
zMesh: Exploring Application Characteristics to Improve Lossy
Compression Ratio for Adaptive Mesh Refinement

Huizhang Luo∗, Junqi Wang†, Qing Liu∗, Jieyang Chen‡, Scott Klasky‡, Norbert Podhorszki‡
∗ New Jersey Institute of Technology, Newark, NJ, USA

† Rutgers University-Newark, Newark, NJ, USA
‡ Oak Ridge National Laboratory, Oak Ridge, TN, USA

huizhang.luo@njit.edu, junqi.wang@rutgers.edu, qliu@njit.edu, {chenj3, klasky, pnorbert}@ornl.gov

Abstract—Scientific simulations on high-performance comput-
ing systems produce vast amounts of data that need to be stored
and analyzed efficiently. Lossy compression significantly reduces
the data volume by trading accuracy for performance. Despite
the recent success of lossy compression, such as ZFP and SZ, the
compression performance is still far from being able to keep up
with the exponential growth of data. This paper aims to further
take advantage of application characteristics, an area that is often
under-explored, to improve the compression ratios of adaptive
mesh refinement (AMR) - a widely used numerical solver that
allows for an improved resolution in limited regions. We propose
a level reordering technique zMesh to reduce the storage footprint
of AMR applications. In particular, we group the data points that
are mapped to the same or adjacent geometric coordinates such
that the dataset is smoother and more compressible. Unlike the
prior work where the compression performance is affected by
the overhead of metadata, this work re-generates restore recipe
using a chained tree structure, thus involving no extra storage
overhead for compressed data, which substantially improves the
compression ratios. The results demonstrate that zMesh can
improve the smoothness of data by 67.9% and 71.3% for Z-
ordering and Hilbert, respectively. Overall, zMesh improves the
compression ratios by up to 16.5% and 133.7% for ZFP and
SZ, respectively. Despite that zMesh involves additional compute
overhead for tree and restore recipe construction, we show that
the cost can be amortized as the number of quantities to be
compressed increases.

Index Terms—High-performance computing (HPC), data stor-
age, lossy compression, adaptive mesh refinement (AMR)

I. INTRODUCTION

As the fidelity of scientific simulations continues to grow as
empowered by the next generation high-performance comput-
ing (HPC) systems, a major challenge that domain scientists
are faced with is how to store and analyze the vast volume of
simulation outputs efficiently to extract new knowledge. For
example, the Community Earth Simulation Model (CESM)
running on the Yellowstone supercomputer produces a total
of 170 terabytes of data for the fifth Coupled Model Inter-
comparison Project (CMIP5) run. Such a high data volume
poses a multitude of storage and data analysis challenges, and
renders even a simple step in its workflow (e.g., transposing
the data format) a lengthy process.

To address this challenge, various approaches have been
attempted, including floating-point data compression [1], [2],
[3], [4], in-situ data analysis [5], [6], [7], new storage archi-
tecture and I/O methods [8], [9], [10], [11]. Among them, data
compression is considered to be a fundamental yet effective

method to lower the cost of data movement. Depending on
whether there is information loss during compression, floating-
point data compression can be either lossless [12], [13] or
lossy [2], [3], [4], with the central theme of exploiting the
correlation between neighboring data points and compressing
either the residual or the decorrelated values. Compared to
lossless compression that preserves the exact content of orig-
inal data, lossy compression offers much higher compression
ratios by trading accuracy for performance, and is deemed to
be the path forward to handling extreme-scale data. Despite
the recent success in this direction, such as ZFP [3] and
SZ [4], [14], the compression ratios are still not attractive
enough to be indispensable in scientific processes. Therefore,
this work aims to further explore ideas and techniques to
improve the compression ratios of lossy compressors. One root
cause of the limited compression performance is that floating-
point compressors are designed around the presumptive local
smoothness in data [15], which may be insignificant.

This paper studies data reduction for adaptive mesh refine-
ment (AMR), a widely used numerical technique for solving
partial differential equations [16], [17]. The central idea of
AMR is to place higher resolutions in selected regions that
have higher local truncation error, thereby greatly reducing
the overall computational complexity and storage overhead,
as compared to the case where a high resolution is enforced
everywhere. The motivation behind studying AMR data com-
pression is threefold: First, AMR represents a large set of HPC
applications that is highly data intensive, for which reducing
data is necessary to lower the I/O cost. It is widely adopted
in various science and engineering domains, and therefore we
believe improving the AMR compression ratios is beneficial
to a broad range of applications. Second, AMR is unique
in its data model, featured by a set of hierarchical grids
(often called boxes in AMR) with different grid spacing, and
brings additional challenges and opportunities for reduction.
Intuitively, there exists high information redundancy among
grids across levels that can be exploited for compression.
However, the native organization of AMR data does not
easily expose this redundancy to compressors (Section II-A),
thus leading to low compression ratios. Last but not least,
the architectural trend that compute has become increasingly
cheap as compared to I/O on HPC systems [18] motivates us
to use additional compute cycles to preprocess data to improve
the compressibility of data. This work aims to further improve

the compression ratios of AMR-based applications using lossy
compression, leveraging the inherent information redundancy
within the AMR output. Specifically, this paper makes the
following contributions.
• We propose a level reordering technique for AMR, called

zMesh, to improve the local smoothness within a dataset1.
Unlike prior reordering methods that maintain a restore
recipe as part of the compressed data, this work can re-
generate the restore recipe using a chained tree structure
during decompression. Therefore, there is no additional
metadata associated with reordering in the compressed
data, which substantially improves the compression ra-
tios.

• We further develop zMesh in the context of space-filling
curves to improve the compression ratios of existing
compressors. While both zMesh and space-filling curve
aim to improve the locality, zMesh further leverages the
redundancy across levels and therefore its merits are
orthogonal to space-filling curve.

• We evaluate the effectiveness of zMesh with real AMR
applications in Chombo [19], a well adopted AMR frame-
work developed at Lawrence Berkeley National Labo-
ratory, and provide in-depth analyses with regard to its
improvement over existing compressors, the introduced
overhead, and data subsetting performance.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and related work, along
with motivation in Section III. Section IV presents the de-
sign and implementation of zMesh. Section V evaluates the
proposed zMesh in terms of improvements of smoothness and
compression ratios, overhead and the ability of accessing the
compressed data. Section VI presents the conclusions.

II. BACKGROUND AND RELATED WORK

A. Adaptive Mesh Refinement

In simulation-based scientific discovery, many science prob-
lems do not require a uniform accuracy across the entire
problem domain, for example, those spatial regions in a
simulation that have small truncation errors or do not contain
interesting physical phenomena. AMR provides a framework
level solution to generate and evolve a set of hierarchical
grids in an adaptive manner. Compared to the uniform grid,
the key advantages of AMR are the substantial computational
and storage savings as well as the adaptive control of grid
resolution. Fig. 1 illustrates an example of AMR output with
two levels of fidelity. The grid in black (level 0) represents the
original problem domain with a coarse grid spacing, whereas
the grid in blue (level 1) is a fine grid which has a half grid
spacing, covering a subset of the problem domain. A key
motivation of this work is that, in AMR the data points of
a finer level are identified and computed directly from the
coarser level, and therefore there exists correlations between a
fine and a coarse grid, which can be exploited for compression.

