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1. INTRODUCTION

Buildings use 40% of the global energy consumption and emit
30% of the CO, emissions [1]. Of the total building energy,
30-40% are for building heating and cooling systems, which
regulate the indoor thermal environment and provide thermal
comfort to occupants. In the United States, most buildings
use forced air technology to deliver heating / cooling to the
targeted thermal zones as shown in figure 1. This system may
cause complaints for thermal comfort from inhabitants due
to excessive draft movement, inhomogeneous conditioning,
and difficulty in accurately controlling the temperature for a
system with multiple serviced rooms [2].
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Figure 1. Forced-air Systems. Figure 2. Radiant Systems.
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To address the issues, researchers have suggested the use of
radiant heating and cooling system as a better alternative to
all-air systems, as depicted in figure 2. Radiant systems supply
heating or cooling directly to the building space using radiation
released by the heated or cooled building enclosure via the
embedded heating or cooling tubes. In the cooling season,
the radiant system often works with a separated dehumidifier
together to meet space latent and sensible cooling load
(called separate sensible and latent cooling system SSLC). The
SSLC has shown higher efficiency than forced air systems [3].
However, it is unsure whether the radiant heating and cooling
system can provide better thermal comfort to occupants.
Moreover, the evaluation method for thermal comfort in the
current standard is only suitable for forced air systems. A new
method shall be developed to evaluate the radiation system’s
thermal comfort.

In this paper, we review the experiment-based studies on
the thermal comfort of radiant systems. According to the
experimental studies regarding thermal comfort and radiant
systems, the key findings are concluded to help guide the
evaluation of thermal comfort for radiant systems.

2. NEW PARAMETERS FOR THERMAL COMFORT
EVALUATION

Traditionally, thermal comfort studies for building heating
and cooling systems considering both physical conditions and
human factors. The physical parameters measured include
mean radiant temperature (MRT), relative humidity, air
velocity, and indoor air temperature. These are coupled with
human parameters such as clothing level and metabolic rate.
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Table 1. Common Sensors used for Thermal comfort research in Radiant Systems.



Radiant heating and cooling system utilize radiation rather
than convection to transfer heat to the occupants in the
building space. It is not enough to study the air condition
and mean radiant temperature since the radiation is related
to the surface temperatures and the geometry relation
between an occupant and the radiant surface. In the various
studies of radiant heating and cooling systems reviewed, the
physical parameters measured include MRT (mean radiant
temperature), relative humidity, air velocity, and indoor
air temperature. Table 1 summarizes the sensors used
for both commonly used evaluation parameters and new
parameters being proposed in the studies. The information
of the sensors used in the studies include sensor categories,
descriptions, producers, accuracy specifications, and general
pros & cons [4-36].

As it can be seen in figure 3, the sensors are placed 0.9 m
above the floor which is considered the standard height
for a sedentary person, and close to the test subject for
more accurate results. Air temperature was also measured
in selected studies at four different heights including 0.1m,
1.1m, 1.7m, and 2.8m to evaluate local discomfort that
could potentially be brought about by vertical temperature
difference [11].

Additionally, the new proposed parameters for assessing
thermal comfort in other states are individual surface
temperature and skin temperatures. Kashif, et al. [4] assessed
sleeping parameters for sleeping comfort and quality of
sleep under thermoelectric air-cooling systems. Parameters
including sleep onset latency, efficiency of sleep, and wake
abouts are involved in the thermal comfort assessments to
reach a more accurate result. Skin temperature parameters
were measured at various parts of the body including head,
chest, back, arms, thighs, calves, and core using thermocouples
with adhesive or infrared thermometers to calculate local
thermal sensation for individual body parts, then developed
overall thermal sensation results. In consideration for radiant
asymmetry that might cause local discomfort, thermal
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sensation vote and thermal comfort vote that are calculated
from skin temperature information are utilized to assess
discomfort and surface temperature limit [4,7,10,13,19,23].

3. ASSESSMENT METHODOLOGY FOR RADIANT
SYSTEM

Since radiant heating and cooling focuses more on the transfer
of heat that is not achieved through convection, temperatures
of the radiant surfaces and local temperatures of test subjects
are used along with indoor parameters to evaluate subjective
thermal comfort.

Teitelbaum, developed a new thermal comfort evaluation
framework for forced air systems and radiant systems by
defining comfort as when the heat flux of convective, radiative,
and evaporative modes equal to the individual’s metabolic rate
[24]. Researchers can thus adjust specific parameters without
changing the air temperature to provide better comfort based
on the chart[24].

4. THERMAL COMFORT EVALUATION

Skin temperature measurements on local body parts help
thermal comfort evaluation for radiant systems because
they account for vertical and horizontal radiant temperature
asymmetries induced by the high-temperature difference
between the body and radiant panels. Local skin temperatures
measured were at the forehead, back, chest, forearm, upper
arm, backhand, thigh, calf, and foot. They are then used to
calculate mean skin temperature [21]. Since core temperature
is an internal temperature, the variation of core temperature is
only 0.1°C, which is not significant in thermal comfort evaluation
[22]. Zhang, [22] developed a relationship between local skin
temperature and local thermal sensation/comfort using
physiological measurement data and subjective responses.

