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Abstract

Generating useful network summaries is a challenging and important problem with
several applications like sensemaking, visualization, and compression. However,
most of the current work in this space do not take human feedback into account
while generating summaries. Consider an intelligence analysis scenario, where
the analyst is exploring a similarity network between documents. The analyst can
express her agreement/disagreement with the visualization of the network summary
via iterative feedback, e.g. closing or moving documents (“nodes”) together.
How can we use this feedback to improve the network summary quality? In this
paper, we present NetReAct, a novel interactive network summarization algorithm
which supports the visualization of networks induced by text corpora to perform
sensemaking. NetReAct incorporates human feedback with reinforcement learning
to summarize and visualize document networks. Using scenarios from two datasets,
we show how NetReAct is successful in generating high-quality summaries and
visualizations that reveal hidden patterns better than other non-trivial baselines.

1 Introduction

Networks occur in various domains such as social networks, entity networks, communication net-
works, population contact networks, and more. A meaningful summary of these networks can help
users with various downstream tasks like sensemaking, compression, and visualization [1, 2, 10, 11].
However, most prior work focus on generating summaries without human input [9, 10]. In contrast,
there are several applications, especially exploratory tasks, where incorporating human feedback
in the summarization process is essential for generating useful summaries. For example, consider
intelligence analysis [3], which often involves making sense of networks of unstructured documents
(like field reports) and extracting hidden information (like a terrorist plot) from a small subset of
documents in the corpus. Users can provide feedback by interacting directly with the data, providing
semantic interactions [5] such as moving two nodes (documents) closer to each other to express
similarity. This feedback helps the system to determine the relative importance of other documents
with respect to the interests of the user.

Motivated by above, in this paper we tackle the novel problem of learning to generate interactive
network summaries that incorporate user feedback. We showcase the usefulness of our summaries
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by focusing on an exploratory document visualization task. We leverage our summary to generate
network visualizations, with the goal of aiding in investigating document networks and supporting
the human sensemaking process; i.e., help the users “connect the dots” across different documents
and discover the hidden stories behind them. More specifically, we try to answer: Given a document
corpus represented as a network, can we learn a model that incorporates user feedback alongside
the objectives of the analysis task to generate high quality summary? Additionally, can we then
leverage the summary to generate a meaningful visualization, and can such a model be re-applied
to other document corpora? Towards solving this problem, we face two major challenges. The first
is simplicity of feedback. Generally, the users are not experts in the summarization/visualization
models and can only provide high-level semantic interactions. The second challenge is sparsity and
inconsistency of human feedback. Getting human feedback is a slow and expensive process as the
user needs to understand both the data and task in hand. As a result, the feedback is sparse.

Here the network data structure represents a document corpus. Each node in the network represents a
document, and edge weights indicate the similarity between the documents based on their word usage.
Our goal is to generate a summary network by grouping similar nodes (i.e., relevant documents
together) and finding hierarchical “super-nodes” (representing collection of documents) and “super-
edges” (representing similarities between groups of documents). We then visualize this network
summary to produce a high-level understanding of the entire corpus and highlight hidden patterns.
We will discuss the concepts of super-nodes and super-edges later in detail.

Our main idea is to tackle the above challenges via a reinforcement learning (RL) approach [15] to
summarize networks. We believe RL is especially suited for this problem, as it makes it possible to
re-apply the learned model in similar scenarios to reduce the necessary amount of human feedback to
gain useful information. We design NetReAct, a feedback-based RL algorithm which integrates user
interests with the objective of the summarization. NetReAct also provides a multi-level understanding
of the data by generating summaries of various sizes, enabling the user to zoom in to each document
group to view these different summaries.

The main contributions of this paper are:

e Incorporating human feedback. We introduce NetReAct, a novel approach which lever-
ages feedback-based reinforcement learning to principally incorporate human feedback to
generate meaningful network summaries.

o Meaningful relationships between groups as a summary network. NetReAct not only groups
relevant nodes into super-nodes, but it also defines relationships between super-nodes. The
weight of the edges in the summary network by NetReAct represent the similarity between
groups.

e Multi-scale visualization. We leveraged NetReAct to develop a multi-scale, interactive
document network visualization framework. This visualization groups documents to sum-
marize the network hierarchically, which makes it possible for the user to get a multilevel
understanding of the document network by looking at the summaries on different levels.

