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ABSTRACT. We analyze a reaction-diffusion system modeling the competition
of multiple phytoplankton species which are limited only by light. While the
dynamics of a single species has been well studied, the dynamics of the two-
species model has only begun to be understood with the recent establishment
of a comparison principle. In this paper, we show that the competition of N
similar phytoplankton species, for any number N, generically leads to compet-
itive exclusion. The main tool is the theory of a normalized principal bundle
for linear parabolic equations.

1. Introduction. In this paper we analyze a reaction-diffusion model of the growth
of mulitple phytoplankton species in a eutrophic, vertical water column. In such
environments nutrients are in abundance and the different phytoplankton species
are typically limited by, and competing for, light only. Consider a water column
with unit cross-sectional area and with N phytoplankton species, for some N > 2.
Let x denote the depth within the water column where x varies from 0 (the water
surface) to L (the bottom), and let u;(x,t) denote the population density of the
i-th species at the location x and time ¢. The following model was proposed by
Huisman et al [4, 5, 6].

Optt; = 1i0patt; — ;0zu; + i [g;(I(x,t)) —d;]  for0<xz < L,t>0, (1)
for i =1,..., N, and with no-flux boundary conditions
1iOgu; —ayu; =0 forx=0,L,t>0,i=1,...,N, (2)
and initial data
ui(z,0) =u;o(x) for0<z<L,i=1,..,N. (3)
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Here p; > 0 is the diffusion coefficient caused by turbulence, «; € R is the sinking
(if a; < 0) or buoyant (if a; > 0) velocity, d; > 0 is the loss rate. The water
column has vertical depth L > 0 and we denote = = 0 to be the water surface and
x = L to be the bottom. The term g;(I) represents the specific growth rate of the
i-th phytoplankton species, which depends on the light intensity I(x,t). By the
Lambert-Beer law, the light intensity I(x,t) takes the form

N x
I(x,t) = Ipe "% exp [ —koz — Z k; / ui(y,t)dy | , (4)
j=1 70
where Iy > 0 is the incident light intensity, kg > 0 is the background turbidity, k;
is the absorption coefficient of the i-th phytoplankton species.

The system (1)-(4) is intended to model a eutrophic water column, where nutrient
is in abundance, and phytoplankton species compete for light via shading. The
integral appearing in (4) is due to the fact that the light is able to reach to depth =
only after being absorbed by water and the biomass population at depth between
0 and x. In other words, the competition for light is nonlocal. The functions g; are
smooth and satisfy

g:(0)=0, ¢;(I)>0 forI>0 andg; €L*([0,00)). (5)

Typical examples of g; include

gi(I) =

where m;, a; are positive constants.

The dynamics of the single species model is well-understood, thanks to the
order-preserving property that is satisfied by the cumulative distribution function
u*(z,t) = fom u(y,t) dy. This was first observed by Shigesada and Okubo [19] in
the special case of (kg = 0), when the cumulative distribution function actually
satisfies a closed equation without any nonlocal terms. This fact was exploited by
Ishii and Takagi [12] to show that the flow retains the natural order in w*, and
derive the existence and global attractivity of the positive equilibrium. In the case
with background turbidity (kg > 0), the global attractivity to equilibrium was first
proved by Du and Hsu [2]. See also [15, 18] for the case with time-periodic forcing.

When there is no background turbidity (ko = 0), it can be shown [14] that the
single phytoplankton species can persist in any finite water column. When there
is background turbidity (ko > 0), Ebert et al. [3] illustrated the existence of a
critical water column depth beyond which the single species cannot persist. This
and related notions, such as critical diffusion rate and critical sinking rate, were
subsequently analyzed by Hsu and Lou [11].

For multi-species competition, it was predicted by Huisman and Weissing [4, 5]
that competitive exclusion occurs in well mixed environments. This is opposed to
the apparent diversity of phytoplankton communities in nature, which is called the
paradox of plankton [10]. For N = 2, the existence of a positive steady state and
a uniform persistence result were established in [2]. In [13], a comparison principle
was established for the two-species case, and competitive exclusion results were
established. For N > 3, only the existence of positive steady state has been proved
[16].

