World-in-the-Loop Simulation for Autonomous Systems Validation

Carl Hildebrandt! and Sebastian Elbaum?

Abstract— Simulation is at the core of validating autonomous
systems (AS), enabling the detection of faults at a lower cost
and earlier in the development life cycle. However, simulation
can only produce an approximation of the real world, leading
to a gap between simulation and reality where undesirable
system behaviors can go unnoticed. To address that gap, we
present a novel approach, world-in-the-loop (WIL) simulation,
which integrates sensing data from simulation and the real
world to provide the AS with a mixed-reality. The approach
executes multiple instances of the AS in parallel, one in the
real world and at least one in simulation, performs configurable
transformations, filtering, and merging operations on the body
of sensed data in order to integrate it, and provides the pipelines
to distribute the original sensor data and the integrated sensor
data back to the executing AS. We present a study on multiple
scenarios and two simulators that demonstrates how WIL
reduces the simulation-reality gap and increases the chances
of exposing failures before deployment.

I. INTRODUCTION

Autonomous systems (AS) are complex entities able to
make and execute decisions in the real world to achieve
a goal without full or direct human control [1]-[3]. Their
increasing prevalence in areas such as transportation means
that their failures can have disastrous consequences [4]—
[6]. To accelerate their development by detecting faults
sooner and lowering the impact of failures, AS are typically
validated through a simulation platform. Such simulation
platforms create a virtual environment in which the AS
can sense and subsequently act on the virtual world [7].
The simulation value proposition, low-cost and rapid system
validation, has given rise to many simulators with a wide
range of support for different AS [8]-[19].

Despite their broad adoption and cost-effectiveness, the
virtual environments provided by simulators are just approx-
imations of the real world [20]. The difference between the
real and the simulated worlds is known as the simulation-
reality gap [21]. For example, Fig 1b depicts an image
returned from a landed drone while Fig la depicts a similar
situation in a Gazebo simulation [22]. Note how the approx-
imation manifests as differences in the surface’s roughness,
the background objects, and the lighting. This gap explains,
at least in part, why field testing is still the gold standard for
AS validation [23].

Developers have three options to reduce the illustrated
simulation-reality gap. First, they can increase the simu-
lation’s fidelity by tweaking the simulator parameters or
objects based on real data [24]-[26]. These practices can

1University of Virginia, USA, hildebrandt.carl@virginia.edu

2University of Virginia, USA, selbaum@virginia.edu

This work is supported in part by the NSF Awards #1924777 and
#1853374. We thank Parrot Anafi for making their systems available.

(b) Real world.

(a) Gazebo Simulation.

-, —

; - = R R Y

d-.-h.. g T - _’.‘:"'. \ ¥ - - 3

-.‘i-'r: Sy e ‘n‘.b:‘ ‘, J" 1,}-:‘__ e

B g ,-‘;ﬂ o SRY S b
TRLT S . i o

) BT L g B ST ‘ .

(c) World-in-the-Loop (WIL).

Fig 1: The camera image sensed from a grounded drone
operating in simulation (a), the real world (b), and the mixed
reality created by our approach WIL by integrating both (c).

narrow the gap but are domain and AS-specific. Second,
developers can use multiple and more sophisticated simu-
lators to combine their strengths [27]. This approach can be
extremely costly, not just because of the simulators’ cost but
also because of the cost of setting and running potentially
thousands of testing scenarios across multiple simulators.
Third, developers can move towards simulators that integrate
richer portions of the AS. For example, migrating from a
model-based simulation, which uses mathematical equations
to simulate both the input and output of the system, to a
software-in-the-loop (SIL) simulation, which integrates the
AS code into the model allowing higher fidelity output from
the system, to hardware-in-the-loop (HIL) simulation, which
incorporates the AS actual hardware. These solutions reduce
the gap by bringing the AS into the simulation but still
require the actual world to be simulated.

To address this challenge, we propose a new type of sim-
ulation called world-in-the-loop simulation (WIL). WIL
aims to expose the AS to a mixed-reality that integrates
elements from simulation and the real-world. An example
of this is shown in Fig 1c, where the simulated gate sensed by
the AS during simulation (Fig 1a) is integrated as part of the
sensed reality of the AS (Fig 1b). This approach provides
several advantages. First, it narrows the simulation-reality
gap by incorporating simulated elements into the real-world.
Second, it allows developers to control the information

from simulation and reality that are combined, allowing an
incremental transition from simulation to reality. Ultimately,
it allows developers to place their validation in the real world
while reducing the cost of potential failures associated with
field tests (i.e., crashing into the virtual gate in Fig 1c does
not lead to drone damage).

