2010.12603v1 [cs.CR] 23 Oct 2020

arxiv

Permute-and-Flip: A new mechanism for
differentially private selection

Ryan McKenna and Daniel Sheldon
College of Information and Computer Sciences
University of Massachusetts, Amherst
Ambherst, MA 01002
{ rmckenna, sheldon }@cs.umass.edu

Abstract

We consider the problem of differentially private selection. Given a finite set
of candidate items and a quality score for each item, our goal is to design a
differentially private mechanism that returns an item with a score that is as high
as possible. The most commonly used mechanism for this task is the exponential
mechanism. In this work, we propose a new mechanism for this task based on a
careful analysis of the privacy constraints. The expected score of our mechanism is
always at least as large as the exponential mechanism, and can offer improvements
up to a factor of two. Our mechanism is simple to implement and runs in linear
time.

1 Introduction

The exponential mechanism [28] is one of the most fundamental mechanisms for differential privacy.
It addresses the important problem of differentially private selection, or selecting an item from a set
of candidates that approximately maximizes some objective function. The exponential mechanism
was introduced soon after differential privacy itself, and has remained the dominant mechanism for
private selection since.

The exponential mechanism is simple, easy to implement, runs in linear time, has good theoretical
and practical performance, and solves an important problem. It can be used directly as a competitive
mechanism for computing simple statistics like medians or modes [14, 16, 29]. Furthermore, it
is an integral part of several more complex differentially private mechanisms for a range of tasks,
including linear query answering [19], heavy hitter estimation [27], synthetic data generation [13, 36],
dimensionality reduction [5, 12, 23], linear regression [2, 34], and empirical risk minimization
[4, 9, 24, 32].

In this work, we propose the permute-and-flip mechanism as an alternative to the exponential
mechanism for the task of differentially private selection. It enjoys the same desirable properties
of the exponential mechanism stated above, and its expected error is never higher, but can be up to
two times lower than that of the exponential mechanism. Furthermore, we show that in reasonable
settings no better mechanism exists: the permute-and-flip mechanism is Pareto optimal, and, if

€ > log(3(3 + v/5)) ~ 0.96, is optimal in a reasonable sense “overall”.
The permute-and-flip mechanism serves as a drop-in replacement for the exponential mechanism in
existing and future mechanisms, and immediately offers utility improvements. The utility improve-

ments of up to 2x over the state-of-the-art will impact practical deployments of differential privacy,
where choosing the right privacy-utility trade-off is already a challenging social choice [1].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 Preliminaries

2.1 Differential Privacy

A dataset D is a collection of individual data coming from the universe of all possible datasets D. We
say datasets D and D’ are neighbors, denoted D ~ D', if they differ in the data of a single individual.

Differential privacy is a mathematical privacy definition, and a property of a mechanism, that
guarantees the output of the mechanism will not differ significantly (in a probabilistic sense) between
any two neighboring datasets.

Definition 1 (Differential Privacy). A randomized mechanism M : D — R is e-differentially private,
if and only if:

Pr[M(D) € S] < exp (¢) Pr[M(D’) € 5]
for all neighboring datasets D ~ D’ and all possible subsets of outcomes S C R.

The sensitivity of a function is an important quantity to consider when designing differentially private
mechanisms, which measures how much a function can change between two neighboring datasets.

Definition 2 (Sensitivity). The sensitivity of a real-valued function q : D — R is defined to be:
Ag = max [g(D) — q(D")].

2.2 Private Selection

In this work, we study the problem of differentially private selection. Given a finite set of candidates
R ={1,...,n} and an associated quality score function ¢, : D — R for each r € R, our goal is to
design a differentially private mechanism M that returns a candidate r that approximately maximizes
gr (D). The function g,.(D) is typically a measure of how well the candidate r captures some statistic
or property of the dataset D. A simple example is the most common medical condition, where g,
counts the number of individuals with medical condition r [16].

The only assumption we make is that the sensitivity of ¢, is bounded above by A for each r € R. We
consider mechanisms M that only depend on the dataset D through the quality scores ¢,-(D). Thus,
for notational convenience, we drop the dependence on D, and treat a mechanism as a function of the
quality scores instead. Specifically, we use ¢, € R to denote a quality score, ¢ = [g]rcr to denote
the vector of quality scores, and M (§) to denote a mechanism executed on the quality score vector §.
We define a notion of regularity, describing properties we would like in a mechanism for this task:

Definition 3 (Regularity). A mechanism M : R"™ — R is regular if the following holds:

Symmetry: For any permutation 7 : R — R and associated permutation matrix I1 € R"*",

Pr[M(q) = r] = PrIM(T1q) = =(r)]. (D
Shift-invariance: For all constants c € R,
Pr[M(q) = 7] = Pr[M(§+ cI) = 7]. (2)
Monotonicity: If q, < q. and qs > . for all s # r, then
Pr[M(q) = r] < Pr[M(q") = 7]. 3)

Informally, a symmetric mechanism is one where the quality scores can be permuted arbitrarily
without affecting the distribution of outcomes. This avoids pathologies where a mechanism can
appear to do well for a particular quality score vector, but only because it has a built-in bias towards
certain outcomes. Similarly, a shift-invariant mechanism is one where a constant can be added to
all quality scores without changing the distribution of outcomes. A mechanism is monotonic if
increasing one quality score while decreasing others will increase the probability on that outcome,
and decrease the probability on all other outcomes. A mechanism that satisfies all of these criteria is
called regular.

Mechanisms that are not regular have undesirable pathologies. Thus, we restrict our attention to
regular mechanisms in this work. Beyond regularity, the main criteria we use to evaluate a mechanism

is the error random variable:
EM, Q) = ¢« — g “4)

where ¢, = max,cR ¢, is the optimal quality score.

Algorithm 1: Permute-and-Flip Mechanism, M pr(q)
qx = MaXy Gr
for r in RandomPermutation(R) do

Pr = €xp (i(qr - q*))
if Bernoulli(p,.) then
| return r
end
end

2.3 Exponential Mechanism

The exponential mechanism is a mechanism that is both classical and state-of-the-art for the task of
differentially private selection.

Definition 4 (Exponential mechanism). Given a quality score vector § € R", the exponential
mechanism is defined by:

PrMpn (@) =] x exp (55 ar).

It is well-known that the exponential mechanism is e-differentially private, and it is easy to show that
it also satisfies the regularity conditions in Definition 3. In addition, it is possible to bound the error
of the exponential mechanism, both in expectation and in probability:

Proposition 1 (Utility Guarantee of Mgy, [8, 16]). Forall § € R™ and all t > 0,
2A 2A
E[EMEm,T)] < Tlog (n), PrlEMErm,q) > T(log (n) +t)] < exp (—t).

3 Permute-and-Flip Mechanism

In this section, we propose a new mechanism, M pr, which we call the “permute-and-flip” mecha-
nism. Just like the exponential mechanism, it is simple, easy to implement, and runs in linear time. It
is stated formally in Algorithm 1. The mechanism works by iterating through the set of candidates R
in a random order. For each item, it flips a biased coin, and returns that item if the coin comes up
heads. The probability of heads is an exponential function of the quality score, which encourages the
mechanism to return results with higher quality scores. The mechanism is guaranteed to terminate
with a result because if g, = g, then the probability of heads is 1.

Theorem 1. The Permute-and-Flip mechanism M pp is regular and e-differentially private.

Proofs of all results appear in the supplement; in addition, the main text will contain some proof
sketches. The proof of this theorem uses Proposition 2 (below) and a direct analysis of the probability
mass function of M pp. Note that the condition in Proposition 2 can be immediately verified to hold
(with equality) when ¢, < g, — 2A by observing that p, in Algorithm 1 changes by exactly exp(¢)
when ¢, increases by 2A, and by a short argument conditioning on the random permutation. The
proof using the pmf also handles the case when increasing ¢, by 2A causes item r to have maximum
score.

3.1 Derivation

We now describe the principles underlying the permute-and-flip mechanism and intuition behind its
derivation. To define a mechanism, we must specify the value of Pr[M(q) = r] for every (g, r) pair.
Intuitively, we would like to place as much probability mass as possible on the items with the highest
score, and as little mass as possible on other items, subject to the constraints of differential privacy.
For regular mechanisms, these constraints simplify greatly:

Proposition 2. A regular mechanism M : R" — R is e-differentially private if:
Pr[M(q) = r] > exp (—€) Pr[M(7+ 2A¢€,.) = 7]

for all (q,r), where €, is the unit vector with a one at position r.

The proof (in the supplement) argues that it is only necessary to compare ¢ to the quality-score
vector with ¢/. = ¢, + A and ¢, = g5 — A for all s # r, which, by monotonicity, is the worst-case
neighbor of ¢. By shift-invariance, the mechanism is identical when ¢. = ¢, + 2A and ¢, = g5, or

=/

q' = ¢+ 2A¢,., which leads to the constraint in the theorem.

