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Abstract—Due to the growing complexity and numerous
manufacturing variation in safety-critical analog and mixed-
signal (AMS) circuit design, rare failure detection in the high-
dimensional variational space is one of the major challenges
in AMS verification. Efficient AMS failure detection is very
demanding with limited samples on account of high simulation
and manufacturing cost. In this work, we combine a reversible
network and a gating architecture to identify essential features
from datasets and reduce feature dimension for fast failure de-
tection. While reversible residual networks (RevNets) have been
actively studied for its restoration ability from output to input
without the loss of information, the gating network facilitates the
RevNet to aim at effective dimension reduction. We incorporate
the proposed reversible gating architecture into Bayesian opti-
mization (BO) framework to reduce the dimensionality of BO
embedding important features clarified by gating fusion weights
so that the failure points can be efficiently located. Furthermore,
we propose a conditional density estimation of important and
non-important features to extract high-dimensional original input
features from the low-dimension important features, improving
the efficiency of the proposed methods. The improvements of our
proposed approach on rare failure detection is demonstrated in
AMS data under the high-dimensional process variations.

Index Terms—Reversible neural network, dimension reduction,
Bayesian optimization, gating architecture, failure detection

I. INTRODUCTION

Analog and mixed-signal (AMS) systems demand very strict

requirement from design to tape-out, especially for the safety-

critical applications. For example, in biomedical device, an

extremely low failure rate is typically required such as 1

DPPM (defective parts per million) or less, which makes the

circuit design and the corresponding circuit verification very

challenging tasks.
Nowadays, the most common practice for analog circuit

verification in industry is still to use Monte Carlo (MC)

simulations to detect rare failures. However, MC methods are

computationally expensive in terms of long simulation time

with stringent verification requirements. In recent years, as one

of data-efficient optimization methods brought by the machine

learning society, Bayesian optimization (BO) is introduced into

the circuit verification field for failure rate estimation and rare

failure detection [1]–[4]. BO is a sequential search mechanism

for optimization of black-box objective functions which are

expensive for evaluation. In particular, BO trains a surrogate

model to represent the objective function, and optimizes an

acquisition function based on the surrogate model to guide

the sampling process. [1], [2] present importance sampling

method with BO to find the global extreme value and high

trustworthy estimated failure detection with few circuit sim-

ulations. [3] proposed to apply multiple acquisition functions

to guide the sampling process for well-balanced exploitation

and exploration to achieve fast rare failure detection.

Typically, AMS circuits usually suffer from a large number

of process variations, which makes AMS verification a high-

dimensionality problem. However, when it comes with high

dimensional space, the training of the surrogate model and

the optimization for acquisition function becomes increasingly

inefficient, resulting in less effective failure detection.

To resolve the aforementioned issue, a dimension reduction

scheme should be introduced into the BO framework. [4]

proposed a random embedding technique to reduce the dimen-

sionality of BO for efficient failure detection. However, such

embedding provides no indicator for the dimension reduction

quality, and only extracts a linear embedding for the high-

dimensional data, which cannot handle nonlinear manifold.

Instead, we seek out some recent development in the neural

network architectures to resolve these two issues. First, [5] pro-

posed a gating architecture called ARGate identifying essential

and non-essential features via fusion weights representing

feature importance regulated by an auxiliary loss for each

feature. The fusion weights can be used as an indicator for the

dimension reduction quality. On the other hand, recently de-

veloped architectures, reversible residual networks (RevNets)

are well known for their representation learning with no

information loss [6]–[8], which can be well served to extract

nonlinear manifold for the dimension embedding.

In this paper, we propose a RevNet based gating neural net-

work with the improved performance for the rare failure detec-

tion problem using the BO framework. Our main contributions

are: 1) propose a new RevNet based auxiliary-model regulated

gating architecture, called Rev-Gate, to utilize gating fusion

weights for efficient dimension reduction; 2) propose a novel

dimension embedding method using RevNet and Bayesian

neural network (BNN) to embed low-dimensional nonlinear

internal representation back into the high-dimensional original

variation parameters; and 3) investigate the proposed dimen-

sion embedding in a BO framework for efficient rare failure

detection via extensive experimental studies. We demonstrate

in the experimental study that our proposed Rev-Gate archi-978-1-6654-3274-0/21/$31.00 ©2021 IEEE



tecture efficiently detects rare AMS failures with significantly

less runtime while other methods don’t.