1The source code is available at https://github.com/HNUHPC/AMR.

(a) (b)

1A 1B1A 1B

1E 1F1E 1F

1A 1B

1E 1F
0A

1A 1B

1E 1F
0A

1C 1D1C 1D

1G 1H1G 1H

1C 1D

1G 1H
0B

1C 1D

1G 1H
0B

000H

008H

010H

020H

028H

018H

0A

0C

0B

0D

1A

1B

0A

0C

0B

0D

1A

1B

000H

008H

010H

020H

028H

018H

0A

0C

0B

0D

1A

1B

040H

048H

1C

1D

040H

048H

1C

1D
050H

058H

1G

1H

030H

038H

1E

1F

030H

038H

1E

1F
040H

048H

1C

1D
050H

058H

1G

1H

030H

038H

1E

1F0C 0D

Fig. 1: AMR data layout (Z-ordering). (a) logical layout. (b) physical layout
on storage. The level 0 grid consists of data points 0A to 0D, while the level
1 grid consists of 1A to 1H. After serialization, the data locality across levels
is lost. For example, after Z-ordering, grid points 1A, 1B, 1E and 1F are not
physically adjacent to 0A, despite that they capture physical quantities (e.g.,
temperature, pressure) over the similar region.

AMR employs sophisticated data layout to manage the
hierarchical grids. For example, rather than row-wise ordering,
various space-filling curves, such as Z-ordering (Morton) [20],
Hilbert curve [21] and Moore curve [22], were proposed
to improve the performance of spatiotemporal data retrieval.
However, the current methods will traverse data level by
level, and none of them have considered the similarities
among levels when compressing data. Fig. 1 shows an ex-
ample of a 2-level AMR layout using Z-ordering. It maps
the multi-dimensional data to one dimension through a Z-
shaped traversal, as shown in Fig. 1(a). Despite that Z-ordering
improves the spatial locality versus the simple row or column
ordering, it fails to capture the locality among AMR levels.
For example, grid points 1A-1B-1E-1F and 0A capture the
quantities (e.g., pressure, temperature) over the same physical
regions, and therefore should have similar values. However,
after Z-ordering, these grid points are dispersed, which can
harm the local smoothness.

B. Lossy Compression

Lossy compression of scientific data [2], [3], [4] has re-
ceived renewed interest recently, largely due to the need to
manage the ever-increasing data volume and the promising
performance achieved by lossy compression. The main idea
of lossy compression is to reduce the data volume with
inexact approximations and partial data discarding. ZFP [3]
transforms the original data to the frequency domain so that the
unimportant components can be selectively discarded within a
given error bound. In particular, it partitions the entire dataset
into fixed-sized blocks and each block is further converted
to mantissas along with a common exponent. The mantissas
are then converted into fixed-point signed integers, followed
by an orthogonal transform to generate near-zero coefficients,
which are encoded using embedded coding for each bit plane.
In contrast, SZ uses a 1D curve-fitting predictor [4] or a
multi-dimensional Lorenzo predictor [23] to predict the data
value for each data point using its neighboring points. If a
data point can be curve-fitted, i.e., the difference between
the original data and the prediction is within the given error
bound, a linear-scaling quantization method is used to encode
the data value. The quantized data are further compressed

https://github.com/HNUHPC/AMR

TABLE I: AMR applications tested.

Application Description and configuration

PineIsland-
Glacier

The simulation of the fastest melting glacier in Antarctica, the
application uses real data of Pine Island.
Problem domain: 256km×384km; Size of the base grid: 2km×h2km;
of AMR levels: 5; # of boxes of each level: 24, 27, 52, 136, 326;
of data points each level: 27744, 15868, 32032, 64256, 128440;
Timestep size: 39 MB.

MISMIP3D Marine ice sheet model inter-comparison project for plan view
models (3D), incorporating two horizontal dimensions.
Problem domain: 800km×100km; Size of the base grid: 6.25km
×6.25km; # of AMR levels: 9; # of boxes of each level: 4, 2, 4, 8,
13, 41, 70, 143, 311; # of data points each level: 2448, 2312, 4080,
5984, 10436, 19716, 38136, 72940, 144220; Timestep size: 35 MB.

Greenland The simulation of the melting glacier in Greenland.
Domain size: 1440km×2800km; Size of the base grid: 20km×
20km; # of AMR levels: 6; # of boxes each level: 15, 95, 199, 740,
1953, 5281; # of data points each level: 11700, 41628, 128140,
398096, 1127972, 2935300; Timestep size: 638 MB.

using Huffman coding, motivated by the observation that a
number of data points can be quantized into the same level.
For curve-missed data points, binary representation analysis
will be performed to reduce the storage footprint.

Overall, ZFP and SZ are very effective in taking advantage
of the information redundancy in scientific data. However,
they both are designed to be generic, without leveraging
the application characteristics. Particularly, in the context of
AMR, they are oblivious to the hierarchical layout and the
redundancy among AMR levels.

III. MOTIVATION

In this section, we aim to understand the similarity among
AMR levels and provide grounds for reordering AMR data to
improve the compression ratios. To this end, we test a number
of AMR applications (Table I). Each application calculates
a set of six physical quantities in the simulation, labeled as
P1-P6 for PineIslandGlacier, M1-M6 for MISMIP3D, and
G1-G6 for Greenland, respectively. For example, the six
physical quantities of PineIslandGlacier are thickness, xVel,
yVel, topography, dThickness/dt, and fVel, respectively.

Our method is inspired by the observation that general-
purpose lossy compressors exploit the presumptive local
smoothness in data through curve-fitting or discarding high
frequency components. However, the information redundancy
in data may exist well beyond the local smoothness that only
relates to the neighboring data points. Fig. 2 shows the data
features of PineIslandGlacier, MISMIP3D, and Greenland. In
particular, Fig. 2(a), (b), (d), (e), (g) and (h) show the values
of data points at levels 0 and 1, respectively. To quantify the
smoothness of data points at level i, we calculate mean of
absolute change (MAC), which is defined as

MAC =

∑N [i]−1
j=1 |V [i][j]− V [i][j − 1]|

2

N [i]

where V [i][j] denotes the value of data point j, 0 ≤ j < N [i],
of level i, and N [i] denotes the total number of data points
of level i, where 0 ≤ i < L and L is the number of levels.
Intuitively, the smaller the MAC is, the smoother the data is.
Fig 2(c), (f) and (i) calculate the difference between levels

0 9248 18496 27744
Data point ID

0

500

1000

1500

2000

2500

D
a
ta

 v
a
lu

e

MAC=37.77

(a) O(P1, 0)

0 5289 10579 15868
Data point ID

0

500

1000

1500

D
a
ta

 v
a
lu

e

MAC=27.30

(b) O(P1, 1)

