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Abstract

We propose to jointly analyze experts’ eye movements and verbal narrations to
discover important and interpretable knowledge patterns to better understand their
decision-making processes. The discovered patterns can further enhance data-
driven statistical models by fusing experts’ domain knowledge to support complex
human-machine collaborative decision-making. Our key contribution is a novel
dynamic Bayesian nonparametric model that assigns latent knowledge patterns
into key phases involved in complex decision-making. Each phase is characterized
by a unique distribution of word topics discovered from verbal narrations and
their dynamic interactions with eye movement patterns, indicating experts’ special
perceptual behavior within a given decision-making stage. A new split-merge-
switch sampler is developed to efficiently explore the posterior state space with
an improved mixing rate. Case studies on diagnostic error prediction and disease
morphology categorization help demonstrate the effectiveness of the proposed
model and discovered knowledge patterns.

1 Introduction
Recent years have seen an increasing application of automatic computational systems in supporting
humans in visual-based decision-making tasks. Machine learning models are applied to process large-
scale data in the forms of images, videos, and texts for discovering statistical regularities and making
predictions [1, 2]. However, human expertise is still essential in providing meaningful interpretations
of the semantics for tasks in specialized domains, such as medicine, science, and security intelligence.
Domain expertise, such as conceptual and perceptual skills, are usually developed through long-term
training and practice. It allows human experts to perform better than fully automatic systems, which
interpret images or videos solely based on low-level features [3, 4]. Therefore, it is beneficial to
incorporate human behavioral data for visual-based tasks in knowledge-rich domains.

Modern technologies have made it possible to record human behavioral data [5, 6]. For instance, eye
tracking measures the gaze and the motion of eyes to indicate how human perceptually processes
images and audio recording digitally inscribes and re-creates human speeches as input for studying
semantic conception. Analysis of eye gaze exposes cognitive processing at the level of visual
perception, while verbal expression reflects semantic conception. These elements, both of which are
significantly relevant to domain expertise, interact in visual-based decision-making process [7, 8].

In this paper, we propose to perform dynamic multimodal knowledge data fusion to synergize human
domain expertise and statistical modeling, enabling them to tackle highly challenging visual-based
tasks collectively. Inspired by psychological studies of important phases in humans’ decision-making
[9], we develop a phase-aware dynamic Bayesian nonparametric model that assigns latent knowledge
patterns into key phases involved in complex decision-making. In particular, an expert’s decision-
making process is automatically partitioned into a sequence of latent decision phases, whose temporal
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Figure 1: Graphical model of phase-aware knowledge
fusion (hyper-parameters are omitted, and curved ar-
rows denote first-order Markov transition; L, J,K
are potentially infinite; the notations for variables are
summarized in the supplementary material)

Figure 2: An illustrative example of inferred
latent knowledge patterns of physicians’ ver-
bal narrations and eye movements, and the
latent phases explain experts’ diagnostic deci-
sion making process.

dependency is captured by a Markov structure. We further model the cross-modal interactions of
multimodal data by conditioning both perceptual behavior (as eye movement patterns in our case)
and conceptual processing (as topics from verbal narrations) on the decision phases. As a result,
the multimodal latent patterns are dynamically fused at the phase level by contributing different
knowledge components to a specific decision stage.

To perform phase-aware fusion of eye movements, we integrate an infinite hidden Markov model
with a nested Dirichlet process mixture (iHMM-nDP) to capture the spatiotemporal characteristics
of eye movements. Since we aim to discover perceptual patterns common to a group of experts,
commonly used models may lead to a large number of patterns with minor spatial/temporal variations.
Hence, extensive post-processing is usually needed to group semantically similar patterns [10]. The
proposed iHMM-nDP model addresses this issue by naturally forming a 3-level semantic hierarchy,
including state, component, and instantiation, which capture main patterns, sub-patterns with minor
spatial/temporal variations, and actual observations from individual experts. We further leverage the
hierarchical Dirichlet process (HDP) model to perform phase-aware fusion of the verbal narrations.
Phase-specific word topics are discovered that help explain the conceptual patterns conditioned on
the same phase. As a result, the phase-aware fusion model reveals the relationship between eye
movements and verbal narrations, creates knowledge-centered representations of data, and ultimately
contributes to the understanding of experts’ decision-making process. Figure 1 shows the overall
graphical model. Finally, a new Split-Merge-Switch (SMS) sampler is developed to efficiently explore
the posterior state space with an improved mixing rate.