WIL tackles two fundamental challenges. First, the AS
operations, including their sensing and actuation, need to
be synchronized in order for the sensor’s values to be con-
sistently integrated during execution. Second, a diversity of
sensors (e.g., cameras, LIDAR’s, gyroscopes, microphones),
each with potentially different data types, rates, and for-
mats, must be supported for integration. To overcome these
challenges, our approach works by simultaneously running a
single test in both simulation and real-world environments,
pushing the AS sensor data from each environment into a
framework for transforming, filtering, and mixing the data to
form a new sensor-input. This new mixed-reality sensor input
is fed back to the executing AS, allowing it to experience
mixed-reality. The primary contributions of this work are:

1) A framework to integrate sensor readings from sim-
ulation and real-world environments and feed those into
simultaneously executing environments. Our approach works
using three key configurable functions that first transform the
sensed data, then filter it, and finally merge it to form a new
mixed-reality before feeding it back to the AS.

2) A study assessing WIL’s benefits in reducing the
simulation-reality gap between two simulators and a com-
mercial quadrotor. Our findings show that there are test
scenarios that pass in simulation, however, fail in reality.
In these cases, WIL can detect these failing test cases,
indicating a reduction in the simulation-reality gap, and it
does so with a significantly lower cost-of-failure than that of
real field testing.

II. BACKGROUND

The validation and verification (V&V) of AS is difficult
for two main reasons [17], [28]. First, the systems operate
in the real world, which increases the complexity of the
input space that must be constructed and checked [29], [30].
Second, the systems can display non-deterministic behavior
due to both the sensor and actuator noise, as well as the
underlying machine learning techniques commonly used in
the perception and control layers [31]. To address these
challenges, several methods and tools have been proposed.

Formal verification techniques mathematically reason
whether a model of the system complies with a specified
property. They have been applied to AS components such as
lane change modules to verify that a lane was clear before
moving into it [32], safe stop supervisor to verify that a
vehicle will only activate the safe stop planner if an error
is thrown [33], and a cruise control system to verify that it
will never enter a collision mode [34]. They have also been
applied to sub-systems that can be abstracted to high-level
models [30], [35], [36]. These techniques are effective as
long as accurate, and relatively small models are available,

and the target properties can be checked in those available
models.

Validation techniques do not guarantee that a property is
met and instead generate tests that may reveal faults. Their
focus is on exploring the input space defined by the systems
and the world state. They do it non-exhaustively and thus
can scale to full systems. For example, system tests have
been generated through rapidly-exploring random trees [37],
combining procedural content generation and search-based
testing [38], sampling the space of kinematic models to
generate stressful trajectories [39], analyzing police reports
to generate environments that resemble car crashes [40], ap-
proximating the system control model to guide the command
generation [41], or sampling traffic models [43].

V&V specific to machine learning components also re-
ceive significant attention as their use increases in AS
perception and control layers. Validation techniques exist to
generate inputs for DNNs to uncover unexpected behavior
[44]-[46]. Complementary verification techniques have also
emerged that guarantee that machine-learned components
are robust against adversarial attacks [47]-[49]. Similar to
traditional V&V, validation techniques provide no guaran-
tees but tend to scale and can find property violations in
larger systems, while the verification techniques can provide
guarantees on some reachability properties but struggle to
scale to larger systems [50]-[52].

While validation techniques produce inputs to exercise
the AS systems, the execution of those test inputs usually
requires some type of world mocking through a simulation
platform. Simulators provide a range of fidelities and are
used by many AS at different development stages. For
example, low-fidelity simulators use mathematical models
to approximate the world, and the robot states [53]. These
simulators are cheap to run, making them practical for early
testing. As fidelity increases, it becomes more common to
model the world using either a physics or graphics engine.
Such simulators are capable of SIL simulation to increase the
accuracy of the robot interactions with the simulated world
as devised by the system software, including the learned
components. Simulators with high-fidelity physics and low-
fidelity graphics [11], [12], [16] are well-suited for testing
the physical behavior of new robot designs. Simulators with
high-fidelity graphics and simple kinematic models [10]
are well-suited for systems with rich sensor input such as
cameras and LIDAR’s. Other SIL simulators combine high-
fidelity graphics and physics engines but tend to be limited
to a specific AS or domain and be more expensive to run [8],
[9]. HIL simulations, where the hardware (and sometimes the
software) are used in conjunction with the simulation [54],
[55] can count on a more accurate system’s output. However,
they tend to be AS specific, with the corresponding cost and
scope limitations, and still suffer from the simulation-reality
gap as the sensor readings still depend on a simulated world.

Our approach aims to address the simulation-reality gap
by integrating portions of the simulated world into the real
one. Two efforts are related to this concept. The first uses
mixed-reality to overlay robot state and system information

in the real world [56]-[58] to help developers understand and
debug systems, but it does not reduce the simulation reality
gap. The second line of work explains and exemplifies how
the concept of mixed reality could reduce the simulation-
reality gap [59], [60], but does not provide a framework
and implementation to enable the automated integration of
sensed simulation and reality. In addition, our work provides
an evaluation to better quantify the potential of mixed-reality
to reduce the simulation-reality gap.