In this paper, we will introduce a method that is not contingent on the order-
preserving property of the semiflow. As a result, we are able to determine the

m;l m;
: d (1) = —(1— —ail
T and (D)= e,




PHYTOPLANKTON COMMUNITIES IN A EUTROPHIC WATER COLUMN 1785

global dynamical property of (1)-(4) for N species when N > 3. Our results say
that competitive exclusion generically occurs for any number of species, provided
that they are sufficiently similar. As an application, we generalize the results in
[13] to N species. Mathematically, it is interesting that the global dynamics of
arbitrarily many species can sometimes be determined. This is possible thanks to a
novel result concerning the normalized principal bundle (see Proposition 2) which
is proved in [1].

Biologically interpreted, the results in this paper and [13] suggest that an eu-
trophic environment in and of itself does not promote coexistence of phytoplankton
species, and other factors, such as nutrient limitation, predation and seasonal forc-
ing, might be important.

1.1. Main results. We make two assumptions to simplify our problem. The first
main assumption is that the N species are sufficiently similar and are organized by
a trade-off curve, in the sense that

pi = p(zi), o =a(z), di =d(z)
for some smooth functions u(z), a(z) and d(z) depending on a trait parameter z € R
and (z;)¥, is a strictly increasing sequence. For example, we will consider the case
when g = z varies across species, while a = «ag and d = dj are constant; see
Theorems 1.2—1.4. The second assumption is that the growth function g(-) is the
same for all species. Next, by replacing g(Iy-) by ¢(-) and w; by u;/k;, we obtain
the modified system

Opt; = piOpzty — ;Ozuy + u; [g(I(x,t)) —d;] for0<az < L,t>0,1<i<N,

I(z,t) = exp(—kox — Zjvzl Jy uiy,t) dy) forO<ax < L,t>0,
WiOpu; — aju; =0 forx=0,L,t>0,1<i<N,
u;i(2,0) = u; o(x) for0<z <L, 1<¢<N,

(6)

where we assume

9(0) =0, g(+00) <400, ¢'(s)>0 fors>0,

and
d* < gle”™L) where d* =supd(z). (7)
zel
Moreover, there exists Cy > 0 such that
1
roR <u(z) <Co, |a(z)| <Co 0<d(z) <Cp forall 2. (8)
0

Condition (7) means that, in the absence of phytoplankton, the growth rate is
everywhere positive, down to the bottom of the water column. This is used to
prove Lemma 2.3, that the trivial equilibrium is repelling in some uniform sense.

We will prove that, in general, competitive exclusion takes place when the N
species are similar. To state our theorem, we will introduce some notions from
adaptive dynamics. Consider the single species problem

0l = p(2)0pz0 — a(2)0,0 + [g(I(x,t)) —d(2)]0 for0<axz < L, t>0,
1(2)0,0 — a(2)8 =0 forx=0,L,,t>0, (9)
u(z,0) = ug(z) for x € [0, L].

Under the assumption (7), it is well-known [2, 15, 18] that, for each z, (9) has a
unique positive equilibrium 6, (z) that is globally asymptotically stable among all
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positive solutions of (9). Suppose a species with trait value 2 is at equilibrium. A
natural question is whether a species with a different trait z # Z can invade this
resident equilibrium when rare. The answer can be given in terms of the sign of the
principal eigenvalue A(z, 2) of the problem:

1(z)¢" (x) — a(z)¢'(x) + [g(o™(x)) — d(2)]¢(x) + A¢(z) =0 for 0 <z < L,

o*(x) = exp(—kor — fox 0;(y) dy) for 0 <z < L,

w(z)d' (z) — a(z)p(z) =0 for x =0, L.

(10)

The quantity A(z,2) is called the invasion exponent. When A(z, %) < 0, the rare
invader with trait z can invade the resident with trait 2 successfully. When A(z, 2) >
0, the invasion fails. Note that when z = Z, then the invasion exponent vanishes,
as the equilibrium solution 6; is a positive eigenfunction corresponding to the zero
eigenvalue. In partciular, for z = Z, the invasion depends on the first derivative
0. \(z, 2)‘222, which is called the selection gradient.

Theorem 1.1. Suppose
DXz, 2)|,_. >0 for some 2. (11)

Then there exists € > 0 such that for arbitrary N and arbitrary increasing sequence
(z)N, C (2 —¢,2+¢), every positive solution (u;)., of (6) converges to the
equilibrium By = (6,,,0,...,0) as t — oc.

Remark 1. The case 0, A(z, 2)‘222 < 0 can be transformed to 9,\(z, 2)’222 > 0,
by replacing z with —z. One can then argue similarly to show the global asymptotic
stability of the equilibrium Ey = (0,...,0,0,,).