2 Proposed Method

In this paper, we focus on document network summarization to support visualization. Visualizing
a document network helps users in their sensemaking process and understanding the documents,
providing a two-dimensional illustration of the entire network and highlighting hidden patterns.
Learning from the user is essential in designing an intelligent visualization framework that reflects
the user’s interests. Moreover, leveraging user feedback in the summarization helps to visualize data
more effectively and efficiently than unsupervised approaches. Using supervised approaches are also
not realistic in many real-world applications, particularly when the analyst is not an expert.

We ground our work using a state-of-the-art systems for interactive document network visualization,
StarSPIRE [3]. This system treats the document network as an attributed network, where each
attribute is the frequency of a particular term in the document. It then builds a multilevel model of user
interests based on the user’s semantic interactions. In the StarSPIRE framework, a user can interact
with the system through semantic interactions such as minimizing documents, closing documents,
annotating a document, highlight text within a document, and overlapping two documents. From
these interactions, the models infer the importance of each attribute and then calculate the similarity
between each pair of documents (nodes) based on weighted attribute similarity. However, since the



number of unique terms is very high, the attributes are high-dimensional, and thus generating optimal
weights requires a significant number of interactions.

In NetReAct, we summarize document networks into explicit groups of related documents, demon-
strating the relationship between groups in order to both generate a high-quality visualization for
sensemaking tasks and to detect underlying stories hidden within the corpus. We design NetReAct to
make it possible to incorporate semantic interaction feedback with network summarization, using that
user guidance to generate a visualization of a document corpus. A “good” document network sum-
mary leads to a high-quality visualization, which helps a user to identify and read related documents
and make sense of them quickly. More specifically, in a good network summary, each super-node
(i.e., group) contains documents that are most relevant to each other according to the user’s interest.
Further, the structure of the network summary indicates the relationship between groups, which
guides the user on how to navigate through different groups. Given such a summary, we first can
visualize the summary network. After this, we can expand the super-nodes that the user is interested
in to suggest the most relevant documents. If the user wants to investigate more documents, we can
then expand the closest (most similar) super-nodes to suggest another group of relevant documents.

2.1 User Feedback

We observed several users completing a sensemaking task using the StarSPIRE framework, and
based on their behavior we selected a subset of the supported semantic interactions for generating
user feedback. We divide such interactions into positive and negative feedback (see Table 1). For
example, positive feedback can indicate the user’s intention to put two documents close to each other
(i.e., group two nodes together), while negative feedback means they should be far from each other.
Overlapping two documents indicates that the user agrees to display them close to each other. On
the other hand, minimizing a document while reading another one is a sign of the disagreement with
the visualization. This local feedback is then applied to the entire visualization and corpus. Such
feedback is sparse, as the user cannot evaluate all documents and every aspect of the visualization.

Table 1: NetReAct feedback types and corresponding semantic interactions in StarSPIRE.
| Feedback Type | Semantic Interaction |

Negative feedback | (1) Minimizing document, (2) Clos-
ing document

Positive feedback | (1) Annotation, (2) Highlighting doc-
ument, (3) Overlapping document

2.2 Interactive Summarization Model

In this section, we describe an interactive network summarization framework to incorporate the user
feedback and address its sparsity. Note that our goal is also to learn the steps to be taken for the
summarization process so that the same approach can be re-applied on other document corpora with
similar characteristics.

Network Construction.  We start by converting the given document corpus into a network
G(V,E, W), where nodes (V') represent documents and edges (E) and their weights (W) rep-
resent document similarity. We define the weight w(v1, v2) to be the cosine similarity between the
corresponding TF-IDF vectors of the documents. Note that G is a complete-graph of size |V|.

