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Abstract

We present a maximum-margin sparse Gaus-
sian Process (MM-SGP) for active learning
(AL) of classification models for multi-class
problems. The proposed model makes novel
extensions to a GP by integrating maximum-
margin constraints into its learning process,
aiming to further improve its predictive power
while keeping its inherent capability for uncer-
tainty quantification. The MM constraints en-
sure small “effective size” of the model, which
allows MM-SGP to provide good predictive
performance by using limited “active” data
samples, a critical property for AL. Further-
more, as a Gaussian process model, MM-SGP
will output both the predicted class distribu-
tion and the predictive variance, both of which
are essential for defining a sampling function
effective to improve the decision boundaries
of a large number of classes simultaneously.
Finally, the sparse nature of MM-SGP en-
sures that it can be efficiently trained by solv-
ing a low-rank convex dual problem. Experi-
ment results on both synthetic and real-world
datasets show the effectiveness and efficiency
of the proposed AL model.

1 Introduction

Active learning (AL) provides an effective means to
reduce human labeling effort by selecting the most
informative data samples for more effective model
training [1]. Previous work on AL has been success-
fully applied to various applications with promising
results [2, 3, 4]. In particular, an effective AL model
should possess three key properties: i) good predic-
tive performance upon convergence, ii) accurate uncer-
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tainty estimation for effective active sampling, and iii)
efficient model training to support real-time human-
machine collaboration. We propose a maximum-margin
sparse Gaussian process (MM-SGP) for active learning
of multi-class classification models, which simultane-
ously meets these key properties. By leveraging a flexi-
ble covariance function, a GP naturally captures the
correlations of data samples to achieve good prediction
performance while offering important uncertainty in-
formation that is critical for active sampling. We make
novel extensions to a GP by integrating maximum-
margin (MM) constraints into its learning process to
further improve its predictive power. Furthermore, the
MM constraints allow the MM-SGP to inherit key prop-
erties of other maximum-margin models (e.g., SVMs)
that can make good predictions by only relying on
limited data samples. Such behavior indicates the
great potential of using MM-SGP for AL, which aims
to choose these most useful data samples for model
training through effective sampling.

In particular, the MM constraints are integrated using
the maximum entropy discrimination (MED) frame-
work [5, 6], which learns a parameter distribution with
minimum assumptions among all feasible choices (as
indicated by ‘maximum entropy’ in the name). As the
MED framework directly works on model parameters
(i.e., weights), we leverage the ‘parameter-space’ view
of a GP to make the model parameters explicit by plac-
ing a proper prior distribution to ensure equivalence to
its ‘function-space’ view. This transformation elegantly
brings a nonparametric model (GP) and a parametric
framework (MED) together under a unified learning
scheme. As a result, the proposed MM-SGP further
enhances the generalization capacity of a standard GP,
which is clearly demonstrated by its superior predictive
accuracy as evidenced by our experiments over both
synthetic and real-world data.

Since the MM constraints are applied to the model pa-
rameters, these parameters need to be made explicit in
the MM-SGP model. While directly using the learned
parameters still provide the same (mean) predictions,
it will degenerate the GP that can negatively impact
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Figure 1: Predictive variance of (a) degenerated GP, (b) GP, and (c) MM-SGP; (d) entropy of MM-SGP predicted
class labels over a dataset with two classes (similar to the predicted entropy of a standard GP, which not shown
here), each of which comes from a mixture of two Gaussian’s, where labeled samples are shown in black triangles.

data sampling in AL. In particular, a degenerate GP
tends to underestimate the predictive variance of unla-
beled data samples that are far away from the current
training data [7], which will result in the sampling bias
issue that causes slow and/or inaccurate convergence
of AL [8]. Figure 1(a) demonstrates the undesired pre-
dictive variance provided by a degenerate GP trained
over a dataset with two classes (shown as yellow and
red), each of which is a mixture of two Gaussian’s.
The black triangles represent the labeled data and
the squares/circles are unlabeled with colors indicating
their (unknown) class labels. Since the model is trained
using limited labeled data (typical for AL) from the
two major clusters in the center, data samples from
the two faraway minor clusters are predicted with very
low variance. If the predictive variance is used as an
uncertainty measure, it will mislead active sampling
and suggest the AL model not to choose important
data samples faraway from the current training data.
This may lead to a wrong classification boundary that
completely misclassify the two minor clusters.

