


from simulation and reality that are combined, allowing an

incremental transition from simulation to reality. Ultimately,

it allows developers to place their validation in the real world

while reducing the cost of potential failures associated with

field tests (i.e., crashing into the virtual gate in Fig 1c does

not lead to drone damage).

WIL tackles two fundamental challenges. First, the AS

operations, including their sensing and actuation, need to

be synchronized in order for the sensor’s values to be con-

sistently integrated during execution. Second, a diversity of

sensors (e.g., cameras, LIDAR’s, gyroscopes, microphones),

each with potentially different data types, rates, and for-

mats, must be supported for integration. To overcome these

challenges, our approach works by simultaneously running a

single test in both simulation and real-world environments,

pushing the AS sensor data from each environment into a

framework for transforming, filtering, and mixing the data to

form a new sensor-input. This new mixed-reality sensor input

is fed back to the executing AS, allowing it to experience

mixed-reality. The primary contributions of this work are:

1) A framework to integrate sensor readings from sim-

ulation and real-world environments and feed those into

simultaneously executing environments. Our approach works

using three key configurable functions that first transform the

sensed data, then filter it, and finally merge it to form a new

mixed-reality before feeding it back to the AS.

2) A study assessing WIL’s benefits in reducing the

simulation-reality gap between two simulators and a com-

mercial quadrotor. Our findings show that there are test

scenarios that pass in simulation, however, fail in reality.

In these cases, WIL can detect these failing test cases,

indicating a reduction in the simulation-reality gap, and it

does so with a significantly lower cost-of-failure than that of

real field testing.

II. BACKGROUND

The validation and verification (V&V) of AS is difficult

for two main reasons [17], [28]. First, the systems operate

in the real world, which increases the complexity of the

input space that must be constructed and checked [29], [30].

Second, the systems can display non-deterministic behavior

due to both the sensor and actuator noise, as well as the

underlying machine learning techniques commonly used in

the perception and control layers [31]. To address these

challenges, several methods and tools have been proposed.

Formal verification techniques mathematically reason

whether a model of the system complies with a specified

property. They have been applied to AS components such as

lane change modules to verify that a lane was clear before

moving into it [32], safe stop supervisor to verify that a

vehicle will only activate the safe stop planner if an error

is thrown [33], and a cruise control system to verify that it

will never enter a collision mode [34]. They have also been

applied to sub-systems that can be abstracted to high-level

models [30], [35], [36]. These techniques are effective as

long as accurate, and relatively small models are available,

and the target properties can be checked in those available

models.

Validation techniques do not guarantee that a property is

met and instead generate tests that may reveal faults. Their

focus is on exploring the input space defined by the systems

and the world state. They do it non-exhaustively and thus

can scale to full systems. For example, system tests have

been generated through rapidly-exploring random trees [37],

combining procedural content generation and search-based

testing [38], sampling the space of kinematic models to

generate stressful trajectories [39], analyzing police reports

to generate environments that resemble car crashes [40], ap-

proximating the system control model to guide the command

generation [41], or sampling traffic models [43].

V&V specific to machine learning components also re-

ceive significant attention as their use increases in AS

perception and control layers. Validation techniques exist to

generate inputs for DNNs to uncover unexpected behavior

[44]–[46]. Complementary verification techniques have also

emerged that guarantee that machine-learned components

are robust against adversarial attacks [47]–[49]. Similar to

traditional V&V, validation techniques provide no guaran-

tees but tend to scale and can find property violations in

larger systems, while the verification techniques can provide

guarantees on some reachability properties but struggle to

scale to larger systems [50]–[52].

While validation techniques produce inputs to exercise

the AS systems, the execution of those test inputs usually

requires some type of world mocking through a simulation

platform. Simulators provide a range of fidelities and are

used by many AS at different development stages. For

example, low-fidelity simulators use mathematical models

to approximate the world, and the robot states [53]. These

simulators are cheap to run, making them practical for early

testing. As fidelity increases, it becomes more common to

model the world using either a physics or graphics engine.

Such simulators are capable of SIL simulation to increase the

accuracy of the robot interactions with the simulated world

as devised by the system software, including the learned

components. Simulators with high-fidelity physics and low-

fidelity graphics [11], [12], [16] are well-suited for testing

the physical behavior of new robot designs. Simulators with

high-fidelity graphics and simple kinematic models [10]

are well-suited for systems with rich sensor input such as

cameras and LIDAR’s. Other SIL simulators combine high-

fidelity graphics and physics engines but tend to be limited

to a specific AS or domain and be more expensive to run [8],

[9]. HIL simulations, where the hardware (and sometimes the

software) are used in conjunction with the simulation [54],

[55] can count on a more accurate system’s output. However,

they tend to be AS specific, with the corresponding cost and

scope limitations, and still suffer from the simulation-reality

gap as the sensor readings still depend on a simulated world.

