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Abstract

Deep residual networks (ResNets) have demonstrated better generalization per-
formance than deep feedforward networks (FFNets). However, the theory behind
such a phenomenon is still largely unknown. This paper studies this fundamental
problem in deep learning from a so-called “neural tangent kernel” perspective.
Specifically, we first show that under proper conditions, as the width goes to infin-
ity, training deep ResNets can be viewed as learning reproducing kernel functions
with some kernel function. We then compare the kernel of deep ResNets with that
of deep FFNets and discover that the class of functions induced by the kernel of
FFNets is asymptotically not learnable, as the depth goes to infinity. In contrast,
the class of functions induced by the kernel of ResNets does not exhibit such
degeneracy. Our discovery partially justifies the advantages of deep ResNets over
deep FFNets in generalization abilities. Numerical results are provided to support
our claim.

1 Introduction
Deep Neural Networks (DNNs) have made significant progress in a variety of real-world applications,
such as computer vision [1, 2, 3], speech recognition, natural language processing [4, 5, 6], recom-
mendation systems, etc. Among various network architectures, Residual Networks (ResNets, [7]) are
undoubtedly a breakthrough. Residual Networks are equipped with residual connections, which skip
layers in the forward step. Similar ideas based on gating mechanisms are also adopted in Highway
Networks [8], and further inspire many follow-up works such as Densely Connected Networks [9].

Compared with conventional Feedforward Networks (FFNets), residual networks demonstrate surpris-
ing generalization abilities. Existing literature rarely considers deep feedforward networks with more
than 30 layers. This is because many experimental results have suggested that very deep feedforward
networks yield worse generalization performance than their shallow counterparts [7]. In contrast, we
can train residual networks with hundreds of layers, and achieve better generalization performance
than that of feedforward networks. For example, ResNet-152 [7], achieving a 19.38% top-1 error
on the ImageNet data set, consists of 152 layers; ResNet-1001 [10], achieving a 4.92% error on the
CIFAR-10 data set, consists of 1000 layers.

Despite the great success and popularity of the residual networks, the reason why they generalize so
well is still largely unknown. There have been several lines of research attempting to demystify this
phenomenon. One line of research focuses on empirical studies of residual networks, and provides
∗Equal contribution.
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intriguing observations. For example, [11] show that residual networks behave like an ensemble of
weakly dependent networks of much smaller sizes, and meanwhile, they also show that the gradient
vanishing issue is also significantly mitigated due to these smaller networks. [12] further provide
a more refined elaboration on the gradient vanishing issue. They demonstrate that the gradient
magnitude in residual networks only shows sublinear decay (with respect to the layer), which is
much slower than the exponential decay of gradient magnitude in feedforward neural networks.
[13] propose a visualization approach for analyzing the landscape of neural networks, and further
demonstrate that residual networks have smoother optimization landscape due to the skip-layer
connections.

Another line of research focuses on theoretical investigations of residual networks under simplified
network architectures. A commonly adopted structure, which is a reformulation of FFNets, is

x` = φ(x`−1 + αW`x`−1), (1)
where ` is the number of layers and the skip-connection only bypasses the weight matrix W` at each
layer [14, 15, 16, 17, 18]. Specifically, [16] study the optimization landscape with linear activation;
[17] study using Stochastic Gradient Descent (SGD) to train a two-layer ResNet. [18] study using
Gradient Descent (GD) to train a two-layer non-overlapping residual network. [14, 15] both take the
perturbation analysis approach to show convergence of such ResNets. A more realistic structure is

x` = x`−1 + φ(αW`x`−1), (2)
where the skip-connection bypasses the activation function [19, 20]. [20] only consider separable
setting and take the perturbation analysis to show the convergence and generalization property of such
ResNet. These results, however, are only loosely related to the generalization abilities of residual
networks, and often considered to be overoptimistic, due to the oversimplified assumptions.

Some more recent works provide a new theoretical framework for analyzing overparameterized
neural networks [21, 22, 23, 24, 14, 25, 26, 27]. They focus on connecting two- or three-layer over-
parameterized (sufficiently wide) neural networks to reproducing kernel Hilbert spaces. Specifically,
they show that under proper conditions, the weight matrices of a well trained overparameterized
neural network (achieving any given small training error) are actually very close to their initialization.
Accordingly, the training process can be described as searching within some class of reproducing
kernel functions, where the associated kernel is called the “neural tangent kernel” (NTK, [21]) and
only depends on the initialization of the weights. Accordingly, the generalization properties of the
overparameterized neural network are equivalent to those of the associated NTK function class. Based
on such a framework, [19] derived the NTK of the ResNet (2) when only the last layer is trained, and
proved the convergence of such ResNet. However, they did not provide an explicit formula for the
NTK when all layers are trained, which is required for characterizing the generalization property of
ResNets.

To better understand the generalization abilities of deep feedforward and residual networks, we
propose to investigate the NTKs associated with these networks when all but the last layers are
trained, and consider the case when both widths and depths go to infinity2. For the structure of
ResNets, we adopt (2) only with a slight modification, since it captures the essence of the skip-
connection; see Section 2

x` = x`−1 + α

√
1

m
V`σ0

(√ 2

m
W`x`−1

)
. (3)

Specifically, we prove that similar to what has been shown for feedforward networks [21], as the
width of deep residual networks increases to infinity, training residual networks can also be viewed as
learning reproducing kernel functions with some NTK. However, such an NTK associated with the
residual networks exhibits a very different behavior from that of feedforward networks.

To demonstrate such a difference, we further consider the regime, where the depths of both feedfor-
ward and residual networks are allowed to increase to infinity. Accordingly, both NTKs associated
with deep feedforward and residual networks converge to their limiting forms sublinearly (in terms of
the depth). For notational simplicity, we refer to the limiting form of the NTKs as the limiting NTK.
Besides asymptotic analysis, we also provide nonasymptotic bounds, which demonstrate equivalence
between limiting NTKs and neural networks with sufficient depth and width.

When comparing their limiting NTKs, we find that the class of functions induced by the limiting
NTKs associated with deep feedforward networks is essentially not learnable. Such a class of

2More precisely, our analysis considers the regime, where the widths go to infinity first, and then the depths
go to infinity. See more details in Section 4.
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functions is sufficient to overfit training data. Given any finite sample size, however, the learned
function cannot generalize. In contrast, the class of functions induced by the limiting NTKs associated
with deep residual networks does not exhibit such degeneracy. Our discovery partially justifies the
advantages of deep residual networks over deep feedforward networks in terms of generalization
abilities. Numerical results are provided to support our claim.

Our work is closely related to [28]. They also investigate the so-called “Gaussian Process” kernel
induced by feedforward networks under the regime where the depth is allowed to increase to
infinity. However, their studied neural networks are essentially some specific implementations of the
reproducing kernels using random features, since the training process only updates the last layer of
the neural networks, and keeps other layers unchanged. In contrast, we assume the training process
updates all layers except for the last layer.

Notations: We use σ0(z) = max(0, z) to denote the ReLU activation function in neural networks.
We use σ(z) to denote the normalized ReLU function σ(z) =

√
2max(0, z). The derivative 3 of

ReLU function (step function) is σ′
0(z) = I{z≥0}. Then σ′(z) =

√
2I{z≥0} is the normalized step

function. We use D to denote the input dimension and SD−1 to denote the unit sphere in RD. We
use m to denote the network width (the number of neurons at each layer) and L to denote the depth.
Let M2

+ be the set of all 2 × 2 positive semi-definite matrices. We use F to denote the set of all
symmetric and positive semi-definite functions from RD × RD to R. We use ‖ · ‖max to denote the
entry-wise `∞ norm for matrices and use ‖ · ‖ to denote the `2 norm for vectors and the spectral norm
for matrices. We use diag(·) to denote the diagonal matrix. We use In to denote the n× n identity
matrix. We use x and x̃ to denote a pair of inputs. We use x` and x̃` to denote the output of the `-th
layer of a network for the input x and x̃, respectively. We use f and f̃ to denote the final output of the
network for x and x̃, respectively. We use ∇θf = ∇θfθ(x) to denote the derivative of parametrized
model fθ w.r.t. θ at the input x, and ∇θf̃ to denote the counterpart at the input x̃.

2 Background
For self-containedness, we first briefly review feedforward networks, residual networks and dual
kernels associated with neural networks.
Feedforward Networks. We define an L-layer feedforward network (FFNet) f(x) with ReLU
activation in a recursive manner,

x0 = x; x` =

√
2

m
σ0(W`x`−1), ` = 1, · · · , L; f(x) = v>xL, (4)

where W1 ∈ Rm×D and W2, · · · ,WL ∈ Rm×m are weight matrices, and v ∈ Rm is the output
weight vector. For simplicity, we only consider feedforward networks with scalar outputs.
Residual Networks. We define an L-layer residual network (ResNet) f(x) in a recursive manner,

x0 =

√
1

m
Ax; x` = x`−1 + α

√
1

m
V`σ0

(√ 2

m
W`x`−1

)
, ` = 1, · · · , L; f(x) = v>xL, (5)

where W`, V` ∈ Rm×m for ` = 1, · · · , L, A ∈ Rm×D, v ∈ Rm, and α = L−γ is the scaling factor
of the bottleneck layers. The scaling factor α is necessary for controlling the norm of xl.

The network architecture in (5) is similar to the “pre-activation" shortcuts in [10], except that each
bottleneck layer only contains one activation - between W` and V`. We remove the activation of the
input due to some technical issues (See more details in Section 3).
Dual and Normalized Kernels. The dual kernel technique was first proposed in [29] and motivated
several follow-up works such as [28, 30]. Here we adopt the description in [28]. We use K to denote
a kernel function on the input space RD, i.e., K : RD × RD → R. We denote

Σ(x, x̃) =

(
K(x, x) K(x, x̃)
K(x̃, x) K(x̃, x̃)

)
and Nρ =

(
1 ρ
ρ 1

)
,

where K ∈ F , ρ ∈ R. Given an activation function φ : R → R, its dual activation function
φ̂ : [−1, 1] → [−1, 1] is defined to be φ̂(ρ) = E(X,X̃)∼N (0,Nρ)

φ(X)φ(X̃).

We then define the dual kernel as follows.
Definition 1. We say that Γφ(K) : RD × RD → R is the dual kernel of K with respect to the
activation φ, if we have Γφ(K)(x, x̃) = E(X,X̃)∼N (0,Σ(x,x̃))φ(X)φ(X̃).

3Although the ReLU function σ0 is not differentiable at 0, we call σ′0 derivative for notational convenience.
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Note that Γφ(K) is also positive semi-definite. We also define the normalized kernel.

Definition 2. We say that a kernel K ∈ F is normalized, if K(x, x) = 1 for all x ∈ RD. For a
general kernel K ∈ F , we define its normalized kernel by K where K(x, x̃) = K(x,x̃)√

K(x,x)K(x̃,x̃)
.

For normalized ReLU function σ(z) =
√
2max(0, z), [28] show σ̂(ρ) =

√
1−ρ2+(π−cos−1(ρ))ρ

π .

Since σ(z) is positive homogeneous, we have Γσ(K)(x, x̃) =
√
K(x, x)K(x̃, x̃) σ̂(K(x, x̃)). For

derivative of normalized ReLU function σ′(z) =
√
2I{z≥0}, [28] show that σ̂′(ρ) = π−cos−1(ρ)

π .