Fortunately, the undesirable predictive variance can be
systematically addressed through augmentation that
assigns an additional weight parameter to each test
data sample [9]. Augmentation has been successfully
applied to several GP based finite linear models, includ-
ing Subset of Regressors (SoR) and Relevant Vector
Machines (RVM), which suffer from underestimated
predictive variances [7]. However, augmenting each
test sample in a large unlabeled pool for active sam-
pling is computational prohibitive, making it infeasible
to support real-time human-machine interactions in
AL. We propose to identify a set of most representa-
tive unlabeled data samples that cover critical areas
in the sample space by performing a one-time joint
augmentation with much improved sampling efficiency.
Figure 1(c) shows that the proposed joint augmenta-
tion accurately estimates the predictive variances of
data samples from the two minor clusters, which will
allow them to be properly sampled in the early stage of
AL so that a correct decision boundary can be formed
to improve convergence.

The predictive variance provides important information
that complements the uncertainty of the predicted class
distribution, captured by class entropy. Figure 1(d)
shows that a high class entropy is assigned to both
data samples close to or faraway from the training data.
However, these data samples contribute differently by
refining the current decision boundary or exploring
critical areas in the sample space, respectively. We will
develop a novel sampling function that aggregates both
the predicted class entropy and the predictive variance
of MM-SGP.

Finally, as the model parameters need to be continu-
ously learned along with the AL process, we propose
to use a sparse GP that chooses only a selected subset
of support points (or pseudo inputs) to approximate
the entire training set. By joint augmentation of the
support points, each augmented unlabeled sample has
direct access to all the labeled training samples instead
of through the sparse support points. This ensures
that the predictive variances of data samples close to
the training data are not overestimated as sparsity
level increases. The sparse nature of MM-SGP ensures
that it can be efficiently trained by solving a low-rank
convex dual problem for fast model training that is
3-5X more efficient than its dense version. In fact, a
dense GP starts to pose a computational bottleneck
in middle and later phases of AL when more labeled
data is accumulated as observed in our experiments
on real-world data. Our key contributions include: (1)
a unified learning scheme that seamlessly integrates
the maximum-margin constraints with a nonparamet-
ric GP, (2) a novel sampling function that combines
entropy and predictive variance, and (3) leveraging
the low-rank structure of a sparse GP for efficient and
scalable model training to support realtime AL.

2 Related Work

GP has been used as popular statistical learning
tool for active data selection in regression prob-
lems [10, 11, 12, 13]. To extend a GP to classifica-
tion, sigmoid or softmax transformation of the latent
Gaussian variables is needed, which makes the exact
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inference infeasible and poses a challenge for AL. To
avoid this extra complexity, the ratio between the poste-
rior mean and variance of the latent Gaussian variables
has been used for data sampling [14]. However, the
Gaussian variables do not transform linearly through
the sigmoid/softmax functions, leading to inaccurate
uncertainty estimation. Through approximate infer-
ence, the predictive distribution over class labels can be
computed from a GP and used for active sampling [15].
However, the predicted label distribution only provides
the mean prediction without predictive variance, which
does not provide an effective way to explore the un-
labeled data space for data sampling. Furthermore,
the parametric version of GP is adopted [15], which is
similar to the relevant vector machine (RVM) based
active learners [16]. RVM has also been combined with
an SVM, leading to a kernel committee machine (KMC)
that is suitable for active learning [17]. However, due
to the degenerate nature, the parametric GP models
(e.g., SoR and RVM) tend to predict low variance for
samples faraway from current training data [18], which
is undesirable to explore the unlabeled data space. Our
experimental results confirm the advantage of the pro-
posed MM-SGP over these methods.

As a maximum-margin model, SVMs have been com-
monly used for AL using the distance to the decision
boundary to quantify uncertainty for sampling [19, 20].
For multi-class problems, due to the interplay of multi-
ple decision surfaces, the uncertainty of a data sample
cannot be easily characterized by distances [21]. A
Best-versus-Second Best (BvSB) model was developed
to choose the samples with the closest top-two probable
classes [22]. However, BvSB ignores the probability
distribution of other classes, making it less effective
for many-class settings. Entropy has also been used to
quantify uncertainty for multi-class AL [23, 24]. The
challenge lies in how to accurately estimate entropy
especially during the early phase of AL. The estimated
decision-boundary can be highly inaccurate (as shown
in our experiments) especially when a large number of
classes are involved.