0 5289 10579 15868
Data point ID

150

100

50

0

50

100

150

D
a
ta

 v
a
lu

e

MAC=16.25

(c) D(P1, 0, 1)

0 816 1632 2448
Data point ID

0
500

1000
1500
2000
2500
3000
3500

D
a
ta

 v
a
lu

e

MAC=49.43

(d) O(M1, 0)

0 771 1541 2312
Data point ID

0

500

1000

1500

2000

2500

D
a
ta

 v
a
lu

e

MAC=56.82

(e) O(M1, 1)

0 771 1541 2312
Data point ID

60

40

20

0

20

40

60

D
a
ta

 v
a
lu

e

MAC=29.35

(f) D(M1, 0, 1)

0 3900 7800 11700
Data point ID

0
500

1000
1500
2000
2500
3000
3500

D
a
ta

 v
a
lu

e

MAC=100.86

(g) O(G1, 0)

0 13876 27752 41628
Data point ID

0
500

1000
1500
2000
2500
3000
3500

D
a
ta

 v
a
lu

e

MAC=70.37

(h) O(G1, 1)

0 13876 27752 41628
Data point ID

600

400

200

0

200

400

600

D
a
ta

 v
a
lu

e

MAC=40.47

(i) D(G1, 0, 1)

Fig. 2: AMR data feature. Note O(·) is an operator that retrieves a particular
level of a quantity. For example, O(P1, 0) denotes the level 0 of P1. Similarly,
D(·) is an operator that calculates the difference between two levels of a
quantity. For example, D(P1, 0, 1) denotes the delta between levels 0 and 1
of P1.

0 and 1 of the three datasets. Note that since the number
of data points at levels 0 and 1 are different as a result
of refinement, we utilize piecewise constant interpolation
to interpolate the correction from level 0 to level 1. For
example, the delta between data point 0A in Fig. 1 and its
corresponding data points {1A, 1B, 1E, 1F} at level 1 is
calculated as Delta[1][j] = V [1][j] − V [0][0], j = 0, 1, 4, 5.
The results show that the difference between the two levels
are much smoother than the original data, as evidenced by
the reduced MAC. For example, the MAC of levels 0 and 1
in PineIslandGlacier are 37.77 and 27.30, respectively, while
that of delta is reduced to 16.25. This motivates us to further
expose the similarity among levels to improve the compression
performance.

IV. LEVEL REORDERING

Based upon the observation that there exists similarity
among AMR levels, the idea of zMesh is to restructure AMR
data in a way that those data points belong to the same
geometric locations in the simulation will be made adjacent
prior to lossy compression.

A. Overall Design

For the convenience of discussion, we denote a box in
AMR as b, which can be represented by a pair of coordinates,
(b.smallEnd, b.bigEnd), where b.smallEnd and b.bigEnd
are the two diagonally corners of the rectangular region. The
set of boxes constructed by AMR is denoted as boxes, where
boxes[i] denotes all boxes at level i. Fig. 3(a) illustrates a
dataset of three levels, with one, two, and one boxes at each

0B

0C 0D

2A 2B
2C 2D

1G

1C
1A

1E

1H

1F

1D

1B

(a) (b)

Original data

Reordered data

R
eorder

R
estoration

0A 0B 0C 0D

1A 1B1C 1D 1E 1F 1G 1H

2A 2B 2C 2D
(c)

ctree[0]

ctree[1]

ctree[2]

0A

boxes[2][0]

boxes[0][0]

boxes[1][0]

boxes[1][1]

0A 0B 0C 0D 1A 1B 1C 1D0A 0B 0C 0D 1A 1B 1C 1D

1E 1F 1G 1H 2A 2B 2C 2D1E 1F 1G 1H 2A 2B 2C 2D

0A 1A 2A 2B 2C 2D 1B 1C0A 1A 2A 2B 2C 2D 1B 1C

1D 0B 0C 0D 1E 1F 1G 1H1D 0B 0C 0D 1E 1F 1G 1H

R
eorder recipe

0
4

12
13
14
...
11

0
4

12
13
14
...
11

R
eorder recipe

0
4

12
13
14
...
11

0
9
10
11
1
...
5

0
9
10
11
1
...
5

R
estore recipe

0
9
10
11
1
...
5

R
estore recipe

0 1

pIndex
2 3

4 5 7 8 9 5 10 11

12 13 14 15

Fig. 3: An example of zMesh. (a) an example of AMR data layout. (b) reordering and restoration. The reorder/restore recipes maintain the indexes of data
to allow for reordering/restoration. For example, 0 and 9 in the restore recipe indicate that the first data point is at position 0 in the reordered data, which
is 0A, and the second data point is at position 9, which is 0B. The restore recipe will add to the total size of compressed data, thereby reducing the overall
compression ratio. (c) the proposed recipe-free compression enabled by computing a chained tree structure on-the-fly. The root node of each tree belongs to
level 0 and is maintained by ctree[0]. pIndex denotes the original position, which is used later to generate the reorder recipe.

level. Each box has four data points, where each point is
denoted by the concatenation of its level ID and sequence
index within its level. For example, 0A denotes the first data
point at level 0. As shown in Fig. 3(b), without reordering,
the original data will be stored level by level as

0A-0B-0C-0D-1A-1B-1C-1D-1E-1F-1G-1H-2A-2B-2C-2D
In contrast, with zMesh, the segment of 1A-1B-1C-1D is
moved between 0A and 0B due to the similarity between 0A
and segment 1A-1B-1C-1D. Likewise, the segment of 1E-1F-
1G-1H is moved after 0D. Therefore, we have

0A-1A-1B-1C-1D-0B-0C-0D-1E-1F-1G-1H-2A-2B-2C-2D
Next, we move the segment of 2A-2B-2C-2D after 1A, again
due to the similarity between levels 1 and 2. The reordered
data will be stored as

0A-1A-2A-2B-2C-2D-1B-1C-1D-0B-0C-0D-1E-1F-1G-1H
as shown in the lower portion of Fig. 3(b). The reordering
process is facilitated by a reorder recipe, which is

0, 4, 12, 13, 14, 15, 5, 6, 7, 1, 2, 3, 8, 9, 10, 11
where each number indicates the original position for each
data point. Similarly, to allow data to be reconstructed later,
we need to construct a restore recipe as

0, 9, 10, 11, 1, 6, 7, 8, 12, 13, 14, 15, 2, 3, 4, 5
where each number indicates the index of an original data
point. For example, the first two elements in the restore recipe,
0 and 9, indicate that after restoration, the 0-th element 0A
and the 9-th element 0B will be recovered as the first two
data points.

Chained tree structure. A key step associated with real-
izing level reordering is to build up the geometric mapping
between data points in fine and coarse levels. To this end, we
implement a chained tree structure ctree, as shown in Fig. 3(c),
which can be constructed based upon boxes. In particular,
ctree[i] maintains all data points at level i, and ctree[i][j]
represents the j-th data point at level i. Essentially, the idea is
that if a data point at level i is maintained as a tree node, those
that fall within its geometric boundary at level i + 1 will be
maintained as its direct child nodes. For example, the first box
at level 2, boxes[2][0], which contains {2A, 2B, 2C, 2D} is
geometrically mapped to the first box at level 1, boxes[1][0].