Since σ′(z) is zeroth-order positive homogeneous, we have Γσ′(K)(x, x̃) = σ̂′(K(x, x̃)). For more
technical details of the dual kernel, we refer the readers to [28].

3 Neural Tangent Kernels of Deep Networks
There are two approaches to connecting neural networks to kernels: one is Gaussian Process Kernel
(GP Kernel); the other is Neural Tangent Kernel (NTK). GP Kernel corresponds to the regime where
the first L layers are fixed after random initialization, and only the last layer is trained. Therefore,
the first L layers are essentially random feature mapping [31]. This is inconsistent with the practice,
as the first L layers should also be trained. In contrast, NTK corresponds to the regime where the
first L layers are also trained. For both GP Kernel and NTK, we consider the case when the width of
the neural network goes to infinity. Due to space limit, we only provide some proof sketches for our
theory, and all technical details are deferred to the appendix.
3.1 Feedforward Networks
We consider the Feedforward Network (FFNet) defined in (4), where W1 ∈ Rm×D, W2, · · · ,WL ∈
Rm×m and v ∈ Rm are all initialized as i.i.d. N (0, 1) variables.4 Given such random initialization,
the outputs converge to a Gaussian process, as the width goes to infinity [32, 21]. Accordingly, the
GP kernel is defined as follows.
Proposition 1 ([28, 21]). The GP kernel of the L-layer FFNet defined in (4) is

K0(x, x̃) = x>x̃; K`(x, x̃) = Γσ(K`−1)(x, x̃), ` = 1, · · · , L. (6)
Theorem 1 ([28]). For the FFNet defined in (4), there exists an absolute constant C, given the width
m ≥ Cε−2L2 log(8L/δ), with probability at least 1− δ over the randomness of the initialization, for
input x, x̃ on the unit sphere, the inner product of the outputs of the `-th layer can be approximated
by K`(x, x̃), i.e., |〈x`, x̃`〉 −K`(x, x̃)| ≤ ε, for all ` = 1, · · · , L.

The next proposition shows the NTK of this FFNet. Unlike the GP kernel, the NTK corresponds to
the case when θ = (W1, · · · ,WL) are trained.
Proposition 2 ([21]). The NTK of the FFNet can be derived in terms of the GP kernels as

ΩL(x, x̃) =
L∑

`=1

[
K`−1(x, x̃)

L∏
i=`

Γσ′(Ki−1)(x, x̃)
]
. (7)

Besides the asymptotic result, [22] further provide a nonasymptotic bound as follows.
Theorem 2 ([22]). For the FFNet defined in (4), when the width m ≥ CL6ε−4 log(L/δ), where C
is a constant, with probability at least 1− δ over the initialization, for input x, x̃ on the unit sphere,
the Neural Tangent Kernel can be approximated by ΩL(x, x̃), i.e.,∣∣〈∇θf,∇θf̃〉 − ΩL(x, x̃)

∣∣ ≤ Lε.

[22] then showed that a sufficiently wide FFNet trained by gradient flow is close to the kernel
regression predictor via its NTK.
Remark 1. For self-containedness, we directly adopt the results from existing literature in this
subsection. For more technical details on gradient flow and kernel ridge regression, we refer the
readers to [28, 21, 22].

3.2 Residual Networks
We consider the Residual Network (ResNet) in (5), where all parameters
(A, v,W1, · · · ,WL, V1, · · · , VL) are independently initialized from the standard Gaussian

4In general, the weight matrices do not need to be square matrices, nor do they need to be of the same size.
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distribution. For simplicity, we only train θ = (W1, · · · ,WL, V1, · · · , VL), but not A or v, and the
NTK of the ResNet is computed accordingly. Note that our theory can be naturally generalized to the
setting where all parameters including A and v are trained, but the analysis will be more involved.
Our next proposition derives the GP kernel of the ResNet.
Proposition 3. The GP kernel of the ResNet is

K0(x, x̃) = x>x̃; K`(x, x̃) = K`−1(x, x̃) + α2Γσ(K`−1)(x, x̃),

where ` = 1, · · · , L, and α = L−γ for 0.5 ≤ γ ≤ 1.

Proposition 3 demonstrates that each layer of the ResNet recursively “contributes” to the kernel in
an incremental manner, which is quite different from that of the FFNet (shown in Proposition 1).
Proposition 3 essentially provides a rigorous justification for the intuition discussed by [33]. Besides
the above asymptotic result, we also derive a nonasymptotic bound as follows.
Theorem 3. For the ResNet defined in (5), given two inputs on the unit sphere x, x̃ ∈ SD−1, ε < 0.5,
and

m ≥ Cε−2L2−2γ log(36(L+ 1)/δ),
where C is a constant and 0.5 ≤ γ ≤ 1, with probability at least 1− δ over the randomness of the
initialization, for all layers ` = 0, · · · , L and (x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)}, we have

|〈x(1)` , x
(2)
` 〉 −K`(x

(1), x(2))| ≤ ε,

where K` is recursively defined in Proposition 3.

Theorem 3 implies that sufficiently wide residual networks are mimicking the GP kernel under proper
conditions. The proof can be found in Appendix A. Next we present the NTK of the ResNet defined
in (5) in the following proposition.

Proposition 4. The NTK of the ResNet is ΩL(x, x̃) = α2
∑L

`=1

[
B`+1(x, x̃)Γσ(K`−1)(x, x̃) +

K`−1(x, x̃)B`+1(x, x̃)Γσ′(K`−1)(x, x̃)
]
, where K`’s are defined in Proposition 3; BL+1(x, x̃) = 1,

and for ` = 1, · · · , L, B`’s are defined as
B`+1(x, x̃) = B`+2(x, x̃) + α2B`+2(x, x̃)Γσ′(K`)(x, x̃).

Proposition 4 implies that similar to what has been proved for the FFNet, the ResNet trained
by gradient flow is also equivalent to the kernel regression predictor with some NTK. Note that
Proposition 4 is an asymptotic result. We defer the proof, as it can be straightforwardly derived from
the nonasymptotic bound as follows.
Theorem 4. For the ResNet defined in (5), given two inputs on the unit sphere x, x̃ ∈ SD−1, ε < 0.5,
and

m ≥ Cε−4L2−2γ
(
log(320(L2 + 1)/δ) + 1

)
,

where C is a constant, with probability at least 1− δ over the randomness of the initialization, we
have ∣∣〈∇θf,∇θf̃

〉
− ΩL(x, x̃)

∣∣ ≤ 2Lα2ε,
where α = L−γ with γ ∈ [0.5, 1], ΩL(x, x̃) is defined in Proposition 4.

Proof Sketch of Proposition 4 and Theorem 4. For simplicity, we use φW : Rm → Rm to

denote φW (z) =
√

2
mσ0(Wz). Then its derivative w.r.t. z is as follows, φ′W (z) =√

2
mD(Wz)W, where D(Wz) is an operator defined as D(Wz) ≡ diag(σ′

0(Wz)) =

diag([I{W1,·z≥0}, · · · , I{Wm,·z≥0}]
>).

For simplicity, we denote D` = D(W`x`−1), where ` = 1, 2, · · · , L. Note that D` is essentially the
activation pattern of the `-th bottleneck layer on the input x. We denote D̃` for x̃ in a similar fashion.

Then we have ∂x`

∂x`−1
= Im+α

√
1
mV`

√
2
mD`W`. For ` = 1, · · · , L, we denote b`+1 = ∇x`

f . Then

we have b`+1 =
(
v> ∂xL

∂xL−1

∂xL−1

∂xL−2
· · · ∂x`+1

∂x`

)>
.

Combining all above derivations, we have ∇V`
f = α√

m
b`+1 · (φW`

(x`−1))
>, and

∇W`
f = α√

m

√
2
mD`V

>
` b`+1 · x>`−1. Then we can derive the kernel

∑L
`=1〈∇W`

f,∇W`
f̃〉 +∑L

`=1〈∇V`
f,∇V`

f̃〉, where〈∇V`
f,∇V`

f̃〉=α2 1

m
〈b`+1, b̃`+1〉︸ ︷︷ ︸

T`,1

〈φW`
(x`−1), φW`

(x̃`−1)〉︸ ︷︷ ︸
T`,2

,
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〈∇W`
f,∇W`

f̃〉=α2〈x`−1, x̃`−1〉︸ ︷︷ ︸
T`,3

2

m2
b̃>`+1V`D̃`D`V

>
` b`+1︸ ︷︷ ︸

T`,4

. Note that the concentration of T`,3 can

be shown by Theorem 3. We then show the concentration of T`,1, T`,2 and T`,4, respectively.

For simplicity, we define two matrices for each layer,

Σ̂`(x, x̃) =

[
〈x`, x`〉 〈x`, x̃`〉
〈x̃`, x`〉 〈x̃`, x̃`〉

]
, Σ`(x, x̃) =

[
K`(x, x) K`(x, x̃)
K`(x̃, x) K`(x̃, x̃)

]
.

We define ψσ : M2
+ → R as ψσ(Σ) = E(X,X̃)∼N (0,Σ)σ(X)σ(X̃) and ψσ′ : M2

+ → R as ψσ′(Σ) =

E(X,X̃)∼N (0,Σ)σ
′(X)σ′(X̃). Note Γσ(K`−1) = ψσ(Σ`−1) and Γσ′(K`−1) = ψσ′(Σ`−1).

The following lemmas are technical results and very involved. Please see Appendix B for details.

Lemma 1. Suppose that for ` = 1, · · · , L,

‖Σ̂`−1(x, x̃)− Σ`−1(x, x̃)‖max ≤ cε2, m ≥ C1ε
−2L2−2γ

(
log(80L2/δ) + 1

)
, (8)

with probability at least 1− 3δ, we have |T`,1 −B`+1(x, x̃)| ≤ c1ε, for ` = 1, · · · , L, where C1, c1,
and c are constants.

Lemma 2. Suppose (8) holds for ` = 1, · · · , L. With probability at least 1 − δ, we have |T`,2 −
Γσ(K`−1)(x, x̃)| ≤ c2ε, for ` = 1, · · · , L, where C2 and c2 are constants.

Lemma 3. Suppose that (8) holds for ` = 1, · · · , L. With probability at least 1 − 3δ, we have
|T`,4 −B`+1(x, x̃)Γσ′(K`−1)(x, x̃)| ≤ c3ε, for ` = 1, · · · , L, where c3 is a constant.

We remark: (1) Lemma 1 is proved by reverse induction; (2) Lemma 2 exploits the concentration
properties of W` and local Lipschitz properties of ψσ; (3) We prove Lemma 3 and Lemma 1
simultaneously with the Hölder continuity of ψσ′ . Combining all results above, we complete
Theorem 4. Moreover, taking m→ ∞, we have Proposition 4.

4 Deep Feedforward v.s. Residual Networks
To compare the NTKs associated with deep FFNets and ResNets, we consider proper normalization,
which avoids the kernel function blowing up or vanishing as the depth L goes to infinity.

4.1 The Limiting NTK of the Feedforward Networks

Recall that the NTK of the L-layer FFNet defined in (4) is ΩL(x, x̃) =
∑L

`=1

[
K`−1(x, x̃) ·∏L

i=` Γσ′(Ki−1)(x, x̃)
]
. One can check that ΩL(x, x) = L for all x ∈ SD−1. To avoid

ΩL(x, x) → ∞, as L→ ∞. We consider a normalized version as

ΩL(x, x̃) =
1

L
ΩL(x, x̃).

We characterize the impact of the depth L on the NTK in the following theorem.