As applications, we present three sufficient conditions in which the condition
(11) is verified. The first result says that, other things held constant, then the most
buoyant species wins.

Theorem 1.2. Suppose
)= o >0, a(z)=z d(z)=do.

Then for each 2 € R, there exists ¢ > 0 such that for any N and increasing sequence
(2)N, C (2 —¢e,2+¢), every positive solution of (6) converges to the equilibrium
E1 = (921, 0, ceey O)

The second result says that, if all the species are buoyant with the same buoyancy
velocity, then the slowest diffusing species wins.

Theorem 1.3. Suppose
wz) =z, alz)=ay, d(z)=dp.

If a9 < 0, then for each Z > 0, there exists € > 0 such that for any N and
increasing sequence (2,)N.; C (2 —¢,2+¢€), every positive solution of (6) converges
to the equilibrium E; := (0,,,0,...,0).

The third result says that, if all the species are sinking with the same velocity,
and that velocity is large enough, then the fastest diffusing species wins.

Theorem 1.4. Suppose
wz) =z, «alz)=ag, d(z)=dp.
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If ag > [g(1) —dp) L, then for each %2 > 0, there exists € > 0 such that for any N and
increasing sequence (z;)N.; C (2 —¢,2+¢€), every positive solution of (6) converges
to the equilibrium Ey = (0,...,0,0,,).

Remark 2. In [13], the case N = 2 was considered and the conclusion of Theorems
1.2-1.4 hold without the smallness condition on e.

The rest of the paper is organized as follows: In Section 2, we derive some uniform
bounds for positive solutions to the time-dependent problem (6). In Section 3, we
use the smallness of € to show that for any positive solutions (u;); of (6), the total
population Zf\le u; eventually enters a neighborhood of the positive equilibrium of
the single species problem. In Section 4, we introduce the notion of normalized
principal bundle, which is a generalized notion of principal eigenvalue for elliptic or
periodic-parabolic operators. In Section 5, we prove a general exclusion criterion
and then give the proof of Theorem 1.1. Finally, we illustrate our main result by
proving Theorems 1.2-1.4 in Section 6.

2. A priori estimates. Define
G(s) = / gle”")dr —dys,  where d, = inf d(2). (12)
0 z

Then G(0) = 0, G'(s) = g(e™®) — d., and, since G'(+00) = —d. < 0, there exists
M; > 0 such that

G(s) <0 for s > M. (13)
In the following we will also denote
N I N
(z,t) = Zui(x,t), Ui(z,t) := / ui(y,t)dy and U(z,t) = ZUi(x,t).
i=1 0 i=1
Lemma 2.1. Let (u;)Y| be a non-negative solution of (6) such that
N
Z iz, 0) Lo,y < M,
i=1

then

sup 21111 [[ui (@, t)l| L2 (j0,z1) < max{M, M},

£20 N (14)

hinsup >z lui(z, )z o,y < M.
—00

Proof. Integrating (6) with respect to x from 0 to L, and adding ¢ from 1 to N, we
obtain

d - L X .
ZU(L,t) = /0 ;[g(exp(—kom —U(x,t))) — di]us(z, t) da
L A ~
</ [g(exp(=U(z,t)) — di]0.U(z,t) dx

~Jo
L
_ / 0,[G(U (2, 8))] dz = G(U(L, 1)),

where we used G(0) = 0 and U(0,%) = 0 in the last equality. Since G(s) < 0 for
s > My, it is not difficult to deduce (14) from the above differential inequality. O
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Lemma 2.2. There exists Cy such that for any N and any (z;)Y., C I, every
positive solution (u;)N; (6) satisfies
N
h{ﬂsupz [wi(z, t)||c2tattarzo,Ljxti+1)) < Cr, (15)

—o0
=1

where Cy depends on Cy from (8), but does not depend on the number N and the
initial data.

