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Abstract

Deep residual networks (ResNets) have demonstrated better generalization per-
formance than deep feedforward networks (FFNets). However, the theory behind
such a phenomenon is still largely unknown. This paper studies this fundamental
problem in deep learning from a so-called “neural tangent kernel” perspective.
Specifically, we first show that under proper conditions, as the width goes to infin-
ity, training deep ResNets can be viewed as learning reproducing kernel functions
with some kernel function. We then compare the kernel of deep ResNets with that
of deep FFNets and discover that the class of functions induced by the kernel of
FFNets is asymptotically not learnable, as the depth goes to infinity. In contrast,
the class of functions induced by the kernel of ResNets does not exhibit such
degeneracy. Our discovery partially justifies the advantages of deep ResNets over
deep FFNets in generalization abilities. Numerical results are provided to support
our claim.

1 Introduction

Deep Neural Networks (DNNs) have made significant progress in a variety of real-world applications,
such as computer vision [1, 2, 3], speech recognition, natural language processing [4, 5, 6], recom-
mendation systems, etc. Among various network architectures, Residual Networks (ResNets, [7]) are
undoubtedly a breakthrough. Residual Networks are equipped with residual connections, which skip
layers in the forward step. Similar ideas based on gating mechanisms are also adopted in Highway
Networks [8], and further inspire many follow-up works such as Densely Connected Networks [9].

Compared with conventional Feedforward Networks (FFNets), residual networks demonstrate surpris-
ing generalization abilities. Existing literature rarely considers deep feedforward networks with more
than 30 layers. This is because many experimental results have suggested that very deep feedforward
networks yield worse generalization performance than their shallow counterparts [7]. In contrast, we
can train residual networks with hundreds of layers, and achieve better generalization performance
than that of feedforward networks. For example, ResNet-152 [7], achieving a 19.38% top-1 error
on the ImageNet data set, consists of 152 layers; ResNet-1001 [10], achieving a 4.92% error on the
CIFAR-10 data set, consists of 1000 layers.

Despite the great success and popularity of the residual networks, the reason why they generalize so
well is still largely unknown. There have been several lines of research attempting to demystify this
phenomenon. One line of research focuses on empirical studies of residual networks, and provides
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intriguing observations. For example, [11] show that residual networks behave like an ensemble of
weakly dependent networks of much smaller sizes, and meanwhile, they also show that the gradient
vanishing issue is also significantly mitigated due to these smaller networks. [12] further provide
a more refined elaboration on the gradient vanishing issue. They demonstrate that the gradient
magnitude in residual networks only shows sublinear decay (with respect to the layer), which is
much slower than the exponential decay of gradient magnitude in feedforward neural networks.
[13] propose a visualization approach for analyzing the landscape of neural networks, and further
demonstrate that residual networks have smoother optimization landscape due to the skip-layer
connections.

Another line of research focuses on theoretical investigations of residual networks under simplified
network architectures. A commonly adopted structure, which is a reformulation of FFNets, is

ro = ¢(xp—1 + aWprp_1), (1)
where / is the number of layers and the skip-connection only bypasses the weight matrix W, at each
layer [14, 15, 16, 17, 18]. Specifically, [16] study the optimization landscape with linear activation;
[17] study using Stochastic Gradient Descent (SGD) to train a two-layer ResNet. [18] study using
Gradient Descent (GD) to train a two-layer non-overlapping residual network. [14, 15] both take the
perturbation analysis approach to show convergence of such ResNets. A more realistic structure is

ze =201 + PaWpze—1), 2
where the skip-connection bypasses the activation function [19, 20]. [20] only consider separable
setting and take the perturbation analysis to show the convergence and generalization property of such
ResNet. These results, however, are only loosely related to the generalization abilities of residual
networks, and often considered to be overoptimistic, due to the oversimplified assumptions.

Some more recent works provide a new theoretical framework for analyzing overparameterized
neural networks [21, 22, 23, 24, 14, 25, 26, 27]. They focus on connecting two- or three-layer over-
parameterized (sufficiently wide) neural networks to reproducing kernel Hilbert spaces. Specifically,
they show that under proper conditions, the weight matrices of a well trained overparameterized
neural network (achieving any given small training error) are actually very close to their initialization.
Accordingly, the training process can be described as searching within some class of reproducing
kernel functions, where the associated kernel is called the “neural tangent kernel” (NTK, [21]) and
only depends on the initialization of the weights. Accordingly, the generalization properties of the
overparameterized neural network are equivalent to those of the associated NTK function class. Based
on such a framework, [19] derived the NTK of the ResNet (2) when only the last layer is trained, and
proved the convergence of such ResNet. However, they did not provide an explicit formula for the
NTK when all layers are trained, which is required for characterizing the generalization property of
ResNets.

To better understand the generalization abilities of deep feedforward and residual networks, we
propose to investigate the NTKs associated with these networks when all but the last layers are
trained, and consider the case when both widths and depths go to infinity?. For the structure of
ResNets, we adopt (2) only with a slight modification, since it captures the essence of the skip-

connection; see Section 2
1 2
2o = we1 + oy = Vioo(y/ = Wewe s ). 3)
m m

Specifically, we prove that similar to what has been shown for feedforward networks [21], as the
width of deep residual networks increases to infinity, training residual networks can also be viewed as
learning reproducing kernel functions with some NTK. However, such an NTK associated with the
residual networks exhibits a very different behavior from that of feedforward networks.

To demonstrate such a difference, we further consider the regime, where the depths of both feedfor-
ward and residual networks are allowed to increase to infinity. Accordingly, both NTKs associated
with deep feedforward and residual networks converge to their limiting forms sublinearly (in terms of
the depth). For notational simplicity, we refer to the limiting form of the NTKSs as the limiting NTK.
Besides asymptotic analysis, we also provide nonasymptotic bounds, which demonstrate equivalence
between limiting NTKs and neural networks with sufficient depth and width.

When comparing their limiting NTKs, we find that the class of functions induced by the limiting
NTKSs associated with deep feedforward networks is essentially not learnable. Such a class of

“More precisely, our analysis considers the regime, where the widths go to infinity first, and then the depths
go to infinity. See more details in Section 4.



functions is sufficient to overfit training data. Given any finite sample size, however, the learned
function cannot generalize. In contrast, the class of functions induced by the limiting NTKSs associated
with deep residual networks does not exhibit such degeneracy. Our discovery partially justifies the
advantages of deep residual networks over deep feedforward networks in terms of generalization
abilities. Numerical results are provided to support our claim.

Our work is closely related to [28]. They also investigate the so-called “Gaussian Process” kernel
induced by feedforward networks under the regime where the depth is allowed to increase to
infinity. However, their studied neural networks are essentially some specific implementations of the
reproducing kernels using random features, since the training process only updates the last layer of
the neural networks, and keeps other layers unchanged. In contrast, we assume the training process
updates all layers except for the last layer.

Notations: We use o((z) = max(0, z) to denote the ReLU activation function in neural networks.
We use o(2) to denote the normalized ReLU function o(z) = v/2max(0, z). The derivative > of
ReLU function (step function) is o(z) = I{,>0y. Then 0’(2) = V2,50 is the normalized step
function. We use D to denote the input dimension and SP~! to denote the unit sphere in R”. We

use m to denote the network width (the number of neurons at each layer) and L to denote the depth.
Let M%r be the set of all 2 x 2 positive semi-definite matrices. We use F to denote the set of all

symmetric and positive semi-definite functions from R” x R to R. We use || - ||max to denote the
entry-wise £, norm for matrices and use || - || to denote the £ norm for vectors and the spectral norm
for matrices. We use diag(-) to denote the diagonal matrix. We use I, to denote the n x n identity
matrix. We use x and Z to denote a pair of inputs. We use x; and Z, to denote the output of the /-th

layer of a network for the input « and Z, respectively. We use f and f to denote the final output of the
network for x and Z, respectively. We use Vg f = Vg fo(x) to denote the derivative of parametrized

model fy w.r.t. § at the input z, and Vg f to denote the counterpart at the input z.

2 Background
For self-containedness, we first briefly review feedforward networks, residual networks and dual

kernels associated with neural networks.

Feedforward Networks. We define an L-layer feedforward network (FFNet) f(z) with ReLU
activation in a recursive manner,

2
w0 =23 2 =\ —oo(Wewe), (=1, L; f(z) = vz, )

where W, € R™*P and Wy, -+, W € R™*™ are weight matrices, and v € R™ is the output
weight vector. For simplicity, we only consider feedforward networks with scalar outputs.

Residual Networks. We define an L-layer residual network (ResNet) f(x) in a recursive manner,

1 1 2
xo =1/ —Azx; xp =41 +a\/—VgUO<\/—ngg,1), t=1,---,L; f(z) =o'z, (5)
m m m

where W, V, e R™*™ for{ = 1,--- ,L, A € R™*P ¢y € R™, and o = L~7 is the scaling factor
of the bottleneck layers. The scaling factor « is necessary for controlling the norm of z;.