Network Summarization. Once the network G is constructed, the summarization process begins.
The goal is to generate a smaller network G*(V*, E*, W*#) from the original network G(V, E, W)
such that nodes representing similar/relevant documents in G are grouped into a single node (a “super-
node”) in G*. Nodes in G* therefore represent a group of documents. We call G*(V*, E*, W*)
a “summary network,” where super-nodes (V') are the groups of related documents and super-
edges (E£°), and their weights (W ®) represent the average similarity between group of documents
represented by the two endpoints. We obtain G* via a series of “assign” operations on G. The “assign”
operation assigns nodes to their super-nodes. This operation partitions the original network G and
groups each partition to form a super-node in the summary network G*. Next, we must determine
how to partition the original network G in a meaningful manner. In other words, how to decide



between two partitions of &, and how to measure the quality of each assigning operation and network
summary?

Reinforcement Learning (RL) is a natural fit to answer the question above, as we can view our
problem as taking actions (assigning nodes to a super-node) to maximize the reward (the final quality
of grouping of documents). The next step in our summarization process is to formalize the RL
framework for our task.

2.2.1 Interactive Reinforcement Learning Formulation

We use Q-learning, as it is known to be more sample efficient than policy gradient methods [15].
Each RL framework has five main components: states, actions, transition function, reward, and policy.
We further add an additional feedback component as we design an interactive RL formulation. Brief
descriptions of each follow.

1. State: The state s is the sequence of actions which assign nodes to different super-nodes. We use
the embedding s = [l1,12,...,ln], Vieq1,2,...ny i €{1,2,...,|V;|} in to represent the states in a
vector of n-dimensional space.

2. Action: An action q at state s; selects a document ¢, assigns it to a new super-node v°®, and
transfers it to the next state sy 1.

3. Transition: We assume the transition function 7 is deterministic and corresponds to the action of
assigning a document to a new super-node —i.e., 7 (s, a) = Sp11.

4. Rewards: We define the reward to be —1 for a state s, unless it is a terminal state. A terminal state
in our case is a state which satisfies all of the positive and negative feedback of the user. Intuitively
the reward of —1 encourages the learner to satisfy the user feedback faster. Formally, we define our
reward function as follows:
_ 5k oyiAy . .
r(s,a) = {Fpmb(snem) => . WDy if S,,e4¢ 1S a terminal state 0

-1 otherwise

Here, A is the adjacency matrix of the document graph G, D is the diagonal matrix of node degrees,
and y; is an indicator vector for super-node v € V%, i.e., y;(v) = 1 if a node v belongs to super-node
v3, zero otherwise. In Eq. 1, we compute Fjyop (Spest), Wwhich measures the quality of the document
groups. By maximizing Fj,op(Sneqt), We maximize the quality of document groups [16].

5. Feedback We assume a case that the user is interacting with the system until she is happy with the
visualization, a process of incrementally formalizing the space [12]. This means that we must learn
the model until all the feedback from the user is satisfied. The feedback is in the form of positive and
negative interactions (See Tab. 1). The user can indicate if she agrees to group a pair of documents
(i.e., positive feedback) or disagrees with it (i.e., negative feedback). We represent the feedback
with two graphs, which we call feedback graphs. A positive feedback graph G is created from the
set of positive feedback, i.e., the edges in G are pair of related documents that the user indicated.
Similarly, the negative feedback graph G~ is created from the set of negative feedback.

To satisfy all the feedback, we must group all positive feedback node pairs in the same super-nodes
and all negative feedback node pairs in different super-nodes. These constraints can be stated using
the positive and negative feedback graphs G+ and G~ as follows:

K k
> oyl Aceyi — Yyl Ag-yi =Y Ac (2)
1=1 =1

Here, y; is a super-node, k is the number of super-nodes, and A is the adjacency matrix of G. In
the real world, we do not expect the user to provide all possible feedback, as this would essentially
provide the desired summary without computational assistance. Rather, the provided feedback are
sparse, especially when the task is exploratory in nature. To handle such problems, we combine
the reward in Eq. 1 with feedback (Eq. 2). Thus, our goal is to achieve a summary that satisfies all
feedback and maximizes the reward.