Theorem 5. For the NTK of the FFNet, as L → ∞, given x, x̃ ∈ SD−1 and |1 − x>x̃| ≥ δ > 0,
where δ is a constant and does not scale with L, we have∣∣∣ΩL(x, x̃)− 1/4

∣∣∣ = O
(polylog(L)

L

)
,

When x = x̃, we have ΩL(x, x̃) = 1, ∀L.

Proof Sketch of Theorem 5 . The main challenge comes from the sophisticated recursion of the kernel.
To handle the recursion, we employ the following bound.

Lemma 4. When L is large enough, we have

cos

π
1−

(
n

n+ 1

)3+
log(L)2

L

 ≤ Kn(x, x̃) ≤ cos

π
1−

(
n+ log(L)p

n+ log(L)p + 1

)3− log(L)2

L

 ,

where p is a positive constant depending on δ.
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By Lemma 4, we can further bound
∏L

i=` Γσ′(Ki−1(x, x̃)) by(`− 1

L

)3+ log(L)2

L ≤
L∏
i=`

Γσ′(Ki−1(x, x̃)) ≤
(`+ log(L)p − 1

L+ log(L)p

)3− log(L)2

L

(9)

Hence we can measure the rate of convergence. The detailed proof is the following.

As can be seen from Theorem 5, the NTK of the FFNet converges to a limiting form, i.e.,

Ω∞(x, x̃) = lim
L→∞

ΩL(x, x̃) =

{
1/4, x 6= x̃
1, x = x̃

.

For simplicity, we refer to Ω∞ as the limiting NTK of the FFNets.

The limiting NTK of the FFNets is actually a non-informative kernel. For example, we consider
a kernel regression problem with n independent observations {(xi, yi)}ni=1, where xi ∈ RD is
the feature vector, and yi ∈ R is the response. Without loss of generality, we assume that the
training samples have been properly processed such that xi 6= xj for i 6= j, and

∑n
i=1 yi = 0. By

the Representer theorem [34], we know that the kernel regression function can be represented by
f(·) =

∑n
i=1 βiΩ∞(xi, ·). We then minimize the regularized empirical risk as follows.

β̂ = min
β

‖y − Ω̃β‖2 + λβ>Ω̃β, (10)

where β = (β1, ...βn)
> ∈ Rn, y = (y1, ..., yn)

> ∈ Rn, Ω̃ ∈ Rn×n with Ω̃ij = Ω∞(xi, xj), and λ
is the regularization parameter and usually very small for large n. One can check that (10) admits
a closed form solution β̂ = (Ω̃ + λIn)

−1y. Note that we have Ω̃ + λIn = 1/4Jn + (λ + 3/4)In,
which is the sum of a diagonal matrix and a rank-one matrix and Jn is n × n all-ones matrix. By
Sherman – Morrison formula

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
, we have β̂ =

1

λ+ 3/4

(
In − 1

n+ 4λ+ 3
Jn

)
y.

Then we further have f(xj) =
∑n

i=1 β̂iΩ∞(xi, xj) =
3

4λ+3yj .

As can be seen, for sufficiently large n and sufficiently small λ, we have f(xj) ≈ yj , which means
that we can fit the training data well. However, for an unseen data point x∗, where x∗ 6= x1, ..., xn,
the regression function f always gives an output 0, i.e.,

f(x∗) =
n∑

i=1

β̂iΩ∞(xi, x
∗) =

1

4

n∑
i=1

β̂i = 0.

This indicates that the function class induced by the limiting NTK of the FFNets Ω∞ is not learnable.

4.2 The Limiting NTK of the Residual Networks
Recall that the infinite-width NTK of the L-layer ResNet is

ΩL(x, x̃) = α2
L∑

`=1

[
B`+1(x, x̃)Γσ(K`−1)(x, x̃) +K`−1(x, x̃)B`+1(x, x̃)Γσ′(K`−1)(x, x̃)

]
,

where BL+1(x, x̃) = 1 and for ` = 1, .., L − 1, B`+1(x, x̃) =
∏L−1

i=` (1 + α2Γσ′(Ki)(x, x̃)). One
can check that for x ∈ SD−1, ΩL(x, x) = 2Lα2(1 + α2)L−1.

Different from the NTK of the FFNet, ΩL(x, x) → 0 as L → ∞. Therefore, we also consider the
normalized NTK for the ResNet to prevent the kernel from vanishing. Specifically, the normalized
NTK of the ResNet on SD−1 × SD−1, ΩL(x, x̃), is defined as follows,

1/(2L)

(1 + α2)L−1

L∑
`=1

[
B`+1(x, x̃)Γσ(K`−1)(x, x̃) +K`−1(x, x̃)B`+1(x, x̃)Γσ′(K`−1)(x, x̃)

]
. (11)

We then analyze the limiting NTK of the ResNets. Recall that α = L−γ . Our next theorem only
considers γ = 1, i.e., α = 1/L.

Theorem 6. For the NTK of the ResNet, as L → ∞, given α = 1
L and x, x̃ ∈ SD−1 such that

|1− x>x̃| ≥ δ > 0, where δ is a constant and does not scale with L, we have∣∣ΩL(x, x̃)− Ω1(x, x̃)
∣∣ = O (1/L) ,

where Ω1(x, x̃) =
1
2

(
σ̂(x>x̃) + x>x̃ · σ̂′(x>x̃)

)
.
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Proof Sketch of Theorem 6. The main technical challenge here is also handling the recursion. Specif-
ically, we denote K`,L to be the `-th layer of the GP kernel when the depth is L, which is orig-
inally denoted by K`(x, x̃). Let S0 = K0(x, x̃) and S`,L =

K`,L

(1+α2)`
=

K`,L

(1+1/L2)`
. We have

Γσ(K`,L) = (1 + α2)`σ̂(S`,L) and Γσ′(K`,L) = σ̂′(S`,L). We rewrite the recursion of K`,L as

S`,L =
S`−1,L+α2σ̂(S`−1,L)

(1+α2) ≥ S`−1,L, which eases the technical difficulty. However, the proof is
still highly involved, and more details can be found in Appendix E.

Note that we do not consider γ = 0.5 for technical concerns, as ΩL(x, x̃) in (11) becomes very
complicated to compute, as L→ ∞. Also we find that considering γ = 1 is sufficient to provide us
new theoretical insights on ResNets (See more details in Section 5).
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(b) ResNets with γ = 1
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(c) ResNets with γ = 0.5

Figure 1: Normalized Neural Tangent Kernels Associated with Different Deep Networks.

Different from FFNets, the class of functions induced by the NTKs of the ResNets does not signifi-
cantly change, as the depth L increases. Surprisingly, we actually have Ω∞ = Ω1 for α = 1/L, i.e.,
infinitely deep and 1-layer ResNets induce the same NTK. To further visualize such a difference, we
plot the NTKs of the ResNets in Fig. 1(b) and 1(c) for α = 1/L and α = 1/

√
L, respectively. As

can be seen, the increase of the depth yields very small changes to the NTKs. This partially explains
why increasing the depth of the ResNet does not significantly deteriorate the generalization.

Moreover, as long as x 6= x̃, i.e., 〈x, x̃〉 6= 1, the limiting NTK of the FFNets always yields 1/4
regardless how different x is from x̃. In contrast, the residual networks do not suffer from this
drawback. The limiting NTK of the ResNets can greatly distinguish the difference between x and
x̃, e.g., 〈x, x̃〉 = −0.5, 0, and 0.5 yield different values. Therefore, for an unseen data point, the
corresponding regression model does not always output 0, which is in sharp contrast to that of the
limiting NTK of the FFNets.

5 Experiments
We demonstrate the generalization properties of the kernel regression based on the NTKs of the
FFNets and the ResNets with varying depths. Our experiments follow similar settings to [22, 23].
We adopt two widely used data sets – MNIST [35] and CIFAR10 [36], which are popular in existing
literature. Note that both MNIST and CIFAR10 contains 10 classes of images. For simplicity,
we select 2 classes out of 10 (digits “0” and “8” for MNIST, categories “airplane” and “ship” for
CIFAR10), respectively, which results in two binary classification problems, denoted by MNIST2
and CIFAR2.

Similar to [22, 23], we use the kernel regression model for classification. Specifically, given the
training data (x1, y1), · · · , (xn, yn), where xi ∈ RD and yi ∈ {−1,+1} for i = 1, ..., n, we compute
the kernel matrix K̃ = [K̃ij ]

n
i,j=1 using the NTKs associated with the FFNets and the ResNets, where

K̃ij = ΩL(xi, xj). Then we compute the kernel regression function f(x) =
∑n

i=1 αiΩL(x, xi),

where [α1, ..., αn]
> = (K̃ + λI)−1y, y = [y1, ..., yn]

> and λ = 0.1/n is a very small constant. We
predict the label of x to be sign(f(x)).

Our experiments adopt the NTKs associated with three network architectures: (1) FFNets, (2) ResNets
(γ = 0.5) and (3) ResNets (γ = 1). We set n = 200 and n = 2000. For each data set, we randomly
select n training data points (n/2 for each class) and 2000 testing data points (1000 for each class).
When training the kernel regression models, we normalize all training data points to have zero mean
and unit norm. We repeat the procedure for 20 simulations. We find that the training errors of all
simulations (L varies from 1 to 2000) are 0.0, which means that all NTK-based models are sufficient
to overfit the training data, regardless n = 200 or n = 2000. The test accuracies of the kernel
regression models with different kernels and depths are shown in Figure 2.
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As can be seen, the test accuracies of the kernel regression models of ResNets (both γ = 0.5 and
γ = 1) are not sensitive to the depth. In contrast, the test accuracies of the kernel regression models
of the FFNets significantly decrease, as the depth L increases. Especially when the sample size is
small (n = 200), the kernel regression models behave like random guess for both MNIST2 and
CIFAR2 when L ≥ 1000. This is consistent with our analysis.
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(c) CIFAR2 (n = 200)
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Figure 2: Test accuracies of the kernel regression models evaluated on MNIST2 and CIFAR2.

Next we provide numerical verifications for our theorems. For Theorem 4, we randomly initialize the
ResNet with width=500, scaling factor γ = 1 and depth L = 5, 10, 100, 300, and then calculate the
inner product of the Jacobians of the ResNet for two different inputs as in the definition of NTK. We
repeat the procedure for 500 times and plot the mean value (black cross) and the 1/4, 3/4 quantiles
("I"-shape line) of the sampled random NTKs and the theoretical NTK value in Fig. 3(a), which
shows the two results match very well. For Theorem 5 and Theorem 6, Fig. 3(b) and Fig. 3(c) show
that limL→∞ |ΩL(x, x̃) − 1/4| · L/log(L) ≈ constant and limL→∞ |ΩL(x, x̃) − Ω1(x, x̃)| · L ≈
constant with x>x̃ = K0 chosen at 9 points.
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Figure 3: Verification of main theorems. (a) Theorem 4, m = 500 and scaling γ = 1; (b) Theorem 5,
y-axis is |ΩL(x, x̃)− 1/4| · L/log(L); (c) Theorem 6, y-axis is |ΩL(x, x̃)− Ω1(x, x̃)| · L
6 Discussion
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Figure 4: Test accuracies of
the kernel regression models
evaluated on CIFAR2.

We discuss the NTK of the ResNet in more details. We remark unless
specified, the NTK mentioned below indicates the normalized NTK.