The network architecture in (5) is similar to the “pre-activation" shortcuts in [10], except that each
bottleneck layer only contains one activation - between W, and V,. We remove the activation of the
input due to some technical issues (See more details in Section 3).

Dual and Normalized Kernels. The dual kernel technique was first proposed in [29] and motivated
several follow-up works such as [28, 30]. Here we adopt the description in [28]. We use K to denote
a kernel function on the input space R?, i.e., K : RP x RP — R. We denote

sie) = ({5 §50) mav=( 1)
vyhere K € F, p € R. Given an ac}ivation function ¢ : R — R, i~ts dual activation function
¢ :[—1,1] — [—1,1] is defined to be ¢(p) = E(X,X)~N(0,Np)¢(X)¢(X)'

We then define the dual kernel as follows.
Definition 1. We say that T4(K) : RP x RP — R is the dual kernel of K with respect to the
activation ¢, if we have I's(K)(z, %) = E x 5y n(0,5(2,5) P(X)D(X).

3Although the ReLU function oy is not differentiable at 0, we call o, derivative for notational convenience.



Note that I',(K) is also positive semi-definite. We also define the normalized kernel.

Definition 2. We say that a kernel K € F is normalized, if K (x,z) = 1 for all v € RP. Fora
K(z,%)

VE(z,2)K(Z,3)

1—p2+(7r—cos’1(p))p
po .

general kernel K € F, we define its normalized kernel by K where K (x, &) =

For normalized ReLU function o(z) = v/2max(0, z), [28] show &(p) =
Since o (z) is positive homogeneous, we have I', (K)(z,2) = /K (z,2)K(Z, %) 6 (K (z, Z)). For
derivative of normalized ReLU function o'(z) = /2I{,>0y, [28] show that o(p) = mocos (p),

™

o~

Since ¢’(z) is zeroth-order positive homogeneous, we have I',/ (K)(x, Z) = o/ (K (z, Z)). For more
technical details of the dual kernel, we refer the readers to [28].

3 Neural Tangent Kernels of Deep Networks

There are two approaches to connecting neural networks to kernels: one is Gaussian Process Kernel
(GP Kernel); the other is Neural Tangent Kernel (NTK). GP Kernel corresponds to the regime where
the first L layers are fixed after random initialization, and only the last layer is trained. Therefore,
the first L layers are essentially random feature mapping [31]. This is inconsistent with the practice,
as the first L layers should also be trained. In contrast, NTK corresponds to the regime where the
first L layers are also trained. For both GP Kernel and NTK, we consider the case when the width of
the neural network goes to infinity. Due to space limit, we only provide some proof sketches for our
theory, and all technical details are deferred to the appendix.

3.1 Feedforward Networks

We consider the Feedforward Network (FFNet) defined in (4), where W; € R™*P Wy, ... W, €
R™*™ and v € R™ are all initialized as i.i.d. A/(0, 1) variables.* Given such random initialization,
the outputs converge to a Gaussian process, as the width goes to infinity [32, 21]. Accordingly, the
GP kernel is defined as follows.

Proposition 1 ([28, 21]). The GP kernel of the L-layer FFNet defined in (4) is
Ko(x, %) =2 %; Ki(z,%) = To(Kp_1)(x, %), £=1,--- L. (6)
Theorem 1 ([28]). For the FFNet defined in (4), there exists an absolute constant C, given the width

m > Ce 2L?log(8L/6), with probability at least 1 — & over the randomness of the initialization, for
input x, T on the unit sphere, the inner product of the outputs of the (-th layer can be approximated

by Ki(z,2). Le, [(xo, &¢) — Ko(2,%)| <€, forall =1,--- | L.
The next proposition shows the NTK of this FFNet. Unlike the GP kernel, the NTK corresponds to
the case when 6 = (W7, --- , W) are trained.

Proposition 2 ([21]). The NTK of the FFNet can be derived in terms of the GP kernels as
L

L

Q(e,d) =Y [KH(:C,;%) [[ro (K1), 2). )
=1 i=f

Besides the asymptotic result, [22] further provide a nonasymptotic bound as follows.

Theorem 2 ([22]). For the FFNet defined in (4), when the width m > CLS¢~*log(L/§), where C
is a constant, with probability at least 1 — & over the initialization, for input x, T on the unit sphere,
the Neural Tangent Kernel can be approximated by Qp (x, %), i.e.,

[(Vof,Vof) — Qp(z,7)| < Le.
[22] then showed that a sufficiently wide FFNet trained by gradient flow is close to the kernel
regression predictor via its NTK.

Remark 1. For self-containedness, we directly adopt the results from existing literature in this
subsection. For more technical details on gradient flow and kernel ridge regression, we refer the
readers to [28, 21, 22].

3.2 Residual Networks

We consider the Residual Network (ResNet) in (5), where all parameters
(Ao, Wy, -+« ,Wg,Vi,---, V) are independently initialized from the standard Gaussian

“In general, the weight matrices do not need to be square matrices, nor do they need to be of the same size.



distribution. For simplicity, we only train § = (Wy,--- , W, V;,--- , V1), but not A or v, and the
NTK of the ResNet is computed accordingly. Note that our theory can be naturally generalized to the
setting where all parameters including A and v are trained, but the analysis will be more involved.
Our next proposition derives the GP kernel of the ResNet.

Proposition 3. The GP kernel of the ResNet is
Ko(z,) =2 & Ky(z,%) = Ko (2, %) + o’ T (K1) (2, &),
where { =1,--- | L,and oo = L™7 for 0.5 <~y < 1.

Proposition 3 demonstrates that each layer of the ResNet recursively “contributes” to the kernel in
an incremental manner, which is quite different from that of the FFNet (shown in Proposition 1).
Proposition 3 essentially provides a rigorous justification for the intuition discussed by [33]. Besides
the above asymptotic result, we also derive a nonasymptotic bound as follows.

Theorem 3. For the ResNet defined in (5), given two inputs on the unit sphere x,& € SP~1, ¢ < 0.5,
and m > Ce 2L log(36(L + 1)/6),
where C is a constant and 0.5 < ~ < 1, with probability at least 1 — § over the randomness of the
initialization, for all layers £ = 0,--- | L and (zV),2?)) € {(z, ), (z, %), (&, %)}, we have

(), 2?) — Ko(a®,2®)| <,
where Ky is recursively defined in Proposition 3.

Theorem 3 implies that sufficiently wide residual networks are mimicking the GP kernel under proper
conditions. The proof can be found in Appendix A. Next we present the NTK of the ResNet defined
in (5) in the following proposition.

Proposition 4. The NTK of the ResNet is Q0 (x, %) = o Z(L:l [Beg1(z, 8o (Ki—1)(z, &) +
Ko—1(2,%)Bey1 (2, &)L oo (K1) (2, ©)], where K’s are defined in Proposition 3; Br41(z,%) = 1,
and for{ =1,--- | L, By’s are defined as

Byy1(x,%) = Byyo(x, %) + & Byyo(x, #)Tor (K) (2, ).

Proposition 4 implies that similar to what has been proved for the FFNet, the ResNet trained
by gradient flow is also equivalent to the kernel regression predictor with some NTK. Note that

Proposition 4 is an asymptotic result. We defer the proof, as it can be straightforwardly derived from
the nonasymptotic bound as follows.

Theorem 4. For the ResNet defined in (5), given two inputs on the unit sphere x, & € SP~1, ¢ < 0.5,

and m > Ce L2 (10g(320(L2 + 1)/8) + 1),
where C' is a constant, with probability at least 1 — § over the randomness of the initialization, we

have |<V9f7 VQf> - QL(mai,)’ < 2La2€a
where « = L7 with v € [0.5, 1], Qr(x, ) is defined in Proposition 4.

Proof Sketch of Proposition 4 and Theorem 4. For simplicity, we use ¢y : R™ — R™ to

denote ¢y (2) = /200(Wz). Then its derivative w.rt. z is as follows, ¢}, (2) =
\/ ZD(Wz)W, where D(Wz) is an operator defined as D(Wz) = diag(og(Wz)) =
diag(m{wl,-ZZOP T 7H{Wm,-220}]—r)'

For simplicity, we denote Dy = D(Wyay_1), where £ = 1,2, --- | L. Note that Dy is essentially the

activation pattern of the ¢-th bottleneck layer on the input . We denote 5g for  in a similar fashion.