Proof. Fix an arbitrary positive solution (u;)Y.; of (6). By Lemma 2.1,

N
limsupz llwill o o, x[t,t43)) < 3Ma,
t—o00 i=1
so there exists Ty > 0 such that

N
> il o,ixieeray < 4My - for t > Ty,
=1

Observe that the equation of u; can be regarded as a linear parabolic equation with
non-autonomous coefficients:
Opui — p1iOpatti — ;Ozu; = 7i(, t)u;, (16)

where

Gi(z,t) = g(exp(—kox — U(x,t))) — d; € L*>([0, L] x [0, 0)).
We can apply the uniform Harnack inequality [8, Theorem 2.5] to deduce that

sup u;(z,t) < Cpgx inf w;(xz,t) fort¢>1. (17)
0<z<L 0<e<L

where C'y does not depend on 7 and the initial data. Then, we have

[willLos o, 21 x [t 43) < Cllwillro,zyxqeeray < C - fort > 1. (18)
Next, we apply the Sobolev embedding theorem and the parabolic LP estimate
to the linear parabolic equation to improve the above estimate to
willcoarzpo,Lyxes1,e43) < O lluillwespasr o,y e+1,043))
< Olluillpoe o, zyx 43y < CllwsllLro,nyxeerap-  (19)
Then &;(x,t) in (16) is Holder continuous, so that by parabolic Schauder estimate,
the above can then be improved to
[willcatantarzo, yx+2,43) < CllwillLr(o,Lyx[t.t43))- (20)
The desired conclusion follows by summing ¢ from 1 to N, and taking supremum
for t > T}, to obtain
N N
> Ntillozraasarz (o, 1x r+2,00)) < CtS;ITE) D il 1o,y x .43 < 4CMy.
Jj=1 Z40 j—1
Note that all the constants are independent of N and (z;)Y,, thanks to the as-
sumption (8). This completes the proof. O

Lemma 2.3. There exists a constant 69 > 0 such that for any positive solution
(u))N.; of (6), we have

t—o0 0<z<L

N
liminf[ inf Zul(x,t)] > do.
i=1
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Proof. Let (u;)Y.; be a positive solution of (6). Integrating (6) with respect to
z € [0, L] and adding ¢ from 1 to N, we have

L N
901> / oe™H == 060) — )3 i, 1) da
= /L Oy [C;’(kox +U(z,t)) — é(kox)} dx
0

L
e—kox _ e—kom—U(z,t) T
o [ [ate™n) — )] a
> GkoL + U(L,t)) — G(koL) (21)

where G(s) = Js gle™)dr — d*s. Note that the last inequality follows from the
fact that ¢'(s) > 0 for s > 0.
Observe now that, by (7),

G'(koL) = gle MLy —d* > 0.
Hence there exists d; > 0 such that G(koL + s) — G(koL) > 0 for s € (0,4;]. Since
the mapping t — U(L,t) satisfies the differential inequality (21), it follows that

N

i=
By applying Harnack inequality (17) once again, we can convert the above lower

estimate of L' integral to the desired pointwise estimate. This proves the lemma.
O

3. A rough estimate.

Proposition 1. For each n > 0, there exists € > 0 such that for any N € N and
()N, € (2 —¢e,2+¢), any positive solution of (6) satisfies

N
im sup | ;U (1) ()Hc([o,L]) <7 22

Proof. Denote for simplicity 1 = u(2) and & = a(2). Let a positive solution (u;)¥,
of the time-dependent problem (6) be given. Our goal is to show (22).

Suppose to the contrary that there is 1y > 0 such that for k£ € N, there exists
Ny, € N, and sequences {p¥}¥% ) {a¥}N* and a positive solution (u¥)N¥ such that

1 A

k A k o . k

sup(|p; — fo| + oy —&]) < —, limsu HU x,t —ngH > 1o,
(it =l +lat —al) < 7. twsup [0~ o)z
where U¥(z,t) = vaz’“l uf(x,t). We can infer that for each k, there exists {t5}; —
oo such that

inf ||UF (2, t%) — 6 > > 1.
jllefl |U"(z,t]) — Ozllo(o,z)) =m0, for each k > 1

By the a priori estimate established in Lemma 2.2, we can pass to a subsequence
so that

Uf(m,t) = Uk(a:,t—i—t?) — Uk (2,t)  as j — 0o in Croe(]0, L] x R),
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where U¥ is some entire solution of (6) satisfying

T4 (2,0) = 02 (x) | 0.1y = Mo (23)
By Lemma 2.3 and by possibly taking a smaller 79, we may also assume that
. ik
odnf Us(@,t) 2 mo, (24)

Now, since the estimate of Lemma 2.2 is independent of N, there is C; indepen-
dent of k such that

ok
U | g2 +earsarz(jo,0)xr) < C1 (25)
Hence we can again pass to the limit to assume that, as k& — oo, the sequence