6. Policy: The policy function 7(a*|s) specifies what action to take at a given state. It is defined
as w(a*|s) = arg max Q-value(s, a), where Q-value(s, a) is the Q-value of the state s and action a



that estimates the expected cumulative reward achieved after taking action a at state s. Our goal is
to learn an optimal Q-value function resulting in the highest cumulative reward. We leverage the
Q-learning, which iteratively updates Q-value(s, a) until convergence [13].

2.2.2 Q-learning

Our pipeline learns the best super-node for each node in the document graph G such that its corre-
sponding summary graph G* gives a high-quality visualization and is generalizable to similar unseen
document corpora. We use Q-learning to learn the pipeline. First, we define how to estimate the
Q-value of a state s and action a, Q-value(s, a). We define the Q-value of a state and action as the
expected rewards in the future as follows,

Q-value(s,a) = E thrﬂso =s,a0=a,T 3)
>0

Our aim is to find the maximum cumulative reward achievable with state s and action a:
Q-value*(s,a) = max Q-value(s,a). We estimate Q-value®(s,a) iteratively using the Bellman
equation:

Q-value; (s, a) = E |r + v max Q-value; (s, a’)|s, a} “4)
a//

We use a Fully Connected (FC) neural network to embed each state s and get a compact representation
of it. We combine the embedding layer with the Q-value* (s, a) estimator to have an end-to-end
framework to summarize the document network.

In our framework, the input state s is fed into the FC neural network. The output of this step is a
compact representation of the state, which is then fed into another FC that decides how to update the
super-nodes. Alg. 1 presents an overview of our summarization algorithm.

Algorithm 1 Summarization
Require: G, G+, G, k
1: Randomly Initialize the deep Q-learning parameters

2: //learning how to summarize
3: for episode=1 to T" do

4: Initialize sg : Initialize {y1,y2,.-.,Yx}

5: while Feedback-value < & do

6: // Take a action

7: a* = argmax Q-value(Scyrrent, @)

8: Scurrent = T(Scurrentv (l*)

9: // Evaluate
10: Evaluate the corresponding partitioning to Scyrrent (Eq. 1)
11: /I Optimize (see Section 2.2.2)
12: Update deep Q-learning parameters for better summary
13: Return the trained model and super-nodes {y1,y2, ..., Yx }

2.2.3 Hierarchical Summaries

Our goal is not only to summarize the network but also to provide a multi-level understanding of
the structure. This is specially useful in large networks, where it is challenging to meaningfully
and efficiently generate the best summary. Hence, we propose a hierarchical approach, where we
intuitively, zoom out one “level” at a time to generate summaries with different sizes. Specifically, in
each step NetReAct tries to partition the data into two super-nodes, and then iteratively summarizes
each part until reaching a summary with the desired size.

2.2.4 Generate Summaries

After learning the best super-nodes of the network, we merge nodes in the same super-nodes to
generate a corresponding super-node. We also connect each super-node to others by super-edges.



The weight of the super-edge from y; to ys is the average similarity between documents in y; to yo.
More formally, we define the merge operation as follows,

Definition 1 Merge operation merges nodes vy, Vs, ..., Uy into a new node y, suchthat¥;—, . p v; €

b v,
V. We add new edge (y, i) for all the nodes i € _ EJ bNB(vj) with weight W
j=1...,

We merge nodes in the same super-node using Def. 1 to yield the summary document network
G*(V*, ES,W?), where |V*| = k.

2.3 Two-step Visualization

Once the summary is generated, our goal is to visualize the document network. We design a
multilevel framework that first leverages the weighted force-directed layout [4] to visualize the
summary graph. This gives us a 2D layout of the summary network, which we treat as the “backbone”
of our visualization process. Note that each super-node consists of a group of nodes, which induce
sub-graphs in the original network. We separately run the weighted force-directed layout on each
sub-graph induced by the super-nodes. Finally, we “combine” the layouts within each super-node
with the backbone layout of the entire summary network in a multi-level fashion to visualize with
entire network. Lines 3-7 of Alg. 2 show the pseudocode of this two-step visualization approach.