II. BAYESIAN OPTIMIZATION FOR HIGH DIMENSION

A. Failure Detection Problem Formulation

Under a given D-dimensional parameter space X ⊆ R
D,

the goal of failure detection is to find a failure point x to

meet the following requirement:

∃x ∈ X , y(x) < T, (1)

where T is the threshold target for specification requirement,

and the y(x) represents the performance of circuit at the

parameter variation vector x. When the value of y(x) is

smaller than the threshold T , the performance is considered as

the failure with the specific point x. Due to the nature of y(x)
which is severely nonlinear in the high dimensional space, it

is hard and costly to get this value in terms of simulation

time and computational resources. Instead, we reformulate the

previous failure detection problem into an optimization issue

below to fit into the Bayesian optimization context.

min
x∈X

y(x) < T (2)

B. High Dimensional Bayesian Optimization

Bayesian optimization incorporates two major modules: a

surrogate model and an acquisition function. The surrogate

model serves as an approximation for the original black-

box function under the optimization, while providing the

uncertainty estimation for the current model. One of the most

popular implementation for the surrogate model is Gaussian

process (GP) defining a normal posterior probability model

as y |x,D ∼ N
(

µ (x) , σ2 (x)
)

, where D is the dataset or

observations, µ (x) and σ2 (x) are posterior mean and variance

estimation, respectively. In order to efficiently guide the search

process to the optimal location, based on the surrogate model,

an acquisition function α (x |D ) is optimized to balance the

exploitation over optimal solution and the exploration for

uncertain areas.

However, the traditional BO suffers from costly GP training

and poor optimization quality of the acquisition function over

high-dimensional space, which leads to inefficient black-box

optimization. One way to mitigate this effect is to embed the

original high dimensional space X ⊆ R
D into a low dimension

space Z ⊆ R
d, where d < D, so that both surrogate model and

acquisition function can be performed in a low dimensional

space Z for fast training convergence and better acquisition

function optimization. After optimized z
∗ is extracted from the

acquisition function, it can be embedded back to the original

space X for the actual circuit simulation as shown in Fig. 1

via a dimension embedding process x
∗ = EZ→X (z∗).

One well-known dimensional embedding method for

Bayesian optimization is random embedding [4], [9]. The key

idea is to sample a random matrix A ∈ R
D×d with each matrix

element following a distribution of N (0, 1) and fix it during

the BO process. Therefore, dimension embedding function can

be defined as x
∗ = EZ→X (z∗) = Az∗ to serve as a linear
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Fig. 1: Bayesian optimization for high-dimensional problems.

dimension reduction method for enhanced BO performance

under high dimensional space.

Even though the random embedding method reduces the BO

dimension effectively, there still exist several major concerns

for this method. Firstly, since random embedding is agnostic

to the black-box function under optimization, it is hard to

decide the low dimension d for random matrix generation

beforehand. In addition, the dimension embedding quality is

unknown before the actual BO process. Secondly, the random

embedding only performs the dimension embedding in a

linear manner, which cannot be utilized when a non-linear

low dimensional manifold is desired. Finally, it provides no

information about the actual important variational parameters,

which is essential in aspect of failure detection field for circuit

designers to gain more insights about the circuit behavior.

III. PROPOSED REV-GATE BASED BAYESIAN

OPTIMIZATION

To tackle the challenges introduced by random embedding

in BO for high-dimensional failure detection as mentioned

in the previous section, we propose a Rev-Gate architecture

for the dimension embedding in the BO framework, which

incorporates the RevNet and the ARGate to effectively identify

important variational parameters and reduce the dimension

through the reversibility. In order to learn the low-dimensional

manifold property from the black-box function under opti-

mization, we pre-train the Rev-Gate architecture before the

BO process by using a small amount of data, which extracts

the important feature information and helps choose effective

low dimension d for surrogate model construction and ac-

quisition function optimization. During the BO process, the

trained RevNet performs the dimension embedding in Fig. 1,

recovering the low dimensional point z∗ to the original input

space x∗ for actual circuit simulation via a restoration scheme,

which will be further discussed in Section IV. The rest of this

section mainly talks about how to identify important features

for BO dimension embedding via Rev-Gate pre-training.

A. ARGate for important feature extraction

For AMS failure detection under high-dimensional space,

typically there exists certain redundancy for the variational

parameters under consideration, and only a small number

of them are critical to the final circuit performance. With

only important features utilized and inessential ones removed,

the circuit performance can still be predicted nicely via the

surrogate model even with small amount of training data. To

efficiently identify the important variational parameters, we
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adopt the ARGate [5] using gating architecture to switch off

inessential feature via fusion weights.