{UF Vi converges in Co.([0, L] x R) to some bounded entire solution U,, of the
single species equation (9) with z = 2. Moreover, by (23) and (24), U satisfies

[Uss(@,0) = 6z(2)l[c(jo,z)) = Mo, (26)
and
inf > np.
0<n<L Usol, ) = 1h0 (27)

But this is in contradiction with the fact that the equilibrium solution 0;(z) attracts
all positive solutions of (9).
O

4. The normalized principal bundle. In this section, we define the notion of
a normalized principal bundle, which is a generalization of the notion of principal
eigenfunction of an elliptic, or periodic-parabolic operator. We state a theorem
concerning its smooth dependence on parameters.

4.1. The normalized principal bundle. Given three constants, u,d > 0, a € R
and a function h(z,t) € C%P/2([0, L] x R), we say that the pair (U1 (z,t), H;(t)) is
the corresponding normalized principal bundle if it satisfies

OV (2, 1) — p0ga V1 (2, t) + @0, ¥y (x,t) —h(x,t)¥q(z,t) + d¥q(z,1)

= Hy(t)Uq(z,1) forO<z<L,teR,
10,V (z,t) — a¥q(x,t) =0 forz € {0,L}, t € R, (28)
[p le=ox/mly (2,4)|? do = 1 for t € R,
Uy (z,t) >0 for z € ]0,L], t € R.

Letting ¢1 (x,t) := e~**/# ¥, (z,t), the above problem can be transformed to
Op1(x,t) — uOppthr (x,t) — adptin (x,t) —h(z, )1 (z,t) + dr(z,t)

= Hy(t)Y1(x, t) forO<z<L,teR,
O,1(x,t) =0 forz € {0,L}, t € R, (29)
Ip 1 (2, t)Pde =1 for t € R,
P1(x,t) >0 forz € [0,L], t € R.

The existence and uniqueness of (¢ (z,t), Hy(t)) are proved in [17] (see also [8, 9]
or [1, Theorem A1] for details).

Remark 3. By the uniform Harnack inequailty (see [8, Theorem 2.5]) together

with the normalization fOL le=o®/mY, (2,t)|?dx = 1 for t € R, it follows that for
each 0 > 0 there is C' = Cs > 0 such that if

wd € [6,1/8), ol + k(e Ollcqo.cixm < 1/5,
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then

L cw@n<c m(0,I] xR
Cs

Remark 4. The notion of principal bundle is a natural generalization of the no-
tion of principal eigenvalue and eigenfunction. If h(x,t) = h(z) for some time-
independent function h, then v; and H; are time-independent, i.e.

Uy =4(z) and Hy =\

Moreover, 1[)(‘?) and \ are the principal eigenfunction and principal eigenvalue of
the elliptic problem

{—m/;”(m) + o)/ (z) — (h(x) — d)(x) = Mp(z)  for 0 <z < L,

p! (z) — ap(x) =0 forx =0, L. (30)

The main result of this section is the smooth dependence of the principal bundle
on the coefficients.

Proposition 2. The normalized principal bundle, as a mapping from

(M,Ot,d,h) — (\Ifl,Hl)
Ry x Rx Ry x CAP/2([0,L] x R) — C*+A148/2([0, L] x R) x C™A/2(R),

is smooth.

Proof. We refer to [1, Proposition A.2] for details. O

Corollary 1. For given 2,z € I, let \(z,2) and 1&(95, z, 2) be the principal eigenvalue
and eigenfunction of (10). Suppose 82)\(,2,2)’2:2 > 0 (resp. Oz)\(z,é)‘zzé < 0).
There exists i’ > 0 such that for any z and any function h(z,t) € C%P/2([0, L] xR),
if

|z =2 <7, and ||h(x,t) = h(x)l|lcssr2(0,)xr) <1 (31)
where

(z) = glexp(—kor — / " 0. (y) dy)), (32)

then the normalized principal bundle (Vy(z,t;2,h), Hi(t; 2, h)) of (28), correspond-
ing to the choice (u(2),(2), h(x,t)), is a smooth function from I x C#B/2([0, L] x
R) — C™P/2(R). Furthermore, it satisfies

0.Hi(t;2) >n" (resp. 0.H1(t;2) < —n') forallteR, ze (2—1n,2+17),

where 0, Hy (t; 2, h) is the partial derivative of Hi(t;z, h) with respect to the scalar
parameter z.