III. APPROACH

Given a world W and a goal G, the AS builds an
understanding of W through sensors .S, and acts on W
through behaviors B to achieve G. When validating the AS,
a simulation uses a virtual world W,, which is only an
approximation of W. The difference of that approximation
from the real world defines the simulation-reality Gap =
dif f(W,W,). A key element in that gap is the semantics
of the sensor readings. In the simulated world W,, the
sensor input at each time step S, = {sy1,S0v2,---Sun}
is computer-generated, while in W the sensor input S =
{s1,82,...8m,} is read from the AS sensors capturing the
real world. This implies that S, is also an approximation
of S. Since different sensed values can lead to different
behaviors, B(S,) and B(S), ensuring that a set of desirable
behavioral properties (i.e., no crashes) is met by B, (in
simulation) does not necessarily mean that B (in reality)
will meet those properties.

WIL’s goal is to narrow that sensing gap by creat-
ing a new mixed-reality that combines elements from S
and S, to generate S,, such that dif f(B(S), B(Sm)) <
dif f(B(S), B(Sy)). WIL is depicted in Fig 2. Given a
goal G, the approach simultaneously runs two instances of
AS, one in W and one in W, collecting sensors values S
from the real world and .S,, from simulation, combining them
to generate a mixed sensor value set S,,, and feeding that
mixed reality back to both AS (we depicted just one .S;,, but
different S,,, can be sent to each execution environment).

A. Key Components

Algorithm 1 summarizes WIL. The inputs are a real and
simulated AS (AS, AS,), a real and a simulated world
(W, W), a goal (G), and a recipe file. First, WIL subscribes
to both AS. The subscriber directs all sensor readings to
the sensor_callback function described in line 5. In lines 3
and 4, the real and simulated AS are started with G. The
sensor_callback function receives sensor data S and S,
from AS and AS, respectively. It then calls a transform, a
filter, and a merge function to produce S,,, the mixed reality
sensor data. Finally, in line 9, .S;, is published and used as
input to both AS, which will then act on their worlds and
sense new data to invoke the callback repeatedly. We now
describe each of the functions in more detail.

1) Transforming Sensor Readings: The transformation
function removes structural discrepancies between the sensor
readings obtained in W and W,,. Our built-in support focuses
on dimensions-units, shape, and frame-of-reference, which

| Goal (G)

Simulation (W)
y :

Subscribe

Autonomous
System

Publish

uibniq
Plugin

Publish

Sensor

Sensor

Callback Callback
Recipe
Sm 1)Transform | 1)Transform Sm
2)Filter < »| 2)Filter
3)Merge 3)Merge
[— 1

Fig 2: An overview of our approach, showing examples of
S, S, and S,,.

Algorithm 1: WIL

1 Given AS, AS,, W, W, G, recipe
subscribe(AS, ASy, Sm)
start(AS, W, G)

start(AS,, W, G)

Function sensor_callback(S, Sy)

St = transform(S, S,, recipe)
Sy = filter(S, S,, recipe)

Sy = merge(S, S,, recipe)
publish(Sy,)

NIRRT I)

we have identified as common sources of dissonance among
execution environments. In terms of units and dimensions,
we found that it is common to describe the same quantity in
different ways. For example, when working with GPS, some
systems sensors will use the full GPS data while others return
positions in terms of a local frame using X, Y, and Z. When
referring to rotations, we encounter quaternions, radians, and
Euler angles [61]. Even when the units are comparable, they
might not use the same frame-of-reference [62]. For example,
one might work using a North East Down (NED) frame and
another in an East North Up (ENU) frame. In terms of shape
dissonance, it is common to find simulation environments
that use a different resolution to build on an existing dated
component or use a lower resolution to improve performance.
The transformation function enables us to overcome such
discrepancies in sensor data.

For example, to produce Fig 1c, the sensor data was trans-
formed in multiple ways. First, the quadrotor’s simulated
position was transformed from a local frame to a global
frame that used GPS coordinates. Second, the quadrotor
orientation in simulation was transformed using an offset so
that the quadrotors heading in the real-world matched those
in simulation. Third, the simulated camera image needed to
be reshaped to match the real world camera’s resolution.
Finally, both cameras’ sensor publishing rates needed to be
matched, which we achieved by storing the latest sensor data

from both simulation and reality, allowing the merge function
to access the latest data regardless of rate.

