
Towards Generalizable Network Anomaly Detection
Models

Md Arifuzzaman, Shafkat Islam, and Engin Arslan
Computer Science and Engineering,

University of Nevada, Reno
arif@nevada.unr.edu, shafkat@nevada.unr.edu, earslan@unr.edu

Abstract—Finding the root causes of network performance
anomalies is critical to satisfy the quality of service requirements.
In this paper, we introduce machine learning (ML) models to
process TCP socket statistics to pinpoint underlying reasons
of performance issues such as packet loss and jitter. More
importantly, we introduce a novel feature engineering method
to transform network-dependent metrics (e.g., total packet
count and round trip time) in training datasets into network-
independent forms to be able to transfer the models to new
network settings without requiring to retrain them. Experimental
results in various network settings show that the proposed feature
engineering approach improves the performance of the models in
previously unseen network settings from around 60% to nearly
90%. We believe ability to transfer ML models across networks
will pave the way for wide adoption of ML solutions in production
networks where collecting labeled data is not possible.

Index Terms—Transfer Learning, Feature Transformation,
Network Anomaly Detection, Random Forest.

I. INTRODUCTION

As the number of interconnected devices soars, networks are
becoming increasingly complex. Maintaining such complex
networks to ensure high quality of service has become a
challenging task. Data-driven, automated solutions such as
machine learning (ML) models can significantly simplify net-
work management by shedding light into issues that existing
solutions fall short to detect and diagnose. Unlike traditional
statistical models, ML can extract complex relationships be-
tween a large number of features to make high-precision
predictions. However, gathering input data to train highly-
accurate models is a major impediment in the wide adoption of
ML in production systems. While one can use isolated network
testbeds to collect data and train ML models, these models
cannot be directly used in different network settings as many
input parameters are likely to be highly dependent on network
settings such as bandwidth and delay. While simulated or
emulated testbeds can be utilized to reproduce target network
settings, any change in the target testbed, such as latency
increase or bandwidth upgrade, will make pre-trained models
obsolete.

In this paper, we attempt to derive ML models for network
anomaly diagnosis problem that can be transferred to new
networks. To do so, we first collect flow-level performance
metrics at the end hosts and apply feature transformation to
those that are network-dependent such as number of packets
sent and average round trip time. Unlike standard data normal-
ization (i.e., column-based normalization) which transforms

input parameters into [0−1] range by processing entire dataset,
the proposed transformation normalizes each entry using other
features of the same entry, i.e., row-based normalization. For
example, packet loss is reported as the number of lost packets
which is bandwidth-dependent as same packet loss ratio will
correspond to higher packet loss count in networks with higher
bandwidth. Thus, instead of using its absolute value, we divide
it to total transmitted packets such that it will fall into the same
range regardless of network bandwidth, thereby eliminating
network dependency.

Experimental results show that parameter transformation
significantly improves the performance of transfer learning
for anomaly detection models. Specifically, when parameter
transformation is not applied, anomaly diagnosis models that
are trained using datasets from a specific network setting
yield less than 60% accuracy when tested in different network
settings even if standard data normalization is applied. With
the help of novel parameter transformation, the accuracy
reaches to more than 90% which is only slightly (5 − 10%)
lower compared to the performance of ML models when they
are tested in networks that they are trained for.

II. RELATED WORK

Machine learning (ML) has been extensively used to detect
network performance anomalies [1]–[5]. Most of the existing
work aimed at detecting the presence of network anomalies
without providing any information about underlying reasons.
For example, Hou et al. performed online change-point de-
tection analysis on time-series dataset to detect unexpected
increase in round trip time (RTT) [5]. The authors of [4]
projected perfsonar measurements data into new subspace by
applying Principal Component Analysis (PCA) which clus-
tered normal, correlated, and uncorrelated anomaly samples
together to discern anomalous behavior from normal one.
The authors of [3] applied both Boosted Decision Trees and
Neural Network to detect anomalous packet loss behavior. In
a previous work, we applied Deep Neural Network to process
performance metrics (e.g., TCP statistics, file system counter,
etc.) and diagnose the root causes of performance anomalies
such as I/O interference, packet loss, packet corruption, and
overloaded end hosts. [1]. Giannakou et al. used Random
Forest Regression to process tstat logs and predict packet
retransmission rate [2].



ML is also widely utilized to develop anomaly-based in-
trusion detection methods. The network packets are captured
at the Network Interface Card level to be examined and
filtered before being delivered to feature extraction model to
compute flow attributes. The attributes then are assembled into
feature vectors that provide input samples for the classifier’s
training, testing, and validation phases. The authors of [6]
proposed an anomaly detection technique based on correlation
information in traffic data samples. The idea is to build a
separate covariance matrix for benign and malicious traffic
using training data which then can be used in the production
to classify flows. In almost all of previous work, authors build
anomaly detection models that are network-specific, creating
an impractical scenario for their deployment to new networks.
In this paper, we are making an attempt to develop transferable
anomaly diagnosis models to not only detect the presence of
anomalies but also predict their root causes.