Our approach aims to address the simulation-reality gap

by integrating portions of the simulated world into the real

one. Two efforts are related to this concept. The first uses

mixed-reality to overlay robot state and system information





from both simulation and reality, allowing the merge function

to access the latest data regardless of rate.

2) Filtering Sensor Readings: Filtering aims to retain the

sensor readings or parts of readings that will be integrated

by the merge function. It can include diverse filters, from

dropping a range of values or noise from the LIDAR,

to removing sets of colors from an image, similar to the

techniques used when using a greenscreen. Other examples

use DNN’s that perform object detection and isolation [63],

or background subtraction techniques to remove camera

images’ backgrounds. Other sensors, such as microphones,

could have bandpass filters applied to isolate a range of

frequencies, for example, those typical to human speech.

Thus, filtering functions for the sensed values enables WIL

to isolate parts of the sensor data required for merging while

discarding data to reduce excess throughput and later speed

up merging.

As an example, to produce Fig 1c, the camera data from

the simulation was passed through a color isolation function

that identified the color orange. This removed all parts of the

image except for the gate which was orange.

3) Merging Sensor Readings: The merge function creates

a mixed-reality set of sensor readings Sm. For example,

given simulated and real-world camera data, a simulated ob-

stacle can be overlayed over the real camera data, giving the

AS the impression that an obstacle exists in the real world (as

per Figure 1c). The function starts by creating an empty set

of sensor readings Sm that is then populated with the mixed

reality readings by applying the corresponding combination

function to each sensor. The sensor data can be combined

using a number of general mechanisms, including: 1) sensor

prioritization, where sensor data from Sv and S is layered

according to some predefined priority, 2) sensor replacement,

where sensor data is replaced according to some rule, for

example, the source world, and 3) sensor aggregation, where

the sensor data is combined by performing some operation

like average, minimum, or maximum sensor reading.

Going back to our original example in Fig 1c, we note

how some of the real world camera pixels are replaced by

the virtual gate pixels, allowing the AS in the real world to

perceive virtual obstacles.

B. Implementation

Our implementation provides support for the collection

and distribution of sensor values, which is built on top of

ROS publish and subscribe architecture [64]. To be integrated

with existing simulators and systems, WIL only requires the

completion of a plugin to set the pipelines to distribute AS

sensor values through specific message types underlying the

pub-sub model. By building on ROS we also leverage its

standard message types that already support a wide range

of sensors such as cameras, LIDARs, or IMU’s [65]. Our

approach also took advantage of ROS launch files to quickly

activate or deactivate the appropriate subsystems to easily

switch between simulation, mixed-reality, and reality.

Another piece of the implementation worth mentioning

is the support for processing recipe files, which resemble

Listing 1: An example recipe file

<recipe file >

<AS sensors>
<Camera id=”camera1”/>
<Camera id=”camera2”/>
<Lidar id=”lidar1”/>
< .../ >

</AS sensors>
<combine id=”camera1”>

<transform> camera transform.py </transform>

< filter > color isolation .py </ filter >
<merge> prioritize overlay .py </merge>

</combine>
...
<combine id=”lidar1”>

...
</combine>

</recipe file >

launch files but with distinct tags. An example of a recipe

file is shown in Listing 1. The first tag is AS sensors, which

lists all the AS sensors. When a sensor is listed, it is given

a unique ID. The id allows WIL to differentiate between

two sensors of the same type, for example, two cameras.

Another major tag is the combine tag, which is linked to a

sensor reading using the unique ID allocated in AS sensors.

The combine tag links a specific file that should be used

to perform each stage of our approach. For example, in

Listing 1, we show that the ‘color isolation.py’ file performs

the filter function. This general approach allows developers

to implement these functions and quickly switch different

functions to create various mixed-realities for the AS.

The infrastructure is available at: /git@github.com:

hildebrandt-carl/MixedRealityTesting.git.

C. Limitations

WIL makes a few assumptions that may limit its applica-

bility and efficacy. First, WIL assumes that it is possible to

match sensor specifications between simulation and reality.

In recent years simulation has become more sophisticated

and robust, making this a reasonable assumption for many

scenarios. In our implementation, we used the simulator [12]

created by the drone developers so the sensors were closely

matched. Second, WIL assumes the latency it introduces

through the sensor data manipulation does not affect the test

results. Our implementation mitigates this risk by using low-

latency communication channels combined with optimized

data manipulation libraries. For example, our implementation

generates mixed-reality sensor readings at 17Hz. Although

slower than the drone’s 60Hz camera [66], it was faster than

the perception layers control loop, which operated between

5-15Hz. Third, it assumes that it has access to precise AS

pose information. Inaccurate pose information could lead to

a misalignment of the AS in simulation and reality, result-

ing in mismatched sensor information. Our implementation

mitigates this risk through the use of Vicon [67], an industry-

grade motion capture system with mm accuracy.

IV. EVALUATION

The evaluation aims to assess the potential of WIL to re-

duce the simulation-reality gap and uncover the implications







provide support for common operators and conduct studies

on other systems to better characterize the potential of WIL.

