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Abstract

Discrete dynamical systems serve as useful formal models
to study diffusion phenomena in social networks. Motivated
by applications in systems biology, several recent papers have
studied algorithmic and complexity aspects of diffusion prob-
lems for dynamical systems whose underlying graphs are di-
rected, and may contain directed cycles. Such problems can
be regarded as reachability problems in the phase space of
the corresponding dynamical system. We show that compu-
tational intractability results for reachability problems hold
even for dynamical systems on directed acyclic graphs (dags).
We also show that for dynamical systems on dags where each
local function is monotone, the reachability problem can be
solved efficiently.

1 Introduction
Background and Motivation: Discrete dynamical systems
are formal models for the study of diffusion phenomena
in networks. Application areas in which these models have
been used include the study of social contagions (e.g., infor-
mation, opinions, fads, epidemics) and energy demand mod-
eling (e.g., adaptation of solar energy) (Adiga et al. 2019;
Chistikov et al. 2020; Ogihara and Uchizawa 2020; Gupta
et al. 2018). Informally, such a dynamical system4 consists
of an underlying (social or biological) network, with each
node having a state value from a domain B. In this paper, we
assume that the underlying graph is directed and that the do-
main is binary (i.e., B = {0,1}). The propagation of the con-
tagion is modeled by a collection of Boolean local functions,
one per node. For any node v, the inputs to the local function
fv at v are the current states of v and those of its in-neighbors
(i.e., the nodes from which v has an incoming edges) and the
output of fv is the state of v at the next time instant. We con-
sider the synchronous update model, where all nodes evalu-
ate their local functions and update their states in parallel.
These dynamical systems are referred to as synchronous
dynamical systems (SyDSs) in the literature (e.g., (Adiga
et al. 2019; Rosenkrantz et al. 2018)). In applications in-
volving systems biology, such systems are also referred to
as synchronous Boolean networks (e.g., (Kauffman et al.
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4A formal definition is provided in Section 2.

2003; Ogihara and Uchizawa 2020; Akutsu et al. 2007)).
Throughout this paper, we will use the term SyDS to de-
note such a system. In general, the local functions may be
deterministic (e.g., threshold models used in social systems
(Granovetter 1978)) or stochastic (e.g., the SIR model of dis-
ease propagation (Easley and Kleinberg 2010)). We consider
deterministic local functions throughout this paper.

The configuration of a SyDS with n nodes at at time τ
is a vector (sτ1 , s

τ
2 , . . . , s

τ
n), where sτi is the state value of

node vi at time τ , 1 ≤ i ≤ n. As the nodes evaluate and
update their local functions, the configuration of the system
evolves over time. If a SyDS transitions from a configuration
C to a configuration C′ in one time step, we say that C′ is the
successor of C. A configuration C which is its own successor
is called a fixed point. Thus, once a SyDS reaches a fixed
point, no further state changes occur at any node.