2) Filtering Sensor Readings: Filtering aims to retain the
sensor readings or parts of readings that will be integrated
by the merge function. It can include diverse filters, from
dropping a range of values or noise from the LIDAR,
to removing sets of colors from an image, similar to the
techniques used when using a greenscreen. Other examples
use DNN’s that perform object detection and isolation [63],
or background subtraction techniques to remove camera
images’ backgrounds. Other sensors, such as microphones,
could have bandpass filters applied to isolate a range of
frequencies, for example, those typical to human speech.
Thus, filtering functions for the sensed values enables WIL
to isolate parts of the sensor data required for merging while
discarding data to reduce excess throughput and later speed
up merging.

As an example, to produce Fig Ic, the camera data from
the simulation was passed through a color isolation function
that identified the color orange. This removed all parts of the
image except for the gate which was orange.

3) Merging Sensor Readings: The merge function creates
a mixed-reality set of sensor readings .S,,. For example,
given simulated and real-world camera data, a simulated ob-
stacle can be overlayed over the real camera data, giving the
AS the impression that an obstacle exists in the real world (as
per Figure 1c). The function starts by creating an empty set
of sensor readings .S, that is then populated with the mixed
reality readings by applying the corresponding combination
function to each sensor. The sensor data can be combined
using a number of general mechanisms, including: 1) sensor
prioritization, where sensor data from S, and S is layered
according to some predefined priority, 2) sensor replacement,
where sensor data is replaced according to some rule, for
example, the source world, and 3) sensor aggregation, where
the sensor data is combined by performing some operation
like average, minimum, or maximum sensor reading.

Going back to our original example in Fig lc, we note
how some of the real world camera pixels are replaced by
the virtual gate pixels, allowing the AS in the real world to
perceive virtual obstacles.

B. Implementation

Our implementation provides support for the collection
and distribution of sensor values, which is built on top of
ROS publish and subscribe architecture [64]. To be integrated
with existing simulators and systems, WIL only requires the
completion of a plugin to set the pipelines to distribute AS
sensor values through specific message types underlying the
pub-sub model. By building on ROS we also leverage its
standard message types that already support a wide range
of sensors such as cameras, LIDARs, or IMU’s [65]. Our
approach also took advantage of ROS launch files to quickly
activate or deactivate the appropriate subsystems to easily
switch between simulation, mixed-reality, and reality.

Another piece of the implementation worth mentioning
is the support for processing recipe files, which resemble

Listing 1: An example recipe file

<recipe file >
<AS sensors>
<Camera id="cameral”/>
<Camera id="camera2”/>
<Lidar id="lidar1”/>
<>
</AS sensors>
<combine id="cameral”>
<transform> camera_transform.py </transform>
< filter > color_isolation .py </ filter >
<merge> prioritize_overlay .py </merge>
</combine>

<combine id="lidar1”>

</combine>
</recipe file >

launch files but with distinct tags. An example of a recipe
file is shown in Listing 1. The first tag is AS sensors, which
lists all the AS sensors. When a sensor is listed, it is given
a unique ID. The id allows WIL to differentiate between
two sensors of the same type, for example, two cameras.
Another major tag is the combine tag, which is linked to a
sensor reading using the unique ID allocated in AS sensors.
The combine tag links a specific file that should be used
to perform each stage of our approach. For example, in
Listing 1, we show that the ‘color_isolation.py’ file performs
the filter function. This general approach allows developers
to implement these functions and quickly switch different
functions to create various mixed-realities for the AS.

The infrastructure is available at: /git@github.com:
hildebrandt-carl/MixedRealityTesting.git.

C. Limitations

WIL makes a few assumptions that may limit its applica-
bility and efficacy. First, WIL assumes that it is possible to
match sensor specifications between simulation and reality.
In recent years simulation has become more sophisticated
and robust, making this a reasonable assumption for many
scenarios. In our implementation, we used the simulator [12]
created by the drone developers so the sensors were closely
matched. Second, WIL assumes the latency it introduces
through the sensor data manipulation does not affect the test
results. Our implementation mitigates this risk by using low-
latency communication channels combined with optimized
data manipulation libraries. For example, our implementation
generates mixed-reality sensor readings at 17Hz. Although
slower than the drone’s 60Hz camera [66], it was faster than
the perception layers control loop, which operated between
5-15Hz. Third, it assumes that it has access to precise AS
pose information. Inaccurate pose information could lead to
a misalignment of the AS in simulation and reality, result-
ing in mismatched sensor information. Our implementation
mitigates this risk through the use of Vicon [67], an industry-
grade motion capture system with mm accuracy.

IV. EVALUATION

The evaluation aims to assess the potential of WIL to re-
duce the simulation-reality gap and uncover the implications

Simulation WIL

Gate
Scenario

Person
Following

Drone

- _

External Camera

Fig 3: The camera sensor data that is fed into the AS software during simulation, mixed-reality, and reality for all three test
scenarios. The final column shows an external camera with the drone highlighted in dashed lines.

such as failure detection before real-world deployment.