Figure 2 illustrates how the proposed model explores experts’ decision making process by visualizing
patterns and topics learned from eye movements and verbal narrations, respectively. Each circle
represents a location of visual fixation, and the radius is proportional to the duration. Three significant
patterns are visualized in this example, including concentrating on primary abnormality, switching
among several locations, and cluttering within a specific area [10]. The keywords from different
latent topics are shown in different colors. Moreover, the proposed model automatically partitions the
narration into three different decision phases. As can be seen, the narration starts from the description
of low-level visual features of diseases, then goes through a reasoning process, and finally reaches a
conclusion. The major contributions are summarized below:

• a phase-aware dynamic Bayesian nonparametric model to fuse experts’ eye movements and verbal
narrations in complex decision-making based on key decision phases.

• an iHMM-nDP model to extract perceptual patterns that summarize spatiotemporal regularities
from eye movements through a three-level semantic hierarchy to capture the main patterns, the
sub-patterns, and the observations of eye movements hierarchically; discovery of phase-specific
topics that help explain the conceptual patterns as a result of fusing experts’ verbal narrations.

• a fast mixing Split-Merge-Switch sampling algorithm to efficiently explore a potentially large
latent state space due to nonparametric modeling and speed up hierarchical pattern discovery.
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For evaluation, we present case studies on diagnostic error prediction and disease morphology
categorization to demonstrate the effectiveness of the proposed model and discovered patterns.

2 Related Works

Learning from Multimodal Data. Multimodal machine learning aims to leverage data with multiple
modalities for generating improved representation, relating data from one modality to another,
identifying cross-modal relationships, transferring knowledge, or joining multiple modalities to
perform predictions [11]. Our work aims to achieve most of the above goals.

Multi-kernel learning extends support vector machines (SVMs) to allow different kernels for different
modalities. It can be used for data fusion in knowledge-rich domains such as disease prediction
[12]. A drawback of multi-kernel learning is the high space complexity and slow convergence.
Matrix decomposition can also be applied to data fusion, in which data is factorized as the product
of matrices capturing shared features across modalities and matrices capturing the uniqueness of
each modality by maximizing correlation or minimizing squared errors and divergences [13, 14].
Bayesian graphical models provide another way of data fusion [15, 16]. Recently, deep learning
models have been used for fusing temporal multimodal information [17, 18, 19, 20, 21]. They usually
show good performance by learning complex decision boundaries [11]. However, for problems in
knowledge-rich domains, interpretability of latent patterns is usually essential while the data for
model training may be inadequate, which limits the applicability of most deep learning models.

Samplers for Bayesian Nonparametric Models. The HMM and linear dynamical systems are
typical models for analyzing sequential data, where hidden states relate to each other through a Markov
process [22]. Those dynamic models can be extended to Bayesian non-parametric counterparts using
HDP or hierarchical Beta processes (HBP) [23, 24, 25]. The posterior inference for HDP based HMM
can be performed through Markov Chain Monte Carlo (MCMC) samplers, such as Gibbs sampling,
blocked sampling, and Beam sampling [26, 27], or through variational inference, which makes
a truncation of potentially infinite states [28]. MCMC-based samplers provide an asymptotically
exact inference but usually suffer slow mixing, because the incremental updates of state assignment
conditioned on the previous observations and model hyper-parameters may be trapped in local
optima. To address this issue, the split-merge algorithm is proposed to change the state assignments
over a group of observations in a single move, which allows efficient exploration of a state space
[29, 30, 31, 32]. We make extensions by proposing a split-merge-switch sampler to perform three-
level hierarchical clustering of experts’ eye movement patterns in a non-parametric fashion.