Algorithm 2 NetReAct-Viz

Require: G, GT, G, k, currenty,
1: y1,. ..y, = Hierarchical-Partitioning(G, G*, G, k, 1)
2: G +— merge nodes in y1, ... Yk
3: Vi<i<wlocy, «— Layout(G®)
4: for super-node y; € {y1,...,yx} do
5: G; «— Corresponding sub-graph of y;
6
7
8

Vyey,loc, «— Layout(G;)

loc,
Voey;loc, = k + locy4+1

: Return V, ¢y loc,

3 Empirical Studies

We used Python and PyTorch to implement all steps of NetReAct and NetReAct-Viz, and our
code is publicly available for academic and research purposes'. We explore the effectiveness of
NetReAct and NetReAct-Viz on two document network datasets: CRESCENT [8] is a document
corpus containing synthetic intelligence reports related to terrorist activities, and the VAST 2007
Challenge dataset (“Blue Iguanodon”) [7] contains documents regarding wildlife law enforcement
subplots. We compare performance of NetReAct against several baselines including Spectral [14],
Community-Det [6], CoarseNet [10] and Metric-Learning [17] based approaches.

3.1 Quality of Summaries

Here, we demonstrate that NetReAct generates high quality network summaries by both grouping
relevant nodes in the same super-node and satisfying the constraints posed by users as feedback. In
this section, we focus on quantitative results.

We measure the quality of the summary by quantifying the ease of identifying relevant documents.
To that end, we measure the purity of super-nodes that contain relevant documents. In other words,
we calculate the average probability of observing a relevant document in a super-node that contains
at least one relevant document. Formally,
1
p= Vo Z Pr(doc = relevant|v®) (5)

s|
s s
vSEV:

r
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where V7 is the set of super-nodes that have at least one relevant document to the scenario, v° is a
super-node in the set V,* and Pr(doc = relevant|v®) is the probability that a document is relevant
to the hidden scenario in v°. Intuitively, if the value of p is closer to one, it means the user can easily
find relevant documents in a selected super-node.

We investigate the quality of summary networks generated by NetReAct using CRESCENT and three
subplots of VAST 2007 datasets with 2, 4, 8, and 16 super-nodes and calculate their p values (Eq. 5).
In addition, we compare the quality of NetReAct with baselines. Figs. 1 and 2 show the quality of
summary networks with various numbers of super-nodes. For each experiment, we randomly selected
positive and negative feedback from the ground-truth (see Sec. 2.1). More specifically, we randomly
choose a few pairs of nodes that are relevant to the hidden story as positive feedback and similarly
pick pairs in which only one of them is relevant as negative feedback. In all experiments, we fixed
the amount of positive and negative feedback at 10% of all possible positive feedback and 1% of all
possible negative feedback.

1
1

,,,,,,,,,

Ratio of satisfied feedbacks

Ratio of satisfied feedbacks

Ratio of satisfied feedbacks
Ratio of satisfied feedbacks

|

™

4 6 8 10 12 1s 16
2 a o 12 14 16 Number of supernodes 2 4 0 12 18 16 2 o 12 1 16

Number of supernodes Number of supernodes Number of supernodes
(b) Chinchilla Bio-terror
subplot

(a) CRESCENT (c) Bert subplot (d) Circus subplot

Figure 1: Ratio of satisfied feedback in (a) CRESCENT and (b-d) different subplots of the VAST
2007 dataset. Note, NetReAct satisfies all the user feedback while other baselines do not.
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(b) Chinchilla Bio-terror

(a) CRESCENT subplot

(c) Bert subplot (d) Circus subplot
Figure 2: Quality of summaries in (a) CRESCENT and (b-d) different subplots of the VAST 2007
dataset. Note, NetReAct generates network summaries with the highest p.