Probabilistic models provide an alternative way to con-
sider all potential classes. For example, the expected
error within a neighbourhood of a candidate data sam-
ple has been used as the sampling score [25]. However,
the high computational cost makes it infeasible to scale
to a large number of classes. A convex hull-based sam-
pling function is used to choose data samples with the
potential to significantly change the current model [26].
However, the model solely relies on an SVM and its sup-
port vectors for data sampling, which may be limited
in exploring the data space.

To further advance frontiers in AL, the proposed MM-
SGP integrates a GP with the MM constraints through

a unified learning scheme so that it benefits from both
the exploring capacity of the former and the discrimi-
native power of the latter for most effective AL.

3 The MM-SGP Model

We denote a training set with N data samples as
X = {x1, ...,xN} and let y = {y1, ..., yN} be their
corresponding labels. Consider the binary-class case
where ∀yn ∈ y, yn ∈ {−1,+1} and the multi-class
problems can be achieved via one-versus-the-rest. The
conditional distribution of label yn is given by p(yn =
+1|f(xn)) = σ(f(xn)), where σ is the logistic sig-
moid function and f(xn) is a latent function intro-
duced by GP, which models the log odd of sample
xn assigned label yn. A prior distribution is further
placed on function f(xn), given by p(f |X) = N (f |0,K),
where f = (f1, ..., fN )T with fn = f(xn). K is
the covariance matrix with Knm = k(xn,xm), where
k(·, ·) is a kernel function. Prediction on a test sam-
ple x∗ can be achieved in two steps: (1) computing
the predictive distribution of f∗ : p(f∗|X,y,x∗) =∫
p(f∗|X,x∗, f)p(f |X,y)df , where the posterior is

given by p(f |X,y) ∝ p(y|f)p(f |X), and (2) making
a prediction by integrating out the predictive distri-
bution: p(y∗|X,y,x∗) =

∫
p(y∗|f∗)p(f∗|X,y,x∗)df∗.

The challenge lies in the likelihood term p(yn|fn), which
is a logistic function and non-conjugate to the Gaus-
sian prior. Thus, further approximation is needed to
compute the integration, which will be detailed later.

In order to incorporate the maximum-margin (MM)
constraints that directly operate on the model param-
eters (i.e., weights), we transform the GP model de-
scribed above into its weight-space representation. In
particular, let f = Kw and by placing a prior p(w|X) =
N (w|0,K−1), we recover p(f |X) = N (f |0,K). In this
weight-space view, each data sample xn is essentially
represented by a feature vector φ(xn) = kxn , where
[kxn ]j = k(xn,xj). To achieve fast training of the GP
for real-time AL, we further propose to use a sparse
version of GP, which constructs a set of support points
X = {xm}Mm=1, where M < N , for model training and
prediction. Under a sparse GP, we have f = KNMwM

with a prior p(wM |X) = N (wM |0,K−1MM ), where
[KNM ]nm = k(xn,xm), [KMM ]mm′ = k(xm,xm′), and
xm ∈ X. The construction of X is covered in Sect. 3.

The MED framework aims to find an optimal parame-
ter distribution q(w) that minimizes a regularized KL-
divergence: KL(q(w)||p(w0)) +U(ξ), where p(w0) is a
prior distribution and U(ξ) is a function over the slack
variables introduced along with the MM constraints
given by yn(wTkxn

) ≥ ∆ln(y)− ξn with ξn ≥ 0 and
∆ln(y) being a loss function (e.g., 0-1 loss). Intuitively,
an optimal q(w) should make minimum additional
assumptions beyond the given prior p(w0) (i.e., “maxi-
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mum entropy" in MED) besides meeting the MM con-
straints. In addition to replacing the prior distribution
p(w0) with p(wM |X), we make another key extension
to the MED framework by further incorporating the
expected log likelihood Eq(w)[ln p(y|X,X,w)] into the
objective function. In this way, the optimal q(w) es-
sentially minimizes the negative lower bound (hence
maximizes the lower bound) of the log marginal likeli-
hood while meeting the MM constraints. To see this, by
applying Jensen’s inequality to the log marginal likeli-
hood, we obtain a lower bound given by ln p(y|X,X) ≥
Eq(w)[ln p(y|X,X,w)] − KL(q(w)||p(w|X)). Adding
the MM constraints gives

min
q(w),γ,X,ξ

c
∑
n

ξn +KL(q||p)− Eq(w)[ln g(w,γ,X)]

s.t. ∀n : Eq(w)[yn(wTkxn
)] ≥ ∆ln(y)− ξn,

ξn ≥ 0,

∫
q(w)dw = 1 (1)