A. Study Setup

For the evaluation, we are using the Parrot Anafi quadrotor
[66], which weighs 0.5kg, has a width of 0.3m, and is
equipped with a stabilized front-facing camera. We use two
simulation platforms. The first one is Sphinx, a simulator
developed and maintained by Parrot and built upon Gazebo
[22]. Since it was developed by Parrot’s engineers [12], it
serves as a good baseline to characterize the simulation-
reality gap. However, Sphinx does not enable read/write
access to the whole sensor space, a requirement to integrate it
with WIL. So as a second platform, we use a simulator built
on the Unity framework [68], which has already been used
for drones in the past [10], focusing mainly on the graphical
aspects as the camera readings given a drone’s pose. This
second simulator’s data is mixed with real sensor data.

We designed three distinct scenarios and goals for the
Parrot to achieve. The real-world tests were run in an indoor
flight cage of 6m X 6m x 2.5m instrumented with a Vicon
infrared motion capture system [67] that allowed precise
tracking of the drone to obtain further data for some of the
scenarios. A description of each scenario is given below.

Scenario 1: The first scenario had the drone fly through a
gate [69], as seen in the top row of Fig 3. To do this, we built
a subsystem that uses visual cues from the camera to navigate
through the gate before stopping [70]. The subsystem works
by identifying the gate and navigates the quadrotor towards
the center of the gate’s mass using a PID controller. Orange
gates with a diameter of 1m, and 0.5m were selected to allow
for both an easy and challenging scenario. In the challenging
scenario, the quadrotor has only 10cm between the propellers
and the gate’s sides if it is centered correctly. The gate is
placed in front of the quadrotor 3m away. A failure occurs
if the quadrotor touches any part of the gate at any time.

Scenario 2: The second scenario was person following
[71], as seen in the second row of Fig 3. We built another
subsystem that used object detection based on the camera
to track and follow the person. An existing object tracking

algorithm, YOLO [63], generated a bounding box around
the person object. The subsystem uses the bounding box’s
center to align the quadrotor with the person while using
the bounding box’s area to keep the person a set distance
away. In this scenario, a person started 3.5m away from
the drone and either walked or ran between the starting
point and another point perpendicular to the quadrotor 1.5m
away. When the drone moves outside a predefined area while
attempting to follow the person, we assert a failure as it risks
colliding with external obstacles or the person. The area was
set such that the quadrotor was allowed to overshoot by at
most 1m horizontally and needed to maintain between 2.25m
and 4.25m away from the person at all times.

Scenario 3: The final scenario was obstacle avoidance
[72], shown in the final row of Fig 3. We developed a
third subsystem using camera based object detection to
avoid incoming obstacles. We extended the object tracking
implementation from the previous scenario and measured
the bounding boxes of objects to judge whether an item
was moving towards the quadrotor. If that is the case, the
quadrotor will attempt to avoid it by moving upwards. In
our scenario, we placed two drones 2.5m apart. The first
drone’s goal was to avoid the incoming drone. The second
drone would take off after a set time, and once at the same
height as the first drone, fly towards it. We developed two
test cases. The first had the incoming drone reach a velocity
of 0.5m/s. The second had a velocity of 1m/s. For this
scenario, we considered the two drones colliding a failure.

Each scenario was developed so that the quadrotor could
reliably complete each of the tasks in simulation. This
represents a typical development process where an AS is first
perfected in simulation before real-world tests begin. After
the quadrotor passed each simulation scenario, it was run in
mixed-reality and then in the real world (when feasible).

B. Results

Table I summarizes the results across the three scenarios.
Overall, 5 tests were run for each of the 2 variants of the
3 scenarios, resulting in a total of 30 tests. The number of

TABLE I: Results from each scenario

Scenario gest Simulation WIL Reality
ase
Gate Large P. F P ‘ F
Navigation
Small P" F rdpr
Person Walk P “ F P ’ F
Following
Run
Obstacle Slow
Avoidance

(b) Real world.
Fig 4: Gate navigation failure in mixed reality and reality.

(a) Mixed reality

passing (P) test cases and failing (F) test cases were recorded
for each scenario. Table I shows that although all tests pass
in simulation, WIL found failing test cases. Moreover, if
WIL found a failing test case, there was always a failed
test case in reality. Similarly, if WIL found no failing
test cases, there were no failed tests in reality.

When considering each scenario in isolation, for example,
gate navigation, we notice that the drone can always navigate
through the gates without any failures in simulation. Using
WIL, we find that the drone can successfully navigate
through the large gate. However, for the small gate, the drone
crashes 80% of the time. To further assert that the mixed
reality results represented how the drone would behave in
reality, the tests were repeated in the real world. We can see
that for the large gate, the drone can successfully navigate
through it without failure. However, when running the drone
through a small gate in reality, it successfully passed once
and then failed on the next attempt. After the failed test,
testing was stopped due to the cost of damaging the drone.