(a) (b)

ctree Box layout

Reorder recipe

ReorderingOriginal data

Reordered dataCompression

Compressed data

ctree

Box layout

Reorder recipe

Restoration

Original data

Reordered data

Decompression

Compressed data

Restore recipe

Fig. 4: Workflow of zMesh. (a) compression. (b) decompression.

Since the coordinate of 2A is within the boundary of 1A,
we set 1A in boxes[1][0] as the parent and 2A as the child.
Then, other data points within boxes[2][0], i.e., 2B, 2C and
2D, will be maintained as siblings to 2A, sharing 1A as the
common parent. More details on using ctree for reordering
are presented in Section IV-B.

Recipe-free restoration. A challenge we aim to address in
this work is how to reduce the storage overhead associated
with maintaining the restore recipe, which has been a key
problem for reordering based methods. As shown in prior
work, such as ISABELA [2] and Migratory Compression [24],
the compression ratios can be hurt by the recipe overhead,
which adds to the size of compressed data. Therefore, one
contribution we make in zMesh is that, instead of storing
the recipe alongside the compressed data, we compute ctree
on-the-fly during decompression using boxes, based upon
which we then construct the recipe. We note that the storage
overhead of boxes is negligible - only a pair of coordinates
per box is stored, and the box layout is typically maintained
by AMR applications for its numerical calculations. Therefore,
our method essentially does not involve storage overhead for
maintaining the restore recipe in the compressed data. The
reorder recipe is constructed by traversing ctree with depth
first search (DFS), and the restore recipe is the inverse of the
reorder recipe [24].

Fig. 4 shows the key steps in zMesh for compression and
decompression. During the compression, ctree is generated
according to the box layout based upon the geometric mapping

between adjacent levels, and the reorder recipe is constructed
by traversing ctree. With the reorder recipe, the original data
are reordered and then further compressed by lossy com-
pressors. Similarly, during decompression, the restore recipe
is generated by ctree based upon the box layout. Then,
the compressed data are inflated and reconstructed using the
restore recipe. Note that for decompression, the process of
constructing the restore recipe can be done in parallel with
the inflation process.

B. Building Reorder and Restore Recipe

Algorithm 1 Building reorder and restore recipe.
Require: A set of boxes boxes, the number of AMR levels L
Ensure: Generate the reorder and restore recipe
1: for b in boxes[i] of level i, i = 0, 1, . . . , L− 1 do
2: j ← 0
3: for each coordinate (x, y) within b do
4: Allocate tree[i][j] with structure members of (x, y), pIndex,

firstChild and nextSibling
5: j ← j + 1
6: end for
7: end for
8: Establish the geometric mapping Pmap[i][j]
9: for i from L− 1 to 1 do

10: for tree[i][j] in ctree[i] do
11: parent← ctree[i− 1][Pmap[i][j]]
12: if parent has no first child then
13: Set tree[i][j] as the first child of parent
14: else
15: Append ctree[i][j] to the sibling list of the first child
16: end if
17: end for
18: end for
19: Traverse the trees with DFS and output pIndex as reorder recipe
20: Restore recipe is the inverse of reorder recipe

Algorithm 1 shows how to build the reorder and restore
recipe of zMesh by maintaining ctree. The algorithm is
divided into three main steps. Step 1. Initialize tree. We
initialize ctree level by level, and within each level box
by box. For a box b ∈ boxes[i], we allocate a tree node
ctree[i][j] for each data point that falls between b.smallEnd
and b.bigEnd, where i is the level ID and j is the data point
ID within the level. The tree node ctree[i][j] maintains the
associated data point’s coordinate (x, y), the original position
index pIndex (shown in Fig. 3) in the level data, and pointers
to the first child firstChild and the next sibling nextSibling
(Line 1-7).

Step 2. Establish the geometric mapping. Essentially, we
need to identify the parent node of ctree[i][j] that will be later
reordered and compressed together (Line 8). We denote the
data point ID of the parent node as Pmap[i][j], and therefore
the parent node is ctree[i− 1][Pmap[i][j]]. Then, we compare
the coordinate of ctree[i][j] with those of nodes in ctree[i−1]
to identify a match. In particular, if the distance between two
neighboring data points at level i, e.g., between ctree[i][j+1]
and ctree[i][j], is within the refinement ratio, which is a
parameter of AMR applications to define the ratio of grid
sizes between two adjacent levels, we directly set the parent
of ctree[i][j + 1] to ctree[i− 1][Pmap[i][j]], without looping

through all data points in ctree[i − 1]. We take ctree[1] in
Fig. 3(c) as an example. For the first box boxes[1][0], we start
with its first data point, smallEnd, that is 1A. By comparing
1A with the level 0 boxes, in this case only boxes[0][0],
we have the parent of 1A as 0A. For the other three nodes
1B, 1C and 1D within boxes[1][0], since their distances to
1A are within the refinement ratio of 2×2, they share the
same parent with 1A. We next perform a similar procedure
for boxes[1][1], and obtain Pmap[1] = {0, 0, 0, 0, 3, 3, 3, 3}. If
ctree[i − 1][Pmap[i][j]] does not have a child, ctree[i][j] is
then set as its first child. Otherwise, ctree[i][j] is appended to
the sibling list firstChild.nextSibling (Line 9-18).

Step 3. Build the reorder and restore recipe. To build the
reorder recipe, we traverse ctree and output pIndex (Line
19). From each tree within ctree, we traverse the nodes from
its root using DFS. Take Fig. 3(c) as an example, the pIndex
list of ctree is {0, 1, 2, · · · , 15}, and by traversing ctree with
DFS, the reorder recipe is {0, 4, 12, 13, 14, 15, 5, 6, 7, 1,
2, 3, 8, 9, 10, 11}. Then, we can build the restore recipe
as {0, 9, 10, 11, 1, 6, 7, 8, 12, 13, 14, 15, 2, 3, 4, 5},
which is the inverse of the reorder recipe and regenerated
by restore recipe[reorder recipe[j]] = j (Line 20). The
memory overhead of zMesh stems from maintaining ctree,
Pmap, and reorder/restoration recipe. The sizes of a ctree
node, a Pmap element and a recipe element are 5, 1 and 1
integers, respectively.

C. zMesh with Space-filling Curve

In this section, we further develop zMesh in the context
of space-filling curve - a well known technique to preserve
data locality [20] for a multi-dimensional dataset. While both
zMesh and space-filling curve aim to improve the locality,
zMesh further leverages the redundancy across levels and
therefore its merits are orthogonal to space-filling curve. In
particular, space-filling curve improves the data locality from
the aspect of intra-level, while zMesh is from inter-level.
The key challenge is that when space-filling curve is applied,
Pmap[i][j] will accordingly change.