where KL(q||p) = KL(q(w)||p(w|X)), [kxn ]m =
k(xn,xm), ∀xm ∈ X, and ξ = (ξ1, ..., ξN )T . One ad-
ditional change we make is to replace the likelihood
p(y|X,X,w) by an exponential quadratic lower bound
function g(w,γ,X), given by

g(w,γ,X) =
N∏
n=1

σ(γn) exp{yn(wTkxn)− γn
2

−

λ(γn)([wTkxn
]2 − γ2n)} (2)

where λ(γ) = 1
2γ (σ(γ)− 1

2 ) [27]. This is because the non-
conjugate logistic function in the expected likelihood
does not lead to an analytical form for q(w), which
makes the original optimization problem difficult to
solve. By using the lower bound, q(w) will follow a
Gaussian distribution governed by local variational
parameters γ = (γ1, ..., γN )T as shown in Sect. 3.

Since (1) is convex over q(w) with linear constraints,
dual sparsity is ensured from the KKT conditions of
the Lagrangian function of (1). Thus, only a subset of
Lagrangian multipliers will be non-zero that correspond
to the active MM constraints. This key property allows
MM-SGP to provide good predictive performance by
using limited “active” data samples, similar to other
maximum-margin models. Meanwhile, the small effec-
tive size of MM-SGP clearly shows its potential as an
AL model. Through effective sampling (Sect. 3.1), we
aim to choose labeling only these “active” data samples
that play an effective role in the model’s prediction
power. To extend to K classes, we adopt one-versus-
the-rest and then apply a softmax transformation,
which gives rise to the posterior probability of the k-th
class: p(y = Ck|x) = Eq(W )[e

w(k)T kx)/
∑K
j=1 e

w(j)T kx ],
where q(W ) =

∏
k q(w

(k)). Since the expectation can-
not be computed analytically, we perform Monte Carlo

(MC) integration by drawing samples from q(W ), soft-
max them, and then average.

Posterior Inference and Parameter Learning
In this section, we present a principled optimization
framework that leverages the convexity of (1) over the
variational distribution q(w) and the reduced rank of
the MM-SGP for efficient posterior inference and pa-
rameter learning. Overall, the framework will adopt an
iterative process to update the variational distribution
q(w) (along with ξ) and other key model parameters
(γ,X) in a coordinate decent fashion until convergence.
We present the key results in this section and leave the
detailed proofs to Appendices A and B.

Posterior Inference: First, by recognizing that (1)
is a convex problem over the variational distribu-
tion q(w), we introduce Lagrangian multipliers αn’s
and α0 for each inequality and equality constraints,
respectively, which gives the Lagrangian function
L(q(w), ξ,X,γ,α), where α = (α0, ..., αN )T . We start
by solving q(w) while fixing other parameters. This
can proceed by taking the partial derivative over q(w)
using the calculus of variations to the Lagrangian func-
tion to obtain an optimal analytical form dependent on
the Lagrangian multipliers. We summarize our major
results below.

Lemma 1 The optimal q(w) follows a Gaussian dis-
tribution: q̂(w) = N (µq(α),Σq), where

µq(α) =Σq[

N∑
n=1

((αn +
1

2
)ynkxn ], (3)

Σ−1q =KMM + 2
N∑
n=1

λ(γn)kxn
kTxn

(4)

It is worth to note that the optimal parameter distri-
bution q̂(w) is closely related to the normal equations.
In particular, substituting Σ−1q to µq, we have

µq(α) = (2KT
NMΓKNM +KMM )−1(KT

NM diag(α̂)y)

(5)

The self-projection KT
NMKNM and target projection

KT
NMy in normal equations are weighted by local vari-

ational parameters Γ = diag(λ(γ1), .., λ(γN )) and La-
grangian multipliers α̂ = (α1 + 1

2 , .., αN + 1
2 )T , re-

spectively. As a result, the important data samples
and responses will be assigned a higher weights through
their corresponding λ’s and α’s. The first term on the
r.h.s. is further regularized by the precision matrix of
the SGP prior.

By substituting q̂(w) back into L, we obtain the La-
grangian dual of (1), which takes the form of a con-
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strained quadratic programming (QP) problem with a
low-rank structure.

Theorem 1 The Lagrangian dual of the primal prob-
lem in (1) takes the form of a low-rank QP:

min
α

1

2
αTQα s.t.

N∑
n=1

αn = c, αn ∈ [0,∞) (6)

where Q has a low-rank representation as Q = V V T

with V = diag(y)KNMΣ
1
2
q .