In terms of network structure, the ARGate is composed

of two networks as shown in Fig. 2: a main model and an

auxiliary (aux) model. The fusion weights are extracted from

the grey box (denoted as “Fusion Weight Extraction” in Fig.

2) in the main model, where the fusion happens with pre-

processed features after a fully connected (FC) layer in each

feature path.

The key idea of the ARGate is that the importance of

features is represented via the fusion weights. In the main

model, the output of each FC layer on each feature path are

multiplied with the corresponding fusion weights to obtain a

weighted internal representation, which is then passed to later

network layers to get final classification/regression output.

These weights are normalized between [0, 1] for the feature

importance interpretability. For example, assume that there are

only four features under consideration. If the first feature is the

only important feature in the datasets, the corresponding first

fusion weight FW1 is the largest fusion weight out of four,

which is close to 1. Then, then the fusion weights of other

features FW2, FW3, and FW4 are relatively close to 0.

As the multiplication mechanism of the fusion weights which

switches off the unimportant feature path, the first feature

makes a larger impact on the target prediction than the other

features.

The auxiliary model is added here to facilitate the reliable

training for the fusion weights, regularizing the fusion weights

with auxiliary losses reflecting the relevance between the target

value and each individual feature.

B. Bijective RevNet for Non-Linear Representation Learning

The ARGate identifies the important input features through

fusion weights, which serves as a great tool for dimensionality

reduction. However, if we directly apply ARGate on the raw

variation parameters, the reduced dimension is only a subset

of original variation parameters, which completely ignores the

correlation between different variational parameters. There-

fore, we applied reversible residual network (RevNet) [8], [10],

[11] to learn the correlation between multiple features, and
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Fig. 3: The reversible block.

forms a non-linear internal representation for original features.

In addition, one of major advantage of using RevNet is that it

avoids information loss between its input and output, giving

a bijective function. Fig. 3 gives a typical RevNet block with

the feature mixing process given follows.

un+1 = un + hKT
n,1σ(Kn,1vn + bn,1),

vn+1 = vn − hKT
n,2σ(Kn,2un+1 + bn,2),

(3)

where n ranges from [0, N − 1] for a RevNet with N RevNet

blocks, un and vn are two partitions for the nth state with

same dimensionality, and h is a scaling factor.

Here we denote the RevNet nonlinear representation learn-

ing with g : x 7→ r, which goes through N blocks of (3) as

follows.

x =

[

u0

v0

] g
→
←
g−1

[

uN

vN

]

= r, (4)

where u0 := (x1, ..., x[D/2])
T and v0 := (x[D/2]+1, ..., xD)T

are the two partitions of the input vector x, and uN :=
(r1, ..., r[D/2])

T and vN := (r[D/2]+1, ..., rD)T are the two

partitions of the RevNet output r.

C. Proposed Rev-Gate architecture

The proposed Rev-Gate architecture connects a RevNet and

an ARGate in serial for efficient dimension reduction. In order

to utilize such architecture for high-dimensional Bayesian

optimization, we first pre-train the proposed architecture using

a small amount of data to identify good dimension size d for

dimension reduction, and then we utilize the trained RevNet

in the reverse direction to embed the low dimension optimized

z
∗ from acquisition function into x

∗ in the original high-

dimension space.

1) Dimension Reduction via the Proposed Architecture:

Thanks to the nonlinear bijective characteristic of the RevNet,

we generate an internal representation r = g (x) mapped

from the original variation parameter x, which share the

same dimensionality D as x. With the feature importance

interpretability from the ARGate, the importance of each

internal representation dimension ri can be estimated via the

corresponding trained fusion weight FWi. Given user-defined

importance threshold FWTH , the dimensionality d of low

dimension space Z in BO can be determined by the number

of fusion weights larger than FWTH . The corresponding

d internal representation elements can be reassembled into

the low dimension feature z = (ri1 , · · · , rid)
T

used in BO,

with each element rij having FWij ≥ FWTH , achieving

the dimension reduction for surrogate model and acquisition
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function. The rest D − d elements in r are considered as

noncritical, and marked as rn here.