When using SyDSs as models of social or biological phe-
nomena, it is of interest to study whether a given SyDS
starting from a specified initial configuration may reach cer-
tain (desirable or undesirable) configurations. For example,
in the context of information propagation, where the state
value 1 indicates that a node has received the information
propagating through the network, one may be interested in
configurations where many nodes are in state 1. On the other
hand, in contexts such as disease propagation where the state
of 1 indicates that a node has been infected, configurations
where many nodes are in state 1 are undesirable. One can
study such configuration reachability problems by consid-
ering another directed graph, called the phase space, of the
dynamical system (Mortveit and Reidys 2007). Each node
in the phase space is a configuration and there is an edge
from a node X to node Y if the SyDS can transition from
the configuration represented by X to that represented by Y
in one step. Thus, the configuration reachability problem be-
comes a directed path problem in phase space. For a SyDS
with n nodes where the state of each node from {0, 1}, the
number of possible configurations is 2n; thus, the size of
the phase space of a SyDS is exponential in the size of the
SyDS. There has been a considerable amount of research
whose goal is to understand when such reachability prob-
lems are efficiently solvable and when they are computa-
tionally intractable. Specifically, several papers (e.g., (Ogi-
hara and Uchizawa 2017; Akutsu et al. 2007)) have pre-
sented computational intractability results for reachability
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problems for SyDSs over directed graphs. Recently, Chis-
tikov et al. (2020) studied two reachability problems5 (called
Convergence and Convergence Guarantee) in the context
of opinion propagation. They show that these problems are
PSPACE-complete for general directed graphs. They also
show that the Convergence problem can be solved efficiently
when the underlying directed graph is acylic (i.e., it does not
have any directed cycle), regardless of the local functions at
each node. Following standard graph theoretic terminology,
we refer to directed acylic graphs as dags (Cormen et al.
2009). Several computational problems for discrete dynam-
ical systems on dags have been addressed in the literature;
these problems will be discussed in the related work section.
Here, we study the complexity of reachability problems for
SyDSs whose underlying graphs are dags. We refer to such
SyDSs as DAG-SyDSs. Our results are summarized below.
Summary of Results and Their Significance:
(1) Results on the structure of the phase space: For any
DAG-SyDS, we show that the length of every phase space
cycle is a power of 2. If the number of levels in the underly-
ing DAG of a given SyDS is L, then no phase space cycle is
longer than 2L, and no transient (i.e., a directed path leading
to a directed cycle) is longer than 2L − 1 (Theorem 3.1).
Moreover, for each L, we observe that there is an L-level
DAG SyDS that achieves these bounds (Theorem 3.2).
Such structural properties are useful in solving reachability
problems; if the maximum lengths of transients and cycles
are bounded by polynomial functions of the size of a given
SyDS, then reachability problems for that SyDS can be
solved efficiently (by running the SyDS for a polynomial
number of steps).
(2) Complexity of Reachability for DAG-SyDSs: It was
shown in (Chistikov et al. 2020) that the Convergence prob-
lem (i.e., given a SyDS S and an initial configuration, does
S reach a fixed point?) is PSPACE-complete for SyDSs on
directed networks. They also showed that the convergence
problem can be solved efficiently for DAG-SyDSs. We
show that the reachability problem (i.e., given a SyDS S
and two configurations C and D, does S starting from C
reach D?), which is similar to the Convergence problem, is
PSPACE-complete for DAG-SyDSs even when each local
function is symmetric (Crama and Hammer 2011). To our
knowledge, no hardness result is currently known for the
Reachability problem for DAG-SyDSs. Our proof of this
result involves two major steps. The first step uses a reduc-
tion from the Quantified Boolean Formulas (QBF) problem
(Garey and Johnson 1979) to show that the Reachability
problem for DAG-SyDSs is PSPACE-complete even when
each local function is r-symmetric6 for some constant r
(Theorem 4.1). For the second step, we define the concept
of an embedding of one SyDS into another, and use this
concept to show that for any fixed value of r, the reachability
problem for DAG-SyDSs with r-symmetric local functions

5These problems will be defined shortly.
6The definition of r-symmetric functions is given in Section 2.

Symmetric Boolean functions are 1-symmetric. As will be ex-
plained in Section 2, the local functions used in (Chistikov et al.
2020) are 2-symmetric.

is polynomial-time reducible to the Reachability problem
for DAG-SyDSs with symmetric local functions (Theorem
4.3). The PSPACE-completeness of the Reachability
problem for DAG-SyDSs with symmetric local function
(Theorem 4.4) follows directly from Theorems 4.1 and 4.3.