REFERENCES

[1] J. Connelly, W. Hong, R. Mahoney Jr, and D. Sparrow, “Challenges
in autonomous system development,” PERFORMANCEMETRICS,
p. 220, 2006.

[2] P. LeBeau, “Waymo starts commercial ride-share service,” URL:

https://www. cnbc. com/2018/12/05/waymo-starts-commercial-ride-

share-service. html, 2018.
[3] M. Dikmen and C. M. Burns, “Autonomous driving in the real world:

Experiences with tesla autopilot and summon,” in Proceedings of

the 8th international conference on automotive user interfaces and

interactive vehicular applications, pp. 225–228, 2016.
[4] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and

C. Le Goues, “Crashing simulated planes is cheap: Can simulation de-
tect robotics bugs early?,” in 2018 IEEE 11th International Conference

on Software Testing, Verification and Validation (ICST), pp. 331–342,
IEEE, 2018.

[5] Jackie Wattles, “CNN Business - Tesla on Autopilot crashed
when the driver’s hands were not detected on the wheel.”
/https://www.cnn.com/2019/05/16/cars/tesla-

autopilot-crash/index.html, 2019. [Online; accessed
5-November-2019].

[6] Brian Garrett-Glaser, “Avionics - Drone Delivery Crash in Switzerland
Raises Safety Concerns As UPS Forms Subsidiary.” /https://

www.aviationtoday.com/2019/08/08/drone-delivery-

crash-in-switzerland-raises-safety-concerns/,
2019. [Online; accessed 5-November-2019].

[7] A. Harris and J. M. Conrad, “Survey of popular robotics simulators,
frameworks, and toolkits,” in 2011 Proceedings of IEEE Southeastcon,
pp. 243–249, IEEE, 2011.

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv preprint arXiv:1711.03938,
2017.

[9] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and

service robotics, pp. 621–635, Springer, 2018.
[10] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman,

“Flightgoggles: Photorealistic sensor simulation for perception-driven
robotics using photogrammetry and virtual reality,” arXiv preprint

arXiv:1905.11377, 2019.
[11] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an

open-source multi-robot simulator,” in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, (Sendai, Japan), pp. 2149–
2154, Sep 2004.

[12] Parrot, “Parrot-Sphinx.” /https://developer.parrot.com/

docs/sphinx/whatissphinx.html, 2019. [Online; accessed
22-August-2019].

[13] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, et al., “F1/10:
An open-source autonomous cyber-physical platform,” arXiv preprint

arXiv:1901.08567, 2019.
[14] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy,

T. Sun, Y. Tao, B. Townsend, et al., “Deepracer: Educational au-
tonomous racing platform for experimentation with sim2real reinforce-
ment learning,” arXiv preprint arXiv:1911.01562, 2019.

[15] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,
Y. F. Chen, C. Choi, J. Dusek, Y. Fang, et al., “Duckietown: an
open, inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE International Conference on Robotics and

Automation (ICRA), pp. 1497–1504, IEEE, 2017.
[16] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular

gazebo mav simulator framework,” in Robot Operating System (ROS),
pp. 595–625, Springer, 2016.

[17] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated
generation of diverse and challenging scenarios for test and evaluation
of autonomous vehicles,” in 2017 IEEE International Conference on

Robotics and Automation (ICRA), pp. 1443–1450, IEEE, 2017.
[18] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating

adversarial driving scenarios in high-fidelity simulators,” in 2019 Inter-

national Conference on Robotics and Automation (ICRA), pp. 8271–
8277, IEEE, 2019.

[19] BeamNG, “Research.” /https://beamng.gmbh/research/,
2019. [Online; accessed 26-January-2020].

[20] J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality
in evolutionary robotics,” Journal of Intelligent and Robotic Systems,
vol. 50, no. 1, pp. 19–39, 2007.

[21] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in European Conference

on Artificial Life, pp. 704–720, Springer, 1995.
[22] Gazebo, “Robot simulation made easy.” /http://

gazebosim.org, 2014. [Online; accessed 28-October-2020].
[23] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K.

Iyer, “Hands off the wheel in autonomous vehicles?: A systems
perspective on over a million miles of field data,” in 2018 48th

Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), pp. 586–597, IEEE, 2018.
[24] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,

N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience,” in 2019 International

Conference on Robotics and Automation (ICRA), pp. 8973–8979,
IEEE, 2019.

[25] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016.

[26] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping,” in 2018 IEEE international conference on robotics

and automation (ICRA), pp. 4243–4250, IEEE, 2018.
[27] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,

“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 23–30, IEEE,
2017.

[28] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen, “A
comprehensive study of autonomous vehicle bugs,” in 2020 IEEE/ACM

42nd International Conference on Software Engineering (ICSE), 2020.
[29] P. Helle, W. Schamai, and C. Strobel, “Testing of autonomous

systems–challenges and current state-of-the-art,” in INCOSE Interna-

tional Symposium, vol. 26, pp. 571–584, Wiley Online Library, 2016.
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