This theorem allows allows us to reason about only one constraint for every (¢, r) pair, instead of
infinitely many. Ideally we would like to distribute probability to items as unevenly as possible, which
would make these constraints tight (satisfied with equality). However, we can see by examining the
overall numbers of constraints and variables that we cannot make all of them tight. For each score
vector ¢, there are: (1) n = |R| free variables (the probabilities of the mechanism run on §), (2) n
inequality constraints (Proposition 2), and (3) one additional constraint that the probabilities sum to
one. This is a total of n inequality constraints and one equality constraint per n variables. On average,
we expect at most n — 1 of the inequality constraints to be tight, leading to n linear constraints that
are satisfied with equality for each group of n variables.

The following recurrence for Pr[M(g) = r| defines a mechanism by selecting certain constraints to
be satisfied with equality:
exp (—€) PrIM(q+ 2A¢,) =7] ¢ < g —2A
PrM(q) =] = {) 5
E(l - Zs:qs<q* PI[M(Q) = SD qr = G«

The privacy constraint is tight whenever ¢, < g, — 2A (Case 1). When ¢, is one of the maximum
scores (Case 2, q, = q.), the sum-to-one constraint is used instead, in conjunction with symmetry;
here, n. is the number of quality scores equal to q..

This recurrence defines a unique mechanism for quality score vectors on the 2A-lattice, i.e., for
g€ Ry, ={2A§: §€ Z"}. To see this, note that the base case occurs when n, = n, i.e., all scores
are equal to the maximum and each item has probability % Now consider an arbitrary ¢ € R7, with
n. = k maximum elements. By Case 2, the mechanism is fully defined by the probabilities assigned
to items with non-maximum scores. By Case 1, the probability of selecting an item r that does not
have maximum score is defined by the probability of selecting r with the score vector ¢/ = ¢+ 2A¢€,;
this also belongs to the 2A-lattice, and g,. > g,.. Eventually, a score vector with n, = k+ 1 maximum
elements will be reached, moving closer to the base case of n, = n.

The following recurrence generalizes the original and is well-defined for all ¢ € R™, obtained by
simply interpolating between the points in the 2A-lattice.

L exp (ﬁ(% - Q*)) PrIM(G+ (¢ — qr)€r) = 7] ¢r < g«
PrMia) =] = {n{ﬂ Y PHM(@) = 1)) w0 ©

The only difference is Case 1, which is obtained by unrolling Case 1 of the original recurrence
(¢« — g-)/2A times so that the rth score becomes exactly ¢.. The advantage is that the new
expression is well defined for vectors that are not on the 2A-lattice.

Equation (6) defines a mechanism. In principle, it also gives a way to compute the probabilities of the
mechanism for any fixed ¢. The most direct approach to calculate these probabilities uses dynamic
programming and takes exponential time. A smarter algorithm based on an analytic expression for the
solution to the recurrence runs in O(n?) time (Appendix E), but is still unacceptably slow compared
to the linear time exponential mechanism. Remarkably, it is not necessary to explicitly compute the
probabilities of this mechanism, as the permute-and-flip mechanism solves this recurrence relation.
As aresult, we can simply run the simple linear-time Algorithm 1 and avoid computing the mechanism
probabilities directly.

Proposition 3. M pp solves the recurrence relation in Equation (6).

Proof (Sketch). Case 2 is satisfied because M pp is symmetric and a valid probability distribution.
For Case 1, let ' = ¢+ (g« — g)€, and consider applying M pp to both ¢'and ¢”. In each case, the
coin-flip probabilities are the same for all items except r, and the probability of selecting any given
permutation is the same. The ratio Pr[M pr(q) = r]/ Pr[Mpr(q’) = r| can be shown to be exactly
pr/p.., where p, = exp (i (qr — q*)) is the coin-flip probability with ¢'and p]. = 1 is the coin-flip
probability with ¢”. The ratio is exactly exp (5% (¢- — ¢«)), as required by Case 1. O

Algorithm 2: Mg (q) Algorithm 3: Mpr(q)

qx = Maxy gr qx = mMax, gr
repeat repeat
r ~ Uniform[R] r ~ Uniform[R]
Pr = €xp (i(qr - q*)) Dr = €xp (i(qr - q*)>
R =R\ {r}
until Bernoulli(p,); until Bernoulli(p,.);
return r return r

4 Comparison with Exponential Mechanism

In this section, we compare the permute-and-flip and exponential mechanisms, both algorithmically
and in terms of the error each incurs. One (unconventional) way to sample from the exponential
mechanism is stated in Algorithm 2. This is a rejection sampling algorithm: an item is repeatedly
sampled uniformly at random from the set R with replacement and returned with probability p, =
exp (i(qr — q*)) For the permute-and-flip mechanism, an item is repeatedly sampled uniformly
at random from the set R without replacement and returned with the same probability. Sampling
without replacement is mathematically equivalent to iterating through a random permutation, and
hence Algorithm 3 is equivalent to Algorithm 1. These implementations are not recommended in
practice, but are useful to illustrate connections between the two mechanisms.

Intuitively, sampling without replacement is better, because items that are not selected, which are
likely to have low scores, are eliminated from future consideration. In fact, in Theorem 2 we prove
that the permute-and-flip mechanism is never worse than the exponential mechanism in a very strong
sense. Specifically, we show that the expected error of permute-and-flip is never larger than the
exponential mechanism, and the probability of the error random variable exceeding ¢ is never larger
for permute-and-flip (for any ¢). This is a form of stochastic dominance [18], and suggests it is always
preferable to use permute-and-flip over the exponential mechanism, no matter what the risk profile is.

Theorem 2. M pp is never worse than M gy;. That is, for all § € R™ and all t > 0,
EEMpr, 9] < E[E(MEm,)], Pri€(Mpp,q) > t] < Pr[E(Mewm, §) >

As a direct consequence of Theorem 2, the permute-and-flip mechanism inherits the theoretical
guarantees of the exponential mechanism (Proposition 1).

Corollary 1. Forall § € R™ and all t > 0,

E[E(Mpr,q)] < %log (n), Pr[E(MpF,) > %(log (n) +1t)] <exp(—t).

4.1 Analysis of Worst-Case Error

To further compare the two mechanisms, it is instructive to compare their expected errors for a
particular class of score vectors. In particular, we examine score vectors that are worst cases for
both mechanisms. This analysis will reveal that permute-and-flip can be up to 2x better than the
exponential mechanism, and that the upper bounds on expected error in Proposition 1 and Corollary 1
are within a factor of four of being tight.

Proposition 4. The worst-case expected errors for both Mgy and Mppr occur when ¢ =
(¢,...,c,0) € R™ for some ¢ < 0. Let p = exp (ie). The expected errors for score vectors
of this form are:

Bl M,) = = log (0 [1- 15755 a)
E[E(Mpr,q)] = %log (%) [1- “(in_p)"] ®)

The worst-case expected errors are found by maximizing Equations (7) and (8) over p € (0, 1].

Figure la shows the expected error of both mechanisms using Equations (7) and (8) forn = 3
and p € (0, 1]. The error of M pp is always lower than that of M g/, as expected by Theorem 2.

— Mgy

) !
0.8 Mpp 1.8 10

Worst-case Expected Error

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 100 10! 10? 10° 10t
P P n

(a) (b) (©

Figure 1: (a) Expected error of M g); and M pp as a function of p forn = 3,¢ =1,and A = 1. (b)
Ratio of expected errors between M gj; and M pp as a function of p for varying n. (c) Worst-case
expected error of M s and M pp as a function of n.

At the two extremes (p = 0 and p = 1), the expected error of both mechanisms is exactly 0,
because: (1) when p = 1, all scores are equal to the maximum, and (2) when p — 0, the total
probability assigned to items with non-maximum scores vanishes. The maximum error for each
mechanism occurs somewhere in the middle, typically near p = L. In fact, by substituting p = 1

into Equation (8), we obtain: " "
Proposition 5. For ¢ = (c,...,c,0) € R® withc = f% log n, the expected error E[E(Mpr, §))
of permute-and-flip is at least 5* log (n). This implies that E[€(M g, §)] > 5 log (n) as well, and
that the upper bounds of Proposition 1 and Corollary 1 are within a factor of four of being tight.
B[E(Mpum.3)]
E[E(MpF,])]
of n for p € (0,1]. The result is independent of particular choices of € and A, as the ratio only
depends on € and A through p. We observe that:

Figure 1b shows the ratio of expected errors of the two mechanisms for different values

* The ratio is always between one and two, and approaches two in the limit at p — O (larger).

* The required p to achieve a fixed ratio decreases with n, and the ratio converges to one for all p > 0
as n goes to infinity. This behavior is well-explained by the algorithmic comparison earlier in this
section: as n goes to infinity, the probability of sampling the same low-scoring item multiple times
becomes negligible, so sampling without replacement (M pr) becomes essentially identical to
sampling with replacement (M gas).

These results are for a particular class of (worst-case) quality-score vectors and not necessarily
indicative of what will happen in applications. In our experiments with real quality-score vectors
(Section 6) we observe ratios close to two for the values of e that provide reasonable utility. We have
never observed a ratio greater than two for any ¢, and it is an open question whether this is possible.
In practice, we can and do realize significant improvements even for large n.