Our theory shows the function class induced by the NTK of the deep
ResNet asymptotically converges to that by the NTK of the 1-layer
ResNet, as the depth increases. This indicates that the complexity of
such a function class is not significantly different from that by the NTK
of the 1-layer ResNet, for large enough L. Thus, the generalization
gap does not significantly increase, as L increases.

On the other hand, our experiments suggest that, as illustrated in Figure
4, the NTK of the ResNet with γ = 1 actually achieves the best testing
accuracy for CIFAR2 when L = 2. The accuracy slightly decreases
as L increases, and becomes stable when L ≥ 9. For the NTK of the
ResNet with γ = 0.5, the accuracy achieves the best when L ≈ 15,
and becomes stable for L ≥ 15. Such evidence suggests that the
function class induced by the NTKs of the ResNets with large L and
large γ are possibly not as flexible as those by the NTKs of the deep
ResNets with small L and small γ.

Existing literature connects overparameterized neural networks to
NTKs only under some very specific regime. Practical neural networks, however, are trained under
more complicated regimes. Therefore, there still exists a significant theoretical gap between NTKs and
practical neural networks. For example, Theorem 6 shows that the NTK of the infinitely deep ResNet
is identical to that of the 1-layer ResNet, while practical ResNets often show better generalization
performance, as the depth increases. Also, we do not consider batch norm in our networks but refer
to [37] if necessary. We will leave these challenges for future investigation.
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Broader Impact

This paper makes a significant contribution to extending the frontier of deep learning theory, and
increases the intellectual rigor. To the best of our knowledge, our results are the first one for analyzing
the effect of depth on the generalization of neural tangent kernels (NTKs). Moreover, our results are
also the first one establishing the non-asymptotic bounds for NTKs of ResNets when all but the last
layers are trained, which enables us to successfully analyze the generalization properties of ResNets
through the perspective of NTK. This is in sharp contrast to the existing impractical theoretical results
for NTKs of ResNets, which either only apply to an over-simplified structure of ResNets or only deal
with the case when the last layer is trained.
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A Proof of GP Kernels of ResNets

A.1 Notation and Main Idea

For a fixed pair of inputs x and x̃, we introduce two matrices for each layer

Σ̂`(x, x̃) =

[
〈x`, x`〉 〈x`, x̃`〉
〈x̃`, x`〉 〈x̃`, x̃`〉

]
,

and
Σ`(x, x̃) =

[
K`(x, x) K`(x, x̃)
K`(x̃, x) K`(x̃, x̃)

]
.

Σ̂`(x, x̃) is the empirical Gram matrix of the outputs of the `-th layer, while Σ`(x, x̃) is the infinite-
width version. Theorem 3 says that with high probability, for each layer `, the difference of these two
matrices measured by the entry-wise L∞ norm (denoted by ‖ · ‖max) is small.

The idea is to bound how much the `-th layer magnifies the input error to the output. Specifically, if
the outputs of (`− 1)-th layer satisfy∥∥∥Σ̂`−1(x, x̃)− Σ`−1(x, x̃)

∥∥∥
max
≤ τ,

we hope to prove that with high probability over the randomness of W` and V`, we have∥∥∥Σ̂`(x, x̃)− Σ`(x, x̃)
∥∥∥

max
≤
(

1 +O
(

1

L

))
τ.

Then the theorem is proved by first showing that w.h.p.
∥∥∥Σ̂0(x, x̃)− Σ0(x, x̃)

∥∥∥
max

≤ (1 +

O(1/L))−Lε and then applying the result above for each layer.

A.2 Lemmas

We introduce the following lemmas. The first lemma shows the boundedness of K`(x, x̃).

Lemma 5. For the ResNet defined in Eqn. (5), K`(x, x) = (1 + α2)` for all x ∈ SD−1, ` =
0, 1, · · · , L. Also K`(x, x) is bounded uniformly when 0.5 ≤ γ ≤ 1.

Recall that φW`
(z) =

√
2
mσ0(W`z). SinceW` is Gaussian, we know that φW`

(x`−1) and φW`
(x̃`−1)

are both sub-Gaussian random vectors over the randomness of W`. Then their inner product enjoys
sub-exponential property.
Lemma 6 (Sub-exponential concentration). With probability at least 1− δ′ over the randomness of
W` ∼ N (0, I), when m ≥ c′ log(6/δ′), the following hold simultaneously∣∣∣〈φW`

(x`−1), φW`
(x̃`−1)〉 − ψσ(Σ̂`−1(x, x̃))

∣∣∣ ≤√c′ log(6/δ′)

m
‖x`−1‖‖x̃`−1‖, (12)∣∣∣‖φW`

(x`−1)‖2 − ‖x`−1‖2
∣∣∣ ≤√c′ log(6/δ′)

m
‖x`−1‖2, (13)∣∣∣‖φW`

(x̃`−1)‖2 − ‖x̃`−1‖2
∣∣∣ ≤√c′ log(6/δ′)

m
‖x̃`−1‖2. (14)

Lemma 7 (Locally Lipschitzness, based on [28]). ψσ is (1 + 1
π ( rµ )2)-Lipschitz w.r.t. max norm in

Mµ,r =

{[
a b
b c

]
|a, c ∈ [µ− r, µ+ r]; ac− b2 > 0

}
for all µ > 0, 0 < r ≤ µ/2. That means, if

(i). ‖Σ̂`−1(x, x̃)− Σ`−1(x, x̃)‖max ≤ τ and (ii). K`−1(x, x) = K`−1(x̃, x̃) = µ, for τ ≤ µ/2, we
have ∣∣∣ψσ(Σ̂`−1(x, x̃))− ψσ(Σ`−1(x, x̃))

∣∣∣ ≤ (1 +
1

π

( τ
µ

)2)
τ.

A.3 Proof of Theorem 3

Proof. In this proof, we also show the following hold with the same probability.

1. For ` = 0, 1, · · · , L, ‖x`‖ and ‖x̃`‖ are bounded by an absolute constant C1 (C1 = 4).
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2. For ` = 1, · · · , L, ‖φW`
(x`−1)‖ and ‖φW`

(x̃`−1)‖ are bounded by an absolute constant C2

(C2 = 8).

3.
∣∣∣〈φW`

(x
(1)
`−1), φW`

(x
(2)
`−1)〉 − Γσ(K`−1)(x(1), x(2))

∣∣∣ ≤ 2ε for all ` = 1, · · · , L and

(x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)}.

We focus on the `-th layer. Let τ =
∥∥∥Σ̂`−1(x, x̃)− Σ`−1(x, x̃)

∥∥∥
max

. Recall that Γσ(K`−1)(x, x̃) =

ψσ(Σ`−1(x, x̃)) = E(X,X̃)∼N (0,Σ`−1(x,x̃))σ(X)σ(X̃). Then

K`(x, x̃) = K`−1(x, x̃) + α2ψσ(Σ`−1(x, x̃)).

Since x` = x`−1 + α√
m
V`φW`

(x`−1), we have

〈x`, x̃`〉 = 〈x`−1, x̃`−1〉+
α2

m
〈V`φW`

(x`−1), V`φW`
(x̃`−1)〉

+ α
1√
m

(
〈V`φW`

(x`−1), x̃`−1〉+ 〈V`φW`
(x̃`−1), x`−1〉

)
= 〈x`−1, x̃`−1〉+ α2P + α(Q+R),

where

P ≡ 1

m
〈V`φW`

(x`−1), V`φW`
(x̃`−1)〉,

Q ≡ 1√
m

(
〈V`φW`

(x`−1), x̃`−1〉
)
,

R ≡ 1√
m

(
〈V`φW`

(x̃`−1), x`−1〉
)
.

Under the randomness of V`, P is sub-exponential, and Q and R are Gaussian random variables.
Therefore, for a given δ0, if m ≥ c0 log(2/δ0), with probability at least 1− δ0 over the randomness
of V`, we have∣∣∣P − 〈φW`

(x`−1), φW`
(x̃`−1)〉

∣∣∣ ≤ ‖φW`
(x`−1)‖‖φW`

(x̃`−1)‖
√
c0 log(2/δ0)

m
; (15)

for a given δ̃, with probability at least 1− 2δ̃ over the randomness of V`, we have

|Q| ≤ ‖φW`
(x`−1)‖‖x̃`−1‖

√
c̃ log(2/δ̃)

m
, (16)

and

|R| ≤ ‖φW`
(x̃`−1)‖‖x`−1‖

√
c̃ log(2/δ̃)

m
, (17)

where c0, c̃ > 0 are absolute constants.

Using the above result and Lemma 6 and setting δ0 = δ̃ = δ
18(L+1) , δ′ = δ

6(L+1) , when m ≥
C log(36(L + 1)/δ), we have (15), (16), (17), (12), (13), and (14) hold with probability at least
1− δ

3(L+1) .

Recall that τ =
∥∥∥Σ̂`−1(x, x̃)− Σ`−1(x, x̃)

∥∥∥
max

. Conditioned on τ < 0.5, we have

‖x`−1‖2 ≤ K`−1(x, x) + τ ≤ (1 + α2)L + τ ≤ e+ τ.

Similarly we can show ‖x̃`−1‖2 is bounded by e+ τ . By (13) and (14) we have ‖φW`
(x`−1)‖2 ≤

2‖x`−1‖2 and ‖φW`
(x̃`−1)‖2 ≤ 2‖x̃`−1‖2, which are both bounded.

14



Then∣∣∣〈x`, x̃`〉 − (α2ψσ(Σ`−1(x, x̃)) +K`−1(x, x̃)
) ∣∣∣

≤ τ + α2
(
P − ψσ(Σ`−1(x, x̃))

)
+ α(|Q|+ |R|)

≤ τ + α2
∣∣∣P − 〈φW`

(x`−1), φW`
(x̃`−1)〉

∣∣∣+ α

√
c̃ log(2/δ̃)

m

(
‖φW`

(x̃`−1)‖‖x`−1‖+ ‖φW`
(x`−1)‖‖x̃`−1‖

)
+ α2

∣∣∣ψσ(Σ̂`−1(x, x̃))− ψσ(Σ`−1(x, x̃))
∣∣∣+ α2

∣∣∣〈φW`
(x`−1), φW`

(x̃`−1)〉 − ψσ(Σ̂`−1(x, x̃))
∣∣∣

≤ τ + (α2 + α)

√
C3 log(36(L+ 1)/δ)

m
+ α2τ

(
1 +

1

π

(
τ

K`−1(x, x)

)2)
≤ τ + (α2 + α)

√
C3 log(36(L+ 1)/δ)

m
+ α2τ

(
1 +

1

4π

)
.

When α = 1
Lγ , γ ∈ [0.5, 1], we have α2 ≤ 1/L. Then when

m ≥ C3L
2(1−γ) log(36(L+ 1)/δ)

τ2
,

we have ∣∣∣〈x`, x̃`〉 −K`(x, x̃)
∣∣∣ ≤ τ +

4

L
τ.

As a byproduct, we have∣∣∣〈φW`
(x`−1), φW`

(x̃`−1)〉 − ψσ(Σ`−1(x, x̃))
∣∣∣

≤
√
C4 log(36(L+ 1)/δ)

m
+
(

1 +
1

π

( τ
µ

)2)
τ ≤ 2τ.

Repeat the above for (x`−1, x`−1) and (x̃`−1, x̃`−1), we have with probability at least 1− δ/(L+ 1)
over the randomness of V` and W`,∥∥∥Σ̂`−1(x, x̃)− Σ`−1(x, x̃)

∥∥∥
max
≤ τ ⇒∥∥∥Σ̂`(x, x̃)− Σ`(x, x̃)

∥∥∥
max
≤ (1 + 4/L)τ.