It is straightforward to see from the above theorem
that rank(Q) = M < N given that rank(V ) = M . The
bound of time complexity of each step in the iterative
QP solving process is reduced to O(NM2) from O(N3).
Since solving the dual problem is the computationally
most expensive component of MM-SGP, leveraging
the special low-rank structure ensures that the dual
problem can be solved much more efficiently [28, 29],
as evidenced by our experiments.

Parameter Learning: After solving the Lagrangian
multipliers, an optimal q̂(w) is obtained. We substitute
it back to L, which turns it into a function of only γ
and X:

L(X,γ) =KL(q||p)− Eq(w)[log g(w,γ,X)]

−
∑
n

αn
{
Eq(w)[yn(wTkxn)

}
+ const (7)

where terms do not involve γ and X are absorbed into
the ‘const’ term. To derive the closed-form update rule
for γ, we set ∂L

∂γ = 0 and get

γ2n = kTxn
E[wwT ]kxn = kTxn

(Σq + µq(α)µq(α)T )kxn

(8)

Next, we show the learning of the hyperparameters
of the kernel function. Let θ denote a hyperparame-
ter (e.g., characteristic length scale of a RBF kernel),
which contributes to L(X,γ) through two kernel ma-
trices KNM and KMM . We use F (X) and G(X) to
denote these two matrices to make their dependencies
of X (also also θ) explicit. This will also facilitate our
derivation of the update rule of X. We first reformulate
the moments of q(w) as:

µq(α) = ΣqF (X)TΛα̂, (9)

Σ−1q = G(X) + 2F (X)TΓF (X) (10)

where Λ = diag(y). Since all three terms in (7) are
expectations over q(w), they can be expressed using
the moments given above. Following the chain rule
and using the following results, we can compute their

derivatives over θ:

∂Σq
∂θ

=
∂G(X)

∂θ
+ 2F (X)(Γ + ΓT )

∂F (X)

∂θ
, (11)

∂µq(α)

∂θ
=

(
Σq
θ
F (X)T + Σq

∂F (X)

∂θ

)
Λα̂ (12)

Putting them together, we can perform gradient decent
to optimize hyperparameter θ. The set of support
points X can be learned in the same way but the
derivation is more involved that requires derivatives
over matrices (details are provided in Appendix B.2).

3.1 MM-SGP based Active Sampling

We propose a novel AL process that integrates both
the predicted class entropy and predictive variance
output by the MM-SGP model for effective active sam-
pling. Given a test data sample x∗ and K classes,
a probabilistic classifier outputs K-class probabili-
ties: p(y∗|x∗), which is a K-dimensional vector π
with πk = p(y∗ = Ck|x∗). While p(y∗|x∗) captures
the uncertainty of the prediction over the K classes
(i.e., among π′ks), it is only a point estimate of π
(one πk for each class). As a Bayesian model, the
proposed MM-SGP allows us to quantify the varia-
tion of each πk using its predictive variance. The
key idea is to leverage the predictive distribution
of the latent function f

(k)
∗ for each class, given by

p(f
(k)
∗ |X,y,x∗) ≈

∫
p(f

(k)
∗ |X,x∗,w(k))q(w(k))dw(k).

Since the variational distribution q(w(k)) is a Gaussian,
p(f

(k)
∗ |X,y,x∗) will also be a Gaussian, whose vari-

ance can be analytically computed. However, the final
class prediction still requires a sigmoid transformation,
making the computation of the final predictive vari-
ance intractable. We propose to use MC integration
by drawing samples from p(f

(k)
∗ |X,y,x∗), performing

sigmoid transformation, and then averaging to compute
the predictive variance Var(k)∗ of sample x∗ for each of
the K class.

By assigning a low variance to data samples near to the
training data and a high variance to faraway samples,
the predictive variance complements the class entropy,
which allows the proposed sampling function to differen-
tiate data samples based on their distinct contributions
to model training and sample them accordingly. As
nearby data samples are more effective to fine-tune
the current decision boundary and faraway ones help
better explore the data space, we propose the following
function for many-class sampling:

x̂∗ = arg max
x∗
H(y∗|x∗) + η

∑
k

Var(k)∗ /K (13)

where η is used to balance between class entropy and to-
tal predictive variance averaged over K classes, aiming
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to choose a data sample that benefits a large number
of classes when K is large. Parameter η is dynamically
updated to give a higher weight in the early stage of
AL to the variance term for better exploration and
then shift the focus to the entropy term for effective
fine-tuning of decision boundaries with a correct shape
obtained through effective exploration. It is worth to
note that the variance term decreases fast as the AL
process effectively explores the sample space so the
balance between these two terms are automatically
adjusted and do not rely too much on η.