Figure 1c compares the worst-case expected errors of Mgy, and Mpp as a function of n by
numerically maximizing over p in Equations (7) and (8) for different values of n and e = A = 1.
For reference, we also plot the analytic upper and lower bounds from Proposition 1, Corollary 1,
and Proposition 5. The ratio of worst-case expected error between M gj; and M pp is largest at
n = 2, and it decays towards 1 as n increases. Again, this is explained by the algorithmic similarities
between the two mechanisms as n — oo.

5 Optimality of Permute-and-Flip

In the previous section, we showed that permute-and-flip is never worse than the exponential mech-
anism, and is sometimes better by up to a factor of two. In other words, it Pareto dominates the
exponential mechanism. In Proposition 6 we show that permute-and-flip is in fact Pareto optimal
on the 2A-lattice R7, (see Section 3.1) with respect to the expected error. That is, any regular
mechanism that is better than permute-and-flip for some ¢ € R%, must be worse for some other
7 € RE4.

Proposition 6 (Pareto Optimality). I[fE[E(Mpp, §)] > E[E(M, §)] for some regular mechanism M
and some § € R, then there exists §' € RS, such that E[E(Mpp,q')] < E[E(M,)]

Pareto optimality is a desirable property that differentiates permute-and-flip from the exponential
mechanism. However, there are many Pareto optimal mechanisms, so we would like additional

> 333
R (1}
o u s Ww
-
o
=
=)
~ A~ xR
R L (L
o sN
-
©
~ A~ A~ X
U [[
0o BN

=
o

Optimality
bR B
o o o
S 3 3
N B o
Optimality
R oe e
o o o o
=3 o o =3
8 8 & 8§
Optimality Ratio
[
N >

1072 107! 100 10! 1072 107! 100 10! 1072 107! 10° 10!
Epsilon Epsilon Epsilon

(@) Mpr, k=14 by Mpr,n =4 © Memu,n=4

Figure 2: Optimality ratio for M pr and M g, for various n and k.

assurance that permute-and-flip is in some sense the “right” one. To achieve this, we show that it is
optimal in some reasonable “overall” sense. In particular, it minimizes the expected error averaged
over a representative set of quality score vectors, as long as e is sufficiently large.

Theorem 3 (Overall Optimality). For all regular mechanisms M and all € > log (3(3 + V/5)),

ST EEMpr, @) < 3 E[E(M, 7

GeQ 7eq
where Q@ = {7 € RYA : ¢« — ¢ < 2Ak, q.. = 0} for any integer constant k > 0.

This theorem is proved by analyzing a linear program (LP) that describes the behavior of an optimal
regular mechanism on the 2A-lattice, using the linear constraints described in Section 3.1 to enforce
privacy and regularity, and the linear objective from the theorem. The result holds for the bounded
lattice with g, = 0 and all scores at most k lattice points away from zero. Boundedness is required
to have a finite number of variables and constraints. The restriction that g, = 0 is without loss of
generality: by shift-invariance, a regular mechanism is completely defined by its behavior on vectors
with ¢, = 0.

Theorem 3 guarantees that permute-and-flip is optimal if € is large enough. For smaller €, we can
empirically check how close to optimal M p is by solving the LP. This is computationally prohibitive
in general, because the LP size grows quickly and becomes intractable for large n and k, but we can
make comparisons for smaller lattices. Figure 2 shows the “optimality ratio” of permute-and-flip and
the exponential mechanism for various settings of €, n, and k. The optimality ratio of a mechanism M
is the ratio ZgEEMAD]

27 BlEM.,)]

by solving the linear program.

where M., is the optimal mechanism on the bounded 2A-lattice obtained

As shown in Figure 2a and Figure 2b, the optimality ratio for permute-and-flip is equal to one above
the threshold, as expected. Furthermore, it barely exceeds one even when ¢ is below the threshold:
the largest measured value is about 1.01. The ratio grows slowly with k (Figure 2b) and shows no
strong dependence on n (Figure 2a). For the exponential mechanism (Figure 2¢), the optimality ratio
is much more significantly larger than one, and generally increases with €, approaching two for larger
k and e. Interestingly, the optimality ratio approaches one for both mechanisms as € — 0.

6 Experiments

We now perform an empirical analysis of the permute-and-flip mechanism. Our aim is to quantify the
utility improvement from permute-and-flip relative to the exponential mechanism for different values
of € on real-world problem instances. We use five representative data sets from the DPBench study:
HEPTH, ADULTFRANK, MEDCOST, SEARCHLOGS, and PATENT [20] and consider the tasks of
mode and median selection. In each case, the candidates are the 1024 bins of a discretized domain.
For each task, we construct the quality score vector and then analytically compute the expected
error for a range of different e for both the permute-and-flip and exponential mechanisms using their
probability mass functions. Below we summarize our experimental findings; additional experimental
results can be found in Appendix G.

Mode. For mode selection, the quality function is the number of items in the bin, which has
sensitivity one. Figure 3a shows expected error as a function of € for the HEPTH data set. Note
that expected error is plotted on a log scale, while ¢ is plotted on a linear scale, and we truncate

u
=]

N Mgy
Mepr

._.

A

= =

”L R
N
S

H
%
w
S

-
U

Expected Error
N
o

Expected Error
Expected Error

._.
LA
-
A
=
15

o
3

-
o

0
0.00 0.02 0.04 0.06 0.08 0.000 0.005 0.010 0.015 0.020 O HEF™ ADULTFRANK WEDCOST SEARCHLOGS PATENT
Epsilon Epsilon

(a) Mode (b) Median (¢) Median
Figure 3: (a) and (b) Expected error of M gjs and M pr on the HEPTH dataset for varying e.
(c) Expected error of M pr on five datasets for e where expected error of M g, is 50.

the plot when the expected error falls below one. The ratio of the expected error of the exponential
mechanism to that of permute-and-flip ranges from one (for smaller €) to two (for larger €). For the
range of e that provide reasonable utility, the improvement is closer to two. For example, at e = 0.04,
the ratio is 1.84. The expected error of M pp at this value of ¢ is about 5.4, and M g, would need
about 1.27 times larger privacy budget to achieve the same utility.

Median. For median selection, the quality function is the (negated) number of individuals that must
be added or removed to make a given bin become the median, which is also a sensitivity one function
[29]. Figure 3b again shows the expected error as a function of € for the HEPTH data set. Again, the
ratio of expected errors ranges from one (for smaller €) to two (for larger €). For the range of ¢ that
provide reasonable utility, the improvement is closer to two. For example, at ¢ = 0.01, the ratio is
1.93. The expected error of M pp at this value of ¢ is about 13.7, and M g;; would need about 1.19
times larger privacy budget to achieve the same utility.

In Figures 3a and 3b, the expected errors of M g and M p become approximately parallel lines as
€ increases. Because the plots use linear scale for € and logarithmic scale for expected error this means
that the error of both mechanisms behaves approximately as cexp(—e) for some c. Additionally,
M pr offers an asymptotically constant multiplicative improvement in expected error (a factor of two)
and an additive savings of €. For the range of ¢ that demonstrate the most reasonable privacy-utility
tradeoffs, this additive improvement is a meaningful fraction of the privacy budget.

In Figure 3c we plot the expected error of M gj; and M pp on all five data sets. For each dataset, we
use the value of e where M g, gives a expected error of 50. This allows us to plot all datasets on the
same scale for some € that gives a reasonable tradeoff between privacy and utility. The improvements
are significant, and close to a factor of two for all data sets.

7 Related Work

The exponential mechanism and the problem of differentially private selection have been studied
extensively in prior work [3, 5, 6, 10, 11, 15, 21, 25, 26, 30, 31, 33, 35].

The most common alternative to the exponential mechanism for the private selection problem is report
noisy max [16], which adds noise to each quality score and outputs the item with the largest noisy
score. While we did not compare directly to this mechanism, our initial findings (Appendix F) indicate
that it is competitive with the exponential mechanism, but neither mechanism Pareto dominates the
other — report noisy max is better for some quality score vectors, while the exponential mechanism
is better for others. Several other mechanisms have been proposed for the private selection problem
that may work better under different assumptions and special cases [5, 10, 11, 25, 30, 35].

A generalization of the exponential mechanism was proposed in [31] that can effectively handle
quality score functions with varying sensitivity. This technique works by defining a new quality
score function that balances score and sensitivity and then running the exponential mechanism, and
is therefore also compatible with the permute-and-flip-mechanism. The exponential mechanism
was also studied in [15], where the focus was to improve the privacy analysis for a composition of
multiple sequential executions of the exponential mechanism. They also show that the analysis can
be improved in some cases by using a measure of the range of the score function instead of the
sensitivity (though in commonly-used score functions the range and sensitivity usually coincide).
This improvement is orthogonal to our approach, and it is straightforward to extend the analysis of
the permute-and-flip mechanism in a similar way.