Then we have a‘zjfl =l +ay/ 2V /2DWy. Forl =1,--- L, wedenote by1 = V, f. Then

T 9z Ozp—1 . 3Ie+1)T

we have by = (v Ber T Frr s D
Combining all above derivations, we have Vv,f = —=beyi - (éw,(ze—1)) ", and
Vw,f = JLE %DZVZTbg_H - x,_,. Then we can derive the kernel ZéL:l<VW[f, VW,Z]F> +
SV, Vv ), where (Vv . Vo f) =a® ~{ber, bean) B (1), o, (),

Te Te2



_ 92 . -
(Vw, f,Vw, ) =a?(xy_q, fﬁg_1>ﬁb;+l‘/ngDngbg+1 . Note that the concentration of T} 3 can

Tes Ty,a

be shown by Theorem 3. We then show the concentration of Ty 1, Ty 2 and T} 4, respectively.
For simplicity, we define two matrices for each layer,

S (. 3) = |({Teze)  (T0,T0) - | Ke(w,x)  Ko(z, )
D I A T R ot et
We define ¢, : M3 — Ras ), (X) = E(X,X)NN(O’Z)O'(X)U(X) and ¢y : M2 — Rastp,/ () =

E(x %)n(0,5)0" (X)o'(X). Note 'y (Ky—1) = ¢5(3¢-1) and I/ (Ky—1) = ¢or (Ep-1).
The following lemmas are technical results and very involved. Please see Appendix B for details.

Lemma 1. Suppose thatfor¢ =1,--- L,

801 (2, %) — Soo1(2,8)max < e, m > Cre 2L* 7 (log(80L2/5) + 1), (8)
with probability at least 1 — 35, we have |T; 1 — Bot1(x,%)| < c1€, for £ =1,--- , L, where C1, ¢4,
and c are constants.

Lemma 2. Suppose (8) holds for £ = 1,--- | L. With probability at least 1 — 6, we have |T; 2 —
Ty (Kp—1)(z,2)| < coe,for =1,--- | L, where Co and ¢y are constants.

Lemma 3. Suppose that (8) holds for £ = 1,--- | L. With probability at least 1 — 30, we have
|Te4 — Bey1(z, 2)T o (Ko—1)(x, &)| < cs€, for £ =1,--- , L, where cg is a constant.

We remark: (1) Lemma 1 is proved by reverse induction; (2) Lemma 2 exploits the concentration
properties of W, and local Lipschitz properties of 1,; (3) We prove Lemma 3 and Lemma 1
simultaneously with the Holder continuity of 1,-. Combining all results above, we complete
Theorem 4. Moreover, taking m — oo, we have Proposition 4. O

4 Deep Feedforward v.s. Residual Networks

To compare the NTKs associated with deep FFNets and ResNets, we consider proper normalization,
which avoids the kernel function blowing up or vanishing as the depth L goes to infinity.

4.1 The Limiting NTK of the Feedforward Networks

Recall that the NTK of the L-layer FFNet defined in (4) is Qp(z, %) = Zle [Kg_l(a:,i:) .

Hf:e Io/(Ki—1)(x,Z)]. One can check that Qp(z,z) = L for all z € SP~1. To avoid
Qp(x,z) — 00, as L — co. We consider a normalized version as

_ _ 1 _
QL('T71‘) = ZQL(:C"I)

We characterize the impact of the depth L on the NTK in the following theorem.

Theorem 5. For the NTK of the FFNet, as L — oo, given x,% € SP™and |1 — 2% > § > 0,
where ¢ is a constant and does not scale with L, we have
B O(polylog(L))

Qu(2,7) —1/4 7

When x = ¥, we have Qp (x, %) = 1,VL.

Proof Sketch of Theorem 5. The main challenge comes from the sophisticated recursion of the kernel.
To handle the recursion, we employ the following bound.

Lemma 4. When L is large enough, we have

log(L)? log(L)?2
g 3 los(!

3+ =T log ()P
cos|7m|1— " < Kp(z,@) <cos|7m|1-— w
n+1 n+log(L)P + 1

where p is a positive constant depending on 6.



By Lemma 4, we can further bound Hf:z Iy (K;—1(z, %)) by

(- 1yl L 04 log(L)P — 18- 4=
i <TIT. (Ki (2, 8)) < (—) 9
( L ) _'lile ( 1@, 7)) < L +log(L)P ©)
Hence we can measure the rate of convergence. The detailed proof is the following. O

As can be seen from Theorem 5, the NTK of the FFNet converges to a limiting form, i.e.,

— 1/4, ~
ooz, T) :LILII;OQL(JT,.f) :{ {7 ii% .

For simplicity, we refer to {2, as the limiting NTK of the FFNets.

The limiting NTK of the FFNets is actually a non-informative kernel. For example, we consider
a kernel regression problem with n independent observations {(z;,v;)}",, where z; € R is
the feature vector, and y; € R is the response. Without loss of generality, we assume that the
training samples have been properly processed such that z;; # x; fori # j, and >, y; = 0. By
the Representer theorem [34], we know that the kernel regression function can be represented by

() =3, BiQ%o(z;, ). We then minimize the regularized empirical risk as follows.
B =min |y — QB|* + 87O, (10)

where 3 = (B, )T €ER™ y = (y1,....,yn) T € R™, Q € R™*™ with §~2,J = Qoo (@i, x5), and \
is the regularization parameter and usually very small for large n. One can check that (10) admits
a closed form solution 3 = (Q + AI,,)~'y. Note that we have Q + A, = 1/4.J,, + (A + 3/4)1,,,
which is the sum of a diagonal matrix and a rank-one matrix and .J,, is n X n all-ones matrix. By
Sherman — Morrison formula

A typTA7Y 5 1 1
R A Y SR N (S N
(A+uw) TroT A1y ™ ave 5 A+3/4\" n+4)\+3‘]" Y
Then we further have f(z;) = 3.1 BiQs(71,7;) = 12575

As can be seen, for sufficiently large n and sufficiently small A\, we have f(z j) ~ 1;, which means
that we can fit the training data well. However, for an unseen data point z*, where =* # 1, ..., Tp,
the regression function f always gives an output 0, i.e.,

fla*) = Zﬁﬁ ziy@ Z@_o

This indicates that the function class induced by the limiting NTK of the FFNets (), is not learnable.
4.2 The Limiting NTK of the Residual Networks

Recall that the infinite-width NTK of the L-layer ResNet is
L

QL(%CE) =a’ Z {BZJrl(xvj)FU(Kf*l)(wa%) + Kéfl(xvi')BH»l(xﬂ ‘%)Fa’ (Kffl)(fvvi') s
=1

where Bry1(z,2) = landfor¢ = 1,..,L — 1, Bpy1(2, %) = HiL:_Zl(l +a®Ty/ (K;)(x,7)). One
can check that for x € SP~1, Qp (z,2) = 2La?(1 + o)LL

Different from the NTK of the FFNet, Q2 (z,x) — 0 as L — oo. Therefore, we also consider the
normalized NTK for the ResNet to prevent the kernel from vanishing. Specifically, the normalized

NTK of the ResNet on SP~1 x SP~1 Qp (x, %), is defined as follows,
1/@2L) ¥ . ) - ) )
Tt oneT [Bg+1(x, B\ (K1) (2, %) + Ko_1 (2, 7) Bt (v, #)Tor (Ko_1)(z, 7)| . (11)
=1

We then analyze the limiting NTK of the ResNets. Recall that & = L~7. Our next theorem only
considers y = 1, i.e., « = 1/L.

Theorem 6. For the NTK of the ResNet, as L. — o0, given a = % and x,% € SP~1 such that
11— xTi"| > 6 > 0, where 6 is a constant and does not scale with L, we have
Q% (2,2) = (z,2)| = O (1/L),

where Oy (z, &) = 4 ((}(xTi) +a'F- c;’(xT:i)).



Proof Sketch of Theorem 6. The main technical challenge here is also handling the recursion. Specif-
ically, we denote K, 1 to be the /-th layer of the GP kernel when the depth is L, which is orig-

inally denoted by Ky(z,Z). Let Sy = Koy(x,Z) and S; 1 = (ﬁ"aé)g = (1+I§[/’£z)z- We have

To(Ker) = (14 a?)%(Spr) and Ty (Kp 1) = &\’(S[’L). We rewrite the recursion of Ky 1, as

2 A
Spp =2 Z‘I*Lﬁiﬁs”““) > Sy_1,1,, which eases the technical difficulty. However, the proof is

still highly involved, and more details can be found in Appendix E. O

Note that we do not consider v = 0.5 for technical concerns, as Q,(, QE) in (11) becomes very
complicated to compute as L — oo. Also we find that cons1der1ng v = 1 is sufficient to provide us
neWth PR S i - Y _NT_L_ /0 PR I —at
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Figure 1: Normalized Neural Tangent Kernels Associated with Different Deep Networks.
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Different from FFNets, the class of functions induced by the NTKs of the ResNets does not signifi-
cantly change, as the depth L increases. Surprisingly, we actually have Q., = ; fora = 1/L, i.e.,
infinitely deep and 1-layer ResNets induce the same NTK. To further visualize such a difference, we
plot the NTKs of the ResNets in Fig. 1(b) and 1(c) fora« = 1/Land o = 1/ \E, respectively. As
can be seen, the increase of the depth yields very small changes to the NTKs. This partially explains
why increasing the depth of the ResNet does not significantly deteriorate the generalization.