We present the idea of combining zMesh with space-filling
curve through an example of 2-level AMR layout, where there
is only one box at each level. Both the sizes of boxes[0][0] and
boxes[1][0] are 4× 2, with data points 0A-0B-0C-0D-0E-0F-
0G-0H at level 0, and 1A-1B-1C-1D-1E-1F-1G-1H at level
1. Data points 1A, 1B, 1E and 1F are mapped to 0C, and
data points 1C,1D,1G and 1H are mapped to 0D. Thus, we
have Pmap[1] = {2, 2, 3, 3, 2, 2, 3, 3}. The following are the
steps of zMesh under Z-ordering. Step 1: Do the space-filling
curve and the resulting ctree[0] is 0A-0B-0E-0F-0C-0D-0G-
0H. Step 2: We denote the inverse transformation of space-
filling curve as RDe, which allows ctree[0] to be reconstructed
in original order. Based on the reordering of ctree[0], we
have RDe = {0, 1, 4, 5, 2, 3, 6, 7}. Step 3: Calculate the new
parent index of ctree[1][j] as P ′map[1][j] = RDe[Pmap[1][j]].
For example, the new parent index of 1A is P ′map[1][0] =
RDe[Pmap[1][0]] = RDe[2] = 4. Similarly, for 1C, we

boxes[1][0]

Processor 0

boxes[0][0]

boxes[0][1]
boxes[1][1]

Processor 1

boxes[0][1]
boxes[1][1]

Processor 1
boxes[2][0]

boxes[2][1]

Fig. 5: A schematic of zMesh parallel compression.

0 2 4 6 8 10 12
Number of AMR levels

0

5000

10000

15000

20000

25000

30000

T
o
ta

l
d
is

ta
n
ce

Z-order

Z-order+zMesh

Fig. 6: Total distance of standard Z-ordering (Z-order) and Z-ordering in
conjunction with zMesh (Z-order+zMesh).

have P ′map[1][2] = RDe[Pmap[1][2]] = 5. Finally, we have
P ′map[1] = {4, 4, 5, 5, 4, 4, 5, 5}.

D. Parallel zMesh Compression

zMesh is embarrassingly parallel in nature and each pro-
cessor compresses data locally without collective communi-
cation, solely based upon its local box layout constructed
by AMR. As shown in Fig. 5, processor 0 computes three
boxes, boxes[0][0], boxes[1][0], boxes[2][0], while processor
1 computes boxes[0][1], boxes[1][1], boxes[2][1]. The zMesh
compression of data at processor 0 is done solely based upon
the layout of the its resident boxes, completely independent of
the compression at processor 1, without any communications.
We carefully note that the numerical calculation in AMR itself
typically involves communications for grid synchronization,
but the zMesh compression does not incur additional commu-
nications.

E. Data Regularization of zMesh

In this section, we show that zMesh in conjunction with
space-filling curve can further improve the data locality with a
typical AMR example (complete refinement). We focus on the
total distance, which is a common metric for data locality [25].
Consider a dataset of levels 0, 1, . . . , L − 1 with N [i] data
points at level i, let N =

∑L−1
i=0 N [i] be the total number of

data points. The refinement ratio is 2r, where r is a positive
integer. We introduce two ways of sequentializing these N
points. Let A = {aj}N−1j=0 and B = {bj}N−1j=0 be the sequences
of points generated by standard Z-ordering (level by level)
and Z-ordering in conjunction with zMesh, respectively, where
aj and bj are points on the plane where data points in the
AMR structure are taken. Let E = {Ej = (aj , aj+1), j =
0, 1, . . . , N−2} and F = {Fj = (bj , bj+1), j = 0, 1, . . . , N−
2} be sets of edges.

Fig. 6 shows results of total distance across different number
of AMR levels. Due to the space limit, we only take Z-ordering

as an example. In this example, all the cells in a coarser level
are refined, and r is set as 1. There are 22(i+1)r cells at level
i, and the side length of a cell at level i is 2−ir. The results
shows that the total distance of zMesh is obviously smaller
than that of Z-ordering.

Recall that in AMR algorithms, the data are assumed to
be second differentiable over the underlying space. Thus, the
gradient exists and is locally bounded. Since the edge-length
distribution is regularized (length locally shortened) in zMesh,
the data difference distribution (which locally can be estimated
as the product of local gradient and edge length) is also tamed.
This helps reduce the total variation of the sequence of data,
as observed in empirical results. Moreover, detailed analysis
shows that since zMesh makes a number of long distance
adjacent pair of data points to closer pairs, the sequence is
more likely to behave better under lossy compression (better
for curve-fitting or data transformation) while at the same time
fewer adjacent pairs are made slightly farther.

V. EVALUATION

A. Experimental Setup

We evaluate the effectiveness of zMesh through experiments
conducted on a Linux server with Ubuntu 16.04.5 LTS. The
processor is Intel CoreTM i5-7500 that has 4 cores with
frequency of 3.4 GHz and 16 GB of memory. The parallel
experiments were done on Summit at Oak Ridge National
Laboratory. We use ZFP (0.5.5) and SZ (2.1.8) as the backend
lossy compressors. In particular, we use the absolute error
bound for both compressors. To test a range of error bounds
that covers the entire value range of a dataset, we use the
product of the relative error bound and the range of data to
determine the absolute error bound for each dataset. For SZ,
the number of quantization intervals is set to 0, which allows
SZ to search for an optimized setting. In our experiments,
the default relative error bound is 1E-3, unless otherwise
specified. We evaluate four setups across this paper, including
the standard Z-ordering (Z-order), Z-ordering in conjunction
with zMesh (Z-order+zMesh), Hilbert curve (Hilbert), and
Hilbert curve in conjunction with zMesh (Hilbert+zMesh).

B. Compression Performance

1) Compression Ratio: As the very first step, we examine
whether the local smoothness is improved through zMesh as
compared to Z-order and Hilbert. Fig. 7 calculates the MAC
across all 18 datasets as described in Table I. On average,
zMesh reduces the MAC of Z-order and Hilbert by 67.9% and
71.3%, respectively. This suggests that after reordering, data
are significantly smoother. Fig. 8 further measures the resulting
compression ratios using the four setups. Overall zMesh yields
higher compression ratios for both ZFP and SZ, as compared
to the standard space-filling curves. The compression ratios are
improved by 4.4% to 16.4% for Z-order with ZFP, 5.7% to
16.5% for Hilbert with ZFP, 25.2% to 113.3% for Z-order with
SZ, and 28.4% to 133.7% for Hilbert with SZ, respectively.

P1 P2 P3 P4 P5 P6 M1 M2 M3 M4 M5 M6 G1 G2 G3 G4 G5 G6
0

30
60
90

120
150

M
A

C

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

Fig. 7: Local smoothness measured in MAC. The x-axis is the quantity to be
compressed and the y-axis is MAC.