A new mechanism for private selection from private candidates was studied in [26]. Instead of
assuming the quality functions have bounded sensitivity, it is assumed that the quality functions are
themselves differentially private mechanisms. This relaxed assumption is appealing for many prob-
lems where the traditional exponential mechanism does not apply, like hyperparameter optimization.

The optimality of the exponential mechanism was studied in [3], where the authors considered linear
programs for computing mechanisms that are optimal on average (similar to our Theorem 3). They
restricted attention to scenarios where the input/output universe of the mechanism is a graph, and
each node is associated with a database. They argued that the optimal mechanism should satisfy
privacy constraints with equality for connected nodes in this graph, and showed that the exponential
mechanism was optimal up to a constant factor of two in this setting.

Other works have carefully analyzed privacy constraints to construct optimal mechanisms for other
tasks and privacy definitions, including predicate counting queries [17], information theoretic quanti-
ties [22], and generic low-sensitivity functions [7].

8 Conclusions and Open Questions

In this work we proposed permute-and-flip, a new mechanism for differentially private selection
that can be seen as a replacement for the exponential mechanism. For every set of scores, the
expected error of the permute-and-flip mechanism is not higher than the expected error of exponential
mechanism, and can be lower by a factor of two; we observe factors close to two in real-world
settings. Furthermore, we prove that the permute-and-flip mechanism is optimal in a fairly strong
sense overall. Improving the exponential mechanism by a factor between one and two has the
potential for wide-reaching impact, since it is one of the most important primitives in differential
privacy.

Some remaining open questions are:

1. We focused primarily on the utility improvements offered by permute-and-flip in this work. In
some cases, permute-and-flip may also offer runtime improvement. Specifically, if g, is known
a-priori, then permute-and-flip can potentially terminate early without evaluating all n quality
scores. Identifying situations where this potential benefit can be realized and provide meaningful
improvement is an interesting open question.

2. We demonstrated meaninful improvement over the exponential mechanism for simple tasks like
median and mode estimation. It would be interesting to apply permute-and-flip to more advanced
mechanisms that use the exponential mechanism, and quantify the improvement there.

3. Our overall optimality result restricts to score vectors on the bounded 2A-lattice. It would be
interesting to understand more fully the nature of optimal mechanisms on more general domains
or with other ways of averaging or aggregating over score vectors.

Broader Impact

Our work fits in the established research area of differential privacy, which enables the positive
societal benefits of gleaning insight and utility from data sets about people while offering formal
guarantees of privacy to individuals who contribute data. While these benefits are largely positive,
unintended harms could arise due to misapplication of differential privacy or misconceptions about its
guarantees. Additionally, difficult social choices are faced when deciding how to balance privacy and
utility. Our work addresses a foundational differential privacy task and enables better utility-privacy
tradeoffs within this broader context.

Acknowledgements

We would like to thank Gerome Miklau and the anonymous reviewers for their helpful comments
to improve the paper. This work was supported by the National Science Foundation under grants
CNS-1409143, 11S-1749854, 11S-1617533, and by DARPA and SPAWAR under contract N66001-15-
C-4067.

References

[1] J. M. Abowd. Stepping-up: The census bureau tries to be a good data steward in the 21stcentury.
2019.

[2] D. Alabi, A. McMillan, J. Sarathy, A. Smith, and S. Vadhan. Differentially private simple linear
regression. arXiv e-prints, pages arXiv—2007, 2020.

[3] F. Alda and H. U. Simon. On the optimality of the exponential mechanism. In International
Conference on Cyber Security Cryptography and Machine Learning, pages 68—85. Springer,
2017.

[4] H. Asi and J. C. Duchi. Instance-optimality in differential privacy via approximate inverse
sensitivity mechanisms. In Advances in Neural Information Processing Systems, 2020.

[5] J. Awan and A. Kenney. Benefits and pitfalls of the exponential mechanism with applications
to hilbert spaces and functional pca. In Proceedings of the 36th International Conference on
Machine Learning, 2019.

[6] M. Bafna and J. Ullman. The price of selection in differential privacy. In S. Kale and O. Shamir,
editors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of
Machine Learning Research, pages 151-168, Amsterdam, Netherlands, 07-10 Jul 2017. PMLR.

[7] B. Balle and Y.-X. Wang. Improving the gaussian mechanism for differential privacy: Analytical
calibration and optimal denoising. In International Conference on Machine Learning, pages
394-403, 2018.

[8] R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic stability
for adaptive data analysis. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 1046-1059, 2016.

[9] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 464-473. IEEE, 2014.

[10] A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. approxi-
mate differential privacy. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 363-378. Springer, 2013.

[11] K. Chaudhuri, D. J. Hsu, and S. Song. The large margin mechanism for differentially private
maximization. In Advances in Neural Information Processing Systems, pages 1287-1295, 2014.

[12] K. Chaudhuri, A. D. Sarwate, and K. Sinha. A near-optimal algorithm for differentially-private
principal components. The Journal of Machine Learning Research, 14(1):2905-2943, 2013.

[13] R. Chen, Q. Xiao, Y. Zhang, and J. Xu. Differentially private high-dimensional data publica-
tion via sampling-based inference. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 129-138, 2015.

[14] G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu. Differentially private spatial
decompositions. In 2012 IEEE 28th International Conference on Data Engineering, pages
20-31. IEEE, 2012.

[15] J. Dong, D. Durfee, and R. Rogers. Optimal differential privacy composition for exponential
mechanisms. In International Conference on Machine Learning, 2020.

[16] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3—4):211-407, 2014.

[17] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy
mechanisms. SIAM Journal on Computing, 41(6):1673-1693, 2012.

[18] J. Hadar and W. R. Russell. Rules for ordering uncertain prospects. The American economic
review, 59(1):25-34, 1969.

10

[19] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private
data release. In Advances in Neural Information Processing Systems, pages 2339-2347, 2012.

[20] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang. Principled evaluation of
differentially private algorithms using dpbench. In Proceedings of the 2016 International
Conference on Management of Data, pages 139-154, 2016.

[21] C. Ilvento. Implementing the exponential mechanism with base-2 differential privacy. arXiv
preprint arXiv:1912.04222, 2019.

[22] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local differential privacy. In
Advances in neural information processing systems, pages 28792887, 2014.

[23] M. Kapralov and K. Talwar. On differentially private low rank approximation. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1395-1414.
SIAM, 2013.

[24] D. Kifer, A. Smith, and A. Thakurta. Private convex empirical risk minimization and high-
dimensional regression. In Conference on Learning Theory, pages 25—1, 2012.

[25] E. Lantz, K. Boyd, and D. Page. Subsampled exponential mechanism: Differential privacy in
large output spaces. In Proceedings of the 8th ACM Workshop on Artificial Intelligence and
Security, pages 25-33, 2015.

[26] J. Liu and K. Talwar. Private selection from private candidates. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 298-309, 2019.

[27] M. Lyu, D. Su, and N. Li. Understanding the sparse vector technique for differential privacy.
Proceedings of the VLDB Endowment, 10(6):637-648, 2017.

[28] F. McSherry and K. Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pages 94—103. IEEE, 2007.

[29] F. D. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, pages 19-30, 2009.

[30] K. Minami, H. Arai, I. Sato, and H. Nakagawa. Differential privacy without sensitivity. In
Advances in Neural Information Processing Systems, pages 956-964, 2016.

[31] S. Raskhodnikova and A. Smith. Lipschitz extensions for node-private graph statistics and the
generalized exponential mechanism. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 495-504. IEEE, 2016.

[32] M. Reimherr and J. Awan. Kng: The k-norm gradient mechanism. In Advances in Neural
Information Processing Systems, pages 10208-10219, 2019.

[33] T. Steinke and J. Ullman. Tight lower bounds for differentially private selection. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS), pages 552-563. IEEE,
2017.

[34] K. Talwar, A. G. Thakurta, and L. Zhang. Nearly optimal private lasso. In Advances in Neural
Information Processing Systems, pages 3025-3033, 2015.

[35] A. G. Thakurta and A. Smith. Differentially private feature selection via stability arguments,
and the robustness of the lasso. In Conference on Learning Theory, pages 819-850, 2013.

[36] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes: Private data

release via bayesian networks. ACM Transactions on Database Systems (TODS), 42(4):1-41,
2017.

11

A Probability Mass Function of M pp

We begin by deriving two different expressions for the probability mass function of M pr, which we
will reference in other proofs throughout the supplement.

Lemma 1. The probability mass function (pmf) of M pp can be expressed as:

PT[MPF@ZT]ZPTZ% II a-»)

i (s)<m(r)
where T is a permutation and p, = exp (i (¢r — q*))
Proof. Let X be the event that the sth coin is heads, and let 7 be a random permutation. The events

X are independent. The rth item is selected if X, is true, and X is false for all s that come before
r in the permutation 7, that is:

Pr[./\/lpp((j) = T] =Pr

s (s)<m(r)
r[X]

(1 - Pr[XsD

T siw(s)<m(r)

gz H (1_ps)'

’ s (s)<m(r)

3

Lemma 2. An equivalent expression for the probability mass function of M pp is:

ISI

PriMpr(q) =1] =p, Z Hpa
ik |S| +1

r¢S

Proof. Let X, again denote the event that the sth coin is heads. Let 7 be a random permutation and
let Y; be the event X N (w(s) < w(r)), or “the sth coin is heads and appears before the rth coin in
the random permuation”. Note that the events X, and Y are independent for r # s.