(18)

Finally, when m ≥ C5 log(6(L+1)/δ)
(ε/e4)2 , with probability at least 1− δ/(L+ 1) over the randomness of

A, we have ∥∥∥Σ̂0(x, x̃)− Σ0(x, x̃)
∥∥∥

max
≤ ε/e4.

Then the result follows by successively using (18).

A.4 proof of lemma 7

Proof. [28] showed that∥∥∥∥∇ψσ [a b
b c

]∥∥∥∥
1

=
1

2

a+ c√
ac

∣∣∣∣σ̂( b√
ac

)
− b√

ac
σ̂′
(

b√
ac

)∣∣∣∣+ σ̂′
(

b√
ac

)
.

When a, c ∈ [µ− r, µ+ r], we have
1

2

a+ c√
ac

=
1

2

(√
a

c
+

√
c

a

)
≤ 1

2

(√
µ+ r

µ− r
+

√
µ− r
µ+ r

)
=

(
1−

(
r

µ

)2)−1/2

≤ 1 +

(
r

µ

)2

.

The last inequality holds when r < µ
2 .

Define ρ = b√
ac

, we have ρ ∈ [−1, 1]. Then

‖∇φσ‖1 ≤
(

1 +

(
r

µ

)2)∣∣∣σ̂ (ρ)− ρσ̂′ (ρ)
∣∣∣+ σ̂′ (ρ)

=

(
1 +

(
r

µ

)2) ∣∣∣∣∣
√

1− ρ2

π

∣∣∣∣∣+ 1− cos−1 ρ

π

≤
√

1− ρ2

π
+ 1− cos−1 ρ

π
+

1

π

(
r

µ

)2

≤ 1 +
1

π

(
r

µ

)2

.
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B Proof of Theorem 4

B.1 Notation and Main Idea

We already know that when the network width m is large enough, 〈x`−1, x̃`−1〉 ≈ K`−1(x, x̃), and
〈φW`

(x`−1), φW`
(x̃`−1)〉 ≈ Γσ(K`−1)(x, x̃).

Next we need to show the concentration of the inner product of b`√
m

and b̃`√
m

. We define two matrices
for each layer

Θ̂`(x, x̃) =
1

m

[
〈b`, b`〉 〈b`, b̃`〉
〈b̃`, b`〉 〈b̃`, b̃`〉

]
,

and
Θ`(x, x̃) =

[
B`(x, x) B`(x, x̃)
B`(x̃, x) B`(x̃, x̃)

]
.

Recall that
b` = α

√
1

m

√
2

m
W>` D`V

>
` b`+1 + b`+1.

We aim to show that when ‖Θ̂`+1(x, x̃) − Θ`+1(x, x̃)‖max ≤ τ , with high probability over the
randomness of W` and V`, we have ‖Θ̂`(x, x̃)−Θ`(x, x̃)‖max ≤ (1 +O(1/L))τ . Notice that b`+1

and b̃`+1 contain the information of W` and V`; they are not independent. Nevertheless we can
decompose the randomness of W` and V` to show the concentration. This technique is also used in
[22].

B.2 Lemmas

In this part we introduce some useful lemmas. The first one shows the property of the step activation
function.
Lemma 8 (Property of σ′). [22]

(1). Sub-Gaussian concentration. With probability at least 1− δ over the randomness of W`, we have∣∣∣ 2

m
Tr(D`D̃`)− ψσ′(Σ̂`−1(x, x̃))

∣∣∣ ≤√c log(2/δ)

m
.

(2). Holder continuity. Fix µ > 0, 0 < r ≤ µ. For all A,B ∈ Mµ,r =

{[
a b
b c

] ∣∣∣∣a, c ∈
[µ− r, µ+ r]; ac− b2 > 0

}
, if ‖A−B‖max ≤ (µ− r)ε2, then

|ψσ′(A)− ψσ′(B)| ≤ ε.

The following lemma shows that regardless the fact that b`+1 and b̃`+1 depend on V`, we can treat V`
as a Gaussian matrix independent of b`+1 and b̃`+1 when the network width is large enough.
Lemma 9. Assume the following inequality hold simultaneously for all ` = 1, 2, · · · , L∥∥∥ 1√

m
W`

∥∥∥ ≤ C, ∥∥∥ 1√
m
V`

∥∥∥ ≤ C.
Fix an `. Further assume that

‖Θ̂`+1(x, x̃)−Θ`+1(x, x̃)‖max ≤ 1.

When m ≥ max{Cε2 (1 + log 6
δ ), Cε2 log 8L

δ′ , cL
2−2γ log 8L

δ′ }, the following holds for all (x(1), x(2)) ∈
{(x, x), (x, x̃), (x̃, x̃)} with probability at least 1− δ − δ′∣∣∣∣ 2

m

b
(1)
`+1√
m

>

V`D
(1)
` D

(2)
` V >`

b
(2)
`+1√
m
− 〈

b
(1)
`+1√
m
,
b
(2)
`+1√
m
〉 2

m
Tr(D

(1)
` D

(2)
` )

∣∣∣∣ ≤ ε.
The following lemma shows the same thing for W` as V` in Lemma 9.
Lemma 10. Assume the conditions and the results of Lemma 9 hold.

(1). When m ≥ max{Cε2 (1 + log 6
δ ), Cε2 log 8L

δ′ , cL
2−2γ log 8L

δ′ },the following holds for all
(x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)} with probability at least 1− δ − δ′∣∣∣∣ 1

m

2

m
〈W>` D

(1)
` V >`

b
(1)
`+1√
m
,W>` D

(2)
` V >`

b
(2)
`+1√
m
〉 − 2

m
〈D(1)

` V >`
b
(1)
`+1√
m
,D

(2)
` V >`

b
(2)
`+1√
m
〉
∣∣∣∣ ≤ ε.
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(2). When m ≥ max{Cε̃2 log 16L
δ̃
, cL2−2γ log 16L

δ̃
}, for all (x(1), x(2)) ∈

{(x, x), (x, x̃), (x̃, x), (x̃, x̃)}, the following holds with probability at least 1− δ̃∣∣∣∣ 1

m

√
1

m

√
2

m
〈W>` D

(1)
` V >` b

(1)
`+1, b

(2)
`+1〉

∣∣∣∣ ≤ ε̃.
B.3 Proof of Theorem 4

Proof. In this proof we are going to prove that when m satisfies the assumption, with probability at
least 1− δ0, the following hold for ` = 1, · · · , L.∣∣∣∣ 1

α2
〈∇V`f,∇V` f̃〉 −B`+1(x, x̃)Γσ(K`−1)(x, x̃)

∣∣∣∣ ≤ ε0,∣∣∣∣ 1

α2
〈∇W`

f,∇W`
f̃〉 −K`−1(x, x̃)B`+1(x, x̃)Γσ′(K`−1)(x, x̃)

∣∣∣∣ ≤ ε0.
We break the proof into several steps. Each step is based on the result of the previous steps. Note that
the absolute constants c and C may vary throughout the proof.

Step 1. Norm Control of the Gaussian Matrices

With probability at least 1− δ1, when m > c log 4L
δ1

, one can show that the following hold simultane-
ously for all ` = 1, 2, · · · , L [38]∥∥∥∥ 1√

m
W`

∥∥∥∥ ≤ C, ∥∥∥∥ 1√
m
V`

∥∥∥∥ ≤ C.
Step 2. Concentration of the GP kernels
By Theorem 3, with probability at least 1− δ2, when

m ≥ C

ε42
L2−2γ log

36(L+ 1)

δ2
,

we have

1. For ` = 0, · · · , L,
∥∥∥Σ`(x, x̃)− Σ̂`(x, x̃)

∥∥∥
max
≤ cε22;

2. For ` = 0, 1, · · · , L, ‖x`‖ and ‖x̃`‖ are bounded by an absolute constant C1 (C1 = 4);

3. For ` = 1, · · · , L, ‖φW`
(x`−1)‖ and ‖φW`

(x̃`−1)‖ are bounded by an absolute constant C2

(C2 = 8);

4.
∣∣∣〈φW`

(x
(1)
`−1), φW`

(x
(2)
`−1)〉 − Γσ(K`−1)(x(1), x(2))

∣∣∣ ≤ 2cε22 for all ` = 1, · · · , L and

(x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)}.

Step 3. Concentration of σ′

By Lemma 8, when m ≥ C
ε22

log 6L
δ3

, with probability at least 1 − δ3, for all ` = 1, 2, · · · , L and

(x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)}, we have∣∣∣ 2

m
Tr(D

(1)
` D

(2)
` )− Γσ′(K`−1)(x(1), x(2))

∣∣∣ ≤√c log(6L/δ3)

m
+

√
2
∥∥∥Σ̂`−1(x, x̃)− Σ`−1(x, x̃)

∥∥∥
max
≤ ε2.

Step 4. Concentration of B`
Recall that

b`+1 =

(
v>

∂xL
∂xL−1

∂xL−1

∂xL−2
· · · ∂x`+1

∂x`

)>
.

We have
bL+1 = v,

and for ` = 1, 2, · · · , L− 1,

b`+1 =
∂x`+1

∂x`

>
b`+2 = α

√
1

m

√
2

m
W>`+1D`+1V

>
`+1b`+2 + b`+2.
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Following the same idea in Thm 3, we prove by induction. First of all, for bL+1, we have

ΘL+1(x, x̃) =

[
1 1
1 1

]
, Θ̂L+1(x, x̃) = ‖v‖2

m

[
1 1
1 1

]
. Then by Bernstein inequality [39], with

probability at least 1− δ4
L , when m ≥ C

ε24
log 2L

δ4
, we have∣∣∣∣‖v‖2m
− 1

∣∣∣∣ ≤ ε4.
Fix ` ∈ {2, 3, · · · , L}. Assume that∥∥∥Θ̂`+1(x, x̃)−Θ`+1(x, x̃)

∥∥∥
max
≤ τ ≤ 1,

we hope to prove with high probability,∥∥∥Θ̂`(x, x̃)−Θ`(x, x̃)
∥∥∥

max
≤ (1 +O(1/L))τ.

First write
1

m
〈b(1)
` , b

(2)
` 〉 =

1

m
〈b(1)
`+1, b

(2)
`+1〉+ α2P + α(Q+R),

where

P =
1

m

2

m
〈W>` D

(1)
` V >`

b
(1)
`+1√
m
,W>` D

(2)
` V >`

b
(2)
`+1√
m
〉,

Q =
1

m

√
1

m

√
2

m
〈W>` D

(1)
` V >` b

(1)
`+1, b

(2)
`+1〉,

R =
1

m

√
1

m

√
2

m
〈W>` D

(2)
` V >` b

(2)
`+1, b

(1)
`+1〉.

