time, identified the
missing commands in Figure 2A, while Sheep7 and Sheep8 correctly identified the first missing command. They
also fixed the subroutine with too many jumps by changing the code and not using the subroutine to do the new
repeated part. When playing, both groups recognized repeating patterns and tried to use the subroutine block, but
both groups forgot to program the subroutine block; instead, they put it at the end of the part they wanted to repeat.
The intervention-second group eventually remembered to program the subroutine block and used it to repeat jump
right I three times, and they even put additional code after the block. By session six, they also used the subroutine
to repeat by making a subroutine of the subroutine!

Discussion

Although this analysis focuses on two pairs of students, a limitation of this analysis, the results follow larger
trends from our research for those students who used the subroutine in their programming. Using the worked
examples was beneficial for helping students understand and use the subroutine block. Sheep5 and Sheep6 were
better equipped to try using the subroutine block in their second and third sessions because they engaged with
worked examples involving the subroutine block; whereas, Sheep7 and Sheep8 did not try using the subroutine

ICLS 2021 Proceedings 639 ©ISLS

international Society of
the Learning Sciences

block until they had their first worked example involving the subroutine block. This is particularly interesting
because both pairs had been exposed to examples on the pretest and midtest that required them to interpret the
action of the subroutine block; however, they only tried to use the block when they had a worked example with
one. Although prior research suggested that students would have difficulty learning abstract programming
concepts (Sullivan & Bers, 2016; Zhi et al., 2018), our results suggest that students might be less likely to learn
these more complex programming commands through play only; they can learn more abstract programming
concepts with the support of varied worked examples (Lee et al., 2013).

Based on this study, students who initially played made just as many gains as students who started with
worked examples, and arguably, their use of the subroutine button was more complex than the students who
started out with worked examples. Therefore, having some time to play before analyzing worked examples in
programming contexts may serve some subtle benefits, especially for more abstract commands, an area that should
be explored further. Lastly, unlike the previous studies that were teaching loops (Sullivan & Bers, 2016; Zhi et
al., 2018), we taught the repeating idea within the concept of the subroutine. Our study showed that students
developed an understanding about programming a set of commands and calling them back while developing
reasoning about repeating a set of commands at the same time.

References

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles
from the worked examples research. Review of Educational Research, 70(2), 181-214.

Bofferding, L., Kocabas, S., Aqazade, M., Chen, L., & Haiduc, A. M. (2020, Apr 17 - 21) Exploring Practices to
Support Commenting and Debugging in Early-Years Tangible Programming [Structured Poster Session].
AERA Annual Meeting, http://tinyurl.com/yyd7ayh4 (Conference Canceled)

GroBle, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: Can this foster learning
outcomes? Learning and Instruction, 17(6), 612-634.

Hawlitschek, A., & Joeckel, S. (2017). Increasing the effectiveness of digital educational games: The effects of a
learning instruction on students’ learning, motivation and cognitive load. Computers in Human Behavior,
72, 79-86.

Horn, M. S., & Jacob, R. J. (2007, April). Tangible programming in the classroom with tern. In CHI'07 Extended
Abstracts on Human Factors in Computing Systems (pp. 1965-1970).

Joentausta, J., & Hellas, A. (2018, February). Subgoal labeled worked examples in K-3 education. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education (pp. 616-621)

Lee, K. T., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using robotics to foster social interaction
in kindergarten. Computers in the Schools, 30(3), 271-281.

McCoy-Parker, K. S., Paull, L. N., Rule, A. C., & Montgomery, S. E. (2017). Challenging elementary learners
with programmable robots during free play and direct instruction. Journal of STEM Arts, Crafts, and
Constructions, 2(2), 100-129.

Mitamura, T., Suzuki, Y., & Oohori, T. (2012, October). Serious games for learning programming languages. In
2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1812-1817).

Monga, M., Lodi, M., Malchiodi, D., Morpurgo, A., & Spieler, B. (2018). Learning to program in a constructionist
way. In Proceedings of Constructionism, Vilnius, Lithuania. https://hal.inria.fr/hal-01913065

Pirolli, P. L., & Anderson, J. R. (1985). The role of learning from examples in the acquisition of recursive
programming skills. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 39(2), 240-
272.

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: Learning outcomes from an 8-
week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology
and Design Education, 26(1), 3-20.

Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design.
Educational Psychology Review, 10(3), 251-296.

Tuovinen, J. E., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and
worked examples. Journal of Educational Psychology, 91(2), 334-341.

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and Instruction, 7(1), 1-39.

Zhi, R., Lytle, N., & Price, T. W. (2018, February). Exploring instructional support design in an educational game
for K-12 computing education. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (pp. 747-752).

Acknowledgement
This research was supported by an NSF DRL ITEST Grant #1759254.

ICLS 2021 Proceedings 640 ©ISLS