The difference between the complexities of Convergence
and Reachability problems for DAG-SyDSs is due to the fol-
lowing. For any DAG-SyDS with L levels, regardless of the
local functions, the length of any transient leading to a fixed
point is bounded byL. (This is a slight restatement of Propo-
sition 1 in (Chistikov et al. 2020).) Thus, the Convergence
problem for DAG-SyDSs is efficiently solvable. On the other
hand, we show that one can construct DAG-SyDSs with spe-
cific local functions such that the length of a transient and
that of the cycle the transient leads to are both exponential
in L (Theorem 3.2). The idea behind this construction en-
ables us to establish our PSPACE-hardness result for the
reachability problem for DAG-SyDSs.
(3) Complexity of Convergence Guarantee for DAG-SyDSs:
It was shown in (Chistikov et al. 2020) that the Convergence
Guarantee problem (i.e., given a SyDS S on a directed
graph, does S reach a fixed point from every initial con-
figuration?) is PSPACE-complete for SyDSs on general
directed graphs. For DAG-SyDSs, we show that the problem
is Co-NP-complete, even when restricted to dags with at
most three levels (Theorem 5.1). Thus, our result points out
that the problem remains computationally intractable even
for DAG-SyDSs.
(4) Reachability for Monotone DAG-SyDSs: We show that
the Reachability problem is efficiently solvable for DAG-
SyDSs whose local functions are monotone. This is done
by showing that for such DAG-SyDSs, the length of each
transient is at most the number of levels in the dag and
that every cycle in the phase space is a fixed point (Theo-
rem 6.1). These two properties directly imply the efficient
solvability of the reachability problem for monotone DAG-
SyDSs. In contrast, the reachability problem is known to be
PSPACE-complete monotone SyDSs when the underlying
directed graph has cycles (Ogihara and Uchizawa 2017).

For space reasons, proofs of several results are ei-
ther sketched or omitted; detailed proofs can be found in
(Rosenkrantz et al. 2020).
Related Work: Reachability problems for various mod-
els of discrete dynamical systems have been widely studied
in the AI literature. Examples include Hopfield neural nets
(Floréen and Orponen 1989; Orponen 1993, 1994) and Petri
nets (Esparza and Nielsen 1994). Problems related to the dif-
fusion of opinions and other contagions have also been stud-
ied under various discrete dynamical systems models (see
e.g., (Auletta, Ferraioli, and Greco 2018; Botan, Grandi, and
Perrussel 2019; Chistikov et al. 2020; Bredereck and Elkind
2017)).

As stated earlier, synchronous dynamical systems over di-
rected graphs serve as useful models for biological phenom-
ena (Kauffman et al. 2003). Many researchers have studied
reachability and related problems for such dynamical sys-
tems (see e.g., (Ogihara and Uchizawa 2020, 2017)). Even
though the PSPACE-completeness result for the reachabil-
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ity problem considered in (Rosenkrantz et al. 2018) is stated
in terms of undirected graphs, it can be easily extended to
general directed graphs.

Many researchers have presented results for various com-
putational problems for dynamical systems on dags. We now
provide a summary of these results. Akutsu et al. (2007)
showed that the problem of controlling a synchronous
Boolean network so that it reaches a desired configuration is
NP-hard for general directed graphs but is efficiently solv-
able when the underlying graph is a directed tree. This prob-
lem is different from the reachability problem considered
here; in particular, the variables that are used to control a
network are external to the network and the goal of the con-
troller is to choose appropriate values for those variables at
each time step. Materassi and Salapaka (2013) considered
the problem of inferring from time-series data the edges in
the underlying dag for a dynamical system. A similar prob-
lem is considered by Cliff et al. (2020) where the underly-
ing dag is assumed to represent relationships between la-
tent variables of a probabilistic graphical model. Creager et
al. (2020) point out that dynamical systems on dags pro-
vide a unifying framework for studying fairness issues that
arise when a learning algorithm must interact with a dynam-
ically changing environment. Arnold et al. (2019) discuss
methods for comparing the effectiveness of several model-
ing approaches when the underlying causal model for an epi-
demic can be represented as a dag. To our knowledge, the
reachability problem for DAG-SyDSs was first considered in
(Kuhlman et al. 2013). They showed that for DAG-SyDSs,
when each local function is a bi-threshold function (i.e., each
node has two threshold values to control the 0 → 1 and
1 → 0 transitions), the reachability problem can be solved
efficiently.