2) Dimension Embedding using Reverse RevNet: As shown

in Fig. 1, the BO framework provides a z
∗ with a dimension-

ality of d during each iteration, which needs to be embedded

into the original space X . Here we use the trained RevNet

in a reverse direction to map low-dimensional z
∗ back to

x
∗ in the high dimensional space. However, to use RevNet

for the restoration of the original variational parameters x
∗,

it requires the same dimensionality for the input and the

output of RevNet. Therefore, D − d new elements should be

generated and combined with z
∗ to obtain the restored internal

representation r
∗. More details about this conversion from z

∗

to r
∗ is discussed in Section IV. Given the reversibility of

RevNet without information loss, we can easily recover the

original variation parameters using x
∗ = g−1 (r∗) to perform

the required dimension embedding in BO as shown in Fig. 5.

IV. ENHANCED DIMENSION EMBEDDING VIA BAYESIAN

NEURAL NETWORK

As mentioned in Section III-C2, additional elements should

be appended to z
∗ to ensure the resulting r

∗ sharing the same

dimensionality as x
∗ for traversing the RevNet in the reverse

direction. As we know from the fusion weights, the additional

elements are less critical for the final circuit performance.

Hence, the simplest approach here is to append zeros to z
∗

to the high dimensionality D.

However, the zero appending approach neglects the corre-

lation between z
∗ and rn which both depend on the original

input vector x. Instead, we propose to learn a conditional

probability distribution p (rn | z∗) to recover r∗ from z
∗. Here,

the particular probabilistic model we used for this conditional

distribution is a Bayesian neural network (BNN).

After the Rev-Gate is trained, with the fixed RevNet, we

can generate the internal representation r, and seperate them

into important features z and non-important ones rn for all

the training data. Then the conditional distribution p (rn | z∗)
represented by the BNN is estimated with maximum likelihood

estimation using these pre-processed data. During dimension

embedding in the BO process, a new r
∗
n is randomly sampled

from the learnt p (rn | z∗) using a trained BNN, and then com-

bined with z
∗ to obtain recovered internal representation r

∗ for

the RevNet conversion. The complete dimension embedding

illustration is presented in Fig. 5.

V. EXPERIMENTAL RESULTS

A. Experimental Setups

We demonstrated our proposed Rev-Gate architecture with

BO approach with two circuits: a low-dropout (LDO) regu-

lator [12] (60 dimensions) and a DC-DC converter [13] (44

dimensions), as shown in Fig. 6 and 7.

For the rare failure detection performance comparison, we

compared our proposed architectures with Monte Carlo (MC),

expected improvement (EI), probability of improvement (PI)

in [14], parallelizable Bayesian optimization (pBO) in [3] and

parallelizable Bayesian optimization with random embedding

(HDBO) in [4]. The BayesOpt [15] was utilized for imple-

menting BO methods. All the simulations were run on a

workstation with a 3.50GHz Intel(R) Xeon(R) E5-1620 v4

CPU.

The proposed Rev-Gate is implemented with Pytorch 1.2

[16]. To be specific with the training process, the Rev-Gate

is pre-trained with a small amount of the circuit simulation

samples which are uniformly distributed in a pre-defined

hyper-cube space. For a fair comparison with different BO

based methods, we matched total simulation budget for all the

BO methods including the number of training samples for the

Rev-Gate. After the training phase, fusion weight values were

examined for top-d indexes of important features extraction

and screening out some non-important features. With the

indexes of the important features, a simple BNN is trained

for the non-essential component conditional distribution esti-

mation. Finally, with the trained RevNet and the BNN, the

BO framework is operated so that the z∗ vector is computed

with BNN and RevNet in reverse direction to generate x∗. The

x∗ is used as input sample for the circuit simulation and the

simulation output y∗ is passed onto the BO surrogate model.

1) Low-dropout Regulator: Three specifications, quiescent

current, undershoot and load regulation, are chosen as the

verification targets of the LDO regulator. Three kinds of

transistor-level variations are considered for all 20 transistors:

channel length, threshold voltage and gate oxide thickness,

resulting in a 60 dimension variation space. 330,000 samples

are used for MC without a single failure detected, suggesting

the failures are extremely rare for the LDO circuit. The

detailed simulation budget for each method is listed in Table I.
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Note that the actual simulation for PI and pBO for undershoot

and load regulation is slightly less than other ones, as shown

in Table I, due to the accidental program break. However, we

can see that the corresponding runtime is still much larger than

the proposed methods, which makes them still inefficient for

failure detection under high dimensional space.

The number of essential features extracted from the pro-

posed architecture is 26 out of 60 for quiescent current

and load regulation, 30 for undershoot. The same dimension

reduction is used for HDBO. Furthermore, in the light of

circuit aspects, the Rev-Gate identify the actual important

features from the inputs while HDBO cannot. We observe that

most important parameters are located on the output stage in

the LDO regulator, which is close to the circuit designers’

insights.