Proof. Since the mappings z — (p(z), a(z),d(z)), and (u, o, d, h) — (¥1, Hy) are
smooth, so is their composition (z,h) — (¥1, H1). It remains to show the second

part of the corollary.
Consider 9, \(z, 2)‘2«:2 > 0. By Remark 4, we see that

(\Ill(x,t; Z, }Al)v Hl(t; Z, il) - ((;5($), )‘(Zv 2))

where (¢(x),\(z,2)) is the principal eigenpair (10). By continuous dependence,
there is £1 > 0 such that

d
= inf —A(z,2) > 0.
1o ze[éjg,2+al] dz (2,2)
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Now it follows from the smooth dependence of (¥, Hy) on (z, k) that there exists
7' € (0,7m0/2) such that if (31) holds, then

sup (| 0-Hy(52,h) — 0-Hi (5 2, h)llomsrz (o, xm)

Z€[2781,2+€1]

— |0y (5 2, k) — 9A(2, 2)] o

JOp Hca,ﬁ/z([o,L]xR) < 9

Hence, for z € [2 — &1, 2 + 1],

0. Hy(t;z,h) > 0.M\(2,2)|,_; — — > —>n forteR.

This proves the corollary. O

5. A general exclusion criterion.

Proposition 3. Suppose 9. \(z, 2)’z:2 > 0 for some z. There exists n > 0 such that
if (22) holds, then for any N and any increasing sequence (z;)N.; C (2 —mn,2+1n),
every positive solution (u;)N., of (6) converges to the equilibrium solution E; =
(0.,,0,...,0) as t — oo. i.e. The equilibrium E; is globally asymptotically stable
among all positive solutions.

Remark 5. By a change of variables z — C — z and analogous arguments, it follows
that if 0,A(z,2)|__, < 0, then there exists n > 0 such that if (22) holds, then for
any N and any increasing sequence ()., C (2 — 1,2 + 1), every positive solution
of (6) converges to the equilibrium Ey = (0, ...,0,6., ).

Proof. Let the parameter Z be given such that 9,\(z, 2) .—: >0, and let 17’ > 0 be
as given in Corollary 1. We claim that there is € € (0,7') such that for any any N
and any (d;)Y, C (2 —¢,2+¢),

(33)

/
lim sup rgnax Hh x,t) — x)Hcﬁﬁ/z([O,L]x[t,t-i-l]) <n,

t—o0

where
A N x
h(zx,t) = glexp(—kox — U(x,t)) = g(exp(—kox — Z/O u;(y,t) dy), (34)

and h(z) is given in (32). Indeed, in view of Proposition 1 and the a priori estimate
(15), we can use interpolation to estimate

~

| Az, t) — —65(

HCB B/2([0,L] X [t,t+1])
Lo ([0,L] % [t,t+1])
where C' > 1 and 0 < v < 1 are some positive constants in the interpolation
inequality. Hence, we deduce (33) upon taking 7 such that CnY < n’ and apply
Proposition 1.

Having proved (33), after possibly a translation in time, we may assume without
loss of generality that

1 t) = hllcaera o,y 0,00y <11 (35)

Extend h(x,t) evenly in ¢, so that it is defined for (z,¢) € [0,L] x R. Since (£ —
g,2+¢)C(2—1n',2417"), we have verified (31).
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Let Wq(x,t;2,h) and Hy(t; 2, h) be the normalized principal bundle considered
in the statement of Corollary 1. We have, for any z € [2 — ¢, 2 + €],

. ) < .
%gﬂgazHl(t, z,h)>n">0 (36)
For each ¢, we claim that there is ¢; > ¢; > 0 such that
e o Mz oy (4t 25 h) < wiw,t) < ge” o =W Ay (342 h) (37)
for (z,t) € [0,L] x R.
Indeed, the left and right hand sides of (37) satisfy the same equation as w;.
Hence we can choose ¢; large enough and ¢; small enough to deduce (37) from the

classical comparison theorem of linear parabolic equations. This proves (37).
By (36), we have

Hi(t;2i,h) — Hy(t;21,h) > (2 —21)n’ >0 foralli > 1, and all t € R.
Hence, we derive from (37) that, for i > 1,

ui(x,t) ¢ Uy (z,t; 2, h)
20\~ _ A . I\ e
) = Cexp ( /0 (Hq(8;2;) — H1(s;21)) ds> Vi (a.tonh)

<Cexp(—(zi—2z1)n't) >0 ast— oo.