3 Multimodal Knowledge Data Description

Two data elicitation experiments were conducted chronologically in prior works [33, 34] by using
a repository of dermatological images as visual stimuli. We chose dermatology, as it is a visually
based medical specialty that requires specific and comprehensive expertise. The 48 images used
in the first experiment (Experiment I) represented a wide range of dermatology diagnoses, while
the 30 images in the second experiment (Experiment II) focused on a few categories of diagnoses,
each with more image instances. There were 16 participating physicians in the first experiment,
and 29 in the second. They volunteered to participate with monetary compensation. The headwear
Senso-Motoric eye-tracking devices with 50 Hz sampling rate automatically record the fixations and
saccades. Experiments were conducted in an eye-tracking laboratory. Dermatological images were
presented on-screen at a resolution of 1680x1050 pixels. Participants viewed the images binocularly
at a distance of 60 cm. They were instructed to describe each image and their thought processes
towards diagnosis. Their diagnostic decisions were evaluated by a group of senior experts. IRB
approval has been received before the data collection experiments were conducted.

Eye movement data. As a channel for visual content perception, physicians’ eye movements were
recorded by eye trackers. Two important events commonly studied in eye movement research are
saccades and fixations. Fixations, when the gaze is maintained on a location, are described by
location, duration, and in some cases pupil dilation. The high-speed eye movements between two
fixations are saccades and are characterized by amplitude, the length in degrees of visual angle, and
the velocity in degree per second. Since eye movement sequences are spatiotemporal, they can be
best represented as time series. Verbal narration data. All verbal narrations were recorded and
transcribed as sequences of word tokens and time-stamps using the speech analysis tool Praat [35].
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4 Dynamic Multimodal Knowledge Fusion
In this section, we present the phase-aware dynamic Bayesian nonparametric model that analyzes
experts’ eye movements and verbal narrations jointly and hierarchically.

4.1 Phase-Aware Multimodal Knowledge Data Fusion
We assume the decision-making process is comprised of three major phases: description, reasoning,
and conclusion. Extension to more phases is straightforward. A first-order Markov structure is used
to capture the transition of phases. Let ψ denote the transition matrix and a Dirichlet prior is placed
to each row ψp = Dir(ω0). For sequence d, its latent phase gd,t at time t is drawn from

gd,t ∼ Multi(ψgd,t−1
) (1)

where the phase assignment to each observation is inferred from the data.

A sequence of latent phases governs a physician’s eye movements and verbal narration. Eye movement
is primarily a visual information gathering process, which facilitates physicians in decision-making.
Physicians’ eye movement patterns reveal different characteristics at different phases, from looking
around to collect general information to fixate at disease areas to extract detailed information. Verbal
narration is essentially the decision-making process “spoken-aloud” by experts. Topics from verbal
narrations vary at different phases and capture important keywords of the corresponding phases.
Integrating eye movements with verbal narrations will help improve the understanding of a complex
decision-making process because the underlying perceptual (i.e., eye movement) and conceptual (i.e.,
topics) patterns are expected to capture distinct but complementary domain expertise. It motivates
us to explicitly model the conditional dependency of both topics and eye movement patterns on the
decision phases, and use the phases as a basis to fuse the two knowledge modalities, leading to the
discovery of phase-specific topic distribution and the transition probability of eye movement patterns.

In summary, the phase-aware fusion offers two unique benefits: (1) The decision phases provide
further evidence (though its density function) in addition to the eye movements and verbal narrations
to strengthen the significant patterns and weaken the noisy ones. (2) Interesting behavior becomes
interpretable through both the hierarchical and parallel interactions among decision phases, eye
movement patterns, and word topics. Figure 1 shows the graphical model of the overall dynamic data
fusion process. For sequence d and time step t, the latent phase gd,t has a Markov transition structure,
as denoted by the curved arrow. Both topic assignment vd,t and eye movement pattern assignment
zd,t are conditioned on gd,t. All the notations are summarized in Table 3 of Appendix A.

4.2 Fusion of Eye Movements
Modeling eye movements is challenging because the characteristics of eye movements may vary a
lot for different physicians. For example, physicians may unintentionally move eyes and heads in
experiments. Furthermore, head-wear eye-trackers may have instrumental and calibration errors at
different trails. To address the challenges, a model needs to be able to discover semantically coherent
patterns while accommodating the variety and being robust to noises.