III. DATA COLLECTION

We use Emulab [7] to create networks with different band-
width and delay settings and gather training data for ML
models. We build a simple network topology in which a
sender and a receiver is connected via switch. Nine network
settings are created using combinations of three bandwidth
(100Mbps, 1000Mbps, 5000Mbps) and delay (10ms, 30ms,
100ms) values. Throughout the paper, we refer to these
network settings as b<Bandwidth(Mbps)>d<RTT (ms)>
format. For example, b5000d10 refers to the setup where
network bandwidth is 5000Mbps and Round Trip Time (RTT)
is set to 10ms.

To reproduce network anomalies, we use Linux Traffic
Control (tc) [8] utility that modifies kernel packet scheduler
to create custom configurations. tc can create five types
of network anomalies as jitter, packet duplication, packet
reorder, packet corruption, and packet loss. We run 200 TCP
transfers that are 30 second long for each anomaly type as
well as normal condition using iPerf3 [9]. A total of 97,200
transfers (9 network settings × 6 traffic conditions × 3 levels
of anomaly × 200 repetitions) are conducted to collect a
training dataset for ML models. Please note that we inject
one anomaly type at any given time and leave the assessment
of predictability of multi-class anomalies as a future work. As
a result, the training dataset consists of six classes as normal,
loss, duplicate, reorder, corrupt, and jitter. Thus, the different
rates of the same anomaly groups (e.g., 0.1%, 0.5%, and 1%
packet loss anomalies) are tagged with the same label. The
congestion control algorithms is set to TCP Cubic.

There are several ways to capture TCP statistics for active
and completed transfers. For example, Linux utility netstat
captures a large number of TCP statistics that can be used to
debug performance issues [10]. However, it reports one set
of metrics for entire system, thus it is hard to confidently
relate to the changes in performance metrics to individual
flows. Another Linux utility ss provides per-flow TCP statistics
for active TCP connections [11]. Finally, tstat is a network
monitoring software that can be utilized to capture flow-level

TCP statistics. Unlike ss which relies on Linux kernel TCP to
capture performance metrics, tstat uses tcpdump to inspect
active connections and reports a large number of metrics once
the connections are terminated [12]. Since all of these tools
report a different set of metrics (some of which may over lap),
we captured TCP statistics using all three of them to compare
their effectiveness in training accurate models that can help
to pinpoint underlying reasons for TCP performance issues.
We applied Random Forest-based feature engineering to find
importance score of each metric and selected the subset of
metrics whose sum of importance scores contribute to 95% of
total importance score of all metrics to reduce feature space.

IV. MODEL TRAINING

We applied several ML models to process training data and
derive classification models. Out of all, we only report Random
Forest (RF), Decision Tree (DT), Neural Network (NN),
Support Vector Machine (SVM) model results. We leverage
scikit-optimize library to optimize the hyperparameters of each
model. Specifically, it finds the number of trees and tree depth
for RF, tree depth for DT, the number of layers, neuron count
per layer, activation function, solver method, and learning
rate for NN, and finally kernel and gamma values for SVM.
We also apply standard normalization on the dataset after
splitting training and test dataset. Please note that test dataset
normalization uses the same scaling metrics (i.e., average and
standard deviation) that are calculated during the normalization
of training dataset to avoid data leakage.

We first derive a separate model for each network setting
after splitting the dataset as training and test with 80%−20%
split ratio. In other words, we train a separate model for each
of nine networks created in Emulab with different bandwidth
and RTT settings. The trained models are then evaluated based
on their performance in the test dataset from same network.
To evaluate the performance of ML models, we adopt F-score
which combines precision (i.e., the number of true positive
results divided by the number of all positive results) and recall
(i.e., number of true positive results divided by the number
of all samples that should have been identified as positive)
rates [13]. Figure 1 presents 5-fold cross validation results for
different network bandwidth and RTT settings. We observe
that SVM underperforms in almost all settings as its F-scores
is 5 − 10% lower than the F-score of the other models. On
the other hand, NN, RF, and DT models perform similarly
for all three datasets as they are all able to achieve over 90%
F-score, on average. In particular, RF performs slightly better
with 93%, 94%, and 97% average F-scores for tstat, netstat,
and ss dataset, respectively. Hence, we only present RF model
results in the rest of the analysis. It is also important to note
that while the ML models experience performance fluctuations
when tstat and netstat datasets are used for training (e.g.,
b100d100 in tstat and b1000d30 in netstat), their performance
is more stable for ss dataset. This can be attributed to the fact
that even if some performance metrics are reported by all three
tools, there are few metrics that are only reported by one or
two of them.