By independence and the inclusion-exclusion principle:

PrMpr(q) =r] =Pr {XT N <ﬁ U Ysﬂ

SFET

=pex)(1-pr [V]
= Pr[X,] (1 - > (=1)pr [N Y])

SCR ses
r¢S
|S|>1

We now split the event (), _ ¢ Ys, or “all coins in S appear before r and are heads”, into the conjunction
of the events “all coins in .S appear before r”” and “all coins in S are heads”, and continue as:

12

SCR | |+ 1 s
r¢s
(1)
= Dr Z Ds
SCR I |+ 1 seS
r¢S

B Proofs for Section 3: Permute-and-Flip Mechanism

In this section, we first prove Proposition 2, which gives simplifed sufficient conditions for privacy for
a regular mechanism. We then use Proposition 2 to prove Theorem 1, which establishes the privacy
of permute-and-flip. Finally, we prove Proposition 3, which shows that permute-and-flip satisfies the
recurrence used in the derivation.

Proposition 2. A regular mechanism M : R™ — R is e-differentially private if:
Pr[M(q) = r] > exp (—¢) Pr[M(J+ 2A¢&,) = 7]

Sor all (§,r), where &, is the unit vector with a one at position r.

Proof. Let M be a regular mechanism satisfying:
Pr[M(q) = r] = exp (=€) Pr[M(7 + 24¢;) = r] ©)

Our goal is to show that M is differentially private, i.e., if forall § € R, r € R, and Z' € [-A, A]",
PrlM(q) = r] < exp (¢) Pr[M(q+ 2) =]

Using this assumption together with the regularity of M, we obtain:

PrM(q) = r] < exp (€) Pr[M(7 — 2A¢,) = 1] by Equation (9)
= exp () Pr[M(q + AT — 2A¢&,) = 7] by shift-invariance
< exp (e) Pr[M(7+ 2) = 7] by monotonicity
Thus, we conclude that M is differentially-private, as desired. This completes the proof. O

Before proving Theorem 1, we will argue regularity.
Lemma 3. M pp is regular.

Proof. We will establish the three conditions: symmetry, shift-invariance, and monotonicity.
¢ Symmetry: Consider p, as defined in the definition of M pp, and let p” = I denote the same

vector on the permuted quality scores. Now note that every permutation is equally likely for both
p'and p’, and that the only difference is that p, = p/_ .. Hence Pr[M(q) = r| = Pr[M(Ilq) =

m(r)], which implies M is symmetric as desired.

13

+ Shift-invariance: M p is shift-invariant because on only depends on ¢ through ¢, — ¢.. Adding
a constant to ¢ does not change ¢, — ¢..

* Monotonicity: Monotonicity follows from the pmf of the mechanism:

PT[MPF@ZT]ZPTZ% II a-»)

i (s)<m(s)

Assume without loss of generality that g, = 0 and note that p, = exp (iqr). Clearly, the
expression above is monotonically increasing in p, (and hence ¢,-) and monotonically decreasing
in ps (and hence ¢,). Hence M pp satisfies the monotonicity property.

Because M pr is symmetric, shift-invariant, and monotonic, it is regular. O

Theorem 1. The Permute-and-Flip mechanism M p is regular and e-differentially private.

Proof. Lemma 3 established regularity. It remains to argue that M p is differentially-private. Let ¢’
and r be arbitrary. By Proposition 2, it suffices to show that

Pr[Mpr(q) = r] > exp (=€) Pr[Mpr(7+ 2A¢,) = 1]
or equivalently,
10gPI‘[MPF(5+ 2A¢€,) = T] - logPr[./\/lpF(cf) = ’I"] <e

Assume without loss of generality that max,-, g, = 0, so that ¢, is a maximum score if and only if
gr =2 0. Let f,(q) = log Pr[Mpr(q) = r]. Then is enough to show that 5~ 9 f,.(q) < 55 forall g,
since

log Pr[Mpr(q+ 2A€;) =] —log Pr[Mpr(q) = 1] = fr(7+ 24A¢€.) — f-(7)
qr+2A a
-/ L@

ar ar=t

The final equality is justified because, by the definition of the pmf for M pp, the function f,.(g) is
continuous. Furthermore, there is at most one point of non-differentiability of the partial derivative
(at t = 0, when the rth score becomes equal to the maximum), so, if needed, the integral can be split

into two parts about ¢ = 0. This integral is bounded by e as long the partial derivative gf; ~ is bounded

by 5%
Using the expression for the probability mass function of M pp from Lemma 2, we have:

_1)\ISI
fr(@) =logPrMpr(q) =r] = log <pr Z (S|1—)'_ : Hps>
seS

SCR
r¢SsS

afr

We will show using this formula that
gr < 0and g, > 0 separately.

is always bounded by 5%. We examine the cases when

Case 1: ¢, < 0. In this case, observe that p, = exp (iqs) does not depend on ¢, for s # r.
Therefore, differentiating the formula for f,.(g) gives

fr _ 0fr Opr
dg- Op; aqr
1)lsl €
- q-)_r ; \+1H Hprﬁ}
r¢s
e PriM(q) =7] €
T 2APIM(Q) =7] T2A

14

Case 2: ¢, > 0. In this case, because ¢, is the maximum score, we have ps; = exp (ﬁ(qs — qr))
for all 7. We therefore proceed by differentiating f,-(¢) using this expression for p;:

o = S = e PMer(@ =1
:Wair;dsﬂnep(%~ a))
'gs
e T) o)
rQS
[MPF @ =] 5;% S] +|S1| eXp('S|*QT)[ZA} HeXp(mqé)
1gs
[Mqu-)_r é;z |+1['22}361151’8

rgS

- [ﬁ] PriMpp(q) = 1] sg;z |S| 1 |S\ Hps
réS

‘We now seek to show that

-1
S s <1
= o o o L
rés

Equivalently, by multiplying both sides by Pr[M pr(§) = r] and rearranging, we would like to show:

PrMpp(@) =]+)

SCR
rgs

|S|+1|S|H 520

Substituting the expression for Pr[M pr(§) = r] and simplifying, the expression on the left-hand
side above becomes:

(—1)I5l S|
s 1
2 Jsre1 Lo 'H 1 (1 +190)
SCR seS SQ’R SC’R seS
r¢s régS rgES
= Z (_1)‘5" Hps
SCR ses
r¢sS
H (17ps)
s€R\{r}

The final equality can be seen directly by multiplying out [] ER\{r} (1 — ps) or (equivalently) via the

inclusion-exclusion formula. The final expression is the probability that the coins for all s € R \ {r}
are “tails”, and is clearly non-negative, as desired.

This completes the proof.

15

Remark 1. When the quality function is monotonic in the sense that adding an individual to the
dataset can only increase q, (and not decrease it), M pr offers 5-differential privacy. The proof is
largely the same, but the worst-case neighbor from Proposition 2 now occurs when ¢’ = ¢ + A€,

Proposition 3. M pp solves the recurrence relation in Equation (6).

Proof. We proceed in cases:
Case 1: ¢, = q4

Because M pp(q) is a valid probability distribution for all ¢, and it is symmetric, it must satisfy case
2 of the recurrence relation.

Case 2: ¢, < g4
Note that the pmf of M pp is:

PriMpp(q) = 7] ZPTZH H (I —ps)
™ D sim(s)<m(r)
o . 1
PrMpp(G+ (g — ¢)E) =11 =p, > i II a-»)
™ D sim(s)<m(r)

where p, = exp (55 (¢ — ¢+)) and p). = exp (55 (¢« — ¢x)) = 1. By comparing terms, it is clear
that
€

PrMpp(q) =7r] = exp(2A

(¢r — q:)) PrIMpr(q+ (¢« — gr)ér) =]

Hence, M pg solves case 1 of the recurrence relation. This completes the proof.

C Proofs for Section 4: Comparison with Exponential Mechanism

In this section, we first prove Theorem 2, which shows that the permute-and-flip error is no worse
than the exponential mechanism for any score vector. We then prove Proposition 4 and Proposition 5,
which analyze the worst-case expected errors of the two mechanisms and give tight lower bounds on
expected error as the number of items n increases.

C.1 Proof of Theorem 2

We first prove two lemmas. The first lemma establishes a monotonicity property for the factor of the
pmf from Lemma 1 excluding p., i.e., the function g¢,-(¢) such that PriMpr(7) = r] = p, - ().
The second lemma gives a useful fact about partial sums of a non-decreasing sequence.

Lemma 4. If g. < g5, then g.(7) < gs(q), where

o@=55 I a-m

T tw(t)<m(r)

Proof. Recall that p, = exp (35 (¢r — ¢+)). Note that if ¢, < g, then 1 — p, > 1 — p,. We will
show that g5(q) — ¢-(q) > 0.