However, directly applying MM-SGP may underesti-
mate the predictive variance, especially for data sam-
ples far away from the training data. This will intro-
duce undesirable sampling behavior. In essence, by
making the model parameters explicit due to the in-
tegration of MM constraints, the GP sub-component
of MM-SGP resembles the SoR algorithm [30], which
suffers from a similar issue. A principled way to ad-
dress this issue is through augmentation that assigns
one additional weight parameter to each test data sam-
ple [9]. We summarize the key result via the following
lemma [7]:

Lemma 2 By adding an extra weight w∗ to the test
data sample x∗, the augmented predictive variance of
its latent function is given by

v∗(x∗) =k(x∗,x∗)

−kT∗ [KNMK
−1
MMK

T
NM + v∗v

T
∗ /c∗]

−1k∗ (14)

where [k∗]n = k(x∗,xn), ∀xn ∈ X,v∗ = k∗ −
KNMK

−1
MMkx∗ with [kx∗ ]m = k(x∗, x̄m), ∀x̄m ∈ X,

and c∗ = k(x∗,x∗)− kTx∗K
−1
MMkx∗ .

It is clear that the augmented predictive variance will
be high if x∗ is far from the training data as the sec-
ond term in (14) will be small. Furthermore, due to
augmentation, data sample x∗ directly interacts with
all the training samples (through the k∗ term). Hence,
it does not overestimate the variance if x∗ is close to
the training data. As a result, augmentation provides
a more accurate predictive variance than other sparse
GP models (e.g., Deterministic Training Conditional
(DTC) model and Fully Independent Training Condi-
tional (FITC) model) that tend to overestimate the
predictive variance of nearby samples due to increased
sparsity [9]. The improved variance prediction will
further benefit the MM-SGP based active sampling.

Augmenting each testing sample is computational ex-
pensive (O(NM) to evaluate (14)) especially for a large
unlabeled candidate pool. We propose to expedite
this process by performing a one-time joint augmenta-
tion of a set of representative samples from the unla-
beled pool. Kernel density estimation (KDE) is used
to identify data samples from densely distributed ar-

eas while being far from the training data (see Ap-
pendix C for details). Given an augmentation set
Â = {x̂i}Si=1, we first compute an augmented pos-
terior variance Σ

(k)+

q , which is defined over X ∪ Â.
Then, for a test data sample, x∗, the predictive vari-
ance is computed as v

(k)
∗ = k+T

x∗ Σ
(k)+

q k+
x∗ , where

k+
x∗ = (kTx∗ , k(x∗, x̂1), ..., k(x∗, x̂S))T , with a reduced

computational cost of O((M + S)2).

4 Experiments

We present our experimental results over both syn-
thetic and real-world data to demonstrate: (1) the
effective active sampling behavior of MM-SGP through
the dynamic balancing between predicted variance and
entropy, (2) overall better AL performance than other
competitive multi-class AL models, and (3) how spar-
sity ensures good AL performance while significantly
accelerating model retraining.

4.1 Synthetic Data Experiments

We generate a 2D synthetic dataset to help demonstrate
important model properties and sampling behaviour
of the proposed MM-SGP. There are two clusters of
the positive and negative samples highly overlapped
in the center region. Each main cluster is close to a
small cluster of samples from the opposite class. We
initialize the model by simulating a typical starting
point of AL, where the initial training data (shown as
the black triangles in Figure 2(a)) is very likely to come
from most densely distributed area of the data space.
As a result, the initial decision boundary can be highly
incorrect, as clearly demonstrated by Figure 2(a). Next,
we compare the sampling behavior of three sampling
strategies at different critical phases of AL, including
entropy based, variance based, and MM-SGP, which
combines and dynamically balances between variance
and entropy.

First, limited labeled data usually lead to insufficient
initialization of an AL model. Therefore, effective ex-
ploration is critical in the early stage of AL and the
model performance cannot be significantly improved
until it sufficiently explores the entire data space and
discovers areas that may dramatically change the de-
cision boundary. We observe that the entropy-based
sampling exhibits a random exploration behaviour be-
cause the entropy is high on both the current decision
boundary and areas that away from the training data.
Figure 2(b) shows that by the time the model discovers
both small clusters, 17 and 78 additional data samples
are labeled. These also correspond to the two locations
on the entropy AL curve in Figure 2(h) that trigger
a fast improvement of the model accuracy. In most
of other times, the model myopically samples many
data points near an incorrect decision boundary, which
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Figure 2: Decision boundaries and sampled data distribution resulted from predicted entropy, variance, and their
combination: (a) model initialization; (b)–(d) towards the end of the exploration stage, which is early in AL;
(e)–(g) toward the end of the entire AL process; h) overall AL curves for three sampling methods.