b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

75

80

85

90

95

100
F-

m
ea

su
re

 (%
)

Random Forest
Decision Tree

Support Vector M.
Neural Network

(a) tstat

b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

75

80

85

90

95

100

F-
m

ea
su

re
 (%

)

Random Forest
Decision Tree

Support Vector M.
Neural Network

(b) netstat

b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

90

92

94

96

98

100

F-
m

ea
su

re
 (%

)

Random Forest
Decision Tree

Support Vector M.
Neural Network

(c) ss
Fig. 1. Performance comparison of ML models in identifying the type of network anomalies

b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

20

30

40

50

60

70

80

F-
m

ea
su

re
 (%

)

tstat netstat ss

Fig. 2. Performance of Random Forest models for transfer learning.

We next evaluate the performance of the ML models for
transfer learning. In the context of this paper, we refer transfer
learning as an ability to use an ML model that is trained in one
network setting to detect anomalies in another network setting.
For instance, it evaluates the performance of a model that is
trained in a network with 500Mbps bandwidth and 10ms delay
to detect anomalies in a network with 100Mbps bandwidth and
10oms delay. Figure 2 illustrates the performance of transfer
learning for all three datasets using an RF model. It is clear
that despite yielding over 95% accuracy when training and
test datasets come from the same network, performance of the
model degrades severely when they are transferred to different
network setting as F-score fluctuates between 30− 70%. This
is mainly due to the difference in the range of parameters in
different network settings. For example, maximum RTT value
of 30ms in a network with average RTT of 10ms denotes to
the presence of jitter anomaly. On the other had, the same
maximum RTT value of 30ms would be deemed normal when
RTT of a network is around 30ms. Data normalization does not
help to overcome this issue either because normalization will
distort data range when training and test datasets have different
bandwidth and delay settings. It is also not feasible assumption
to normalize training and test datasets independently since it is
unrealistic to assume that test dataset will contain all anomaly
types and be available altogether. As a result, it is evident
that transfer learning does not work for network anomaly
detection when target network has different bandwidth and
delay settings than the training network and raw values of
performance metrics are used.

Parameter Transformation: To tackle this issue, we focus

TABLE I
SS METRICS USED TO TRAIN PREDICTION MODELS

Feature Name Base Metric Importance Score
minrtt rtt avg 0.12
rtt std rtt avg 0.13
unacked cwnd 0.05
ssthresh cwnd 0.08
dsack dups segs out 0.17
retrans segs out 0.20
notsent segs out 0.08
reord seen segs out 0.17

on parameter transformation to convert network-dependent
metrics into network-independent forms. As an example, if
we divide packet retransmission count in ss dataset by total
packets sent, then it will return packet loss rate, which is
independent of network bandwidth as it is guaranteed to be
between 0 and 1 in all networks. Similarly, average RTT can
be transformed to network agnostic form by dividing it to
maximum RTT of the transfer. By extending this idea, we
transformed each feature by dividing it to a related feature
in the same transfer report such that bandwidth and RTT
dependence can be removed. Table I lists the selected metrics
for ss logs along with base metrics that are used to transform
metrics. In a nutshell, we divide RTT related metrics to average
or minimum RTT values and packet count metrics to total
transmitted packets. Although not presented, we came up with
similar transformation for tstat and netstat metrics as well.

V. EVALUATION

Figure 3 presents F-score of the RF models after ap-
plying feature transformation. Same Network label refers to
the performance of the models when both training and test
dataset come from the same network. Transfer Learning results
present the average performance of the RF models when
training dataset is from one network setting and test dataset is
from other eight network settings. Compared to Figure 1 which
reports around 98% F-score for the RF models when using raw
ss performance metrics with standard normalization, the RF
model trained with the transformed ss parameters still yields
over 95% F-score when both training and test datasets have
the same bandwidth and delay values (i.e, Same Network).
On the other hand, while the performance of transfer learning



b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

60

70

80

90

100
F-

m
ea

su
re

 (%
)

Same Network
Transfer Learning

(a) tstat

b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

60

70

80

90

100

F-
m

ea
su

re
 (%

)

Same Network
Transfer Learning
Transfer Learning w/o Jitter Label

(b) netstat

b100d10

b100d30

b100d100

b1000d10

b1000d30

b1000d100

b5000d10

b5000d30

b5000d100

Network

60

70

80

90

100

F-
m

ea
su

re
 (%

)

Same Network
Transfer Learning

(c) ss
Fig. 3. Performance comparison of Random Forest model after applying feature transformation. The region around the lines indicate standard deviation for
repeated experiments.

was between 30 − 70% when input parameters are used in
the raw format, feature transformation resulted in significant
improvement with nearly 80% F-score for all three datasets.
The average transfer learning performance is 86%, 79%, and
89% for tstat, netstat, and ss dataset, respectively.