The person following scenario produces results similar to
that of the gate navigation. Moving from simulation to mixed
reality and then reality, we notice cases where the drone fails.
We also observe that there are more failure cases in reality
than in mixed-reality. We believe this is partly due to the
person’s movement’s variation not being modeled accurately
in simulation. Consider the velocity of the person while
walking. The average standard deviation in the velocity of

the walking person in simulation was 1.51m/s, in mixed-
reality it was 1.32m/s, and in reality it was 2.27m/s. This
additional variation caused the quadrotor to move outside the
stipulated area to track the person in reality. Regardless of
this variation, WIL still identified at least one failing instance
in mixed-reality, reducing the simulation-reality gap.

The obstacle avoidance scenario shows similar trends.
Failure cases start to appear in the fast drone scenario during
mixed reality. However, due to the expense of failure in the
real world, where a failure would likely destroy two drones,
the fast test case was never attempted in the real world.

C. Implications

We found that the quadrotor’s simulated behavior does not
always reflect its real behavior due to the simulation-reality
gap, but WIL can reduce that gap producing results more
closely aligned with that of tests performed in the real world.

An expected but still worthwhile experience to mention
is WIL’s reduction in the cost of failures compared to field
testing. Consider the scenario of navigating through the small
gate. During WIL testing, the collisions are detected when
overlaying the Unity simulator data on reality, where the
failure is simply a boolean flag indicating a collision; this
leaves the drone unharmed while flying in an empty real-
world scenario, as shown in Fig 4a. This figure shows three
frames with views from both the onboard camera (top) and
external cameras (bottom). The quadrotor flies through the
mixed-reality gate with no consequences in the real world.
On the other hand, a failure in reality, shown in Fig 4b,
causes the drone to physically connect with the gate in the
second frame, and the propeller’s momentum flips the drone
causing it to land upside down. This sequence of events broke
the gate’s leg and damaged the drone propellers and camera.

Similar arguments can be made for the other two scenarios.
For the person following, the scenario is designed conserva-
tively to minimize the risk to humans, which would not be
as necessary if using WIL. Similarly, in the incoming drone
avoidance scenario, running the fast test in the real world
implies two drones’ potential destruction, which we deemed
unworthy given WIL’s results.

V. CONCLUSION

We have introduced a novel approach, world-in-the-loop
simulation (WIL), to narrow the simulation-reality gap by
integrating sensing data from simulation and the real world
to provide an AS with a mixed-reality. As defined, WIL
provides a framework to enable world-in-the-loop validation,
and the study shows how it can assist in exposing behaviors
more closely aligned to those present during field-testing,
including potential costly failures. These promising findings
open several avenues for future work. We will explore the
generation of richer mixed-realities that incorporate more
sensor types (e.g., laser scans, points clouds, microphone
arrays) and sensors from multiple simulators (e.g., Carla [8],
Airsim [9], FlightGoggles [10], BeamNG [19]) leveraging
their diverse set of strengths. We will also grow the API to

provide support for common operators and conduct studies
on other systems to better characterize the potential of WIL.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

J. Connelly, W. Hong, R. Mahoney Jr, and D. Sparrow, “Challenges
in autonomous system development,” PERFORMANCEMETRICS,
p- 220, 2006.

P. LeBeau, “Waymo starts commercial ride-share service,” URL:
https://www. cnbc. com/2018/12/05/waymo-starts-commercial-ride-
share-service. html, 2018.

M. Dikmen and C. M. Burns, “Autonomous driving in the real world:
Experiences with tesla autopilot and summon,” in Proceedings of
the 8th international conference on automotive user interfaces and
interactive vehicular applications, pp. 225-228, 2016.

C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and
C. Le Goues, “Crashing simulated planes is cheap: Can simulation de-
tect robotics bugs early?,” in 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), pp. 331-342,
IEEE, 2018.

Jackie Wattles, “CNN Business - Tesla on Autopilot crashed
when the driver’s hands were not detected on the wheel.”
/https://www.cnn.com/2019/05/16/cars/tesla-
autopilot-crash/index.html, 2019. [Online; accessed
5-November-2019].

Brian Garrett-Glaser, “Avionics - Drone Delivery Crash in Switzerland
Raises Safety Concerns As UPS Forms Subsidiary.” /https://
www.aviationtoday.com/2019/08/08/drone-delivery—
crash-in-switzerland-raises—safety—-concerns/,
2019. [Online; accessed 5-November-2019].

A. Harris and J. M. Conrad, “Survey of popular robotics simulators,
frameworks, and toolkits,” in 2011 Proceedings of IEEE Southeastcon,
pp. 243-249, IEEE, 2011.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv preprint arXiv:1711.03938,
2017.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics, pp. 621-635, Springer, 2018.

W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman,
“Flightgoggles: Photorealistic sensor simulation for perception-driven
robotics using photogrammetry and virtual reality,” arXiv preprint
arXiv:1905.11377, 2019.