We propose an iHMM-nDP model to extract perceptual patterns that summarize spatiotemporal
regularities from eye movements through a three-level semantic hierarchy to capture the main
patterns, sub-patterns, and observations of eye movements hierarchically. In particular, we use the
latent states in the iMM to model that main patterns (e.g., concentrating on a small area, or switching
between two areas). Each state is comprised of a mixture of components, each of which captures
a fine-grained sub-pattern (e.g., multiple concentration patterns characterized by different fixation
duration and area). By modeling the states (main patterns) and mixture components (sub-patterns), we
essentially perform dynamic hierarchical clustering of eye movements in a non-parametric fashion.

Let yd,t ∈ RD denote the vector representation of eye movements in sequence d at time t, zd,t be the
corresponding state assignment, and sd,t be the mixture component assignment.

(yd,t|zd,t=k,sd,t=j) ∼ N (Ak,j ,Σk,j) (2)

where yd,t is assumed a normal variable, and (Ak,j ,Σk,j) is the corresponding parameter of the
sub-pattern indexed by (k, j), S0 is the scale matrix and d0 is the degree of freedom. We use a
thermal diffusion process on eye gaze points in each period to generate 2-dimensional attention maps.
Those maps encode visually attended areas by physicians, where the locations that are fixated by
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physicians are assigned high values, and the locations far away are assigned low values. We then
apply shifting and rotation so that the gravity center aligns with the map’s center, and the direction
with the largest variance is horizontal. Then the maps are shrunk, compressed using 2D2D-PCA [36]
and flattened to generate the representation of eye movements.

Each sub-pattern associates with a unique set of coefficients {Ak,j ,Σk,j}. Since the number of states
is unknown, the iHMM model infers it by placing an HDP prior onto the state transitions [24], where
each DP governs the transition probability for each group of states that the current state can transit
to. All groups share a base distribution, which is another DP so that the same set of states can be
reachable from any current state. Let H denote the global base measure parameter φk is drawn from,
and G0 denote the first level DP, representing a space of potential states:

G0 =
∑∞

k=1
βkδφk

, β ∼ GEM(γ), φk ∼ H (3)

where β = (β1, ...βk, ...)
′ follows GEM distribution [37]. The actual form of φk is defined in below.

To achieve phase-aware fusion of eye movements, one key extension from the classical HDP-HMM
model is to make the second level DP phase dependent:

Gpk =
∑∞

k′=1
πpkk′δφk′ zd,t|zd,t−1=k ∼ π

p
k (4)

where πp is the phase-specific transition matrix, and its k-th row, πpk ∼ DP (α,β) with α as a
concentration parameter. πpkk′ denotes the transition probability from state k to k′ at phase p.

Another key extension is that we couple each hidden state with nested Dirichlet process (nDP) to
handle its emission process. Different from a conventional nDP, where all mixture components share
a global base measure, we aim to cluster mixture components with small intra-cluster variety. We
propose a modified nDP, where Hk, the base measure of components in state k, is state-specific:

G∗k =
∑∞

j=1
bk,jδθk,j

, b ∼ GEM(γ∗), θk,j ∼ Hk(φk) (5)

where θk,j = (Ak,j ,Σk,j) is defined below. We place a normal prior for φk ∼ N (A0, U0), where
hyper-parameter A0 is the mean and U0 is the covariance. For state k component j, a normal Inverse
Wishart prior NIW(A,Σ|S0, d0, κ, φk) is placed on θk,j = (Ak,j ,Σk,j):

Ak,j ∼ N (φk,Σk,j/κ) Σk,j ∼ IW(S0, d0) (6)

where κ is the scaling parameter.