16

o@-o@=- I a-»- I 0-n)

T tw(t)<mw(s) i (t)<m(r)
(@) 1
Y0 X [I a-w- II 0-n
" mm(r)<n(s) tw(t)<m(s) k:m(t)<m(r)

b S [T a-e- I a-m)

" mw(r)>w(s) i (t)<w(s) tim(t)<m(r)

SED SE | (IR SR |

mr(r)<n(s) tiw(t)<m(s) m(r)>7w(s) tiw(t)<m(r)
© 1 1
9L S ey I a-m- Y a-p II 0-m
" mim(r)<w(s) tim(t)<m(s) " (r)>w(s) timw(t)<m(r)
t#r t#£s

D (py —py) {% > II a *pt)}

mw(r)<w(s) tiw(t)<m(s)
t#s

©
>0

Above, (a) breaks the sum up into permutations where 7 precedes s and vice versa. Step (b) cancels
common terms (those that do not contain 1 — p,- or 1 — p,). Step (c) makes the dependence on 1 — p,.
and 1 — p, explicit. Step (d) rearranges terms and uses a variable replacement on the second sum
(replacing r with s). Step (e) uses the fact that both terms are non-negative. O

Lemma 5. Let f € R"™ be an arbitrary vector satisfying:

L i<fa<--<fa
2. E?:l fr=0
Then forall s = {1,...,n}, the following holds

S
r=1

Proof. Let m be any index satisfying f,,, < 0and f,,,+1 > 0. If £ < m, the claim is clearly true, as
it is a sum of non-positive terms. If ¢ > m, we have Zle fr < Z:‘Zl fr = 0. In either case the
partial sum is non-positive, and the claimed bound holds. O

Theorem 2. M pp is never worse than M gyy. That is, for all § € R™ and all t > 0,
E[E(Mpr,q)] < E[E(MEwm, 7], PrlE(Mpr,q) > t] < Pr[€(MEpw, q) > 1]

Proof. We will prove the probability statement first, after which the expected error result will
follow easily. Assume without loss of generality (by symmetry) that g1 < ¢» < --- < g,. Let
fr(@) = PriMpp(q) = r] — PriMEgnm (@) = r] and let s denote the largest index satisfying
gs < g« —t. Then Pr[E(Mpp,q) > t] — PrlE(Mpm,q) > t] = >.o_, f-(¢) and our goal is to
show:

Y @ <0

forall s € {1,...,n}. We first argue that f,, monotonically increases with ¢, i.e., f1 < fo < ---

IN

ne

Note that f,.(¢) can be expressed as p,.[g,(7) — h,-(§)], where

17

o@=>> I a-n)

Tt (t)<m(r)

1

hr((f) B Z R Pt

Further, notice that the sequence h, (as r ranges from 1 to n) is constant-valued, while, from
Lemma 4, we know that g, is also non-decreasing. Thus the sequence g, — h,. is also non-decreasing.
This, together with the fact that p, is non-negative and also non-decreasing, we know that f,. is
non-decreasing. This fact together with Lemma 5 shows > >_, f,(¢) < 0, as desired.

The ordering of expected errors now follows directly. Specifically, the expected error can be expressed
in terms of the (complementary) cumulative distribution function as:

E[E(M,)] = /OO PrlE(M, §) > fdt

0
We have already shown that Pr[E(Mpp, §) > t| < Pr[E(MEgar, §) > t]. Thus:

EE(Mpr,)] — E[E(MEwm, §)] = /OOo Pr[€(Mpr,q) > t] — PrlE(Mpur,) > tldt <0

Thus, we conclude E[€(Mprp, §)] < E[E(MEwm, 7)), as desired.

C.2 Proofs for Worst-Case Error Analysis

Proposition 4. The worst-case expected errors for both Mgy and Mppr occur when ¢ =
(¢,...,c,0) € R™ for some ¢ < 0. Let p = exp (ﬁc). The expected errors for score vectors
of this form are:

Bl M,) = = log (0 [1- 15755 a)

E[E(Mpp,)] = %log (%) [1 - #].

The worst-case expected errors are found by maximizing Equations (7) and (8) over p € (0, 1].

®)

Proof. Assume without loss of generality that ¢, = 0 and note that p, = exp (55¢:)-
Part 1: Mgy,

The (negative) expected error of M s can be expressed as:

~E[E(MEwm,)] _—q*-I—quZ o

log (pr)

Our goal is to show this is minimized when p; = --- = p,,_1. We procede by way of contradiction.
Assume WLOG p; < ps. We will argue that we can replace p; and p, with new values that decrease
the objective. First write the negative expected error as a function of p; and ps, treating everything
else as a constant.

1
B = — 1 1 b
f(p1,p2) p1+p2+a[p1 og (p1) + p2log (p2) + b]

We will show that f’(%7 %) < f(p1,p2).

18

p1+p2 p1 +P2> 1 (p1 +p2) p1 + D2
f(2 ’ 2 2?1;172 +a[2 Og(2)+
1 (p1 + p2) p1+ P2
= 2 lo +b
p1+p2+a{ g e)

< — p1lo + psolo +b
p1+p2+a[p1 g (p1) + p2log (p2)]

= f(p1,p2)

Above, the inequality follows from the strict convexity of plog (p). Thus, f(p1,p2) is not a minimum,
which is a contradiction.

Plugging in p,, = 1 and p,, = p for r < n, we obtain:

2A (n—1)plogp

e 1+(n—1p
__2A (n—1)p
e log (p) 1+(n—1p

EEMepwm, Q)] = —

_ _%log (p) [1 - m}

:%log (%) [1‘m}

Part 2: Mpp

The (negative) expected error of M pp can be expressed as:

EBEMpr @) = 0. + Y0 Yo [(1-py)

D sim(s)<m(r)

= %Zprlog(pr)Z% IIT a-»)

si(s)<m(r)

We wish to show that this is minimized when p; = -+ = p,_1 = ¢ for some ¢ € (0,1). We
proceed by way of contradiction. Assume without loss of generality p; < py and let f(p1,p2) =
—E[E(MpF,)] be the negative expected error when treating everything constant except p; and ps.
Note that f can be expressed as:

f(p1,p2) = p1log (p1)[a(l — p2) + b] + pa2log (p2)[a(l — p1) + b]
—c(l—p1)—c(l—p2)—d(1—p1)(1—p2)—e
where a, b, ¢, d, e > 0. We proceed in cases, by showing that we can always find new values for p;
and po that reduces f
Case 1: p; log (p1) < p2log (p2)
Set P2 < p1.

The second term in the sum is (strictly) less by the assumption of case 1. Every other term is strictly
less because p; < pg, which implies (1 — p1) > (1 — p3) or equivalently —(1 — p1) < —(1 — pa).

Case 2: p1 log (p1) > p2log (p2)

19

_ P1+p2
Set p1 = ps 1T

Consider breaking up the sum into two pieces; i.e., f(p1,p2) = fa(p1,p2) + fB(p1, p2) Where:

fa(p1,p2) = p1log (p1)[a(l — p2) + b] + p2 log (p2)[a(l — p1) + V]
fB(p1,p2) = —c(1 —p1) —c(1 —p2) —d(1 —p1)(1 —p2) — e

‘We have:

P1tDp2 P1+P2)_ P1tp2 (P1+p2) (_p1+P2)
fA(5 3 =2 5 log 5 all 5 +0b

= (p1 +p2) log (2#) [a(1 —p1) +b+a(l —p) +b]

- [p11og (p1) + p2log (p2)] [a(1 = p1) + b+ a(l — pa) +]

=N

= 3 |Pr1og (p)[a(L = p1) + 8] + p1 log (p)[a(1 — p2) + V]

+ pz2log (p2)[a(l — p1) + b] + p2log (p2)[a(l — p2) + bﬂ

< p1log (p1)[a(l — p2) + b] + p2log (p2)[a(l — p1) + b]
= fA(phpz)

Above, the first step follows from linearity, and the second step follows from the convexity of p log (p)
and non-negativeness of the linear term. The fourth step uses the assumption that p; log (p1) >
p2 log (p2) (Case 2), and the fact that a(1 — p1) + b > a(1l — p2) + b and log (p2) < 0.

2
fB(pl-gpz) _ _20(1_171;—102) _d(l_m;—pz) e

+ 2
—c(l—pl)—c(l—pg)—d<1—p1 2p2) —e

< —c(l=p1)—c(l —p2) —d(l —p1)(1 —p2) —e
= fB(p1,p2)

Above, the first step follows from linearity, and the second step follows from the fact that the area of
a square is always larger than the area of a rectangle with the same perimeter.

We have shown that f4 and fp are both reduced, so f as a whole is also reduced.