2 Definitions and Notation
SyDSs on directed graphs: Let B denote the Boolean do-
main {0,1}. In this paper, a Synchronous Dynamical Sys-
tem (SyDS) S over B is assumed to be specified as a pair
S = (G,F), where (i) G(V,E), a directed graph with
|V | = n, represents the underlying graph of the SyDS,
with node set V and (directed) edge set E, and (ii) F =
{f1, f2, . . . , fn} is a collection of functions in the system,
with fi denoting the local transition function associated
with node vi, 1 ≤ i ≤ n. Each node of G has a state value
from B. Each Boolean function fi specifies the local interac-
tion between node vi and its in-neighbors inG. The inputs to
function fi are the state of vi and those of the in-neighbors
of vi in G; function fi maps each combination of inputs to
a value in B. This value becomes the next state of node vi.
It is assumed that each local function can be evaluated in
polynomial time. In a SyDS, all nodes compute and update
their next state synchronously. Other update disciplines (e.g.,
sequential updates) have also been considered in the litera-
ture (e.g., (Mortveit and Reidys 2007)). At any time τ , the
configuration C of a SyDS is the n-vector (sτ1 , s

τ
2 , . . . , s

τ
n),

where sτi ∈ B is the state of node vi at time τ (1 ≤ i ≤ n).
A DAG-SyDS is a SyDS whose underlying graph is a dag.
Example: An example of a DAG-SyDS is shown in Fig-

v2v1

v4

v6

v5

v3

(AND)

(ID)

(XOR)

(ID)

(OR)

(COMP)

Figure 1: An example of a DAG-SyDS. The local functions
at nodes v1 through v6 are Identity, Complement, Identity,
AND, OR and XOR respectively.

ure 1. Here, the local functions at nodes v1 through v6 are
Identity, Complement, Identity, AND, OR and XOR respec-
tively. (The Identity and Complement functions have only
one input; they return respectively the input value and its
complement.) Suppose the initial configuration of the SyDS
is (0, 0, 1, 0, 0, 0); that is, at time τ = 0, v3 is in state 1 and
all other nodes are in state 0. Recall that the inputs to the lo-
cal function at a node v are the current state of v and those of
its in-neighbors (if any). Since the local functions at v1 and
v3 are Identity functions, the states of v1 and v3 will remain
0 and 1 respectively in all subsequent time steps. Since the
local function at v2 is the Complement function, the state of
v2 at time τ = 1 is 1. Using the local functions at v4, v5
and v6, one can verify that their states at time τ = 1 are 0, 1
and 0 respectively. Thus, the configuration at time τ = 1 is
(0, 1, 1, 0, 1, 0). Similarly, the configuration at times τ = 2, 3,
4 and 5 are (0, 0, 1, 0, 1, 0), (0, 1, 1, 0, 1, 1), (0, 0, 1, 0, 1, 1)
and (0, 1, 1, 0, 1, 0) respectively. Thus, the configuration at
time τ = 5 is the same as that at τ = 1. In other words, the
SyDS cycles among the four configurations at times τ = 1
through τ = 4.
Additional definitions regarding SyDSs: Some addi-
tional concepts related to SyDSs are defined below.

Definition 2.1 For the local transition function fv of a given
node v of a directed SyDS, we call the variable correspond-
ing to the source node of each incoming edge to v an incom-
ing variable of fv , and call the variable corresponding to v
the self variable of fv .

The phase space of a SyDS was defined in Section 1. A
transient in phase space is a simple directed path P whose
last node is part of a directed cycle which does not contain
any other node of P . The length of a phase space cycle is the
number of edges in the cycle, and the length of a transient is
the number of edges in the transient.

Let S be a SyDS. For a given configuration C and node
v, we let C(v) denote the state of node v in C. For a given
configuration C and set of nodes Y , we let C[Y ] denote the
projection of C onto Y . We assume that the initial config-
uration of the system occurs at time 0. For a given initial
configuration C and nonnegative integer i, we let Ci denote
the configuration of S at time i.