5. SUBJECTIVE THERMAL COMFORT EVALUATION

Different types of surveys and questionnaires are included in
every research with slight differences in the approach. The
guestionnaires are conducted in small intervals during the test
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Figure 3. Configuration of Radiant Systems.
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based on mostly ASHRAE 55-2004 or ASHRAE RP-921 protocol
[8,10,11,13]. The number of responders varies by the study,
but they are in the low one hundred in terms of magnitude.
Geographically these were conducted across the globe in Asia
and Europe. The following techniques were used to evaluate
thermal comfort for radiant systems subjectively.

5.1 PMV & AMV
PMV: Predicted Mean Vote
AMV: Actual Mean Vote

Using the ASHRAE 7-point thermal sensation scale, the
guestionnaires addressed occupant thermal sensations,
acceptability of thermal environment, thermal preference,
satisfaction with general comfort, clothing level, etc., which
varies with different research. The ASHRAE 7-point thermal
sensation scale is a scale that ranges from -3 to +3 with 3 being
feeling hot, -3 being feeling cold, and 0 being feeling neutral.
PMV and AMV (thermal sensation reported by occupants) are
then calculated based on the parameters addressed above and
compared in selected research. Positive PMV-AMYV difference
indicates that test subjects perceived cooler with a radiant
system under the same operative temperature than with a
conventional air system

5.2 TSV: Thermal sensation vote

Thermal sensation vote (TSV) is a subjective vote from the
occupants on a scale from -4 to 4, with 4 being very hot
and -4 being very cold. Since TSV is a subjective vote, its
relationship with skin temperature has been analyzed from
experiment results. Skin temperatures were measured at 28
locations on the body, and sensation and comfort questions
were asked for 19 local body parts and for the whole body
[22]. In asymmetrical environments, thermal sensation and
thermal comfort can be estimated mainly by the local skin
temperatures and core temperatures [22].

5.3 TCV: Thermal comfort vote

Thermal comfort vote (TCV) is the local thermal comfort of
a body part voted on a scale from -4 to 4, with -4 being very
uncomfortable and 4 being very comfortable. When subjects
are thermally neutral, thermal comfort vote and thermal
sensation vote shows a linear relationship. As local TSV shifts
to a higher value (warm), local TCV starts to decrease from 2
to -4, which indicates a warm local discomfort.

6. THERMAL DISCOMFORT EVALUATION FOR THE
RADIANT SYSTEM

In evaluating thermal discomfort for radiant systems, draught,
vertical temperature difference (VTD), and radiant asymmetry

have been analyzed with parameters including surface
temperature, skin temperature, and air velocity.

6.1 Draught

Since the radiant system involves low air velocity (< 0.2m/s)
and vertical temperature difference (<0.4°C), it eliminates
potential discomfort caused by excessive air movement
compared to all air systems [14]. Azad, Abdus Salam, [14] found
that the percentage dissatisfied due to draught for the radiant
system is 10 while 20 for the conventional all-air system [14].

6.2 Vertical temperature difference (VTD)

Air temperatures were measured at different height
levels, including 0.1m, 1.1m, 1.7m, and 2.8m [8]. As radiant
temperatures asymmetry and surface temperatures could
affect test subjects’ thermal sensation, the walls, ceiling, and
floor’s temperature were measured using a FLIR handheld
infrared imaging thermometer in research regarding
radiant cooling [10].

6.3 Radiant temperature asymmetry

The ASHRAE guideline for radiant asymmetry presents all the
comfort limits for overhead radiation and horizontal radiant
asymmetries, including warm ceiling, cold ceiling, warm wall,
and cold wall. The findings done by the researchers include
maximum vertical temperature difference from ankle to head,
comfort limit of floor heating, the effect of the cold window
on radiant asymmetry, air stratification for floor heating,
the effect of exposure duration for radiant asymmetry, and
comfort limit for cold floors.

7. CONCLUSION

The review studies have the following findings that are
important for future research and design of thermal comfort
in radiant systems.

(1) Except for the mean radiant temperature, new parameters
that are more suited for thermal comfort evaluation of radiant
systems include skin temperature and surface temperature.
(2) The thermal comfort evaluation parameters in the studied
literatures include predicted mean vote, actual mean vote,
thermal sensation vote, thermal comfort vote. (3)Using PMV
(Predicted Mean Vote) alone as subjective evaluation of
thermal comfort does not account for thermal discomfort
brought by vertical temperature difference (VTD), and local
discomfort caused by radiant asymmetry and increased air
velocity. (4)Thermal discomfort including draught, vertical
temperature difference (VTD), and radiant asymmetry
could be adequately evaluated using the new parameters
introduced above.
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