4.3 Fusion of Verbal Narrations
To perform phase-aware fusion of verbal narrations, the model enforces a phase-specific topic
distribution. In particular, the corpus-level topics M0 are generated as follows:

M0 =
∑∞

l=1
ζlδρl , ρl ∼ Dir(ω), ζ ∼ GEM(ξ) (7)

Each phase has a unique topic distribution. For phase p, a document-level Mp is generated from M0:

Mp =
∑∞

l=1
τp,lδρl , τp ∼ DP(a, ζ) (8)

For time step t, topic assignment vd,t and word wd,p,t are:

vd,t ∼ Multi(τgd,t), wd,t ∼ Multi(ρvd,t) (9)

By grouping words from each phase, the model encourages the inferred topics to capture the keywords
associated with different decision phases (e.g., differential, final, diagnosis).

4.4 Split-Merge-Switch (SMS) Sampling
The nonparametric nature of the model coupled with its multi-level hierarchical structure that fuses
complex multimodal data makes the posterior inference extremely complex and time-confusing. To
this end, we develop a split-merge-switch sampler to achieve fast inference.

Traditional MCMC samplers for Bayesian nonparametric mixture models, such as Gibbs sampler,
may be trapped in an inappropriate clustering of data and result in slow mixing. The primary reason
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is that Gibbs samplers perform a single-site update for latent pattern assignment. Beam sampling [27]
and block sampling [38] mitigate the problem by using a forward-backward procedure to update the
pattern assignments for a whole sequence. However, the problem of slow mixing may still emerge
when there are a large number of sequences. The proposed SMS sampler provides a solution by
changing the pattern assignments over a group of observations in a single move. We consider three
types of proposals, namely split, merge, and switch. The three proposals are mutually exclusive.
Each proposal is evaluated using a Metropolis-Hasting acceptance ratio. If accepted, the proposal is
implemented; if not, we ignore the proposal and proceed to sample other variables.

The split proposal suggests splitting a mixture component into two within the same state. Let S denote
the indices of events assigned to state k and component j. First, a pair of indices [(di, ti), (do, to)] is
randomly selected from S and serve as anchors. Then we remove them from S and form singleton
sets Si = {(di, ti)} and So = {(do, to)}. For each (d, t) ∈ S, we sequentially add it to Si with

p((d, t) ∈ Si|Si, So, yd,t) =
|Si|

∫
f(yd,t|θ)dHSi(θ)

|Si|
∫
f(yd,t|θ)dHSi(θ) + |So|

∫
f(yd,t|θ)dHSo(θ)

(10)

where HSi
(θ) is Si’s posterior distribution of θ. Otherwise, we add it to So.

Lemma 1. For a split proposal Split(S) = (Si, So) where S = {(d, t)|zd,t = k, soldd,t = j},
Si = {(d, t)|zd,t = k, snewd,t = j1}, and So = {(d, t)|zd,t = k, snewd,t = j2}, the following acceptance
ratio satisfies the detailed balance

a(ηold,ηnew) = min[1,
p(ηnew)p(y|ηnew)p(ηold|ηnew)

p(ηold)p(y|ηold)p(ηnew|ηold)
] (11)

with
p(ηold|ηnew)

p(ηnew|ηold)
= 1/

∏
(d,t)

p((d, t)|Si, So, yd,t),
p(ηnew)

p(ηold)
= γ∗

(|Si| − 1)!(|So| − 1)!

(|S| − 1)!
(12)

where ηold is the old assignments, ηnew is the proposed new assignments, and γ∗ is defined in (5).

The merge proposal suggests merging two mixture components from the same state into a single one.
It is essentially the reverse of a split proposal, and the acceptance ratio is calculated in a reversed way.

The switch proposal suggests moving some mixture components from one state and adding them to
another state as additional mixture components, while keeping the grouping of elements within each
mixture unchanged. We further consider two cases, namely switch1, where some mixture components
from a pattern k1 are moved to a new pattern k2, and switch2, where all mixture components from a
pattern k3 are moved to an existing pattern k4.
Lemma 2. For a switch proposal Switch1(S1) = (S2, S3) where S1 = {(d, t)|zoldd,t = k1, s

old
d,t = 1 :