Moreover, as long as « # z, i.e., (w Z) # 1, the limiting NTK of the FFNets always yields 1/4
regardless how different x is from Z. In contrast, the residual networks do not suffer from this
drawback. The limiting NTK of the ResNets can greatly distinguish the difference between x and
z, e.g., (z,z) = —0.5, 0, and 0.5 yield different values. Therefore, for an unseen data point, the
corresponding regression model does not always output 0, which is in sharp contrast to that of the
limiting NTK of the FFNets.

S Experiments

We demonstrate the generalization properties of the kernel regression based on the NTKs of the
FFNets and the ResNets with varying depths. Our experiments follow similar settings to [22, 23].
We adopt two widely used data sets — MNIST [35] and CIFAR10 [36], which are popular in existing
literature. Note that both MNIST and CIFAR10 contains 10 classes of images. For simplicity,
we select 2 classes out of 10 (digits “0” and “8” for MNIST, categories “airplane” and “ship” for
CIFAR10), respectively, which results in two binary classification problems, denoted by MNIST2
and CIFAR2.

Similar to [22, 23], we use the kernel regression model for classification. Specifically, given the
training data (z1,y1), -+ , (T, Yn), where z; € RP and y; € {—1,+1} fori = 1, ..., n, we compute
the kernel matrix K = [K;;]}';_, using the NTKs associated with the FFNets and the ResNets, where
Ki; = Qp(x;,7;). Then we compute the kernel regression function f(z) = .0, o;Qp (2, z;),

where [, ..., an] T = (K + M) "'y, y = [y1, ..., yn] T and A = 0.1/n is a very small constant. We
predict the label of z to be sign(f(x)).

Our experiments adopt the NTKs associated with three network architectures: (1) FFNets, (2) ResNets
(v = 0.5) and (3) ResNets (y = 1). We set n = 200 and n = 2000. For each data set, we randomly
select n training data points (n/2 for each class) and 2000 testing data points (1000 for each class).
When training the kernel regression models, we normalize all training data points to have zero mean
and unit norm. We repeat the procedure for 20 simulations. We find that the training errors of all
simulations (L varies from 1 to 2000) are 0.0, which means that all NTK-based models are sufficient
to overfit the training data, regardless n = 200 or n = 2000. The test accuracies of the kernel
regression models with different kernels and depths are shown in Figure 2.



As can be seen, the test accuracies of the kernel regression models of ResNets (both v = 0.5 and
« = 1) are not sensitive to the depth. In contrast, the test accuracies of the kernel regression models
of the FFNets significantly decrease, as the depth L increases. Especially when the sample size is
small (n = 200), the kernel regression models behave like random guess for both MNIST2 and
CTFAR?2 when I, > 1000. This is consistent with our analvsis.
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Figure 2: Test accuracies of the kernel regression models evaluated on MNIST2 and CIFAR2.
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Next we provide numerical verifications for our theorems. For Theorem 4, we randomly initialize the
ResNet with width=500, scaling factor v = 1 and depth L = 5, 10, 100, 300, and then calculate the
inner product of the Jacobians of the ResNet for two different inputs as in the definition of NTK. We
repeat the procedure for 500 times and plot the mean value (black cross) and the 1/4, 3/4 quantiles
("I"-shape line) of the sampled random NTKSs and the theoretical NTK value in Fig. 3(a), which
shows the two results match very well. For Theorem 5 and Theorem 6, Fig. 3(b) and Fig. 3(c) show
that limy,_, |1 (x, %) — 1/4| - L/log(L) = constant and limy,_, |Qr(z, %) — Q1 (2, Z)| - L =~
constant with ' & = Ka chosen at 9 points.
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Figure 3: Verification of main theorems. (a) Theorem 4, m = 500 and scaling v = 1; (b) Theorem 5,
y-axis is |Qr(x,Z) — 1/4| - L/log(L); (c) Theorem 6, y-axis is | (x, &) — Q1 (2, Z)| - L
6 Discussion

We discuss the NTK of the ResNet in more details. We remark unless
specified, the NTK mentioned below indicates the normalized NTK.
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On the other hand, our experiments suggest that, as illustrated in Figure
4, the NTK of the ResNet with v = 1 actually achieves the best testing
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accuracy for CIFAR2 when L = 2. The accuracy slightly decreases %o Realet NEK (170
as L increases, and becomes stable when L > 9. For the NTK of the
ResNet with v = 0.5, the accuracy achieves the best when L ~ 15, |
and becomes stable for L > 15. Such evidence suggests that the R BT B
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function class induced by the NTKs of the ResNets with large L and
large v are possibly not as flexible as those by the NTKs of the deep
ResNets with small L and small ~.

(b) CIFAR2 (n—2000)
Figure 4: Test accuracies of
the kernel regression models
Existing literature connects overparameterized neural networks to evaluated on CIFAR2.
NTKs only under some very specific regime. Practical neural networks, however, are trained under
more complicated regimes. Therefore, there still exists a significant theoretical gap between NTKs and
practical neural networks. For example, Theorem 6 shows that the NTK of the infinitely deep ResNet
is identical to that of the 1-layer ResNet, while practical ResNets often show better generalization
performance, as the depth increases. Also, we do not consider batch norm in our networks but refer
to [37] if necessary. We will leave these challenges for future investigation.



Broader Impact

This paper makes a significant contribution to extending the frontier of deep learning theory, and
increases the intellectual rigor. To the best of our knowledge, our results are the first one for analyzing
the effect of depth on the generalization of neural tangent kernels (NTKs). Moreover, our results are
also the first one establishing the non-asymptotic bounds for NTKs of ResNets when all but the last
layers are trained, which enables us to successfully analyze the generalization properties of ResNets
through the perspective of NTK. This is in sharp contrast to the existing impractical theoretical results
for NTKs of ResNets, which either only apply to an over-simplified structure of ResNets or only deal
with the case when the last layer is trained.
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A Proof of GP Kernels of ResNets

A.1 Notation and Main Idea

For a fixed pair of inputs x and &, we introduce two matrices for each layer
S (. 3) — |(Eexe)  (Te,Te)
(@, 1) {@bw) (Zo, o) |

and Ko(x,x) Kz(%i”)} .

(2, ) = {Ke(a},x) Ky(Z, %)

24(3&, %) is the empirical Gram matrix of the outputs of the ¢-th layer, while X, (x, Z) is the infinite-
width version. Theorem 3 says that with high probability, for each layer ¢, the difference of these two
matrices measured by the entry-wise Lo, norm (denoted by || - ||max) is small.

The idea is to bound how much the /-th layer magnifies the input error to the output. Specifically, if
the outputs of (¢ — 1)-th layer satisfy

Hiu(x, F) - z@,l(x,:z)’

<7,
max

we hope to prove that with high probability over the randomness of W, and V,, we have

(o))

Then the theorem is proved by first showing that w.h.p. Hﬁo(x,i’) — Yo(z, Z)

Hig@,i) — Ee(ﬂfai)’

< (1+

max

O(1/L))~ "¢ and then applying the result above for each layer.

A.2 Lemmas

We introduce the following lemmas. The first lemma shows the boundedness of Ky (z, Z).

Lemma 5. For the ResNet defined in Eqn. (5), Ki(z,z) = (1 + o?)* for all v € SP~1, ¢ =
0,1,--+, L. Also Ky(x, x) is bounded uniformly when 0.5 < v < 1.

Recall that ¢, (z) = y/ 200(Wz). Since Wy is Gaussian, we know that ¢y, (z,—1) and ¢y, (Z¢—1)

are both sub-Gaussian random vectors over the randomness of . Then their inner product enjoys
sub-exponential property.

Lemma 6 (Sub-exponential concentration). With probability at least 1 — &' over the randomness of
Wy ~ N(0, 1), when m > ' log(6/8"), the following hold simultaneously

N " log(6/6’

(owa (o). owi (o)) — o Sear (0] < | 2 oz, a2
"log(6/0’

Jow Geen)I? = e l?] < 4/ D e e (13)
"log(6/6’

Jowi o)1 = Eea 7] < B D g e (14

Lemma 7 (Locally Lipschitzness, based on [28]). 1, is (1 + %(ﬁ)Q)—Lipschitz W.LL. max norm in
M, = { {% lc)] la,c € [u—r,u+r];ac—b* > O}forally > 0,0 < r < p/2. That means, if
(D). |Se—1(2, %) — So—1 (2, &) |lmax < 7 and (ii). Ko_1(x,2) = Ko_1(2,%) = p, for 7 < /2, we

have wg(izfl(%ﬁ)) — wg(zzfl(ﬂc,f))‘ < (1 + %(%)2)7'

A.3 Proof of Theorem 3

Proof. In this proof, we also show the following hold with the same probability.

1. For{ =0,1,---, L, ||| and ||Z,] are bounded by an absolute constant Cy (C; = 4).
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2. For{=1,--- L, ||¢w,(z¢—1)| and ||¢w,(Z¢—1)]|| are bounded by an absolute constant Cs
(Cy = 8).

3. (6w (@), 6w, @2)) = To(Ke)(@®,2®)| < 2 for all ¢ = 1, ,L and
(@0, 2®) € {(z,2), (z,7), (z,)}.