To derive the expected error for a quality score vector of this form, we use a simple probabilistic
argument. There are n — 1 items with probability p coins, and one item with a probability 1 coin.
The probability of selecting an item corresponding to a probability p coinis ;" ; = (1 — (1 —p)'~')
where the index of the sum represents the location of the probability 1 item in the permutation and

1 — (1 — p)“~! is the probability that at least one of the probability p coins before position i comes

up heads. Using the formula for a geometic series, this simplifies to 1 — #. Thus, recalling

that ¢ = % log (p), the expected error can be expressed as:

Bl (Mpr.)] = e[t - == U =20
=D ()L]

This completes the proof. O

Proposition 5. For ¢ = (c,...,c,0) € R" with c = —22 logn, the expected error E[€(Mpr,)]
of permute-and-flip is at least 5* log (n). This implies that E[€(M g, §)] > 5 log (n) as well, and
that the upper bounds of Proposition 1 and Corollary 1 are within a factor of four of being tight.

Let ¢ = f% log (n) and note that p = % in Equation (8). Plugging in p to Equation (8) and
simplifying, we obtain:

E[E(Mpr,)] = % log (n) [1 - 1_(;1_”}
_ %log(n)(l -
> %bg (m)
_ %log (n)

This completes the proof.

D Proofs for Section 5: Optimailty of Permute-and-Flip

In this section we prove Proposition 6, about Pareto optimality of permute-and-flip, and Theorem 3,
about “overall” optimality.

Proposition 6 (Pareto Optimality). I[f E[E(Mpr, q)] > E[E(M, q)] for some regular mechanism M
and some § € R, then there exists §' € RY, such that E[E(Mpp,)] < E[E(M,)]

Proof. Note that the expected error of the mechanism can be expressed as:

EEM, D] = > PrM(@) = rl(g« — ar)

reR
qr<gx

Since E[€(Mpr, q)] > E[E(M, §)], then Pr[Mpp(q) = r] > Pr[M(§) = r| for some r where
¢ < q«. By Lemma 6, there must be some ¢’ where E[E(M,q")] > E[E(MpF,q")]. This
completes the proof. O

Lemma 6. If Pr[M(q) = 7] < Pr[Mpr(q) = 7] for some r where q, < q., then there exists a §'
such that E[E(M, q")] > E[E(Mpr, "))

Proof. Let§" = ¢+ (¢« — g»)€,. By the differential privacy and regularity of M and the recursive
construction of M pg, we know:

PrM(9) = 1] > exp (55 (4 — a.)) PIM(T) = 1]

Pr{Mpr(@) = rl = exp (55 (4 = 0.)) PriMpr(a’) = 7]

Combining the above with the assumption of the Lemma, we obtain:
Pr[M(7) = r] <Pr[Mpp(q) =]

Note that §. = ¢",. We proceed by way of induction:

Base Case: n/, =n — 1.

There is a single s such that ¢/ < ¢, and it must be the case that Pr[M(§") = s] > Pr[Mpr(q’) =
s] by the symmetry and sum-to-one constraint on M and M pp. Thus, it follows immediately that

21

E[E(MpFr,q")] < E[E(M,7")] because M places more probability mass on the candidate s that
increases the expected error (i.e., ¢, — ¢}, > 0).

Induction Step: Assume Lemma 6 holds when n/, = k + 1. We will show that Lemma 6 holds for
n., = k.

We proceed in two cases:

Case 1: Pr[M(q") = s] > Pr[Mpp(q") = s] for all s such that ¢, < ¢.

The inequality must be strict for some s, because the inequality is strict for all » where g, = g.
by the regularity/symmetry of M and M pp. Thus, it follows immediately that E[E(Mpr,)] <
E[E(M, 7")] because M places more probability mass on the candidates s that increase the expected
error (i.e., ¢, — ¢, > 0).

Case 2: Pr[M(q") = s] < Pr[Mpr(q’) = s] for some s such that ¢/, < g..

Applying the induction hypothesis Lemma 6 using ¢’ (now with n/, = k + 1), we see that the claim
must be true for n’, = k, as desired.

O

Theorem 3 (Overall Optimality). For all regular mechanisms M and all € > log (3(3 + V/5)),
STEEMpr @] < 3 E[EM, 7]
7eq qeQ
where Q = {7 € RYA : ¢« — ¢ < 2Ak, q. = 0} for any integer constant k > 0.
For the above optimality criteria, the best mechanism can be obtained by solving a simple linear
program. The variables of the linear program correspond to the probabilities the mechanism assigns

to different (¢, r) pairs, and the constraints are those required for differential privacy and regularity
(which are all linear).

Denote the optimization variables as z,(¢) := Pr[M(§) = r] for all § € Q) and all » € R. Then the
linear program for the optimal regular mechanism can be expressed as:

maxiwmize Z Z 2 (q)qr

qeQ

subjectto x,.(q) > exp (—€)z,.(7") Vq,r (privacy)
zr(q) = Tr(r) (I19) Vq,r,m (symmetry)
Zﬂﬁr(cf) =1 V¢ (sum-to-one)
z.(q) >0 vaq,r

The first constraint enforces differential privacy for a regular mechanism as in Proposition 2, where
q’ is the worst-case neighbor of ¢. We assumed the maximum entry of every score vector is zero,
which is without loss of generality due to shift invariance. To ensure that ¢’ has maximum entry zero,
we use separate expressions for ¢’ depending on whether or not g, = 0:

- 7+ 2A¢; g <0
T\g+2A6E 1) ¢ =0

The second constraint ensures the mechanism is symmetric, and the final two constraints ensure the
mechanism corresponds to a valid probability distribution.

To measure how close to optimal permute-and-flip is for € below the threshold, we can solve
this linear program numerically, and compare the solution to permute-and-flip. Observe that the
linear program has a large number of redundant variables from the symmetry constraint (e.g.,
21(—2,—8,0) = 23(0, —8, —2)). These variables can be grouped into equivalence classes, and the
redundant ones can be eliminated, keeping only a single one from each equivalence class. This
drastically reduces the number of variables and also allows us to eliminate the symmetry constraints.
Using this trick, the resulting linear program is significantly smaller, but the size still grows quickly
with n and k, and is only feasible to solve for relatively small n and k.

22

Relaxed LP Our goal is to show that M pr solves the linear program. To do so, we will consider
the following relaxation of the linear program:

maxiwmize Z Z - (q)qr

qeqQ r
subjectto — x,.(q) + exp (iqT)x,«(cf— €) <0 ¢g.-<0 (privacy)
N2 (q) + Z zs(q) =1 qr = 0 (symmetry, sum-to-one)
s5:qs<0
2:(q) >0

In this linear program:

* There is exactly one constraint per optimization variable (excluding non-negativity constraints).

* The first set of constraints corresponds to a subset of the privacy constraints from the original,
corresponding only to (g,) pairs with ¢, < 0. In addition, we performed substitutions of the form

z:(q) = exp (—€)z, (7 + 2A¢€;)
> exp (—2¢)x,(7+ 4AE,)

Y

€ . .
> exp (Eqr)xr(q — qrér),
where ¢ — g€, is the quality score vector obtained by setting ¢, = 0.

* The sum-to-one and symmetry constraints are merged into a single constraint when ¢, = 0, and
other symmetry constraints are dropped.

These constraints correspond exactly to the ones in the recurrence defining M pp in Section 3.1.
This means that M p satisfies these constraints with equality, by construction. Furthermore, since
M pr is feasible in the full LP (because it is a private, regular mechanism), if M p is optimal for
the relaxed LP it is also optimal for the full LP.

Constructing a dual optimal solution We can show that M pp is optimal by constructing a
corresponding optimal solution to the dual linear program:

miniymize Z Z yr ()

q 7:qr=0
k
subject to n.y,-(7) — Zyr((ff 2Ate) exp (—te) > ¢ ¢ =0
t=1
yr(q)+ Z ys((f)zqr qr<0
s5:q5s=0
yr(q) =2 0 ar <0

Because there is exactly one constraint for each optimization variable, we have used the same indexing
scheme for the dual variables. Note that the non-negativity constraints apply only to (g,) pairs with
gr < 0.

To prove optimality, the dual solution and M pr should satisfy complementary slackness: for each
positive primal variable, the corresponding dual constraint should be tight. However, all primal
variables are positive. Therefore, all dual constraints must be tight. By treating dual constraints as
equalities, we obtain a recurrence for y similar to the one used to derive M pp:

0 g =0,n, =1
k — -
yr(‘]) = 77T1* Zt:l yr(q - QAter) exp (7156) gr =20
_q’l" + Zs:qs:O yﬁ(q) q’l" < 0

Like the recurrence for M pp, this recurrence is well-founded and defines a unique dual solution
y. The order of evaluation is reversed for the dual variables, and the base case occurs when n, = 1

23

(rather than n, = n). We will now argue that, whenever € > log (%(3 + \/5)), the resulting dual
solution is feasible. This, together with complementary slackness, which is satisfied by construction,
implies that M pr and y are optimal solutions to the primal and dual programs, respectively.

Let y solve the recurrence above for € > log (%(3 + \/5)) To show that y is feasible, we will argue
inductively that these finer-grained bounds hold:

A .
< yr((j) <0 ifg. =0 (10)
0 § yr((j) S —dr ifQT <0 (11)
Note that Equation (11) includes the dual feasibility constraints.

We prove Equations (10) and (11) by induction on the n., the number of zero (i.e., maximum) entries
of ¢. For the base case, when n, = 1, y,.(¢) = —¢,., so Equations (10) and (11) hold.