J}, S2 = {(d, t)|znewd,t = k2, s
new
d,t = 1 : j2} and S3 = {(d, t)|znewd,t = k1, s

new
d,t = 1 : J − j2}, the

following acceptance ratio satisfies the detailed balance in Eq 11 with

p(ηold|ηnew)

p(ηnew|ηold)
= 1/

∏
(d,t)

p((d, t)|S2, S3, yd,t),
p(ηnew)

p(ηold)
=
p(snew|znew)

p(sold|zold)
p(znew)

p(zold)
(13)

and
p(snew|znew)

p(sold|zold)
=

|S2|∏
i=1

(γ∗ + i− 1)

|S3|∏
i=1

(γ∗ + i− 1)/

|S1|∏
i=1

(γ∗ + i− 1)

p(zold) = γKβu1
βu2

...βuk

K∏
k=1

K∏
k′=1

nkk′∏
i=1

(γβk′ + i− 1)/
K∏
k=1

nk∏
i=1

(γ + i− 1)

(14)

where βuk
= 1−

∑k−1
i βi And p(znew) can be calculated similarly.

The switch2 proposal is essentially the reverse of a switch1 proposal, and the acceptance ratio is
calculated in the reversed way.

The calculation of p(ηold|ηnew)
p(ηnew|ηold)

is performed using sequential allocation similar to Eq 10, but we
allocate one mixture at a time, instead of one data point individually. Since the number of mixture is
far less than the number of data points, the allocation can be performed quickly. Notice that the switch
also incurs the change of corresponding θ’s conditional dependency on φ, because the component is
assigned to a new state.
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Figure 3: Eye movement state transition counts at De-
scription (Left), Reasoning (Middle), and Conclusion
Phases (Right)
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Figure 4: Visualization of phase transition
matrix (Left) and topic distribution of each
phase (Right) in Experiment I

The entire posterior inference starts by sampling the latent decision phase (detailed in Appendix B.3).
It then simultaneously samples latent topics of verbal narrations (Appendix B.2) and latent state of
eye movements and its mixture component (Appendix B.1). Finally, the states and their mixture
components are further updated using the SMS sampler (Appendix B.5). The whole process is also
summarized in Algorithm 1 in the Appendix.

5 Results and Discussion

In this section, we first present the discovered patterns along with their cross-modal interactions by
applying the proposed dynamic data fusion model to the data collected from the two experiments, as
described in Section 3. We then present two case studies on diagnostic error prediction and disease
morphology categorization, respectively, to further demonstrate the proposed data fusion model’s
effectiveness and the discovered knowledge patterns.

5.1 Discovery of Perceptual Patterns
We consider eye movement fixation events as observation units. All observation units have three
data fields, including the x-y coordinates of fixation and its duration. We interpret the discovered
eye movement patterns as 1) Concentration pattern characterized by fixations with long duration
and saccade with a small amplitude. It usually associates with primary abnormalities. 2) Switching
pattern characterized by fixations with short duration and saccade with large amplitude. It usually
associates with two abnormalities; 3) Clutter pattern characterized by fixations with short duration
and saccade with a large amplitude. It usually associates with multiple abnormalities.

Illustrative examples are provided in Table 1. Our algorithm discovered sixteen significant states of
eye movement patterns from Experiment I and II. Three patterns are visualized. The line segments
show the change of coordinates in saccade, and the circles show the fixation locations. We interpret
the first row as Concentration, the middle row as Switching, and the bottom row as Clutter.

Figure 3 visualizes the transition matrix of eye movement states of Experiment I using grey-scale map-
ping. The diagonal line corresponds to the self-transitions of states. We observe higher self-transition
of S7 (concentration) at the conclusion phase, which indicates that physicians’ eye movements are
more stable upon conclusion. There are more non-concentration transitions at the description, such as
the self transition of S13 (clutter) and the transition from S13 to S15 (clutter), indicating that experts
change eye movement states more frequently in order to gather general information from the entire
image. Additional examples and interpretations are provided in Appendix C.