Table 1: Summary of Datasets

Dataset Dermatology I Dermatology II Yeast Penstroke Auto-drive Reuters
Domain Medical Medical Biology Image Driving News
Sample 800 868 1484 1144 58509 10788
Feature 1391 1554 8 500 48 5227
Class 50 30 10 26 11 75

does not contribute a lot to the model improvement.
In contrast, variance-based sampling is able to more
effectively explore the data space. Figure 2(c) shows
that the model only takes three iterations to discover
the two small clusters and learns a roughly correct deci-
sion boundary. However, Figure 2(f) indicates that the
model keeps sampling on the edge of the feature data
and failed to fine-tune the decision boundary in the
overlapping areas thus resulting in a lower convergence
accuracy as shown by the Var curve in Figure 2(h).

The proposed MM-SGP AL model dynamically bal-
ances the predicted variance and entropy to effectively
explore the data space in early AL (Figure 2 (d)) while
performing sufficient fine-tuning in later AL (Figure
2 (g)) to achieve much more efficient convergence to a
higher model accuracy as shown by the EN+Var curve
in Figure 2 (h).

4.2 Experiments on Real-World Data

We choose six representative real-world datasets from
different domains, where the number of classes vary
from 10 to 75. The details of those datasets are shown
in Table 1. To simulate the real-world AL tasks with
very limited initial labeled data, we start AL with
one labeled sample from each class. Due to the small

initial training size, we transition to the sparse GP
when the number of samples reaches 300. For the
comparison experiments, we set the sparse level at
30% (M = 0.7N). We initialize η as 10 and dynamically
decrease it along with AL so that it reaches zero in
the end. We will study the impact of η in more details
later. Coefficient c in (1) is cross-validated and set to
0.01. We adopt the linear kernel for Reuters and RBF
kernel for the other datasets.

Performance comparison. We compare the pro-
posed MM-SGP model with several competitive AL
models from three different categories, including (1)
SVM-based: Best-verus-Second Best (BvSB) [22],
convex-hull based unified sampling (MC-CH) [26],
Entropy-based sampling (Entr); (2) GP-based: a stan-
dard GP that uses entropy for sampling (GPEntr), a
standard GP that uses the proposed sampling func-
tion (GP_oursample), our model with sparsity and
maximum margin constraints removed (VGP), kernel
committee machine (KMC) model [17], which com-
bines a parametric GP (i.e., RVM) with an SVM for
AL; and (3) specially designed classification models
for AL: multi-class probabilistic active learning (Mc-
PAL) [25], AL with cost embedding (ACLE) [31]. The
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Figure 3: Comparison with other AL models (a)–(f); Effectiveness of model sparsity (g)–(l)
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Figure 4: Impact of the balancing parameter η (a)-(b) and MM constraints (c)-(d);

first three models use SVMs as the active learner, which
also leverage the max-margin constraints for learning
as our model does. We do not provide the result for
McPAL, ACLE, and GP on Reuters because their very
high computational cost in the later phase of AL.

Figure 3 (a)-(e) show the AL curves (with variance) for
each dataset. It can be seen that MM-SGP has a clear
advantage on most of the datasets in the beginning
of AL. We also notice that AL models solely rely on
entropy for sampling (e.g., GPEntr and Entr) exhibit
no such behavior. This further justifies the effectiveness
of early exploration guided by an accurate predictive
variance. The performance advantage over the KMC
model also confirms that MM-SGP can more accurately
predict the variance information for more effective data

sampling than using a degenerate GP (i.e., RVM).

After the fast improvement at the early stage of AL,
the performance of MM-SGP starts to grow steadily
and maintain its leading position towards the end of
AL. In Figure 4, we provide further insight on where
the predictive entropy starts to take a lead in sampling
and the model starts to exploit its decision boundary
determined by the early sampled data through effec-
tive exploration. In addition to the effective sampling
behavior, comparison with a standard GP using our
sampling function and VGP helps to demonstrate the
contribution of the MM constraints that lead to a higher
prediction performance even with a sparse GP model.