We find that jitter anomaly is often misclassified when RF
models are trained with netstat dataset. This is due to missing
RTT-related metrics in netstat dataset. Based on importance
scores as listed in Table I, it is clear that RTT metrics are
important to make accurate classification decisions especially
for jitter anomalies. Thus, the models trained with netstat logs
perform worse in transfer learning. To validate this claim, we
removed jitter anomaly samples from netstat logs re-evaluated
the performance of transfer learning. Figure 3(b) shows that
upon removing the jitter anomaly logs, the performance of
transfer learning has improved significantly with 90% F-score.

In addition to missing RTT metrics, another major drawback
of netstat is that it reports system-wide results. That is, it
captures TCP statistics for all active TCP sockets and report
cumulative values. Although it is useful to find out system-
level issues such as buffer size limitations or kernel bugs, it
cannot be used to debug performance problems of individual
transfers. On the other hand, both tstat and ss report flow-
level metrics, thus they are better fit to troubleshoot individual
transfer issues. A key difference between tstat and ss is that
tstat emits performance metrics after transfers are completed,
which may be inconvenient since the presence of anomalies
can be detected only after some transfers are fully exposed
to them. ss, however, can provide real-time updates, thus is
well-suited for timely detection of performance anomalies. As
presented in Figure 3(c), ss dataset also helps the RF models
to yield the highest F-score in transfer learning experiment.

VI. CONCLUSION

Machine learning based automated techniques are widely
adopted to detect network anomalies quickly and accurately.
However, the existing techniques in this area have two major
limitations. First, they can only determine the presence of
anomalies without providing any clue about underlying rea-
sons. Second, they cannot be transferred to new networks as
derived models rely on network-specific performance metrics
such as bandwidth and round-trip time. This paper makes
a first attempt to derive more efficient and transferable ML

models to simplify performance troubleshooting as well as
increase the adoption of ML models in production networks
where collecting large scale training data may not feasible.
Experimental results indicate that the proposed models achieve
around 95% accuracy when finding the root cause of perfor-
mance anomalies. Moreover, the models yield almost 90%
accuracy when transferred to new network settings with the
help of novel feature engineering method that transforms
performance metrics into network-independent forms.

VII. ACKNOWLEDGMENTS

This project is in part sponsored by the National Sci-
ence Foundation (NSF) under award numbers 2007789 and
2019164.

REFERENCES

[1] S. Cooper, M. Bhuiyan, and E. Arslan, “Machine learning for data
transfer anomaly detection,” in IEEE/ACM Supercomputing, 2020.

[2] A. Giannakou, D. Dwivedi, and S. Peisert, “A machine learning approach
for packet loss prediction in science flows,” Future Generation Computer
Systems, vol. 102, pp. 190–197, 2020.

[3] J. Zhang, R. Gardner, and I. Vukotic, “Anomaly detection in wide
area network meshes using two machine learning algorithms,” Future
Generation Computer Systems, vol. 93, pp. 418–426, 2019.

[4] Y. Zhang, S. Debroy, and P. Calyam, “Network-wide anomaly event
detection and diagnosis with perfsonar,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 666–680, 2016.

[5] B. Hou, C. Hou, T. Zhou, Z. Cai, and F. Liu, “Detection and char-
acterization of network anomalies in large-scale rtt time series,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1, pp.
793–806, 2021.

[6] M. Tavallaee, W. Lu, S. A. Iqbal, and A. A. Ghorbani, “A novel
covariance matrix based approach for detecting network anomalies,” in
6th Annual Communication Networks and Services Research Conference
(cnsr 2008). IEEE, 2008, pp. 75–81.

[7] “Emulab,” https://www.emulab.net/, 2021.
[8] “tc,” https://man7.org/linux/man-pages/man8/tc.8.html, 2021.
[9] “iPerf3,” https://iperf.fr/, 2021.

[10] “Netstat,” https://linux.die.net/man/8/netstat, 2021.
[11] ss-another utility to investigate sockets, “ss-another utility to investigate

sockets,” https://man7.org/linux/man-pages/man8/ss.8.html, 2021.
[12] M. Mellia, A. Carpani, and R. L. Cigno, “Tstat: Tcp statistic and analysis

tool,” in International Workshop on Quality of Service in Multiservice
IP Networks. Springer, 2003, pp. 145–157.

[13] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information Processing &
Management, vol. 45, no. 4, pp. 427–437, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306457309000259