5.2 Discovery of Conceptual Patterns
In Table 1, we show the partition of verbal narrations based on the inferred phase assignments,
and highlight the informative words from inferred topics. We also study the transition pattern of
phases and the relationship between phases and topics, aiming to gain more in-depth insight into
experts’ problem solving and decision-making processes. In particular, we visualize the occurrence
of phase transition as well as the topic distribution of each phase using grey-scale mapping as shown
in Figure 4. Some interesting and intuitive observations are provided as follows: First, each decision
phase has a strong self transition, and there are moderate occurrences of phase transition from
description (P1) to reasoning (P2), and from reasoning to conclusion (P3). Second, each phase is
associated with a unique set of topics (e.g., the conclusion phase is closely related to the last three
topics (T26-T28) in experiment I. More details about the inferred topics and their top words are
summarized in Appendix C.
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Table 1: An illustrative example of inferred phases, topics and eye movement patterns from different cases:
informative words with high weights in the corresponding topics are highlighted in colors; each sub-figure
corresponds to a fine-grained eye movement pattern. (Due to space limit, we selectively visualize the topics and
the patterns)

Participant 1 Image 1 Participant 1 Image 2 Participant 2 Image 1 Participant 2 Image 2

Narration

—–Description—–
so some erythematous
scaly almost annular

plaques inner thigh

like of a female uh

diagnoses on the or the
—–Reasoning—–

differential tinea
corporis myconsis fun-
goides um erythema
annulare centrifugum
or eac probably
—–Conclusion—–

favor mycosis fun-
goides but that’s only
like thirty percent

certainty

—–Description—–
the face you have some

erythematous scaly
patches extending on the
nose and malar region

of the cheek sparing the

crura like there’s a little
erythema as well at the
entrance to the left nare
—–Conclusion—–
number one thought
would be seborrheic
dermatitis with

seventy-five percent

certainty

—–Description—–
here erythematous

patches with central

clearing and scale on

the lower extremity
—–Reasoning—–
the differential

includes uh psoria-
sis nummular eczema
tinea eac mycosis

fungoides and the
—–Conclusion—–

diagnosis is eczema

with fifty percent

certainty

—–Description—–
there’s erythema

and waxy scale
on the nose nos-

tril and surrounding
the uh nasolabial fold
—–Reasoning—–
the differential

includes uh seb-

orrheic dermatitis

atop- dermatitis uh
lupus rosacea and
—–Conclusion—–
my diagnosis is sebor-

reheic dermatitis with

eighty-five percent

certainty
Eye Movement

Concentration

Switching

Clutter

5.3 Prediction of Diagnosis Correctness

As can be seen from the above analysis of our modeling results, the discovered knowledge patterns
show strong links to humans’ decision-making process. Therefore, these patterns may serve as a
useful vehicle to detect potential diagnosis errors. In this set of experiments, the diagnostic decisions
made by participating physicians were evaluated by a group of senior experts, and the correctness of
diagnosis are labeled as correct, incorrect and partially correct. We use the patterns discovered by the
proposed model to train an L1-regularized logistic regression for predicting diagnostic correctness.

The following baselines are implemented for comparison: 1) Modeling eye movements only: Mixture
auto-regressive model (MAR) [38]; 2) Modeling verbal narrations only: LDA [39] and hidden
Markov topic model (HMTM) [40]. 3) Multimodal fusion: LDA-based Multimodal Categorization
(LDAMC) [16]. 4) Ensemble method: Proposed+LDA. In most cases, the proposed model or the
ensemble method achieves best performance, indicating that physicians usually reveal informative
clues in their behavior before making a correct diagnosis.

5.4 Prediction of Disease Morphology

The distribution and arrangements of lesions may guide diagnostic decisions because many skin
abnormalities have a specific configuration, which is an important cue of correct diagnosis. Such
configuration naturally corresponds to physicians’ eye movements. Therefore, we try to use inferred
eye movement patterns and verbal narration topics for discovering those configurations. The meaning
of the visual features and their functional relations are unveiled by experts’ domain knowledge,
leading to disease morphology categorization at the semantic level and finally assisting diagnostic
decision making. To demonstrate the usefulness of the discovered knowledge patterns, we use them
as inputs to a regularized logistic regression to predict the disease morphology as one of the following
types: Solitary (Sol): a solitary lesion as primary abnormality; Symmetry (Sym): symmetrically
distributed lesions; Multiple Morphologies (MM): lesions of different morphologies with one lesion
as primary abnormalities and others as secondary ones; High-Density Lesions (HDL): scattered or
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Table 2: Prediction of Diagnosis Correctness (Left) and Disease Morphology (Right) (Accuracy %)

.