Impact of sparsity. Figure 3 (g)-(i) demonstrate
the AL behavior at different levels of sparsity. For
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Table 2: Sampling Time Comparison

Trainsize 300 400 500
Sparsity 75% 50% 30% dense 75% 50% 30% dense 75% 50% 30% dense
Yeast 1.1 6 11.7 29.9 3.4 14.3 28.9 78.9 8.7 41 108.1 282.3
Dermatology I 7.1 23.6 41.7 251.7 31.1 76.3 216.5 844.5 46.6 202.1 545.9 886.6
Dermatology II 5.6 17.7 30.2 77.6 13.1 52.3 120.6 416.8 26.8 98.1 287.5 1019.3
Penstroke 7.2 25.7 46.9 177.3 22.4 42.9 103.6 315.2 21.5 83 306.2 893.3
Auto-drive 4.7 12.1 20.8 86 7.1 25.7 60 194.1 13 48.6 117 286
Reuters 55 110.5 164.2 486.7 74 159.9 481.4 1003.2 103 263 672.1 1295.3

Reuters and Auto-drive, the dense model cannot com-
plete within a reasonable time for AL purpose, so we
report the learning curve at 20% sparsity. As can be
seen, for most cases, 30% sparsity achieves almost the
same AL performance as the dense model. Further
increasing the sparsity (e.g., 40%) may hurt model
performance in a few cases, including Penstroke and
Dermatology II. For Auto-drive, a 40% sparse level still
performs very well but is slightly less effective than a
denser model.

Sampling time comparison. Besides being able to
maintain a very competitive AL performance, the MM-
SGP can be trained much more efficiently to achieve a
3-5X speed-up than the dense version. Table 2 reports
the sampling time (in seconds) of MM-SGP at different
level of sparsity. The result shows that as the model
becomes more and more sparse, the execution speed
of MM-SGP is up to 30X faster than the dense GP.
However, maintaining the highest sparsity will hurt the
classification performance, especially when the train
size is small. In most of our experiments, we adopt the
sparsity level of 30% to achieve a good balance between
execution efficiency and model accuracy.

Impact of key model parameters. Since the AL
performance is quite stable with greater than 5 aug-
mented samples, we fix S to 10 for all the datasets.
Figure 4 (a)-(b) use Yeast as an example to demon-
strate how η affects data sampling (results for other
datasets are in Appendix D). In particular, we compare
our sampling method that adaptively decays η along
with AL to balance entropy and variance with some
fixed η values. The result shows, by setting η = 10,
we achieve an AL curve most close to the adaptive
η. Other η values achieve slightly worse but quite
comparable performance. The underlying reason is
that the predictive variance of the entire candidate
pool reduces automatically as MM-SGP continues to
explore the data space effectively. This can be seen
from Figure 4 (b) where the mean predictive variance
and entropy over the candidate pool are re-scaled and
plotted against each other. The predictive variance
quickly drops to almost zero as the model explores the
data space at the early stage of AL. In contrast, the
predictive entropy steady decreases as AL moves for-

ward but never approaches zero due to the overlapping
of different classes.

Impact of MM constraints. To further demonstrate
the effectiveness of integrating the MM constraints,
we compare the proposed model with a standard GP.
Since a GP can output both the predictive entropy and
variance using the approaches as we described, we pair a
GP with three sampling methods that rely on predictive
entropy, variance, and their combination. Figure 4
(c)-(d) show the comparison results using Yeast and
Penstroke as examples (results from other datasets
are provided in Appendix D). MM-SGP achieves a
much better performance both along the AL process
and upon convergence, which clearly demonstrates the
effectiveness of the MM constraints.

5 Conclusion

We propose a Maximum-Margin Sparse Gaussian Pro-
cess (MM-SGP) for AL in multi-class classification.
By leveraging the parametric view of a GP, we seam-
lessly integrate a nonparametric GP into the maximum
entropy discrimination framework, leading to the im-
proved discriminate power of MM-SGP with a small
“effective size". Augmentation using the unlabeled data
systematically fixes the underestimated predictive vari-
ance, which is critical for data sampling. Furthermore,
the sparse nature of MM-SGP ensures that the con-
vex dual problem for posterior inference has a nice
low-rank structure, which can be efficiently solved to
support real-time expert-machine collaborative AL. A
novel active sampling function is further developed to
choose the most effective data samples for model train-
ing by dynamically balancing the predicted variance
and entropy. Comparison with competitive multi-class
AL models clearly demonstrate its effectiveness and
performance advantage in real-world AL tasks from
diverse domains.
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