For a given initial configuration C, we say that a given
node v is stable at time t if for all i ≥ t, Ci(v) = Ct(v).
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Also, we say that a given node v is alternating at time t if
for all i ≥ 0, Ct+2i(v) = Ct(v) and Ct+2i+1(v) = Ct(v)
(i.e., the state of v alternates between 0 and 1).
Graph theoretic definitions: Given a dag, we say that
node u directly precedes node v if the graph contains an
edge from u to v, that u precedes v if the graph contains a
path (possibly with no edges) from u to v, and that u prop-
erly precedes v if the graph contains a path with at least one
edge from u to v. Note that the local transition function for
a given node v in a directed SyDS is a function of v and the
nodes that directly precede v.

Definition 2.2 For a dagG(V,E), the level of a node v ∈ V
is the maximum number of edges in any directed path to v.

Suppose a given dag G(V,E) has L levels. For each j,
0 ≤ j < L, we let Lj denote the set of nodes at level j, and
let L′j denote the nodes whose level is at most j.

Boolean function definitions: Here, we provide defini-
tions of several classes of Boolean functions used in this pa-
per. These definitions are from (Crama and Hammer 2011;
Barrett et al. 2006).

Consider assignments α and β to a set of Boolean vari-
ables X . We say that α ≤ β if for every variable x ∈ X ,
α(x) ≤ β(x). A Boolean function f is monotone nonde-
creasing if for every pair of assignments α and β to its vari-
ables, α ≤ β implies that f(α) ≤ f(β), and is monotone
nonincreasing if for every pair of assignments α and β to its
variables, α ≤ β implies that f(α) ≥ f(β). We say that f is
monotone if f is either monotone nondecreasing or mono-
tone nonincreasing. Common examples of monotone func-
tions are OR and AND. A monotone SyDS is a SyDS whose
local transition functions are all monotone.

A symmetric Boolean function is one whose value does
not depend on the order in which the input bits are specified;
that is, the function value depends only on how many of its
inputs are 1. For example, the XOR function is symmetric
since the value of the function is determined by the parity of
the number of 1’s in the input.

In symmetric Boolean functions, we need not know
whether a specific input is 0 or 1; it is enough to know
the number of 1s in the input. A similar situation arises in
anonymous symmetric pure strategy graphical games where
each player’s strategy is from {0,1}. A player X doesn’t
know whether a specific neighbor chose 0 or 1; X knows
how many neighbors chose 1. Convergence in SyDSs cor-
responds to reaching a fixed point where everyone is satis-
fied with the outcome. This is similar to a Nash equilibrium
in the game theoretic setting. In this sense, the convergence
problem is related to the problem of Nash equilibria in such
games and reachability is useful in understanding whether
players can achieve certain equilibria (see e.g., (Blonski
1999; Daskalakis and Papadimitriou 2007, 2015; Jackson
2010)).

A Boolean function f is r-symmetric if the inputs to f
can be partitioned into at most r classes such that the value
of f depends only on how many of the inputs in each of the
r classes are 1. Note that symmetric functions defined above
are 1-symmetric. For each node v, the local (majority) func-

tion used in (Chistikov et al. 2020) to study opinion diffu-
sion can be seen to be 2-symmetric: one class contains just
the node v and the other class contains all the in-neighbors
of v. The value of the function is determined by the number
of 1’s in these two classes.

A SyDS is r-symmetric if each of its local transition func-
tions is r′-symmetric for some r′ ≤ r.
Problem definitions: We now provide formal specifica-
tions of the problems considered in this paper.
Reachability
Instance: A SyDS S specified by an underlying directed
graph G(V,E) and a local transition function fv for each
node v ∈ V and two configurations C and D.
Question: Starting from configuration C, does S reach con-
figuration D?
Convergence
Instance: A SyDS S specified by a directed graphG(V,E),
a local function fv for each v ∈ V and a configuration C.
Question: Starting from configuration C, does S reach a
fixed point?
Convergence Guarantee
Instance: A SyDS S specified by a directed graphG(V,E)
and a local function fv for each v ∈ V .
Question: Does S reach a fixed point from every initial
configuration?