Experiment I Experiment II
MAR 63.4±3.9 55.4±4.0
LDA 65.5±3.1 63.0±3.5

HMTM 64.7±3.7 63.3±3.8
LDAMC 67.2±3.8 62.0±3.5
Proposed 68.8±3.5 64.1±3.7

Proposed+LDA 69.1±3.2 64.5±3.6

.

Experiment I Experiment II
MAR 74.5±3.5 67.9±3.6
LDA 72.1±3.4 65.4±3.4

HMTM 61.5±3.8 58.0±3.9
LDAMC 79.9±3.7 65.7±3.8
Proposed 87.5±2.9 78.7±3.1

Proposed+LDA 87.3±2.7 78.8±2.8

clustered lesions. Table 2 shows the comparison results, where the proposed model or the ensemble
method achieves the best performance.

5.5 Experiment on Synthetic Data for the Split-Merge-Switch Sampler
For illustration purposes, we study the SMS sampler using synthetic data where the structure of the
latent states is known in advance, which serves as ground-truth for evaluation. The synthetic data set
is generated through hierarchical Gaussian mixtures with sequential dependency. In particular, the
latent state structure consists of 4 states (i.e., main patterns), each of which has 4 sub-patterns. The
main patterns are centered at [4.5,4.5], [-4.5,4.5], [-4.5,-4.5], and [4.5,-4.5] respectively. The centers
of the sub-patterns slightly deviate from their corresponding main pattern’s center. We initialize the
number of main patterns K = 2 and the number of sub-patterns J = 2, and train an iHMM-nDP
model with or without the SMS sampler. Additional details are provided in the Appendix D.

Figure 5: Visualization of inferred sub-patterns with and without SMS sampler (Left and Right)

The inferred sub-patterns are plotted in Figure 5. Each row in a sub-figure corresponds to a main
pattern, and each column corresponds to a sub-pattern. The model with the SMS sampler correctly
discovered four main patterns and almost all the sub-patterns, as shown in the left sub-figure. The
model without the SMS sampler discovered four main patterns, but many sub-patterns are assigned
incorrectly, as shown in the right sub-figure. For example, the main pattern 1’s sub-pattern 4 (M1S4)
should be assigned to main pattern 4. The results indicate that the SMS sampler contributes to the
fast mixing rate and better hierarchical clustering results.

6 Conclusions
In this paper, we present a phase-aware dynamic Bayesian non-parametric model that jointly analyzes
experts’ eye movements and verbal narrations involved complex decision-making. By leveraging
the conditional dependency of both perceptual and conceptual patterns on the key decision phases,
multimodal knowledge data is naturally fused at the phase level. A novel iHMM-nDP model performs
dynamic hierarchical clustering of noisy and highly variant eye movement events in a non-parametric
fashion to discover an optimal number of main perceptual patterns along with their supporting sub-
patterns. The phase-specific topics discovered as a result of fusing verbal narrations help explain the
main perceptual patterns to ensure model interpretability. A fast mixing SMS sampler is developed to
achieve efficient posterior inference. The usefulness of the discovered knowledge patterns is further
demonstrated through real-world case studies. In this work, we study knowledge data from experts
who are trained professionals. They analyze the images in a systematic process, and their verbal
descriptions usually follow certain schemes. A future direction is to make the model more robust to
cases where careless practitioners do not follow such schemes.
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Broader Impact
The need to explore elements involved in human knowledge-based cognitive processing and fuse them
with machine intelligence, empowered through computational processing of large-scale complex data,
has been recognized by a wide spectrum of specialized domains, such as medicine, science, social
psychology, security intelligence, and more. This work will provide both theoretical underpinning
and empirical evaluation of infusing human expertise into the design of computing systems, enabling
them to collectively tackle highly challenging tasks in specialized domains that neither could indi-
vidually perform to satisfaction. The research can be broadly applicable to diverse knowledge-rich
domains, where the synergy of human and machine intelligence is essential to tackle highly complex
computational tasks.
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