. Recall that 'y, (K¢—1)(z, %) =

max

We focus on the ¢-th layer. Let 7 = Hflg,l(x, Z) — X1 (=, i)’

wa(zf—l (Jf, 'i)) = E(XyX)NN(O,Eg_l(a:,i))o.(X)a(X)' Then

Ko(z,%) = Ko_1(2, %) + ¥y (Se_1 (2, 7)).

Since xy = wp_1 + \j%VMWZ (z¢—1), we have

(we, Tg) = (Tg_1,Tg—1) + %2<VZ¢W£ (we-1), Vedw, (Te-1))
+ a%(<w¢wz (mgfl),i’zfﬁ + <V€¢Wz (5:571)7‘“*1»
= <ajg,1,.i‘(,1> + o’P + a(Q + R)’
where
= (Vidwi(wer), Vidw, (501),
= %((VZ¢W[(W*1),@71>)7
R= %(<W¢W((@71)awfl>)‘

Under the randomness of Vj, P is sub-exponential, and ) and R are Gaussian random variables.
Therefore, for a given dg, if m > ¢ log(2/dp), with probability at least 1 — &y over the randomness
of V,, we have

P~ {owiee), b @e))| < lowa o) llows (eplly CRER) - as)

for a given 8, with probability at least 1 — 26 over the randomness of V;, we have

. clog(2 )
Q1 < o, ()l 1y B2, (16)
and
- clog(2 6
1B < llow, o) lzely S2EED) (1)
where cg, ¢ > 0 are absolute constants.
Using the above result and Lemma 6 and setting §p = 5 = 18(5+1), — 6(L5+1), when m >

C'log(36(L + 1)/6), we have (15), (16), (17), (12), (13), and (14) hold with probability at least
s

1- 3(L+1)°

. Conditioned on 7 < 0.5, we have

max

Recall that 7 = Hf)g,l(x,:f) — Y1 (z, :E)‘

lze 1> < Ko q(z,x)+7< 1+ +7<e+ T

Similarly we can show ||Z,_1||? is bounded by e + 7. By (13) and (14) we have ||¢w, (x,_1)||* <
2||xe—1]|? and || dw, (Ze—1)||* < 2||Z¢—1]|?, which are both bounded.
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hen
’ﬁmbfiw (a wa(zl 1(.’£ (E)) + Ko 1 x, )‘
<7+ (P = 4o (Ze-1(2, 7)) + a(|Q| + | R])

¢log(2/4) (

ST+O[2‘P_<¢Wg(x(—l)7¢wz(i“€_1)>‘+a m

+a?

Vo (o1 (2, 7)) — 1/’0(22—1(39,:5))‘ + a2‘<¢Wl (e—1), dw, (Te—1)) — ¢g(f3g_1(z,j))’
B o N

m K@ 1(
<7+ (a? +Oz)\/03 log(36(L +1)/9) +oz27'(1 + 1).
m 47

When oo = 7, v € [0.5, 1], we have a? < 1/L. Then when

m> C3L* =) log(36(L + 1)/5)

we have
‘m,m - Kz(:v,i)‘ <r+-o7
As a byproduct, we have

[ (e1), 0w (Fe1) = o (S (2, )
- ¢c4 log(36(L + 1)/0) N (1 . l(i)z)T o

m T
Repeat the above for (xy_1,z¢—1) and (Zy_1, T¢—1), we have with probability at least 1 — § /(L + 1)
over the randomness of V; and W,

(3, F) — zz,l(x,gz)‘

<T7T=
A max (18)
’25(1‘,53) - E[(J?,i‘)”max <(1+4/0)m.

Finally, when m > W, with probability at least 1 — § /(L + 1) over the randomness of
A, we have R

So(w,7) — To(,2)|| < e/el.
Then the result follows by successively using (18). ™% O

A4 proof of lemma 7
Proof. [28] showed that

vl a b 1a+c b b ., b s b

(o — o o .
cllly Q\F Vac Vac Vac Vac

When a, ¢ € | —ru—i—r |, we have

| 3

D (- e Y

The last 1nequa11ty holds when r <

Define p = f we have p € [—1,1]. Then

sone (- (2))
<
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B Proof of Theorem 4

B.1 Notation and Main Idea

We already know that when the network width m is large enough, (x¢_1,Z¢—1) ~ Ky_1(z, &), and
(ow, (Te—1), ow, (Te—1)) = Lo (Kp—1)(x, 7).

Next we need to show the concentration of the inner product of % and j—% We define two matrices
for each layer

and

Recall that

1 2
by =y e EWZTDIZVgTbé—H +beg1.
We aim to show that when H(;)prl(a:, %) — Op41(2, Z)||max < 7, with high probability over the

randomness of W, and V, we have ||©¢(z, %) — ©p(2, Z)||max < (1 + O(1/L))7. Notice that by

and B[Jr] contain the information of W, and V;; they are not independent. Nevertheless we can
decompose the randomness of W, and V; to show the concentration. This technique is also used in
[22].

B.2 Lemmas

In this part we introduce some useful lemmas. The first one shows the property of the step activation
function.

Lemma 8 (Property of o’). [22]

(1). Sub-Gaussian concentration. With probability at least 1 — & over the randomness of W, we have

‘% Tr(DgDe) = thor (Se-1 (2, 5:))‘ < CIOgT@/(S),

(2). Holder continuity. Fix yn > 0,0 < r < p. Forall A/B € M, = { {Z b}

[ —r,pu+r];ac—b% > O}, if|A = B|lmax < (u — 7)€2, then
Yo' (A) = o (B)] < €.

The following lemma shows that regardless the ~fact that by and Bg+1 depend on V;, we can treat V;
as a Gaussian matrix independent of b, 1 and by, when the network width is large enough.
Lemma 9. Assume the following inequality hold simultaneously for all ¢ = 1,2,--- | L

o <c. | v <e

Fix an (. Further assume that

||@£+1(9C I) = Op11 (2, )| max < 1.
When m > max{% (1 + log 5) 5 log 8% cL*=27 log 823, the following holds for all (x M 22 ¢
{(z,2),(z,%),(%,%)} wnhprobablltty atleast1 —§ — &'

2wt B B 2 Te(D) D@
V.0V DR, —q pp ’<e.
m \/> L £ ¢ v m /M \/>> ( £ £ )

The following lemma shows the same thing for W, as V; in Lemma 9.
Lemma 10. Assume the conditions and the results of Lemma 9 hold.

(1) When m > max{e%(l + log 6), = log 8 = L [~ log L the following holds for all
(zM,2®) € {(x,2), (v, %), (%, %)} with probability at least 1 — 6 &

12 Wy Bt 1o @7 P T
<WD Vg\/»WD v, \F> m(D V\/ED Veﬁ>§e.
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(2). When m > max{& log =&~ 16L "12=27 1og 16L} for all (2 2?) ¢
,Z)}, the followmg holds with probability at least 1 — B

1 2
’m./ ,/ W DOV B 6

Proof. In this proof we are going to prove that when m satisfies the assumption, with probability at
least 1 — g, the following hold for £ = 1,--- | L.

V0L V) = Bera o, )T (K1) 2,)

<eE

B.3 Proof of Theorem 4

S €0,

W) = K, Bes (0,50 (o) 0,8)

< €0-
We break the proof into several steps. Each step is based on the result of the previous steps. Note that

the absolute constants ¢ and C' may vary throughout the proof.

Step 1. Norm Control of the Gaussian Matrices

With probability at least 1 — §;, when m > clog %, one can show that the following hold simultane-
ously forall ¢ =1,2,---, L [38]

<C.
ol Bl v
Step 2. Concentration of the GP kernels
By Theorem 3, with probability at least 1 — §5, when
C 36(L+1
m Z 7[/2—2’7 log ( + )

E% 52 ’
we have

1. For{=0,---,L,

2.
< cey;
max

/(2,8) = S, @)

2. For{ =0,1,---, L, ||| and ||Z¢|| are bounded by an absolute constant C; (C; = 4);
3. For{=1,---, L, ||[¢w,(xe—1)| and ||¢w,(Z¢—1)]| are bounded by an absolute constant Cs
(C2 =38);

(6w @l,). 6w, (22,

T, (K )(x<1>,z<2>)’ < 2 forall £ = 1,---,L and
(21, 2?) € {(z,2), (x, &), (&, )}.