Now let ¢'be a score vector with n, > 1 entries equal to zero, and assume that Equations (10) and (11)
hold for all score vectors with fewer than n., zeros. By Case 1 of the recurrence, for r such that
qr = 0, we have

k
1 . -
ur(@) = —— > (7 — 2088 exp (—te)

* =1

Lk
- Z 2At exp (—te)
=

>
t=1
> _2A Ztexp (—te)
M i
2A
Ny

In the second line, we used the fact that y,.(§ — 2Ate,.) < —(¢ — 2Ate,.), = 2At, which follows
from Equation (11) by the induction hypothesis, since ¢ — 2Até;. is a score vector with n, — 1 zeros.
In the third line, we used the fact that Y~ ¢ exp(—te) < 1 whenever e > log (3(3 + v/5)), which
is stated and proved in Lemma 7 below.

It is also clear that
k

1 N R
yr(q_> = _nf E yr(q — 2At€r) exp (—te) <0,
* =1

since, again by Equation (11) and the induction hypothesis, each term of the sum is non-nonegative.

We have now established that Equation (10) holds for all score vectors with n, or fewer zeros, which
we use to prove that Equation (11) holds under the same conditions. By Case 2 of the recurrence,
when ¢, < 0 we have

yr(‘j) = —qr + Z ys((j)

s:qs=0
2A
> —qr+ Z - "
s:qs=0 *
—qr — 2A

AV

0.

In the second line, we used, from Equation (10) that y, () > —%. Similarly, we have

v @) =0+ Y ys(@) <~y

s:qs=0

because y,(q) < 0.

24

This completes the inductive proof, and establishes that the dual solution y is feasible. This in turn
completes the proof that M p is optimal.

Lemma7. Ife > log (3(3+ V/5)), then Y3 | kexp (—ke) < 1.

Proof. The infinite sum is equal to:
exp (€)
[1 —exp ()]

Making the substitution exp (¢) = 1 + z, we have:

1
L(e)gl — ﬁgl = 1+2<2?
[1—exp (¢)]? 2
The solution to the quadratic equation 1 + z = 22 is the golden ratio, ¢ = %(1 4+ /5), so the
inequality holds whenever z > ¢, or whenever € > log (1 + ¢) = log (3(3 + V/5)). O

E Dynamic Programming Algorithm

In this section, we derive an efficient O(n?) dynamic programming algorithm to calculate the
probabilities. Recall the expression for the pmf from Lemma 2:

(1S
PT[MPF(Q) = 7‘] = DPr Z Hps-

SCR |S| +1 ses
r¢S

To evaluate the probabilities efficiently, we can break up the sum into groups where |S| = k. Then,
using dynamic programming, we can calculate these sums efficiently and use them to compute the
desired probabilities.

Let
S(k,’f’) = E]:[ps
SCR seS
|S|=k
max(S)<r

And note that S(k, r) satisfies the recurrence:

Sk,r)=Sk,r—1)+p.S(k—-1,7r—1).
S(k,r — 1) is the sum over subsets not including r, and p, S(k — 1,7 — 1) is the sum over subsets

including r. Using the above recursive formula together with the base cases S(0,r) = 1 and
S(k,0) = 0, we can compute S(k,r) for all (k,r) in O(n?) time.

S(k,n) is then the sum over all subsets of size k. Let T'(k, r) denote the sum over all size k subsets
not including r:

and note that T'(k,) satisfies the recurrence:

T(k,r)=S(k,n)—p.T(k—1,r)

with 7(0,7) = 1. T'(k,) can also be calculated in O(n?) time. The final answer is then:

25

~ (=D
PrMpp(@) =r] =pr Y 7

k=0

T(k,r)

which can be computed in O(n) time for each r. Thus, the overall time complexity of this dynamic
programming procedure is O(n?).

F Report Noisy Max

A popular alternative to the exponential mechanism for private selection is report noisy max, which
works by adding Laplace noise with scale % to the score for each candidate, then returns the
candidate with the largest noisy score.

Reasoning about report noisy max analytically and exactly is challenging, and we are not aware
of a simple closed form expression for its probability mass function. To compute the probability
of returning a particular candidate, we must reason about the probability that one random variable
(the noisy score for that candidate) is larger than n — 1 other random variables (the scores for other
candidates), which in general requires evaluating a complicated integral. Specifically, let f(z) denote
the probability density function of Lap(%) and let F'(x) denote its cumulative density function.

PulMuar(@ =1 = [1)] Flar — g+ o)
> s#T

If we consider quality score vectors of the form ¢ = (c, ..., ¢, 0), the expression simplies to:

PriMnm(§) =n] = /_00 f(@)F(z —)" tda

Due to symmetry, the expected error can be expressed as:

E[£(Myus, §)] = 70(1 ~ PrMyu(q) = n])

While it is not obvious how to simplify this expression further, we can readily evaluate the integral
numerically to obtain the expected error. Doing so allows us to compare report noisy max with the
exponential mechanism and permute-and-flip. Figure 4 plots the expected error of report noisy max
alongside the exponential mechanism and permute-and-flip for quality score vectors of the form
qd = (¢, ¢,0). It shows that report noisy max is better than the exponential mechanism when c is
closer to 0 but is worse when c¢ is much smaller than 0. We made similar observations for different
values of n as well. Thus, we conclude that neither one Pareto dominates the other. On the other hand,
permute-and-flip is always better than both mechanisms for all c¢. Note that in contrast to Figure 1a,
we plot c on the x-axis instead of p = exp (ﬁc), because it is not clear if report noisy max only
depends on c through p.

This comparison covers a particular class of quality score vectors which allow for a simple and
tractable exact comparison. Further comparison with report noisy max would be an interesting future
direction.

G Extra Experiments

In Figure 5 and Figure 6, we measure the expected error of Mg, and Mpp on the mode and
median problem for five different datasets from the DPBench study [20]. The conclusions are the
same for each dataset: the improvement increases with ¢, and for the range of ¢ that offer reasoanble
utility, the improvement is close to 2x. In Figure 7, we compare the expected error of M gy and
M pr on both problems, for the value of e satisfying E[E (M g,)] = 50.

26

= Exponential
081 = Report Noisy Max
- Permute-and-Flip

0.6

0.44

Expected Error

~20 ~10 0
c
Figure 4: Expected error of three mechanisms on quality score vectors of the form ¢ = (c, ¢, 0)
assuming € = 1.0 and A = 1.0.

— Men — Men

— Men — Men — Men

Expected Error
Expected Error

Expected Error

Expected Error

Expected Error

15 20

H 00 05 10 20 25 00 05

5 1 2 3 a 5 & 7 8 02 o4 s 1o
b Epsilon Epsilon

06 08 10 [
Epsilon Epsilon g

3]
Epsilon

(a) HEPTH (b) ADULTFRANK (c¢) MEDCOST (d) SEARCHLOGS (e) PATENT

Figure 5: Expected error of M gp; and M pp on five datasets for the mode problem.

10 100
10 — Meu 10° — Meu — Mem 10° — Mem — Mem
. — My 5 — My 5 — M 5 — My 5 — My
g1 g1 gw g1 g0
5 10 [o ! o
® ® ® ® ®
g0t g0 g G0 g
§ § § § §
g g g g g
& 100 & 100 & 100 & 100 & 100
00 05 1o 15 20 035 050 075 160 125 150 135 200 T 1 2 3 3 % &7 &% oo 0z 0405 o8 02 04 06 o8 1o 12 14
Epsilon 1e-z Epsilon 13 Epsilon ez Epsilon 1oz Epsilon 13

(a) HEPTH (b) ADULTFRANK (c) MEDCOST (d) SEARCHLOGS (e) PATENT

Figure 6: Expected error of M gj; and M p on five datasets for the median problem.

50 50
Bl Mgy Mgy
_ 401 S Mer _ 401 N Mer
I I
I I
Y 30 Y 30
2 20 2 20
fn fn
10+ 10
0- 0-
HEPTH ADULTFRANK MEDCOST SEARCHLOGS PATENT

HEPTH ADULTFRANK MEDCOST SEARCHLOGS PATENT

(a) Mode (b) Median

Figure 7: Expected error of M gj; and M pr on five datasets for both problems.

27

	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Private Selection
	2.3 Exponential Mechanism

	3 Permute-and-Flip Mechanism
	3.1 Derivation

	4 Comparison with Exponential Mechanism
	4.1 Analysis of Worst-Case Error

	5 Optimality of Permute-and-Flip
	6 Experiments
	7 Related Work
	8 Conclusions and Open Questions
	A Probability Mass Function of MPF
	B Proofs for Section 3: Permute-and-Flip Mechanism
	C Proofs for Section 4: Comparison with Exponential Mechanism
	C.1 Proof of thm:empf
	C.2 Proofs for Worst-Case Error Analysis

	D Proofs for Section 5: Optimailty of Permute-and-Flip
	E Dynamic Programming Algorithm
	F Report Noisy Max
	G Extra Experiments