Then∣∣∣ 1

m
〈b(1)
` , b

(2)
` 〉 − (B`+1(x(1), x(2)) + α2B`+1(x(1), x(2))Γσ′(K`−1)(x(1), x(2))

∣∣∣
≤
∣∣∣ 1

m
〈b(1)
`+1, b

(2)
`+1〉 −B`+1(x(1), x(2))

∣∣∣+ α2
∣∣∣P −B`+1(x(1), x(2))Γσ′(K`−1)(x(1), x(2))

∣∣∣+ α|Q|+ α|R|

≤ τ + α2
∣∣∣P − 2

m
〈D(1)

` V >`
b
(1)
`+1√
m
,D

(2)
` V >`

b
(2)
`+1√
m
〉
∣∣∣

+ α2
∣∣∣ 2

m
〈D(1)

` V >`
b
(1)
`+1√
m
,D

(2)
` V >`

b
(2)
`+1√
m
〉 − 〈

b
(1)
`+1√
m
,
b
(2)
`+1√
m
〉 2

m
Tr(D

(1)
` D

(2)
` )
∣∣∣

+ α2
∣∣∣〈b(1)

`+1√
m
,
b
(2)
`+1√
m
〉 −B`+1(x(1), x(2))

∣∣∣∣∣∣ 2

m
Tr(D

(1)
` D

(2)
` )
∣∣∣

+ α2
∣∣∣B`+1(x(1), x(2))

∣∣∣∣∣∣ 2

m
Tr(D

(1)
` D

(2)
` )− Γσ′(K`−1)(x(1), x(2))

∣∣∣
+ α|Q|+ α|R|.

In Lemma 9 and Lemma 10, set ε̃ = cLγ−1τ , ε = cτ , δ = δ̃ = δ′ = δ4/5L. When m ≥
max{ Cτ2 (1 + log 30L

δ4
), Cτ2 log 40L2

δ4
, Cτ2L

2−2γ log 80L2

δ4
, cL2−2γ log 80L2

δ4
}, with probability at least

1− δ4
L , the results of Lemma 9 and Lemma 10 hold. Then for all (x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)},∣∣∣ 1

m
〈b(1)
` , b

(2)
` 〉 −B`(x

(1), x(2))
∣∣∣ ≤ τ + α2cτ + α2cτ + α22τ + α2eε2 + 2αcLa−1τ

≤ τ(1 +O(1/L)). (Set ε2 ≤ cτ.)

By taking union bound, with probability at least 1− δ4, we have for all ` = 1, 2, · · · , L,
‖Θ̂`+1(x, x̃)−Θ`+1(x, x̃)‖max ≤ (1 +O(1/L))Lε4 ≤ Cε4.

Meanwhile, we have for all (x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)} and ` = 1, · · · , L,∣∣∣∣ 2

m
〈D(1)

` V >`
b
(1)
`+1√
m
,D

(2)
` V >`

b
(2)
`+1√
m
〉−B`+1(x(1), x(2))Γσ′(K`−1)(x(1), x(2))

∣∣∣∣ ≤ (2+c)τ+eε2 ≤ Cε4.

Step 5. Summary
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Using previous results, for all `, we have∣∣∣ 1

α2
〈∇V`f,∇V` f̃〉 −B`+1Γσ(K`−1)

∣∣∣
≤
∣∣∣ 1

m
〈b`+1, b̃`+1〉 −B`+1

∣∣∣ · |〈φW`
(x`−1), φW`

(x̃`−1)〉|+ |B`+1| · |〈φW`
(x`−1), φW`

(x̃`−1)〉 − Γσ(K`−1)|

≤ Cε4 + Cε22,
and∣∣∣ 1

α2
〈∇W`

f,∇W`
f̃〉 −K`−1B`+1Γσ′(K`−1)

∣∣∣
≤
∣∣∣ 1

m
〈x`−1, x̃`−1〉 −K`−1

∣∣∣ · ∣∣∣ 2

m
b̃>`+1V`D̃`D`V

>
` b`+1

∣∣∣+ |K`−1| ·
∣∣∣ 2

m
b̃>`+1V`D̃`D`V

>
` b`+1 −B`+1Γσ′(K`−1)

∣∣∣
≤ Cε22 + Cε4.

To sum up, by choosing ε4 = cε0, ε2 = cε4, and δ1 = δ2 = δ3 = δ4 = δ0/4, then with probability at
least 1− δ0, when

m ≥ C

ε40
L2−2γ

(
log

320(L2 + 1)

δ0
+ 1

)
≥ max

{
c log

16L

δ0
,
C

ε40
L2−2γ log

144(L+ 1)

δ0
,
C

ε20
log

24L

δ0
,

C

ε20
log

8L

δ0
,
C

ε20
(1 + log

120L

δ0
),
C

ε20
log

160L2

δ0
,
C

ε20
L2−2γ log

320L2

δ0
, cL2−2γ log

320L2

δ4
0

}
,

the desired results hold.

C Proofs of the Lemmas

C.1 Supporting lemmas

Lemma 11. Define G = [φW`
(x`−1), φW`

(x̃`−1)], and Π⊥G as the orthogonal projection onto the
orthogonal complement of the column space of G. when m ≥ 1 + log 6

δ , the following holds with
probability at least 1− δ for all (x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)},∣∣∣∣ 2

m

b
(1)
`+1√
m

>

V`Π
⊥
GD

(1)
` D

(2)
` Π⊥GV

>
`

b
(2)
`+1√
m
− 〈

b
(1)
`+1√
m
,
b
(1)
`+1√
m
〉 2

m
Tr(D

(1)
` D

(2)
` )

∣∣∣∣ ≤ (4 + 4
√

2)M

√
1 + log 6

δ

m
,

where
M = max

{
‖b`+1‖2

m
,
‖b̃`+1‖2

m

}
.

proof of Lemma 11. We prove the lemma on any realization of
(A,W1, V1, · · · ,W`−1, V`−1,W`,W`+1, V`+1, · · · ,WL, VL, v), V`φW`

(x`−1) and V`φW`
(x̃`−1),

and consider the remaining randomness of V`. In this case, D`, D̃`, b`+1 and b̃`+1 are fixed.

One can show that conditioned on the realization of V`G (whose “degree of freedom” is 2m), V`Π⊥G
is identically distributed as Ṽ`Π⊥G, where Ṽ` is an i.i.d. copy of V`. The remaining m2 − 2m “degree
of freedom” is enough for a good concentration. For the proof of this result, we refer the readers to
Lemma E.3 in [22].

Denote T = Π⊥GD
(1)
` D

(2)
` Π⊥G,

S =

 Ṽ >`
b
(1)
`+1√
m

Ṽ >`
b
(2)
`+1√
m

 .
We know that S is a 2m-dimensional Gaussian random vector, and

S ∼ N

0,

〈 b(1)`+1√
m
,
b
(1)
`+1√
m
〉Im 〈 b

(1)
`+1√
m
,
b
(2)
`+1√
m
〉Im

〈 b
(2)
`+1√
m
,
b
(1)
`+1√
m
〉Im 〈 b

(2)
`+1√
m
,
b
(2)
`+1√
m
〉Im

 .
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Then there exists a matrix P ∈ R2m×2m, such that

PP> =

〈 b(1)`+1√
m
,
b
(1)
`+1√
m
〉Im 〈 b

(1)
`+1√
m
,
b
(2)
`+1√
m
〉Im

〈 b
(2)
`+1√
m
,
b
(1)
`+1√
m
〉Im 〈 b

(2)
`+1√
m
,
b
(2)
`+1√
m
〉Im

 ,
and S d

= Pξ, ξ ∼ N (0, I2m).

Thus
b
(1)
`+1√
m

>

Ṽ`Π
⊥
GD

(1)
` D

(2)
` Π⊥GṼ

>
`

b
(2)
`+1√
m

d
= ξ>P>

[
Im
0

]>
T

[
0
Im

]
Pξ =

1

2
ξ>P>

[
0 T
T 0

]
Pξ.

We have∥∥∥∥1

2
P>

[
0 T
T 0

]
P

∥∥∥∥ ≤ 1

2

∥∥P>∥∥ · ‖P‖ · ∥∥∥∥[ 0 T
T 0

]∥∥∥∥
=

1

2

∥∥PP>∥∥ · ‖T‖
≤ 1

2

∥∥∥∥∥∥
〈 b(1)`+1√

m
,
b
(1)
`+1√
m
〉Im 〈 b

(1)
`+1√
m
,
b
(2)
`+1√
m
〉Im

〈 b
(2)
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m
,
b
(1)
`+1√
m
〉Im 〈 b

(2)
`+1√
m
,
b
(2)
`+1√
m
〉Im

∥∥∥∥∥∥∥∥Π⊥G
∥∥∥∥∥D(1)

`

∥∥∥∥∥∥D(2)
`

∥∥∥∥∥Π⊥G
∥∥

≤
〈 b

(1)
`+1√
m
,
b
(1)
`+1√
m
〉+ 〈 b

(2)
`+1√
m
,
b
(2)
`+1√
m
〉

2
≤M.

And
∥∥∥∥ 1

2P
>
[

0 T
T 0

]
P

∥∥∥∥
F

≤
√

2mM .

Then by the Hanson-Wright Inequality for Gaussian chaos [40], we have with probability at least
1− δ/3,

2

m

∣∣∣∣∣∣b
(1)
`+1√
m

>

Ṽ`Π
⊥
GD

(1)
` D

(2)
` Π⊥GṼ

>
`

b
(2)
`+1√
m
− EṼ`

b(1)
`+1√
m

>

Ṽ`Π
⊥
GD

(1)
` D

(2)
` Π⊥GṼ

>
`

b
(2)
`+1√
m

∣∣∣∣∣∣
≤ 4

m

(
√

2mM

√
log

6

δ
+M log

6

δ

)
,

Furthermore, we have

EṼ`

b(1)
`+1√
m

>

Ṽ`Π
⊥
GD

(1)
` D

(2)
` Π⊥GṼ

>
`

b
(2)
`+1√
m

 = 〈
b
(1)
`+1√
m
,
b
(1)
`+1√
m
〉Tr(Π⊥GD

(1)
` D

(2)
` ).

Thus ∣∣∣∣ 2

m
EṼ`

b(1)
`+1√
m

>

Ṽ`Π
⊥
GD

(1)
` D

(2)
` Π⊥GṼ

>
`

b
(2)
`+1√
m

− 〈b(1)
`+1√
m
,
b
(1)
`+1√
m
〉 2

m
Tr(D

(1)
` D

(2)
` )

∣∣∣∣
=

2

m

∣∣∣∣〈b(1)
`+1√
m
,
b
(1)
`+1√
m
〉Tr(ΠGD

(1)
` D

(2)
` )

∣∣∣∣
≤ 2

m
M Tr(ΠGD

(1)
` D

(2)
` ΠG)

≤ 4

m
M.

By taking union bound, we have with probability at least 1 − δ, for all (x(1), x(2)) ∈
{(x, x), (x, x̃), (x̃, x̃)},∣∣∣∣ 2

m

b
(1)
`+1√
m

>

V`Π
⊥
GD

(1)
` D

(2)
` Π⊥GV

>
`

b
(2)
`+1√
m
− 〈

b
(1)
`+1√
m
,
b
(1)
`+1√
m
〉 2

m
Tr(D

(1)
` D

(2)
` )

∣∣∣∣
≤ 4

m

(
√

2mM

√
log

6

δ
+M log

6

δ

)
+

4

m
M

≤ (4 + 4
√

2)M

√
1 + log 6

δ

m
,
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where the last inequality holds when m ≥ 1 + log 6
δ .

Lemma 12 (Norm controls of b`+1). Assume the following inequalities hold simultaneously for all
` = 1, 2, · · · , L ∥∥∥ 1√

m
W`

∥∥∥ ≤ C, ∥∥∥ 1√
m
V`

∥∥∥ ≤ C.
Then for any fixed input x, 1 ≤ ` ≤ L and u ∈ Rm, when

m ≥ cL2−2γ log
2L

δ′
,

with probability at least 1− δ′ over the randomness of W`+1, V`+1, · · · ,WL, VL, v, we have

|〈u, b`+1〉| ≤ C ′‖u‖
√

log
2L

δ′
.

proof of Lemma 12. Denote u` = u, and

ui+1 = α

√
1

m

√
2

m
Vi+1Di+1Wi+1ui + ui, i = `, `+ 1, · · · , L− 1.