P1 P2 P3 P4 P5 P6 M1 M2 M3 M4 M5 M6 G1 G2 G3 G4 G5 G6
(a) ZFP

0

5

10

15

20

C
o
m

p
re

ss
io

n
 r

a
ti

o

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

P1 P2 P3 P4 P5 P6 M1 M2 M3 M4 M5 M6 G1 G2 G3 G4 G5 G6
(b) SZ

0

100

200

300

C
o
m

p
re

ss
io

n
 r

a
ti

o

Fig. 8: Compression ratio.

2) Internal Compression Metrics: To further understand
how the compressors react to the improved smoothness and
in turn increase the compression ratio, we collect the in-
ternal compression metrics of ZFP and SZ, as described in
Table II. For ZFP, the size of compressed data is the sum
of sizes of all compressed blocks, given that ZFP parti-
tions the entire dataset into fixed-sized blocks. The important
metrics are ZeroCnt, MaxExp, MaxPrec, BitsBitplane,
and BlockSize (detailed in Table II). For the case that a
block contains all zeros, BlockSize is one since only a
single bit of zero is written. Otherwise, BlockSize is the
sum of BitsBitplane and BitsExp, where BitsExp is
a fixed number of bits representing the exponents (11 for
double-precision floating-point data). For a non-zero block,
BitsBitplane =

∑MaxPrec−1
j=0 BitsPerBitplanej , where

BitsPerBitplanej is the j-th bit plane to encode for
the block, and MaxPrec is calculated as MaxPrec =
min(64,MaxExp − log2(Errorbound) + 2 ∗ (dim + 1)),
where dim is the number of dimensions. For SZ, the size of
compressed data is the sum of the sizes of curve-hit points and
curve-missed points. The former further consists of Huffman
tree and Huffman encoding for quantized data. Therefore,
the important metrics are HitRatio, QuantIntv, TreeSize,
EncodeSize, and OutlierSize (detailed in Table II). Further
details regarding the compression algorithms can be found in
prior work [3], [4].

Fig. 9 measures the internal metrics of ZFP. Due to the
space limit, we only show the results of P1, M1 and G1. As
compared to Z-order, zMesh increases ZeroCnt from 1,050 to
1,282 for P1, and from 67,372 to 84,403 for G1, respectively.
Despite the significant improvement in ZeroCnt, the percent-
age of all-zero blocks is low across all datasets, and therefore
the contribution to the overall improvement of compression ra-

TABLE II: A list of internal compression metrics.

Symbols Description

ZFP

BlockCnt Number of blocks
ZeroCnt Number of blocks that are with all zeros
MaxExp The common (largest) exponent of each block
MaxPrec Maximum number of bit planes to encode in

order to meet the accuracy demand
BitsBitplane Number of bits used in encoding bitplane

BlockSize Size of each block data (in bits)

SZ

HitRatio Curve-fitting hit ratio
QuantIntv Number of quantization intervals
TreeSize Size of Huffman tree (in bytes)

EncodeSize Total size of Huffman coding (in bytes)
OutlierSize Total size of curve-missed points (in bytes)

tio is negligible. Meanwhile, MaxExp and MaxPrec remain
almost identical since the average of the maximum exponent
will not change substantially after reordering. The average
BitsBitplane of zMesh has a substantial reduction of 2.73,
6.27 and 2.63, for P1, M1 and G1, respectively. The reason
is that zMesh improves the data smoothness, and more bits in
a bit plane after the orthogonal transform will likely be zero,
resulting in the reduced BitsBitplane. Similar results also
observed for Hilbert with zMesh. By and large, zMesh yields
less improvement for ZFP versus SZ (shown next in Fig. 10).
The reason is that ZFP is intended to a high-throughput
compressor and is conservative in exploiting the improved
smoothness and losing accuracy for higher compression ratios.

Fig. 10 measures the internal metrics of SZ. As compared
to both Z-order and Hilbert, HitRatio is improved for all
three applications using zMesh as a result of the improved
smoothness. For example, for Z-order, HitRatio is improved
from 0.9667 to 0.9878, from 0.9857 to 0.9968, and from
0.9645 to 0.9952 for P1, M1 and G1, respectively. This in
turn lowers OutlierSize, which is the size of curve-missed
points that are typically hard to compress, for zMesh. For
example, OutlierSize of M1 is reduced from 8 940 by more
than 50%. For some cases, SZ may apply smaller quantization
intervals under zMesh as a result of improved smoothness,
which further reduces the tree size and encode size. With
the optimized mode of SZ, the number of tree nodes in
the Huffman tree is 2 · QuantIntv − 1, and therefore we
observe similar outcome of TreeSize. More importantly, with
the improved data smoothness, EncodeSize is substantially
smaller as compared to Z-order and Hilbert. Overall, zMesh
improves the compression ratios as a result of the reduction
of EncodeSize and OutlierSize.

We further test the effectiveness of zMesh across error
bounds from 1E-5 to 1E-2 in Fig. 11. It is found that as the
error bound relaxes, the improvement of compression ratio by
zMesh becomes more pronounced. For example, for Hilbert, as
the error bound increases from 1E-5 to 1E-2, the compression
ratio improvement on P1 using SZ are 21.5%, 23.1%, 56.9%,
and 109.3%, respectively.

3) zMesh vs. Improved Locality from Compressors: There
has also been similar effort in the compressors to improve

P1 M1 G1
(a) ZeroCnt

103

104

105

A
v
e
ra

g
e
 v

a
lu

e

P1 M1 G1
(b) MaxExp

0
2
4
6
8

10
12

P1 M1 G1
(c) MaxPrec

0
3
6
9

12

P1 M1 G1
(d) BitsBitplane

0
10
20
30
40

P1 M1 G1
(e) BlockSize

0
10
20
30
40
50

Z-order Z-order+zMesh Hilbert Hilbert+zMesh

Fig. 9: Internal compression metrics (ZFP).

P1 M1 G1
(a) HitRatio

0.0
0.2
0.4
0.6
0.8
1.0

A
v
e
ra

g
e
 v

a
lu

e

P1 M1 G1
(b) QuantIntv

0

20

40

60

P1 M1 G1
(c) TreeSize

0
200
400
600
800

P1 M1 G1
(d) EncodeSize

104

105

106

107

P1 M1 G1
(e) OutlierSize

102
103
104
105
106

Z-order Z-order+zMesh Hilbert Hilbert+zMesh

Fig. 10: Internal compression metrics (SZ).

E-5 E-4
 P1

E-3 E-2 E-5 E-4
 M1

E-3 E-2 E-5 E-4
 G1

E-3 E-2

(a) ZFP

0

5

10

15

20

C
o
m

p
re

ss
io

n
 r

a
ti

o

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

E-5 E-4
 P1

E-3 E-2 E-5 E-4
 M1

E-3 E-2 E-5 E-4
 G1

E-3 E-2

(b) SZ

0

100

200

300

400

C
o
m

p
re

ss
io

n
 r

a
ti

o

Fig. 11: Comparison of compression ratios across different error bounds.