2) DC-DC converter: As shown in Fig. 7, total 22 tran-

sistors are included in the DC-DC converter with two vari-

ational parameters for each transistor: channel length and

width, resulting in 44 input features for the simulation. Two

specifications are considered: output accuracy and overshoot.

Through our proposed Rev-Gate, we could reduce the number

of dimension from 44 to 14 for output accuracy, and 16 for

overshoot, which is far less than half of the total number of

input features. Detailed simulation budget setup is included in

Table II.

B. Failure Detection Results

From Table I and II, MC, EI, PI, pBO and HDBO methods

cannot detect a failure case due to the challenging rare failure

detection in the high-dimensional parameter space. On the

other hand, our proposed Rev-Gate based BO framework suc-

cessfully find the worst case for all specifications with in the

simulation budget thanks to proposed Rev-Gate architecture

for dimension embedding in BO. In terms of the magnitude

of the worst case detected, MC, EI, PI typically cannot find

any worse case near the target for most specification under

consideration. pBO and HDBO presents a better performance

with its good exploration and exploitation balancing, while

the proposed architecture presents the worst case detected

than all other methods for all the specifications with the

help of effective dimension embedding given by the Rev-Gate

architecture.

Regarding simulation running time, overall BO based meth-

ods like EI, PI and pBO take much longer than our proposed

Rev-Gate with BNN due to high overhead introduced by

surrogate model and acquisition function in high dimension.

HDBO suffers from its simple dimension embedding mech-

anism to achieve poor failure detection efficiency. With a

smart sampling budget allocation for Rev-Gate pre-trained

dimension reduction, the BO search efficiency is significantly

improved leading to short runtime. Note that the runtime for

Rev-Gate with BNN includes pre-training phase.

C. Worst Case Trend Analysis

Finally, the worst case trend is analyzed as shown in Fig.8.

BO based methods such as EI and PI found the worst case

slowly comparing to pBO and HDBO. During the first 500

samples, EI, PI, and pBO shows similar failure detection

performance but the worst case of pBO rises after the 500

samples. The worst case of HDBO was bit larger than other

BO based methods but it is stuck at local minima around 600

samples. Our proposed Rev-Gate shown in green color in the

graph starts with the lowest worst case, it found its worst

case much more rapidly than the other methods at the initial

search process. Note that 500 samples are used for pre-training

Rev-Gate architecture. From this result, it is clear that pre-

training process shows significant benefits for the improved

failure detection performance and efficiency.

VI. CONCLUSION

In this paper, we present the Rev-Gate architecture with a

novel restoration scheme via Bayesian neural network. The

proposed algorithm works under Bayesian optimization for

rare failure detection of analog mixed-signal circuits. The

ARGate is adopted for the identification of important features

and the RevNet is utilized for input restoration via backward
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TABLE I: Failure detection result comparison for the LDO regulator (60 dimension).

Spec Target Method # Sim Worst Case 1st Failure Hit Runtime

Quiescent Current 11.0mA

MC 330, 000 10.8mA - 47h45m
EI 50init + 750seq 7.1mA - 24h06m
PI 50init + 750seq 8.3mA - 23h43m

pBO 50init + 5× 150batch 10.5mA - 23h53m
HDBO 50init + 5× 150batch 10.1mA - 19h36m

Rev-Gate with BNN 500training + 50init + 5× 50batch 11.6mA 621 3h32m

Undershoot 0.52V

MC 330, 000 0.32V - 47h45m
EI 50init + 1250seq 0.27V - 80h25m
PI 50init + 1050seq 0.23V - 65h48m

pBO 50init + 5× 140batch 0.49V - 19h52m
HDBO 50init + 5× 250batch 0.51V - 32h25m

Rev-Gate with BNN 1000training + 50init + 5× 50batch 0.53V 1248 3h29m

Load regulation 58.2%

MC 330, 000 36.0% - 47h45m
EI 50init + 1250seq 28.9% - 104h39m
PI 50init + 1050seq 13.9% - 65h04m

pBO 50init + 5× 140batch 58.1% - 19h47m
HDBO 50init + 5× 250batch 58.1% - 32h19m

Rev-Gate with BNN 1000training + 50init + 5× 50batch 58.4% 1241 3h41m

TABLE II: Failure detection result comparison for the DC-DC converter (44 dimension).