Step 3. Concentration of o’

By Lemma 8, when m > < log %, with probability at least 1 — J3, forall £ = 1,2,--- | L and
62 :

(m(l), .Z'(Q)) € {(z,x), (x, %), (%, 2)}, we have

2 clog(6L/6 B - -
z Te(D{V D?) — Fgf(Kfz—l)(x(l),x@))‘ < /% + \/2 HZ(_l(x,x) —Ya(z,2)

Step 4. Concentration of B,

Recall that
eca a b o ’UT BxL 8ZZZL_1 &WH T
= ax,;,l 6$L72 (r“)l'g

< €2.

max

We have
andfor/ =1,2,--- , L — 1,

Oxpyq | 1 /2
bey1 = Ery bryo = ooy EW5T+1D€+1V51154+2+62+2~
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Following the same idea in Thm 3, we prove by induction. First of all, for by, we have

Or1(z, %) = B 1} (Z)LH(x z) = % B ﬂ Then by Bernstein inequality [39], with
probability at least 1 — f, when m > Q log % , we have
2
W) <
m

Fix £ € {2,3,---, L}. Assume that
|661(2,2) — O (2,3)|

we hope to prove with high probability,
|6e(@,3) - Oula,3),

<7r<1,

max

< (1+0(1/L)r.

max
First write

1
00 0) = 062 +a*P - a(Q + R),

where
(1,7 b ()7 Vi
P:——(WD Vi §WD V, %>
/ / 1) 1) (2
Q= m WeTD( VeTbg+1vbe+1>
2 2 1
= EV EV EWV@TDE VIO,
Then

1
|~ 07, 8) = (Bea (@V,2) + 02Bea (00, 2T (Ker) (), )

< |- 04 02 - Be+1<x<”,x<2>>\ +a|P = Bea (00,200 (Ke1) (@M, 2®)| + alQ| + ol

(1) (2)

2 b
§T+a2‘P ~(D mvT\jﬂ DAV, &E>’
pb) (2) (1) 2(2)
2 b b b 2
+a2—<Dé”wT—%,D§”w T~ e T (D DY)
b§11 bé21 2 D p(2
a8, ) - Bea(@®,2®)|| = T(D{V D)

2
ta? Bé+1($(1)7m(2))HE (DY D)) — I‘UI(Kefl)(a:(l),x(Q))’

+ a|Q| + a|R)|.
In Lemma 9 and Lemma 10, set ¢ = ¢cL? 7, ¢ = ¢r, § = 0 = § = d4/5L. When m >
max{5 (1 + log &), & log 405 , S L% 27 ]og 804~ SOL ,cL?>~ ¥ log 80L2} with probability at least
1— 24 the results of Lemma 9 and Lemma 10 hold. Then for all (21, x(2)) € {(z,z), (z, %), (z,2)},

%<b§1), bg )> — By(zW, )| < 7+ o®er 4 aler + a?21 + ey 4+ 20 L7
<7(1+0OQ1/L)). (Setey <ecr.)
By taking union bound, with probability at least 1 — d4, we have forall { =1,2,--- | L,
10e41(, ) — Oy (2,8 lmax < (1 + O(1/L))Fes < Ces.
Meanwhile, we have for all (z(), 2®) € {(z,2), (x,%), (Z,%)}and £ = 1,--- , L,

(1) p(2)
‘ D(I)VT by D(?)VT e+1> Bg+1($(1),13(2))Fa/(Kg_1)(17(1),$(2)) < (24¢)T+ees < Cey.

N

Step 5. Summary

18



Using previous results, for all ¢, we have

1 -
‘@<wa, Vv, f) — Bz+1Fo(Ke—1)’

< [ lber, Do) = Beva| - ow, (@), dw,(Fe )] + [ Besal - ow (1), dw (Fe-1) — To(Ke 1))

< Cey + Ceg,
and

1 _
‘§<vaf7 Vw, f) — Kzf1Be+1Fgf(Ke71)‘

1 ) 2. 2.
< ‘E@zq,mefﬁ - Kéfl‘ : ‘EbZHVEDéDéVeTbEH‘ + K] \EbZHVeDeDMTbM — By Tor (K1)

< Cé; + Cey.
To sum up, by choosing €4 = ceq, €2 = ceq, and 01 = 62 = d3 = d4 = o /4, then with probability at
least 1 — &g, when

C 320(L2% +1
)
0 0

16L C ,_ 144(L+1) C | 24L
>m log — Z[2 2V gg —~ " 7/ T log =
= ax{c 8 S "€} o8 do T el 08 8o
C 8L C 120L, C 160L% C 32012 32012
—log —, (1 +log—), =1 — L og - cL*7?]
2 log 50’63( +log — >’eg S 0g —5 ¢ 08 =5 |

the desired results hold.

C Proofs of the Lemmas

C.1 Supporting lemmas

Lemma 11. Define G = [pw, (zo-1), dw, (Ze-1)], and 11§ as the orthogonal projection onto the
orthogonal complement of the column space of G. when m > 1 + log g, the following holds with
probability at least 1 — § for all (z(V),2?) € {(x, ), (v, %), (%,7)},

T 2) 1 m 6
2 bg& 1 (1)~ () 7yl Tb§+1 bpgy by, 2 1) (2 1+log
224 yatp® pBPty, 2 2y 2y pMW D <4 a2y 228
m\/ﬁ gty l GV¢ \/?% <\/m’ \/m)m I'( V4 V4 ) —( + \/7) m )
where -
M — max [bes1l? N|besal?
m  m '

proof of Lemma 11. We prove the lemma on any realization of
(A7W13V13"' 7Wf—1aw—17W47W4+17‘/€+13"' 7WL7VL70)’~W¢WZ(IK—£) and W(ZSWz(je—l)?
and consider the remaining randomness of Vj. In this case, Dy, Dy, bg41 and b1 are fixed.

One can show that conditioned on the realization of V;G (whose “degree of freedom” is 2m), Vgﬂé

is identically distributed as %Hé, where fQ is an i.i.d. copy of V4. The remaining m? — 2m “degree
of freedom” is enough for a good concentration. For the proof of this result, we refer the readers to
Lemma E.3 in [22].

Denote T = 115 DS DI TIE,

3

We know that S is a 2m-dimensional Gaussian random vector, and
by biY, by bt
< (+ (+ >Im < (+ (+ >Im

S~N {0, b(fjf’ b(l@l b(;}%’ b(;l
< 41 41 >I < 41 41 >I
vm? o /m /M vm? o /m /M
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Then there exists a matrix P € R2mx2m

(l)sucpl that b
< 2+1 Z+1 >I’"L < 2+1 2+1 >I’"L
k) k)
PPT = | N CINES )
bely befy I by by I

and S £ P¢, € ~ N(0, Io).

Thus
£21T~ L) @) LTy Tbgr)l d 77| 1 i 0 l v+ 1|0 T
ﬁvﬁHGDeD H‘/@\/» &P |:6n:| T|:I"L:|P£—2£P |:T O]Pf

1
=5 IPPT -1
(1) (1) (1) (2)
1 <bﬁ—n1,bzﬁ>fm <b&%7 bf/%ﬂm 11 @ @ || 1L
S b(z) b(l) b(z) b(z) HHGH HDZ H HDE H HHGH
<z+1 2+1>I <£+1 2+1>Im
Vm? m /M vm? /m
bé:—)l bé:—)l bﬁfi—)l bﬁ?l
< <m7 m>;’<m7 m) <M.
And |[1PT [g, g ]F’ <V2mM
F

Then by the Hanson-Wright Inequality for Gaussian chaos [40], we have with probability at least
1-4/3,

" xe) @ T b2
2 b£+1 VHLD(UD(Q)H VT f-‘rl E bf-‘rl ‘7HJ_D(1)D(2)H VT £+1
m \/ﬁ gy 14 \/a_ Ve \/ﬁ gty /4 \/ﬁ
6 6
V2mM log6+M10g5>,
Furthermore, w have_l_
&)1 1) /) LT T gi)1 b§1+)1 bfe% L (1) (2)
]E% Jm VHGD D115V, Jm <\F \F>Tr(HGD£ D).
Thus
2 bﬁi’l L (D) A LloT §+)1 bx-)l 51(521 2 1) @)
‘mE% N VH D,”D, HGV N i \F> Tr(D, " D,”)
1 1
by bt

m \/E,\/E> 1"( Gy L )

2
< =M Tr(lg D" DP 1)
m
< iM
m
By taking union bound, we have with probability at least 1 — §, for all (z(V),z(?)) €
{(z.2), (2.2), (2.2)}.
2 &)1 1) 1(2) béi)l bg) b&)l 2 (1) (2
VHDDHV —{ y— Tv(D,” D,”)
G 14 \/* \/7 \/* 4 £

IN

6 6 4
— | v2mM/log— + Mlog - | + —M
m 1) 1) m

1+log$
(4+4v2) My [0
m

IN
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where the last inequality holds when m > 1 4 log g. O

Lemma 12 (Norm controls of b£+1) Assume the following inequalities hold simultaneously for all
{=1,2,--- L

Then for any fixed input x, 1 < { < L and u € Rm %en
2L

m > cL? % log = 5

with probability at least 1 — &' over the randomness of Wy 1, Voi1, -+, W,V v, we have