Note that we have used Remark 3, which gives a constant C' > 0 (that is independent
of ) such that for z € (2 —¢,2 + ¢),

1
ol < Uy(z,t;2,h) <C  in[0,L] x R.

Since we also have lim sup Zi\; |lus|| < Cp (by Lemmas 2.1 and 2.2), we deduce
t—o0

that u; — 0 uniformly for ¢ = 2,..,N. Hence the semiflow generated by (6) is
asymptotic to the single species model consisting of only the first species u;. Since
the trivial solution is repelling (by Lemma 2.3), we deduce that u; — 6., uniformly
as t — oo. O

Proof of Theorem 1.1. Let n be given by Proposition 3. We can then choose ¢ €
(0,m) by Proposition 1 such that for any N and ()Y, € (2 — ¢, +¢), any positive
solution (u;).; of (6) satisfies (22). It then follows from the choice of n above
and Proposition 3 that E; = (6,,,0...,0) is globally asymptotically stable among
all positive solutions of (6). O

6. Applications. We generalize several exclusion results in [13], involving only
two species, to general N-species competition. First, we recall the following mono-
tonicity property of the eigenvalues of some elliptic problems. For pu,d > 0, « € R
and h € L ([0, L]), let Aq(u,a,d, iz) be the principal eigenvalue of
{ﬂ¢/,a¢/+(h($)d)¢+/\1¢_0 forO0<z <L, (38)
ud —agp =0 for x =0, L.

Lemma 6.1. If h € C'([0,L]) and satisfies h'(x) < 0 in [0, L], then the following
assertions hold.

(a) BaAi(p, c,d,h) >0 for any p,d >0 and o € R.

(b) OuAi(p, o, d, h) > 0 for any p,d >0 and o < 0.

(¢) If a > [h(0) — d]L and Ay (u*,a,d,h) =0 for some p* > 0, then

O (p*, o, d, h) < 0.
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Proof. Let ®(z) = e=%/#¢(x). Then (38) becomes
p®” + ad + (h(z) —d)® +A® =0 for0<z<L,
P =0 for x =0, L.

The proof of assertion (a) is similar to [11, Lemma 5.2] and we omit it here. The
proofs of assertions (b) and (c) can be found in [13, Lemma 4.9]. O

6.1. Proof of Theorems 1.2—1.4. First, we consider the case
w(z) =pp >0, alz)==z d(z)=dy>0, (39)
and prove Theorem 1.2.

Proof of Theorem 1.2. For z,2 € R, the principal eigenvalue A(z, %) of (10) can be
represented as

)‘(Za 2) = Al(lul(bzv dOa hA)a

where ha(z) = glexp(—kox — [, 62(y) dy)) and 6: is the positive equilibrium so-
lution of the single species equation (9) with coefficients satisfying (39). It is easy
to see that hy € C*([0,L]) and Ay < 0 in [0,L]. By Lemma 6.1(a), it follows
that 8Z)\(z,2)’Z:2 > 0. Hence, we may apply Theorem 1.1 to deduce the global
asymptotic stability of F; among all positive solutions. O

The proof of Theorem 1.3 is similar and we omit the details.
Next, we consider the case

nz) =z d(z)=de>0, alz)=a0>lg(1) - dolL, (40)

and prove Theorem 1.4.

Proof of Theorem 1.4. For z,2 € R, then the principal eigenvalue A(z, 2) of (10)
can be represented as

Az, 2) = A (z,0,do, hB),

where hp(z) = glexp(—koz — [ 0:(y) dy)), and 6; is the unique positive solution
of

207 — b + (g(exp(—koz — [ 0:(y) dy)) —do)f: =0 for 0 <z < L,
pods —20; =0 for x =0, L.

It follows that Aj(Z, ag,do, hp) = 0, since 0 is an eigenvalue admitting a positive
eigenfunction 6;. Also, observe that

ag = [g(1) — do]L = [hp(0) — do]L,
so that we can apply Lemma 6.1(c) to deduce that
82/\(2, 2)}2:5 = 6HA1(§, g, do, hB) < 0.

The desired conclusion now follows from Theorem 1.1 and Remark 1. O
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