P1 M1
ZFP 0.5.0 1D

G1 P1 M1
ZFP 0.5.0 2D

G1 P1 M1
ZFP 0.5.5 1D

G1 P1 M1
ZFP 0.5.5 2D

G1

(a) ZFP

0

5

10

15

20

C
o
m

p
re

ss
io

n
 r

a
ti

o

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

P1 M1
SZ 1.4 1D

G1 P1 M1
SZ 1.4 2D

G1 P1 M1
 SZ 2.0+ 1D

G1 P1 M1
SZ 2.0+ 2D

G1

(b) SZ

0

20

40

60

C
o
m

p
re

ss
io

n
 r

a
ti

o

Fig. 12: zMesh under various compressor internal locality. For all 2D
configurations, the size of the first dimension is set to 1024.

the data locality, e.g., using Lorenzo predictor to improve
the multi-dimensional curve-fitting. We next evaluate zMesh
under various compressor internal locality, aiming to under-
stand whether zMesh is orthogonal to these optimizations or
duplicates these efforts. For ZFP, we test two major versions

0.5.0 and the latest 0.5.5 for both 1D and 2D. We anticipate
2D will have higher locality due to the increased block size,
and more importantly, the better row-column locality. For SZ,
we test 1.4 and the latest 2.0+, with the latter using the
Lorenzo predictor [23]. Fig. 12 shows the compression ratios
with different configurations of ZFP and SZ. The results show
that zMesh is completely complementary to other locality
improvement in compressors - even with the 2D setup, the
compression ratios of zMesh are higher than those of standard
space-filling curves.

G1 G2 G3
638MB/timestep

G4 G5 G6 G1 G2 G3
4911MB/timestep

G4 G5 G6

(a) ZFP

0

20

40

60

C
o
m

p
re

ss
io

n
 r

a
ti

o

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

G1 G2 G3
638MB/timestep

G4 G5 G6 G1 G2 G3
4911MB/timestep

G4 G5 G6

(b) SZ

0

100

200

300

C
o
m

p
re

ss
io

n
 r

a
ti

o

Fig. 13: Compression ratio of zMesh on different size configurations of
Greenland.

4) Impacts of Dataset Size and Parallelism: We further
evaluate the results on larger datasets up to 4911 MB per
timestep for Greenland, and Fig. 13 shows the compression
ratio of Greenland. For the dataset configuration, each timestep
output has a size of 638MB, while the large dataset has a
size of 4911MB per timestep. the finding is that zMesh yields
higher compression ratios for SZ due to the higher chance of
information redundancy. Meanwhile, for ZFP, since it is block-
based compression and does not fully take advantage of the
global data, the gain is insignificant.

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K
Number of parallel processors

0

50

100

150
C

o
m

p
re

ss
io

n
 r

a
ti

o

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

Fig. 14: Parallel compression using 1 to 32K processors (Greenland with SZ).

1 2 3 4 5 6
Number of quantities
(a) ZFP compression

0

100

200

300

T
h
ro

u
g
h
p
u
t

 (
M

B
/s

)

Z-order

Z-order+zMesh

Hilbert

Hilbert+zMesh

1 2 3 4 5 6
Number of quantities

(b) ZFP decompression

0

100

200

300

1 2 3 4 5 6
Number of quantities
(c) SZ compression

0
100
200
300

T
h
ro

u
g
h
p
u
t

 (
M

B
/s

)

1 2 3 4 5 6
Number of quantities
(d) SZ decompression

0

100

200

300

Fig. 15: Compression and decompression throughput (PineIslandGlacier).

As aforementioned, zMesh is embarrassingly parallel, and
therefore paralleling zMesh is trivial. Fig. 14 shows the com-
pression results using 1 to 32K processors. In the experiment,
each processor compresses only its local data by maintain
its own ctree. Note that some boxes in the finer levels may
have no parent boxes. In this case, the nodes in these boxes
are regarded as root nodes. The results show that, using
small numbers of processors (smaller than 512), zMesh has
almost the same compression ratio improvement compared
to the serial compression (1 processor). However, for huge
numbers of processors, such as 16K and 32K processors, the
improvement of zMesh is not as obvious. The reason is as
aforementioned, zMesh has a limited space for compression
optimization. In the huge number cases, there is only one box
on each processor, zMesh is the same as standard space-filling
curves.

5) Throughput: We further evaluate how much the over-
head of zMesh would impact the overall compression and
decompression throughput. As shown in Fig 15, zMesh has a
non-trivial reduction of throughput as a result of building ctree
and reorder/restore recipe, if only one quantity is processed.
However, as the number of quantities increases, the overhead is
clearly amortized, since all quantities in an application would
have identical ctree, and therefore ctree and reorder/restore
recipe only need to be built once. When processing 6 quan-
tities, the average throughput degradation is 13.0%, 8.4%,
13.8% and 1.5% for ZFP compression, ZFP decompression,
SZ compression and SZ decompression, respectively.

C. Subsetting Compressed Data

Herein we discuss the performance of extracting a subset
of the compressed datasets using zMesh - a scenario that
is particularly important to data analytics with the goal of
avoiding inflating the entire data as much as possible. In

TABLE III: AMR access pattern.

Pattern Geometric Region Level

Pattern 1 Retrieve all data points that are geometrically
within a given box

All levels

Pattern 2 Retrieve one row that is geometrically
within the coarsest box

All levels

Pattern 3 Retrieve all data points that are geometrically
within a given box

Finest level

Pattern 4 Retrieve one row that is geometrically
within a given box

Finest level

Table III, we summarize the key access patterns of AMR data
analysis, and use fetching efficiency, defined as the ratio of
the size of a query to the size of fetched data, to characterize
the efficiency of accessing the compressed data [26]. Ideally,
a compressor with a high fetching efficiency should allow
for high random access and retrieve only the target region.
However, in reality, compressors often have limited support
towards random access. For example, ZFP compresses data
block by block, and therefore a block needs to be fully inflated
in order to access the target region. Meanwhile, the curve-
fitting in SZ is built involving the neighboring points, and
retrieving a small subset necessitates decompression all data
first. Therefore, in what follows, we only focus on ZFP.

Fig. 16 shows the fetching efficiency under all access
patterns for P1. In particular, Fig. 16(a)-(d) show the fetching
efficiency of cross-level queries on the compressed data, while
Fig. 16(e)-(h) show the fetching efficiency of queries issued
to the finest level of the compressed data. For Pattern 1, we
retrieve the geometric region covered by a box and the region
may relate to one or more levels. Herein, we examine all 565
boxes in P1 with one query issued per box. In contrast in
Pattern 2, we retrieve each of the 192 rows of the coarsest box.
Note that for Pattern 2, there is no difference between Z-order
(or Hilbert) and Z-order (or Hilbert)+zMesh for some rows.
The reason is that if there is only one AMR level involved,
zMesh is the same as the standard space-filling curves. In
Pattern 3, we query all 326 boxes at the finest level in P1,
and in Pattern 4, we uniformly query 10% of the rows within
all 326 boxes. It is found that zMesh has a higher fetching
efficiency than the standard space-filling curves for Pattern 1
and 2. However, it yields a lower fetching efficiency for Pattern
3 and 4, and the reason is that zMesh has to fetch more ZFP
blocks from the compressed data, since the data points of other
AMR levels are included in the fetched blocks as a result of
reordering.