2L
[, bes)| < Cfullyflog =7

proof of Lemma 12. Denote uy = u, and

1 2
Uipr = a\[ —\[ —Vig1 DigaWigaui +ui, i=£6,0+1,--- L —1.
m\ m

One can show that (u,by11) = (v,ur). Next we show that [lu; 11| = (1 + O(1))||u;| with high

probability. First write
[1 [2 2 [1 [2

I =1/ =Vis1Diga Wi u; +2a<ui, — W+1Di+1Wi+1ui>'
m\V m m\V m

< V20| |uif),

By the assumption we have
/2
— D1 Wip1u;
m

1 2
\/ =1/ = Vis1 Dis1Wisiu; || < V2C% 4.
H A o VisDiaWigau < V202 ||uy|

With probability at least 1 — ¢’/ L over the randomness of V;1, we have

uza \/ — H z+1Dz+1Wz+luz < ||uz|| H \/ z+1Wz+1uz

i) = luil® + a

/clog

Then when
m > cL?~ 2”’log 5
we have
1 2 1 2
lwis1)® = [Juil® + o2 \/ =\ = Vitr Disa Wigau, + 20(ui, \[ =/ = Vit1DigaWig1uw;)
m m m m

. ) 9 clog%—f,’
< (142C*/L)|uil|* + 20920 |Ju;| —

< (1420 /L +2v20/L)|Juil|* = (14 O(1/L))|u: ).
Then with probability at least 1 — §'(L — 1)/L we have ||u| < C/||ul|. Finally the result holds from
the standard concentration bound for Gaussian random variables [39]. O

C.2  Proofs of Lemma 9
proof of Lemma 9. By the assumption, we have
1
E“b£+1”2 < Bppa(z,z) +1 <4

Similarly, %||l~)g+1H2 < 4. Then by Lemma 11, when m > E%(l + log ), we have for all
(@™, 2®) € {(x, x), (z, ), (Z, )},

2b&)1 LA (@)L Tbgr)l bé}f)l bﬁl 2 (1) 5(2)
mf WHGDE DZ HG‘/Z \/ﬁ_<\/ﬁ7\/ﬁ>ETr(Dé Dé ) < ce.

Specifically, we have

2 b 2 1
by < et 2100 b2 < 0),

\/>
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and similarly

20D ~

H\/ e VgHéDg < O(1).

Next we bound b T
041 VIl

Notice that I1; is a orthoggnal projection onto the column space of G, which is at most 2-dimension.
One can write [l = uju; + ugu, , where ||u;|| = 1 or 0. By Lemma 12, fixing u;, ug and V, w.p
greater than 1 — ¢’ over the randomness of Wy 1, Vi1, -+ WL, Vi, v, we have

bé-‘rl \/*wul < OH\/ 1Og 6/ )

and
T
b£+1 VIZUz

C/l l

m > cL?>™% log (5

for both ¢ = 1,2 when

Therefore byoo T i T L
041 041
— VI ——= Villg|| < O} {/log — ).
‘ Jm dla||s Jm lag|| = (M)
Finally, using I,,, = HG + II5, we have
T p(® (1) 3(2)
2b 1) (2 b b 2 1) (2
E—\% Vv.D{Y DV, \;ﬂ - <\’”/+i éﬂ) Tv(D{V D)
-
2 5&)1 1 (1)~ @)L bfm bg?l b§1+)1 2 (1) (2)
<|——= WVIigD,”’D,”1l — — Tr(D,”’ D
_m\/aVEGKZGVé\/»<\/TH’\/TTL>m(Z Z)
5 b(l) Do p(@
/> \;11 Vdllg Dy DP1IEV," “1,/ ’
£+1 1L (1) 1(2) Tbéi)l
1/ \/ Vellg Dy D~ 1lgV,
vm
+ = 2 b€+1 VH D(I)D(Z)H VT 23-)1
m|/m vm
/2 8L 2 8L
< ce+ m(’)( log 5/) —l—m(’)(log(y) <e
The last inequality holds when m > 592 log %. O

C.3 Proof of Lemma 10
proof of Lemma 10. The first part of the proof is essentially the same as Lemma 9. Define

Thiyr s Al bet1
d D —V d Dy——V, L
f‘l’l~ f\/ﬁ Y/ \/ma +1 — Z\/i \/a
We know that dyyq and dy4; depend on Wy only through Wyxy,_1 and Wyzy_;. Let H =
[€¢—1,Z¢—1]. Then

2 1 2 1 2
‘EWV@ d§+)1v WéTdﬁﬁ - 2<dé+)1, déjﬁ‘
2 1 2 1 2 2 1 9
<m0 )

2 2
+] (Ew Y, 1 Wngjl‘Jr]— (W, dg 1wy dl)|.

Since ||dgy1|, ||des1]| = O(1), similar to Lemma 11, when m > 1 + log 9 5. w.patleast 1 — 6 we

have "
2 1 2 1 2) 1+log 3
’E<HIJ§W£ng-31aH Wdeé-s-)ﬁ - 2<d§+)1,dé+1>‘ < O(\/ T6 )
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and
H,/ 5w, dﬁ,le —0Q1), i=1,2,
Using the same argument as in the proof of Lemma 9, we decompose 11 into two vectors w; and

wsg, whose randomness comes from Wy, V7, - - Wg 1, Vy—1. By writing
) 1
wl Wi dl), = <b§+1, TV WD >TWM>

we can also apply Lemma 12. Then we conclude that w.p. greater than 1 — §’ over the randomness of

v, we have 3L
||HHWer€+1||7 ||HHWer€+1|| = O(\/ log —- 5 )

when 8L
m > cL?* * log —- 5

Then exactly the same result of Lemma 9 holds.

For the second part, notice that

L/ 2 T pyTpd @ 2 wTpWm 1VT5§1+)1 béi)l
w\Vom E< e Py Vo £+17 e+1> E< ¢y m 't 7\/577\/ﬁ>
(2)
[2 o) b
= E<WZ dé+1?\/a>

2 1) b@i 2 Lovmg® @
= *< dz+1’ﬁ>+ E<HH\/77L ¢ doyrs by

Conditioned on xp_1, Zp—1, Wexp_1, and WeZp_1, Wg is independent of by 1, bg+1, dy41, and dg+1.
Furthermore, we have Hﬁ Wg =, 1% We , where Wg is an i.i.d. copy of W,. Then for the first term,
with probability at least 1 — §/2, we have for all (), 2®) € {(z, z), (z, &), (Z, ), (Z, %)},

2 @) 16
2 (1) bz+1 1 be+1 2010g 5 log 5
5w, d,),, L 157 d 2% <0 )
\\/m< B i, | < g R a2 < —

For the second term, write Il = wiw{ + wows, , where ||w;|| = 1 or 0. Then by Lemma 12,
with probability at least 1 — 6/2, for all (), 2(?) € {(z,2), (x,%), (Z, ), (¥,Z)}, when m >

cL?>~?7 log %, we have
2 T 1 T 401 2 2 T 1 1 2
‘\/m@h‘wi ﬁ d§+)175§+)1 _’\/wi = dé+)1< b§+)1>
2
<ol =W [ 62|

16L
<0

m

D Proof of Theorem 5

Proof. Forz,% € SP~!, we have Ky(x, ) = K,(Z,%) = 1 for all £. Hence we only need to study
when z # Z. Note we have

Ko(z,2) =Ty (K¢—1)(z,2) = 6 (K¢—1(x, 7)), and Ty (Kp)(z,T) = UA’(KZ(L:E)).
For simplicity, we use K, to denote K,(z, ), where x # & and z,7 € SP~1.

Recall that

VI-p+ (m - COS_l(p))p, and o’ (p) = w'

a(p) =
iy R iy ,

Hence we have 6(1) = 1, K,y < 6(Ky_1) = Ky, (6) (p) = o(p) € [0,1], and (¢") (p) > 0.
Then 6 is a convex function.
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Since { K/} is an increasing sequence and |K,| < 1, we have K, converges as £ — oco. Taking the
limit of both sides of 6 (K,—1) = Ky, we have K, — 1 as { — co.
For K, we also have

V1= K2 |+ (m—cos™ (Ki_1)) K1 1= K? | —cos ™ (Ko_1) K1
Ky=06(Ki1) = - =Ky 1+ - .

Let ey = 1 — Ky, we can easily check that

3/2 3/2
e 2v/2¢,
er1— L <ep<epq— v2e, (19)
us EL
Hence as e, — 0, we have %~ — 1, which implies { K, } converges sublinearly.
Assume ey = & + O(¢~(P+1) ) By taking the assumption into (19) and comparing the highest order

of both sides, we have p = 2.
Thus 3C, s.t. |1 — K| < &, i.e. the convergence rate of Ky is O ().

Lemma 13. For each Ky < 1, there exists p > 0 and ng = no(d) > 0, such that K,, < 1 —
9r?