Spec Target Method # Sim Worst Case 1st Failure Hit Runtime

Output accuracy 58mV

MC 40,800 42.4mV - 47h50m
EI 50init + 1250seq 25.8mV - 92h44m
PI 50init + 1250seq 22.4mV - 92h13m

pBO 50init + 5× 250batch 57.3mV - 97h08m
HDBO 50init + 5× 250batch 57.7mV - 21h21m

Rev-Gate with BNN 1000training + 50init + 5× 50batch 58.1mV 1177 4h53m

Overshoot 8.8mV

MC 40,800 8.29mV - 47h50m
EI 50init + 1250seq 7.30mV - 92h31m
PI 50init + 1250seq 7.37mV - 92h34m

pBO 50init + 5× 250batch 8.65mV - 97h46m
HDBO 50init + 5× 250batch 8.77mV - 25h21m

Rev-Gate with BNN 1000training + 50init + 5× 50batch 8.84mV 1221 3h59m

computation without loss of information. The Bayesian neural

network is applied for non-essential parameter estimation

under the nature of conditional probability distribution given

essential variational inputs. The experimental results show

that our proposed algorithm detects rare failure cases in high

dimensional space with less amount of time, while Bayesian

optimization with traditional and improved acquisition func-

tion does not find anomaly during the circuit simulation.

ACKNOWLEDGEMENT

This material is based upon work supported by the Na-

tional Science Foundation (NSF) under Grant No. 1956313

and Semiconductor Research Corporation (SRC) Task No.

2810.031 through UT Dallas’ Texas Analog Center of Ex-

cellence. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF and SRC.

REFERENCES

[1] D. D. Weller, M. Hefenbrock, M. S. Golanbari, M. Beigl, and M. B.
Tahoori, “Bayesian optimized importance sampling for high sigma
failure rate estimation,” in 2019 Design, Automation Test in Europe

Conference Exhibition (DATE), 2019, pp. 1667–1672.
[2] M. Hefenbrock, D. D. Weller, M. Beigl, and M. B. Tahoori, “Fast and

accurate high-sigma failure rate estimation through extended bayesian
optimized importance sampling,” in 2020 Design, Automation Test in

Europe Conference Exhibition (DATE), 2020, pp. 103–108.
[3] H. Hu, P. Li, and J. Z. Huang, “Parallelizable bayesian optimization for

analog and mixed-signal rare failure detection with high coverage,” in
Proceedings of the International Conference on Computer-Aided Design,
2018, pp. 1–8.

[4] H. Hu, P. Li, and J. Z. Huang, “Enabling high-dimensional bayesian
optimization for efficient failure detection of analog and mixed-signal
circuits,” in 2019 56th ACM/IEEE Design Automation Conference

(DAC), 2019, pp. 1–6.

[5] M. S. Shim, C. Zhao, Y. Li, X. Zhang, and P. Li, “Robust deep
multi-modal sensor fusion using fusion weight regularization and
target learning,” CoRR, vol. abs/1901.10610, 2019. [Online]. Available:
http://arxiv.org/abs/1901.10610

[6] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-revnet: Deep invertible
networks,” arXiv preprint arXiv:1802.07088, 2018.

[7] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible
residual network: Backpropagation without storing activations,” in Ad-

vances in neural information processing systems, 2017, pp. 2214–2224.
[8] G. Zhang, J. Zhang, and J. Hinkle, “Learning nonlinear level sets for

dimensionality reduction in function approximation,” in Advances in

Neural Information Processing Systems, 2019, pp. 13 220–13 229.
[9] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. De Freitas et al.,

“Bayesian optimization in high dimensions via random embeddings.”
in IJCAI, 2013, pp. 1778–1784.

[10] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham,
“Reversible architectures for arbitrarily deep residual neural networks,”
arXiv preprint arXiv:1709.03698, 2017.

[11] E. Haber and L. Ruthotto, “Stable architectures for deep neural net-
works,” Inverse Problems, vol. 34, no. 1, p. 014004, 2017.

[12] S. Lai and P. Li, “A fully on-chip area-efficient cmos low-dropout
regulator with fast load regulation,” Analog Integrated Circuits and

Signal Processing, vol. 72, no. 2, pp. 433–450, 2012.
[13] Y. Wang, P. Li, and S. Lai, “A unifying and robust method for effi-

cient envelope-following simulation of pwm/pfm dc-dc converters,” in
2014 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). IEEE, 2014, pp. 618–625.
[14] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,

“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[15] R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for
nonlinear optimization, experimental design and bandits,” The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 3735–3739, 2014.
[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information

Processing Systems 32, 2019, pp. 8024–8035.