VI. CONCLUSION

This paper focuses on further improving the compression
ratios by exploiting the information redundancy in AMR. We
illustrate in this paper that there exists high similarities among
AMR levels, and the native organization of AMR data does
not easily expose this redundancy to compressors, thus leading
to low compression ratios. The idea of the proposed zMesh
is to re-arrange data so that data points corresponding to the
same (or adjacent) geometric coordinates can be compressed
together, thus greatly improving the local smoothness of the

0 100 200 300 400 500
Query ID

(a) Z-order: Pattern 1

0.4

0.6

0.8

1.0

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

Z-order

Z-order+zMesh

0 100 200 300 400 500
Query ID

(b) Hilbert: Pattern 1

0.6

0.8

1.0

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

Hilbert

Hilbert+zMesh

0 50 100 150
Query ID

(c) Z-order: Pattern 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

0 50 100 150
Query ID

(d) Hilbert: Pattern 2

0.2

0.4

0.6

0.8

1.0

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

0 50 100 150 200 250 300
Query ID

(e) Z-order: Pattern 3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

0 50 100 150 200 250 300
Query ID

(f) Hilbert: Pattern 3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

0 100 200 300 400 500 600 700
Query ID

(g) Z-order: Pattern 4

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

0 100 200 300 400 500 600 700
Query ID

(h) Hilbert: Pattern 4

0.20

0.24

0.28

0.32

0.36

0.40

0.44

Fe
tc

h
in

g
 e

ff
ic

ie
n
cy

Fig. 16: Fetching efficiency of the compressed data. We tested zMesh over
P1 compressed by ZFP.

dataset. A key contribution of this work is that, unlike any prior
work that maintain the restore recipe as part of the compressed
data, zMesh can compute the restore recipe on-the-fly using
a chained tree structure. The results demonstrate that zMesh
can reduce the mean of absolute change of data by 67.9%
and 71.3% for Z-ordering and Hilbert, respectively. Overall
zMesh improves the compression ratios by up to 16.5% and
133.7% for ZFP and SZ, respectively. Despite that zMesh
involves additional compute overhead for tree and restore
recipe construction, we show that the cost can be amortized
as the number of quantities to be compressed increases.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support from the
US NSF under Grant No. CCF-1718297, CCF-1812861, and
DOE CODAR project. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge

National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

REFERENCES

[1] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, 2009.

[2] S. Lakshminarasimhan et al., “Compressing the incompressible with
ISABELA: In-situ reduction of spatio-temporal data,” in EURO-PAR
’11. Springer, 2011, pp. 366–379.

[3] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” T-VCG,
vol. 20, no. 12, pp. 2674–2683, 2014.

[4] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IPDPS ’16, 2016, pp. 730–739.

[5] J. C. Bennett et al., “Combining in-situ and in-transit processing to
enable extreme-scale scientific analysis,” in SC ’12, 2012, p. 49.

[6] J. Ahrens et al., “An image-based approach to extreme scale in situ
visualization and analysis,” in SC ’14. IEEE Press, 2014, pp. 424–434.

[7] U. Ayachit et al., “Performance analysis, design considerations, and
applications of extreme-scale in situ infrastructures,” in SC ’16. IEEE
Press, 2016, p. 79.

[8] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“Burstmem: A high-performance burst buffer system for scientific ap-
plications,” in BigData ’14, 2014, pp. 71–79.

[9] S. Herbein et al., “Scalable i/o-aware job scheduling for burst buffer
enabled hpc clusters,” in IPDPS ’16. ACM, 2016, pp. 69–80.

[10] N. Liu et al., “On the role of burst buffers in leadership-class storage
systems,” in MSST 12, 2012, pp. 1–11.

[11] T. Lu et al., “Canopus: Enabling extreme-scale data analytics on big hpc
storage via progressive refactoring,” in HotStorage ’17, Santa Clara, CA,
2017.

[12] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, 2008.

[13] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” T-VCG, vol. 12, no. 5, pp. 1245–1250, 2006.

[14] J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao, and
F. Cappello, “wavesz: a hardware-algorithm co-design of efficient lossy
compression for scientific data,” in PPoPP ’20, 2020, pp. 74–88.

[15] A. M. Gok et al., “Pastri: Error-bounded lossy compression for two-
electron integrals in quantum chemistry,” in CLUSTER ’18, 2018.

[16] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,” Journal of computational Physics, vol. 53,
no. 3, pp. 484–512, 1984.

[17] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan,
P. Colella, D. Graves, M. Lijewski, F. Löffler et al., “A survey of
high level frameworks in block-structured adaptive mesh refinement
packages,” Journal of Parallel and Distributed Computing, vol. 74,
no. 12, pp. 3217–3227, 2014.

[18] I. Foster et al., “Computing just what you need: online data analysis
and reduction at extreme scales,” in EURO-PAR ’17, 2017, pp. 3–19.

[19] P. Colella et al., “Chombo software package for amr applications
design document,” Available at the Chombo website: http://seesar. lbl.
gov/ANAG/chombo/, 2009.

[20] S. Kumar et al., “Efficient i/o and storage of adaptive-resolution data,”
in SC ’14. IEEE Press, 2014, pp. 413–423.

[21] A. Lintermann et al., “Massively parallel grid generation on hpc sys-
tems,” Computer Methods in Applied Mechanics and Engineering, vol.
277, pp. 131–153, 2014.

[22] E. H. Moore, “On certain crinkly curves,” Transactions of the American
Mathematical Society, vol. 1, no. 1, pp. 72–90, 1900.

[23] D. Tao et al., “Significantly improving lossy compression for scientific
data sets based on multidimensional prediction and error-controlled
quantization,” in IPDPS ’17. IEEE, 2017, pp. 1129–1139.

[24] X. Lin et al., “Migratory compression: Coarse-grained data reordering
to improve compressibility,” in FAST ’14, 2014, pp. 256–273.

[25] C. Pyo, K.-W. Lee, H.-K. Han, and G. Lee, “Reference distance as a
metric for data locality,” in HPC Asia’97. IEEE, 1997, pp. 151–156.

[26] S. Kreft and G. Navarro, “Lz77-like compression with fast random
access,” in DCC ’10. IEEE, 2010, pp. 239–248.

	Introduction
	Background and Related Work
	Adaptive Mesh Refinement
	Lossy Compression

	Motivation
	Level Reordering
	Overall Design
	Building Reorder and Restore Recipe
	zMesh with Space-filling Curve
	Parallel zMesh Compression
	Data Regularization of zMesh

	Evaluation
	Experimental Setup
	Compression Performance
	Compression Ratio
	Internal Compression Metrics
	zMesh vs. Improved Locality from Compressors
	Impacts of Dataset Size and Parallelism
	Throughput

	Subsetting Compressed Data

	Conclusion
	References