2(n+no)* "

. 97 92 92 . .
Proof. First, solve Ko <1 — W Then we can choose ng > v 55 =4/ SA-Kg)’ which is
n

independent of L and n. For the rest of the proof, without loss of generality, we just use n instead of

n—+ng. Also for small 6( when § is not small enough we can pick a small §y < ¢ and let ng > %),

wzmr V= 0,..., L, when L is large.
L

2
we have % < é(or dp) which is also small.
2(n+nog)

Let K,, = 1 — €. Then, when ¢ is small, we have
Kpi1 — Ky = 6(K,) — K, = O(3/?).
Also, we have

972 972 1
(1 - ( N 1;+log(L)P > o (1 - o, 2+711:7g(L)P ) =0 < 3+10g(L)P )
n
3/2
1 1
ZO<( 2+log(L)T’) > :O(n3+310§2[4)17>'

Overall, we want an upper bound for K, and from the above we only know that K, is of order
1 — O(n~2) but this order may hide some terms of logarithmic order. Hence we use the order
1-— O(n_(2+5)) to provide an upper bound of K,,. Here w is constructed for the convenience
of the rest of the proof. O

Let Ny = Ny(L) be the solution of

3_10g(L)2
()
cos|m|1—
n+ 2

where for Ng < n < Ny, with some Ny, we have

_log(L)
(n+1) 2 (
cos|m|1—
n+2
<55

One can check by series expansion that Ng = No(L

_ log(1)?
L

( _ log(1)?
L
L

Next we would like to find n such that

5L \°
K, =cos|7m|1-— lzgi(m
Hi—r~5 +1

log(L)

_ log(1)?
L
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By series expansion, we know

3710g(L)2
5 L L 9 2
cos |m|1— <lzg(L)2 >1-— o 5
Prog(myr 1 2 (2457
Then it suffices to solve
92 92 oa(L)P 5L \?
1_#21_%2}(7“26 p2+ < | — . (20)
2fog(r2)? on 2+ log(L)?

Lemma 14. When g > p — 1, we have n. < log(L)

— log(L)? satisfies (20).
Proof. 1f the condition above holds, we have
log(L)p

9 log(D)?
2+log<L>P < 5L loe(L)?
(log(w og(L) |

which is
1Jrlog(L)P < 5L loe(L) oL loe(L)
(mate ~20) (e s

5L log(L)? log(5.(757)
<tz ~ o) (H e )

5L 5 5L 5L
e p—2 _ p+q
log(L) —log(L)? + 5 log(L)P~*log <log(L)2) 5T log(L)P™1og < ) ,

log(L)P
2L

log(L)P

where ( (L) —log(L)? ) S lasL - oo

Thus we have ¢ > p — 1. O
Just pick ¢ = p. Then we have nl+SE S 5(L)z andn S 1og(L) — log(L)P.
Lemma 15. When L is large enough, we have
3_"_log(LL)Q 1 3_log(L)2
L)P 2
cos|m|1— i <K,<cos|m|1l-— w
n+1 n+log(L)P +1

) 3_log(LL)p
Proof. Let F(n) = cos (7‘( <1 - (%) ))

For the right hand side, when n 2 log( L)2 — log(L)P, we have, by series expansion, F'(n + 1) >
G (F(n)). Also, when n ~ aL, where 0 < a < 1, we have

Fin+1)—6(F(n))=0 (3 et log;(L))> > 0.
2L4 (alog?*(L) +5)

Then for (L) —log(L)?» <n < L,wehave F(n+ 1) > 6 (F(n)) and thus K,, < F(n).
When n < m log(L)?, we have F'(n + 1) < 6 (F(n)). Hence K,, < F(n).
For the left hand side,
3+log(L)2 3+log(L)
1
cos|m|1— n —0|lcos|m|1— i
n+2 n+1
2772 3m?log(L)
~ - ,Vn=1,...,L.
2n4 n3L "
Hence we have the left hand side. O
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From Lemma 15, by series expansion, we have
. 2
(37T + Toe~) logL(L)2) 9 2

m
okl g g
when L is large.
Moreover, we can get
log(L)2 _ log(L)?
n \*TT n + log(L)P -7
<To(Kn) S|\ ——0
n+1 n+log(L)P +1
Then
log(L)?2 log(L)?
L

(—1\*"r L ¢ +log(L)P —1\°~
_ < / ; <|—
(7) =11t < < (Tt )

Let N = log(L)p For the right hand side, if we sum over ¢, we have

log(L)?2 log(L)?
Z (+N-1 L <1/L+1 r+N—1\*> ¢ p
L "L+N =1/ L+N o
(@5 )

L(L+ NP~ (1 - el

Taking the limit of both sides, we have

log(L)?

L 3— log(lL)”
1 {4+ N-—-1 z 1
lim — A <z
L—oo L — L+ N 4°
Similarly, by
1o, (L) M los(L)
lXL: 6_71 3+ = >l L L_l 3+ L dx_ (L—1)4+
L i=1 L L L (4+ log(L) >L4+1og(L)2 )
we have )
L 34 loa(D)?
1 {—1 1
N ‘-1 21
mmay () =g
Hence,
log(LL) 3+%

Recall from previous discussion, K, = 1 - O(é%) Therefore,
1
A&*Zmlﬂf T
Also, when L is large, we have

4_log(LL)2 3 4_log(LL)2
((L+N) (N) 1 (L— 1)4+10g(L)

> > .
L(L + N)3—52= (4 _ %) 1 <4+ los()? )L4+mgu>2

Hence we can estimate the convergence rate of the normalized kernel

1< L 1 1\ 1
‘LZKEl HFU’(Kifl) 1 Z (Ke 1 (HF 4> + E(Kffl - 1)> ‘
=1 i=t

Z 1

26



1 L L L
<|p e \ i 20
=1 i= (=1
_ log(L)? _lo (L>2
<

L(L+ N)BfM (4 _ #) ( it 10g(L)2) Lo Bl

i

4log(L)P 4 log(L)? polylog(L))
16L =0 ( L >

A

E Proof of Theorem 6

Proof. We denote Ky , to be the ¢-th layer of K when the depth is L, which is originally denoted by
K.

Let Se = yshyr = aryemr and So = Ko, then Tp(Kpp) = (1 + a?) () and
Ty (K1) = 0’(Se,1). Hence we can rewrite the recursion to be

Se—1,0 +a*6(Se-1.1)

S = T+ a2) > Se-1,L- 2D
Moreover, since Sy 1, —S¢—1,1, = %(&(Sg,l,L)—Sg,LL) and (6(S¢—1,)—Se—1,1) is decreasing,
we can have Sop< S0t (&(5022_ So)é.
Denote Pyy1 1 = Bri1,p(1+a?) "0 = Hf:_zl % Since

1+a20/(S;1)  o®(1—a'(Sir))  1—3d(S;r)

1_ 5 — ) — )
1+ a2 1+a? 2+1 7
we have
L—-1 -~ L—1 -~ ~
1_P 7171—[ 171*0'(51',[,) < 170(52'7[,)7[/ {— ZZZU( )
Lk L ’+1 )~ > +1 L2 +1 ’
where { =1,...,L —1.For Py, ,wehavel — Pr; 1 =0.

Then we can rewrite the normalized kernel to be

Qr :2sze+1[’ 5(Se-1.0) + Se—1,00"(Se—1,1.))-

Hence we have the bound for each layer
|Pes1,(6(Se-1.0) + Se-1,07 (Se-1,1)) = ((50) + So07(S0))|

(6(Se-1,2) + 811,107 (Se-1,8)) = (5(So) + So"(50)) | + [6(S0) + So"(S0)| - [1 = Pes, g

< ‘PéJrl,L’ .
< |e"(Se-1.L)(Se-rr — so)] +
2|6 (Se-1,6)(Se 1,1 = So)| + [ So(@"(Se-1.) - Ef(so))‘ + |#(50) + S0’ (S0)| - [1 = Pss, L‘

< 20(Se-1.0)(3(S0) = So)l ,|ol(6 < 0) = So)(¢ L—l= Y o'(Sis)

- L? 1_ L2 +1
élL

_ 20(Si-1,L)(6(S0) = So)! |So|(( ) So)(e—1)

= 72
\/ Z 1,L
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o(St-1.2)Se-1.1 — Ef(so)so‘ + ]&(so) n Soc;’(So)‘ . ‘1 - pML]

7(So) + Soo’ (50)’

L—(—(L—1£)d'(S)
L2+1 '

7(So) + Soo’ (So)’



Therefore we have the bound for the normalized kernel

%~ 3 (6(50) + 500" (50)

L
:‘1Zxaﬂﬂa&1@+&nﬂ%&1@»—;@w@+%&wm‘

2L
=1
_ 1 Z 207(Sp-1,1)(6(50) ~ 50)t , [Sol(6(50) — So)(¢ ~ 1)
= L2 nl2,J1- 52,
L—1 ~
1 N -~ L—g—(L—é)O'/(S())
+ﬁ o (‘O’(So)+50(f (So)’ L2—|-1
< L (Bt g — sy 1 501050 = SOLE =1 1o o g5 )‘“2‘%—9(50))
oL\ L 0/ 70 2rL2C 0770 AP0 L2 +1

&ww+%9@wgawm>i

(8 1 ).

where C = C(0) = /1 — (1 —6)2 and Sy = Kp.
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