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, (Sendai, Japan), pp. 2149—
2154, Sep 2004.

Parrot, “Parrot-Sphinx.” /https://developer.parrot.com/
docs/sphinx/whatissphinx.html, 2019. [Online; accessed
22-August-2019].

M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, et al., “F1/10:
An open-source autonomous cyber-physical platform,” arXiv preprint
arXiv:1901.08567, 2019.

B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy,
T. Sun, Y. Tao, B. Townsend, et al., “Deepracer: Educational au-
tonomous racing platform for experimentation with sim2real reinforce-
ment learning,” arXiv preprint arXiv:1911.01562, 2019.

L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,
Y. E Chen, C. Choi, J. Dusek, Y. Fang, et al., “Duckietown: an
open, inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1497-1504, IEEE, 2017.

F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot Operating System (ROS),
pp. 595-625, Springer, 2016.

G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated
generation of diverse and challenging scenarios for test and evaluation
of autonomous vehicles,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1443-1450, 1IEEE, 2017.

Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating
adversarial driving scenarios in high-fidelity simulators,” in 2019 Inter-
national Conference on Robotics and Automation (ICRA), pp. 8271-
8277, IEEE, 2019.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

BeamNG, “Research.” /https://beamng.gmbh/research/,
2019. [Online; accessed 26-January-2020].

J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality
in evolutionary robotics,” Journal of Intelligent and Robotic Systems,
vol. 50, no. 1, pp. 19-39, 2007.

N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in European Conference
on Artificial Life, pp. 704-720, Springer, 1995.

Gazebo, “Robot simulation made easy.” /http://
gazebosim.org, 2014. [Online; accessed 28-October-2020].

S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K.
Iyer, “Hands off the wheel in autonomous vehicles?: A systems
perspective on over a million miles of field data,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 586-597, IEEE, 2018.

Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 8973-8979,
IEEE, 2019.

F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016.

K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping,” in 2018 IEEE international conference on robotics
and automation (ICRA), pp. 4243-4250, IEEE, 2018.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 23-30, IEEE,
2017.

J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen, “A
comprehensive study of autonomous vehicle bugs,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), 2020.
P. Helle, W. Schamai, and C. Strobel, “Testing of autonomous
systems—challenges and current state-of-the-art,” in INCOSE Interna-
tional Symposium, vol. 26, pp. 571-584, Wiley Online Library, 2016.
Z. Micskei, Z. Szatmari, J. Olah, and I. Majzik, “A concept for testing
robustness and safety of the context-aware behaviour of autonomous
systems,” in KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications, pp. 504-513, Springer, 2012.
G. E. Mullins, A. G. Dress, P. G. Stankiewicz, J. D. Appler, and S. K.
Gupta, “Accelerated testing and evaluation of autonomous vehicles
via imitation learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1-7, IEEE, 2018.

A. Zita, S. Mohajerani, and M. Fabian, “Application of formal ver-
ification to the lane change module of an autonomous vehicle,” in
2017 13th IEEE Conference on Automation Science and Engineering
(CASE), pp. 932-937, IEEE, 2017.

J. Krook, L. Svensson, Y. Li, L. Feng, and M. Fabian, “Design and
formal verification of a safe stop supervisor for an automated vehicle,”
in 2019 International Conference on Robotics and Automation (ICRA),
pp. 5607-5613, IEEE, 2019.

O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh, “Verification of
a cruise control system using counterexample-guided search,” Control
Engineering Practice, vol. 12, no. 10, pp. 1269-1278, 2004.

G. Horanyi, Z. Micskei, and 1. Majzik, “Scenario-based automated
evaluation of test traces of autonomous systems,” 2013.

Y. Lu, Y. Guan, X. Li, R. Wang, and J. Zhang, “A framework of model
checking guided test vector generation for the 6dof manipulator,” in
2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4262-4267, IEEE, 2014.

C. E. Tuncali and G. Fainekos, “Rapidly-exploring random trees for
testing automated vehicles,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 661-666, IEEE, 2019.

A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-
driving cars with search-based procedural content generation,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 318-328, 2019.

C. Hildebrandt, S. Elbaum, N. Bezzo, and M. B. Dwyer, “Feasible and
stressful trajectory generation for mobile robots,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 349-362, 2020.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases for
self-driving cars from police reports,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 257—
267, ACM, 2019.

T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “Rvfuzzer: finding input validation bugs in
robotic vehicles through control-guided testing,” in 28th {USENIX}
Security Symposium ({USENIX} Security 19), pp. 425-442, 2019.

T. Woodlief, S. Elbaum, and K. Sullivan, “Fuzzing mobile robot
environments for fast automated crash detection,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 1IEEE,
2021.