One can show that 〈u, b`+1〉 = 〈v, uL〉. Next we show that ‖ui+1‖ = (1 + O( 1
L ))‖ui‖ with high

probability. First write

‖ui+1‖2 = ‖ui‖2 + α2

∥∥∥∥
√

1

m

√
2

m
Vi+1Di+1Wi+1ui

∥∥∥∥2

+ 2α

〈
ui,

√
1

m

√
2

m
Vi+1Di+1Wi+1ui

〉
.

By the assumption we have∥∥∥∥
√

2

m
Di+1Wi+1ui

∥∥∥∥ ≤ √2C‖ui‖,∥∥∥∥
√

1

m

√
2

m
Vi+1Di+1Wi+1ui

∥∥∥∥ ≤ √2C2‖ui‖.

With probability at least 1− δ′/L over the randomness of Vi+1, we have∥∥∥∥∥〈ui,
√

1

m

√
2

m
Vi+1Di+1Wi+1ui〉

∥∥∥∥∥ ≤ ‖ui‖ ·
∥∥∥∥
√

2

m
Di+1Wi+1ui

∥∥∥∥
√
c log 2L

δ′

m
.

Then when
m ≥ cL2−2γ log

2L

δ′
,

we have

‖ui+1‖2 = ‖ui‖2 + α2

∥∥∥∥
√

1

m

√
2

m
Vi+1Di+1Wi+1ui

∥∥∥∥2

+ 2α〈ui,
√

1

m

√
2

m
Vi+1Di+1Wi+1ui〉

≤ (1 + 2C4/L)‖ui‖2 + 2α
√

2C‖ui‖2
√
c log 2L

δ′

m

≤ (1 + 2C4/L+ 2
√

2C/L)‖ui‖2 = (1 +O(1/L))‖ui‖2.
Then with probability at least 1− δ′(L− 1)/L we have ‖uL‖ ≤ C‖u‖. Finally the result holds from
the standard concentration bound for Gaussian random variables [39].

C.2 Proofs of Lemma 9

proof of Lemma 9. By the assumption, we have
1

m
‖b`+1‖2 ≤ B`+1(x, x) + 1 ≤ 4.

Similarly, 1
m‖b̃`+1‖2 ≤ 4. Then by Lemma 11, when m ≥ C

ε2 (1 + log 6
δ ), we have for all

(x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x̃)},∣∣∣∣ 2

m

b
(1)
`+1√
m

>

V`Π
⊥
GD

(1)
` D

(2)
` Π⊥GV

>
`

b
(2)
`+1√
m
− 〈

b
(1)
`+1√
m
,
b
(1)
`+1√
m
〉 2

m
Tr(D

(1)
` D

(2)
` )

∣∣∣∣ ≤ cε.
Specifically, we have∥∥∥∥

√
2

m

b`+1√
m

>
V`Π

⊥
GD`

∥∥∥∥ ≤
√
cε+

2

m
Tr(D`)

1

m
‖b`+1‖2 ≤ O(1),
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and similarly ∥∥∥∥
√

2

m

b̃`+1√
m

>

V`Π
⊥
GD̃`

∥∥∥∥ ≤ O(1).

Next we bound ∥∥∥∥b`+1√
m

>
V`ΠG

∥∥∥∥.
Notice that ΠG is a orthogonal projection onto the column space of G, which is at most 2-dimension.
One can write ΠG = u1u

>
1 + u2u

>
2 , where ‖ui‖ = 1 or 0. By Lemma 12, fixing u1, u2 and V`, w.p

greater than 1− δ′ over the randomness of W`+1, V`+1, · · · ,WL, VL, v, we have∣∣∣∣b>`+1

1√
m
V`ui

∣∣∣∣ ≤ C ′′
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log
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,

and ∣∣∣∣b̃>`+1
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m
V`ui

∣∣∣∣ ≤ C ′′
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log
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,

for both i = 1, 2 when
m ≥ cL2−2γ log

8L
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.
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)
.

Finally, using Im = ΠG + Π⊥G, we have∣∣∣∣ 2
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The last inequality holds when m ≥ C
ε2 log 8L

δ′ .

C.3 Proof of Lemma 10

proof of Lemma 10. The first part of the proof is essentially the same as Lemma 9. Define

d`+1 = D`
1√
m
V >`

b`+1√
m
, d̃`+1 = D̃`

1√
m
V >`

b̃`+1√
m
.

We know that d`+1 and d̃`+1 depend on W` only through W`x`−1 and W`x̃`−1. Let H =
[x`−1, x̃`−1]. Then∣∣∣ 2
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∣∣∣.
Since ‖d`+1‖, ‖d̃`+1‖ = O(1), similar to Lemma 11, when m ≥ 1 + log 6

δ , w.p at least 1 − δ we
have ∣∣∣ 2
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〈Π⊥HW>` d

(1)
`+1,Π

⊥
HW

>
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,

22



and ∥∥∥√ 2

m
Π⊥HW

>
` d

(i)
`+1

∥∥∥ = O(1), i = 1, 2,

Using the same argument as in the proof of Lemma 9, we decompose ΠH into two vectors w1 and
w2, whose randomness comes from W1, V1, · · · ,W`−1, V`−1. By writing

w>i W
>
` d

(i)
`+1 = 〈b(i)`+1,

1√
m
V`D

(i)
`

1√
m
W`wi〉,

we can also apply Lemma 12. Then we conclude that w.p. greater than 1− δ′ over the randomness of
v, we have

‖ΠHW
>
` d`+1‖, ‖ΠHW

>
` d̃`+1‖ = O

(√
log

8L

δ′

)
,

when
m ≥ cL2−2γ log

8L

δ′
.

Then exactly the same result of Lemma 9 holds.

For the second part, notice that

1

m

√
1

m

√
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√
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Conditioned on x`−1, x̃`−1, W`x`−1, and W`x̃`−1, W` is independent of b`+1, b̃`+1, d`+1, and d̃`+1.
Furthermore, we have Π⊥HW

>
` =d Π⊥HŴ

>
` , where Ŵ` is an i.i.d. copy of W`. Then for the first term,

with probability at least 1− δ̃/2, we have for all (x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x), (x̃, x̃)},∣∣∣∣
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For the second term, write ΠH = w1w
>
1 + w2w

>
2 , where ‖wi‖ = 1 or 0. Then by Lemma 12,

with probability at least 1 − δ̃/2, for all (x(1), x(2)) ∈ {(x, x), (x, x̃), (x̃, x), (x̃, x̃)}, when m ≥
cL2−2γ log 16L
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, we have∣∣∣∣
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 .

D Proof of Theorem 5

Proof. For x, x̃ ∈ SD−1, we have K`(x, x) = K`(x̃, x̃) = 1 for all `. Hence we only need to study
when x 6= x̃. Note we have

K`(x, x̃) = Γσ(K`−1)(x, x̃) = σ̂(K`−1(x, x̃)), and Γσ′(K`)(x, x̃) = σ̂′(K`(x, x̃)).

For simplicity, we use K` to denote K`(x, x̃), where x 6= x̃ and x, x̃ ∈ SD−1.

Recall that

σ̂(ρ) =

√
1− ρ2 +

(
π − cos−1(ρ)

)
ρ

π
, and σ̂′(ρ) =

π − cos−1(ρ)

π
.

Hence we have σ̂(1) = 1, K`−1 ≤ σ̂(K`−1) = K`, (σ̂)
′
(ρ) = σ̂′(ρ) ∈ [0, 1], and (σ̂′)

′
(ρ) ≥ 0.

Then σ̂ is a convex function.
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Since {K`} is an increasing sequence and |K`| ≤ 1, we have K` converges as `→∞. Taking the
limit of both sides of σ̂(K`−1) = K`, we have K` → 1 as `→∞.
For K`, we also have

K` = σ̂(K`−1) =

√
1−K2

`−1 + (π − cos−1(K`−1))K`−1

π
= K`−1 +

√
1−K2

`−1 − cos−1(K`−1)K`−1

π
.

Let e` = 1−K`, we can easily check that

e`−1 −
e

3/2
`−1

π
≤ e` ≤ e`−1 −

2
√

2e
3/2
`−1

3π
. (19)

Hence as e` → 0, we have e`
e`−1

→ 1, which implies {K`} converges sublinearly.

Assume e` = C
`p +O(`−(p+1)). By taking the assumption into (19) and comparing the highest order

of both sides, we have p = 2.

Thus ∃C, s.t. |1−K`| ≤ C
`2 , i.e. the convergence rate of K` is O

(
1
`2

)
.

Lemma 13. For each K0 < 1, there exists p > 0 and n0 = n0(δ) > 0, such that Kn ≤ 1 −
9π2

2(n+n0)2+
log(L)p

L

, ∀n = 0, . . . , L, when L is large.

Proof. First, solve K0 ≤ 1− 9π2

2n2+
log(L)p

L

. Then we can choose n0 ≥
√

9π2

2δ ≥
√

9π2

2(1−K0) , which is

independent of L and n. For the rest of the proof, without loss of generality, we just use n instead of

n+n0. Also for small δ( when δ is not small enough we can pick a small δ0 < δ and let n0 ≥
√

9π2

2δ0
),

we have 9π2

2(n+n0)2+
log(L)p

L

≤ δ(or δ0) which is also small.

Let Kn = 1− ε. Then, when ε is small, we have
Kn+1 −Kn = σ̂(Kn)−Kn = O(ε3/2).

Also, we have(
1− 9π2

2(n+ 1)2+
log(L)p

L

)
−
(

1− 9π2

2n2+
log(L)p

L

)
= O

(
1

n3+
log(L)p

L

)

≥ O

((
1

n2+
log(L)p

L

)3/2
)

= O
(

1

n3+
3 log(L)p

2L

)
.

Overall, we want an upper bound for Kn and from the above we only know that Kn is of order
1 − O(n−2) but this order may hide some terms of logarithmic order. Hence we use the order
1−O(n−(2+ε)) to provide an upper bound of Kn. Here log(L)p

L is constructed for the convenience
of the rest of the proof.

Let N0 = N0(L) be the solution of

cos

π
1−

(
n+ 1

n+ 2

)3− log(L)2

L

 = σ̂

cos

π
1−

(
n

n+ 1

)3− log(L)2

L

 ,

where for N0 < n < NL with some NL, we have

cos

π
1−

(
n+ 1

n+ 2

)3− log(L)2

L

 ≥ σ̂
cos

π
1−

(
n

n+ 1

)3− log(L)2

L

 .

One can check by series expansion that N0 = N0(L) ≤ 5 L
log(L)2 .

Next we would like to find n such that

Kn = cos

π
1−

(
5 L

log(L)2

5 L
log(L)2 + 1

)3− log(L)2

L


 .
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By series expansion, we know

cos

π
1−

(
5 L

log(L)2

5 L
log(L)2 + 1

)3− log(L)2

L


 ≥ 1− 9π2

2
(

5L
log(L)2

)2 .

Then it suffices to solve

1− 9π2

2( 5L
log(L)2 )2

≥ 1− 9π2

2n2+
log(L)p

L

≥ Kn, i.e., n
2+

log(L)p

L ≤
(

5L

log(L)2

)2

. (20)

Lemma 14. When q > p− 1, we have n . 5L
log(L)2 − log(L)q satisfies (20).