Fig. 1 shows the ratio of satisfied feedback. The results indicate that NetReAct generates the
highest-quality summary that matches the interests of the user, as it satisfies all of the user’s feedback
while other baselines can only satisfy part of the feedback. Fig. 2 shows the quality of summaries p.
NetReAct generates high-quality summaries (i.e highest p) networks for various sizes. This implies
that users can easily find the relevant documents to scenarios while interacting with visualization
generated using NetReAct-Viz. It is interesting to mention that because feedback is sparse and the
TF-IDF vectors are high-dimensional, the Metric-Learning approach is not able to learn proper
weights and does not perform well in some cases. Similarly, the poor performance of other graph
summarization approaches is explained by the fact that they do not consider user feedback.

3.2 Q2. Effect of Feedback

We investigate how NetReAct evolves the summary of a document network while the user gives
positive and negative feedback. We also objectively measure the change in quality of super-nodes
based on the feedback by tracking the changes in p. Similar to Sec. 3.1, feedback is randomly
generated from the ground-truth.

To showcase the quality of NetReAct on the VAST 2007 dataset, for each subplot we extract a subset
of documents relevant to the subplot. Fig. 3 shows the visualization of the Chinchilla Bio-terror
subplot. We depict positive feedback as solid black lines between documents and negative feedback



(a) Positive feedback =0 (b) Positive feedback =2 (c) Positive feedback =2 (d) Positive feedback =4
Negative feedback = 0 Negative feedback = 0 Negative feedback = 3 Negative feedback = 3

Figure 3: The network summary evolves with user feedback. The summary of the Chinchilla subplot
of VAST 2007 dataset. Note the black lines represent positive feedback and dashed lines represent
negative feedback. Also, red nodes represent relevant documents to the scenario and the gray ones
are irrelevant.

as dashed lines. Initially our method can only identify four of the related documents with the subplot
and puts them in a super-node. However, the rest of the relevant documents are mixed with other
irrelevant ones in the largest super-node of the summary network. Next, the user gives feedback
regarding the similarity of two pairs of documents. NetReAct updates the visualization (Fig. 3(b)).
However, this is not enough to improve the quality. When the user adds the negative feedback,
NetReAct can distinguish more relevant documents (Fig. 3(c)). Finally, by giving two more positive
feedback interactions, NetReAct can accurately identify the relevant documents with the subplots
and puts them in a separate super-node (Fig. 3(d)).

4 Conclusions and Discussion

In this paper, we explored the problem of learning interactive network summaries with an application
of generating multi-level and generalizable visualization models for text analysis. We proposed a
novel and effective network summarization algorithm, NetReAct, which leverages a feedback-based
reinforcement learning approach to incorporate human input. We also proposed NetReAct-Viz
as a framework to produce a visualization based on hierarchical network summaries generated by
NetReAct. Our experiments show that NetReAct is able to summarize and NetReAct-Viz is able
visualize a document network meaningfully to reveal hidden stories in the corpus and connect the
dots between documents.

As NetReAct relies on Q-learning, it can be made faster, which is also a promising direction for future
work. As shown by our experiments, it already works well on real document networks and solves
real tasks in practice. In the future, we plan to apply this interactive network summarization model
to much larger document datasets and temporal data scenarios. Moreover, the flexibility we obtain
from the reinforcement learning approach makes it possible to bring learning into summarization and
enable better generalization and personalization. For example, we can build a personalized interactive
summarization model for each user to reflect their interests and quickly summarize different datasets
without requiring user input for each new corpus.

Network summarization can lead to other meaningful visualizations by incorporating more diverse
semantic interactions into the reinforcement learning approach. For example, we would like to
explore how to differentiate between highlighting, overlapping, and annotating documents in our
framework. Also, leveraging more visual encodings to create a more understandable and user-friendly
summarization is a fruitful direction. We can explore using our approach for summarizing and
visualizing other data types such as social networks and images as well. Our approach here opens
several additional interesting avenues for future work.
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