A. Sarkar and K. Czarnecki, “A behavior driven approach for
sampling rare event situations for autonomous vehicles,” CoRR,
vol. abs/1903.01539, 2019.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, pp. 303-314,
2018.

H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu, “Deep-
billboard: Systematic physical-world testing of autonomous driving
systems,” arXiv preprint arXiv:1812.10812, 2018.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in proceedings of the 26th
Symposium on Operating Systems Principles, pp. 1-18, 2017.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification, pp. 97—
117, Springer, 2017.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), pp. 1599—
1614, 2018.

G. Singh, T. Gehr, M. Piischel, and M. Vechev, “An abstract domain for
certifying neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1-30, 2019.

D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum, “Systematic gen-
eration of diverse benchmarks for dnn verification,” in International
Conference on Computer Aided Verification, pp. 97-121, Springer,
2020.

D. Shriver, S. Elbaum, and M. Dwyer, “Reducing dnn properties
to enable falsification with adversarial attacks,” in 2021 IEEE/ACM
43nd International Conference on Software Engineering (ICSE), IEEE,
2021.

D. Shriver, D. Xu, S. Elbaum, and M. B. Dwyer, “Refactoring neural
networks for verification,” arXiv preprint arXiv:1908.08026, 2019.
Y. Shaogiang, L. Zhong, and L. Xingshan, “Modeling and simula-
tion of robot based on matlab/simmechanics,” in 2008 27th Chinese
Control Conference, pp. 161-165, IEEE, 2008.

K. D. Nguyen and C. Ha, “Development of hardware-in-the-loop sim-
ulation based on gazebo and pixhawk for unmanned aerial vehicles,”
International Journal of Aeronautical and Space Sciences, vol. 19,
no. 1, pp. 238-249, 2018.

M. Odelga, P. Stegagno, H. H. Biilthoff, and A. Ahmad, “A setup
for multi-uav hardware-in-the-loop simulations,” in 2015 Workshop on

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Research, Education and Development of Unmanned Aerial Systems
(RED-UAS), pp. 204-210, IEEE, 2015.

T. H. J. Collett and B. A. Macdonald, “An augmented reality debug-
ging system for mobile robot software engineers,” 2010.

F. Ghiringhelli, J. Guzzi, G. A. Di Caro, V. Caglioti, L. M. Gam-
bardella, and A. Giusti, “Interactive augmented reality for understand-
ing and analyzing multi-robot systems,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1195-1201,
IEEE, 2014.

A. G. Millard, R. Redpath, A. M. Jewers, C. Arndt, R. Joyce, J. A.
Hilder, L. J. McDaid, and D. M. Halliday, “Ardebug: an augmented
reality tool for analysing and debugging swarm robotic systems,”
Frontiers in Robotics and Al, vol. 5, p. 87, 2018.

J. Leathrum, Y. Shen, R. Mielke, and N. Gonda, “Integrating vir-
tual and augmented reality based testing into the development of
autonomous vehicles,” Proceedings of ModSim World 2018, pp. 24-26,
2018.

W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian,

“Mixed reality for robotics,” in 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 5382-5387, IEEE,

2015.

J.-P. Ore, C. Detweiler, and S. Elbaum, “Phriky-units: a lightweight,
annotation-free physical unit inconsistency detection tool,” in Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 352-355, 2017.

ROS, “ROS transform library” /http://wiki.ros.org/tf,
2017. [Online; accessed 20-September-2020].

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

ROS, “ROS common messages.” /http://wiki.ros.org/
common-msgs, 2017. [Online; accessed 20-September-2020].
Parrot, “Anafi.” /https://www.parrot.com/us/drones/
anafi, 2019. [Online; accessed 11-November-2019].

VICON, “Motion capture system.” /https://www.vicon.com,
2020. [Online; accessed 20-September-2020].

U. G. Engine, “Unity game engine-official site,” Online][Cited: Oc-
tober 9, 2008.] http://unity3d. com, pp. 15344320, 2008.

S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, guidance,
and navigation for indoor autonomous drone racing using deep learn-
ing,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2539—
2544, 2018.

J.-J. Hernandez-Lopez, A.-L. Quintanilla-Olvera, J.-L. Lopez-
Ramirez, F.-J. Rangel-Butanda, M.-A. Ibarra-Manzano, and D.-L.
Almanza-Ojeda, “Detecting objects using color and depth segmen-
tation with kinect sensor,” Procedia Technology, vol. 3, pp. 196-204,
2012.

Q. Shen, L. Jiang, and H. Xiong, “Person tracking and frontal face
capture with vav,” in 2018 IEEE 18th International Conference on
Communication Technology (ICCT), pp. 1412-1416, IEEE, 2018.

A. C. Woods and H. M. La, “Dynamic target tracking and obstacle
avoidance using a drone,” in International Symposium on Visual
Computing, pp. 857-866, Springer, 2015.