Proof. If the condition above holds, we have

n2+
log(L)p

L ≤
(

5L

log(L)2
− log(L)q

)2+
log(L)p

L

,

which is

n1+
log(L)p

2L ≤
(

5L

log(L)2
− log(L)q

)(
5L

log(L)2
− log(L)q

) log(L)p

2L

≤
(

5L

log(L)2
− log(L)q

)(
1 +

log(L)p log( 5L
log(L)2 )

2L

)

=
5L

log(L)2
− log(L)q +

5

2
log(L)p−2 log

(
5L

log(L)2

)
− 1

2L
log(L)p+q log

(
5L

log(L)2

)
,

where
(

5L
log(L)2 − log(L)q

) log(L)p

2L → 1 as L→∞.

Thus we have q > p− 1.

Just pick q = p. Then we have n1+
log(L)p

2L . 5L
log(L)2 and n . 5L

log(L)2 − log(L)p.

Lemma 15. When L is large enough, we have

cos

π
1−

(
n

n+ 1

)3+
log(L)2

L

 ≤ Kn ≤ cos

π
1−

(
n+ log(L)p

n+ log(L)p + 1

)3− log(L)2

L

 .

Proof. Let F (n) = cos

(
π

(
1−

(
n+log(L)p

n+log(L)p+1

)3− log(L)p

L

))
.

For the right hand side, when n & 5L
log(L)2 − log(L)p, we have, by series expansion, F (n + 1) ≥

σ̂ (F (n)). Also, when n ∼ aL, where 0 < a ≤ 1, we have

F (n+ 1)− σ̂(F (n)) = O

(
3
(
2π2a log10(L) + π2 log8(L)

)
2L4

(
a log2(L) + 5

)4
)
> 0.

Then for 5L
log(L)2 − log(L)p . n . L, we have F (n+ 1) ≥ σ̂ (F (n)) and thus Kn ≤ F (n).

When n . 5L
log(L)2 − log(L)p, we have F (n+ 1) ≤ σ̂ (F (n)). Hence Kn ≤ F (n).

For the left hand side,

cos

π
1−

(
n+ 1

n+ 2

)3+
log(L)2

L

− σ̂
cos

π
1−

(
n

n+ 1

)3+
log(L)2

L


∼ −27π2

2n4
− 3π2 log(L)2

n3L
, ∀n = 1, ..., L.

Hence we have the left hand side.
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From Lemma 15, by series expansion, we have

|1−Kn| ≤

(
3π + π log(L)2

L

)2

2n2
∼ 9π2

2n2
,

when L is large.

Moreover, we can get(
n

n+ 1

)3+
log(L)2

L

≤ Γσ′(Kn) ≤
(

n+ log(L)p

n+ log(L)p + 1

)3− log(L)2

L

.

Then (
`− 1

L

)3+
log(L)2

L

≤
L∏
i=`

Γσ′(Ki−1) ≤
(
`+ log(L)p − 1

L+ log(L)p

)3− log(L)2

L

.

Let N = log(L)p. For the right hand side, if we sum over `, we have

1

L

L∑
`=1

(
`+N − 1

L+N

)3− log(L)2

L

≤ 1

L

∫ L+1

1

(
x+N − 1

L+N

)3− log(L)2

L

dx

=

(
(L+N)

4− log(L)2

L − (N)
4− log(L)2

L

)
L(L+N)3− log(L)2

L

(
4− log(L)2

L

) .

Taking the limit of both sides, we have

lim
L→∞

1

L

L∑
`=1

(
`+N − 1

L+N

)3− log(L)2

L

≤ 1

4
.

Similarly, by

1

L

L∑
i=1

(
`− 1

L

)3+
log(L)2

L

≥ 1

L

∫ L

1

(
x− 1

L

)3+
log(L)2

L

dx =
(L− 1)

4+
log(L)2

L(
4 + log(L)2

L

)
L4+

log(L)2

L

,

we have

lim
L→∞

1

L

L∑
i=1

(
`− 1

L

)3+
log(L)2

L

≥ 1

4
.

Hence,

lim
L→∞

1

L

L∑
`=1

(
`+N − 1

L+N

)3− log(L)2

L

= lim
L→∞

1

L

L∑
`=1

(
`− 1

L

)3+
log(L)2

L

= lim
L→∞

1

L

L∑
`=1

L∏
i=`

Γσ′(Ki−1) =
1

4
.

Recall from previous discussion, K` = 1−O( 1
`2 ). Therefore,

lim
L→∞

1

L

L∑
`=1

K`−1

L∏
i=`

Γσ′(Ki−1) =
1

4
.

Also, when L is large, we have(
(L+N)

4− log(L)2

L − (N)
4− log(L)2

L

)
L(L+N)3− log(L)2

L

(
4− log(L)2

L

) >
1

4
>

(L− 1)4+
log(L)2

L(
4 + log(L)2

L

)
L4+

log(L)2

L

.

Hence we can estimate the convergence rate of the normalized kernel∣∣∣∣ 1L
L∑
`=1

K`−1

L∏
i=`

Γσ′(Ki−1)− 1

4

∣∣∣∣ =

∣∣∣∣ 1L
L∑
`=1

(
K`−1

(
L∏
i=`

Γσ′(Ki−1)− 1

4

)
+

1

4
(K`−1 − 1)

)∣∣∣∣
26



≤
∣∣∣∣ 1L

L∑
`=1

L∏
i=`

Γσ′(Ki−1)− 1

4

∣∣∣∣+
1

4

∣∣∣∣ 1L
L∑
`=1

(K`−1 − 1)

∣∣∣∣
≤

∣∣∣∣∣∣∣∣
(

(L+N)
4− log(L)2

L − (N)
4− log(L)2

L

)
L(L+N)3− log(L)2

L

(
4− log(L)2

L

) − (L− 1)4+
log(L)2

L(
4 + log(L)2

L

)
L4+

log(L)2

L

∣∣∣∣∣∣∣∣
+

1

4

∣∣∣∣ 1L
L∑
i=1

(K`−1 − 1)

∣∣∣∣
.

4 log(L)p + log(L)2

16L
= O

(
poly log(L))

L

)

E Proof of Theorem 6

Proof. We denote K`,L to be the `-th layer of K when the depth is L, which is originally denoted by
K`.

Let S`,L =
K`,L

(1+α2)`
=

K`,L
(1+1/L2)`

and S0 = K0, then Γσ(K`,L) = (1 + α2)`σ̂(S`,L) and

Γσ′(K`,L) = σ̂′(S`,L). Hence we can rewrite the recursion to be

S`,L =
S`−1,L + α2σ̂(S`−1,L)

(1 + α2)
≥ S`−1,L. (21)

Moreover, since S`,L−S`−1,L = α2

1+α2 (σ̂(S`−1,L)−S`−1,L) and (σ̂(S`−1,L)−S`−1,L) is decreasing,
we can have

S`,L ≤ S0 +
(σ̂(S0)− S0)`

L2
.

Denote P`+1,L = B`+1,L(1 + α2)−(L−`) =
∏L−1
i=`

1+α2σ̂′(Si,L)
1+α2 . Since

1− 1 + α2σ̂′(Si,L)

1 + α2
=
α2(1− σ̂′(Si,L))

1 + α2
=

1− σ̂′(Si,L)

L2 + 1
,

we have

1− P`+1,L = 1−
L−1∏
i=`

(
1− 1− σ̂′(Si,L)

L2 + 1

)
≤
L−1∑
i=`

1− σ̂′(Si,L)

L2 + 1
=
L− `−

∑L−1
i=` σ̂

′(Si,L)

L2 + 1
,

where ` = 1, . . . , L− 1. For PL+1,L, we have 1− PL+1,L = 0.

Then we can rewrite the normalized kernel to be

ΩL =
1

2L

L∑
`=1

P`+1,L(σ̂(S`−1,L) + S`−1,Lσ̂′(S`−1,L)).

Hence we have the bound for each layer∣∣∣P`+1,L(σ̂(S`−1,L) + S`−1,Lσ̂′(S`−1,L))− (σ̂(S0) + S0σ̂′(S0))
∣∣∣

≤
∣∣∣P`+1,L

∣∣∣ · ∣∣∣(σ̂(S`−1,L) + S`−1,Lσ̂′(S`−1,L))− (σ̂(S0) + S0σ̂′(S0))
∣∣∣+
∣∣∣σ̂(S0) + S0σ̂′(S0)

∣∣∣ · ∣∣∣1− P`+1,L

∣∣∣
≤
∣∣∣σ̂′(S`−1,L)(S`−1,L − S0)

∣∣∣+
∣∣∣σ̂′(S`−1,L)S`−1,L − σ̂′(S0)S0

∣∣∣+
∣∣∣σ̂(S0) + S0σ̂′(S0)

∣∣∣ · ∣∣∣1− P`+1,L

∣∣∣
= 2
∣∣∣σ̂′(S`−1,L)(S`−1,L − S0)

∣∣∣+
∣∣∣S0(σ̂′(S`−1,L)− σ̂′(S0))

∣∣∣+
∣∣∣σ̂(S0) + S0σ̂′(S0)

∣∣∣ · ∣∣∣1− P`+1,L

∣∣∣
≤ 2σ̂′(S`−1,L)(σ̂(S0)− S0)`

L2
+
|S0|(σ̂(S0)− S0)(`− 1)

πL2
√

1− S2
`−1,L

+
∣∣∣σ̂(S0) + S0σ̂′(S0)

∣∣∣L− `−∑L−1
i=` σ̂

′(Si,L)

L2 + 1

≤ 2σ̂′(S`−1,L)(σ̂(S0)− S0)`

L2
+
|S0|(σ̂(S0)− S0)(`− 1)

πL2
√

1− S2
`−1,L

+
∣∣∣σ̂(S0) + S0σ̂′(S0)

∣∣∣L− `− (L− `)σ̂′(S0)

L2 + 1
.
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Therefore we have the bound for the normalized kernel∣∣∣∣ΩL − 1

2
(σ̂(S0) + S0σ̂′(S0))

∣∣∣∣
=

∣∣∣∣ 1

2L

L∑
`=1

(
P`+1,L(σ̂(S`−1,L) + S`−1,Lσ̂′(S`−1,L))

)
− 1

2
(σ̂(S0) + S0σ̂′(S0))

∣∣∣∣
≤ 1

2L

L∑
`=1

2σ̂′(S`−1,L)(σ̂(S0)− S0)`

L2
+
|S0|(σ̂(S0)− S0)(`− 1)

πL2
√

1− S2
`−1,L


+

1

2L

L−1∑
`=1

(∣∣∣σ̂(S0) + S0σ̂′(S0)
∣∣∣L− `− (L− `)σ̂′(S0)

L2 + 1

)

≤ 1

2L

(
L+ 1

L
(σ̂(S0)− S0) +

|S0|(σ̂(S0)− S0)L(L− 1)

2πL2C
+
∣∣∣σ̂(S0) + S0σ̂′(S0)

∣∣∣ L(L−1)
2 (1− σ̂′(S0))

L2 + 1

)

∼
(

(σ̂(S0)− S0)

2

(
1 +
|S0|
2πC

)
+

1

2

∣∣∣σ̂(S0) + S0σ̂′(S0)
∣∣∣(1− σ̂′(S0))

)
1

L

where C = C(δ) =
√

1− (1− δ)2 and S0 = K0.
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