The formulation of the Convergence Guarantee problem
in (Chistikov et al. 2020) considers the negation of the above
question (i.e., is there a configuration C from which the
SyDS does not reach a fixed point?). However, since the
complexity class PSPACE is closed under complement (Pa-
padimitriou 1993), there is no difference in the complexity
of the two versions of the problem.

3 DAG-SyDSs: Some Phase Space Properties
In this section, we present some properties of the phase
spaces of DAG-SyDSs. These properties are independent of
the local functions at the nodes of the DAG-SyDS. Our first
result points out that the phase spaces of DAG-SyDSs may
contain exponentially long cycles.

Proposition 3.1 For any n > 1, there is an n node DAG-
SyDS whose phase space graph is a cycle of length 2n.

Proof: For a given n > 1 we construct the DAG-SyDS Sn
to be a counter, as follows. The underlying graph contains
n levels, one node per level. For each node, there is an in-
coming edge from the nodes on each of the lower levels. The
transition function for each node is the function that retains
the current value of the node if any of the lower order bits is
0, and changes the value of the node if all of the lower order
bits are 1.

Suppose a given configuration of Sn is interpreted as en-
coding an integer k, 0 ≤ k < 2n. Then the successor con-
figuration encodes the integer k + 1 (mod 2n). Thus, the
phase space of Sn is a cycle of length 2n.

For any SyDS, any infinitely long phase space path con-
sists of a transient (possibly of length 0), followed by an
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infinite number of repetitions of a basic cycle. We now show
that for any DAG-SyDS, the length of every phase space cy-
cle is a power of 2. Moreover, the lengths of the longest tran-
sient and the longest phase space cycle are each bounded by
an exponential function of the number of levels in the un-
derlying graph of the SyDS. We begin with a lemma whose
proof appears in (Rosenkrantz et al. 2020).

Lemma 3.1 For a given DAG-SyDS, and a given initial con-
figuration, suppose that the node values of all incoming
edges to a given node v are stable at time t. Then node v
is either alternating at time t, or stable at time t+ 1.

Lemma 3.2 For a DAG-SyDS, every level 0 node is either
alternating at time 0 or stable at time 1.

Proof: A level 0 node has no incoming edges, so the result
follows from Lemma 3.1.

We will also use the following result which is a slight re-
statement of Proposition 1 in (Chistikov et al. 2020).

Proposition 3.2 For a DAG-SyDS, the length of a transient
leading to a fixed point does not exceed the number of levels
of the SyDS.

We can now state our result on the lengths of cycles and
transients in DAG-SyDSs.

Theorem 3.1 For a DAG-SyDS, the length of every phase
space cycle is a power of 2. Moreover, if the number of levels
of a given acyclic SyDS is L, then no phase space cycle is
longer than 2L, and no transient is longer than 2L − 1.

Proof (idea): We use induction on the number of levels.
The details appear in (Rosenkrantz et al. 2020).

Theorem 3.1 provides upper bounds on the lengths of
transients and cycles in DAG-SyDSs. We now present a re-
sult that provides matching lower bounds on cycle and tran-
sient lengths.

Theorem 3.2 For every L ≥ 1, there is a DAG-SyDS with
L levels whose phase space contains a transient of length
2L − 1, leading to a cycle of length 2L.

Proof: See (Rosenkrantz et al. 2020).

4 Reachability Problem for DAG-SyDSs
Here, we establish the complexity of the Reachability prob-
lem for DAG-SyDSs with symmetric local functions. Our
proof uses two major steps. In the first step (Section 4.1), we
show that the PSPACE-hardness for DAG-SyDSs whose lo-
cal functions are r-symmetric for a constant value of r. In
the second step (Section 4.2), we show that the Reachability
problem resulting from the first step can be reduced to the
same problem for DAG-SyDSs where each local function is
symmetric. We begin with the first step.

4.1 Reachability Problem for DAG-SyDSs with
r-Symmetric Local Functions

This section establishes the following result.

Theorem 4.1 The reachability problem is PSPACE-
complete for DAG-SyDSs where each local function is r-
symmetric for some r ≤ 6.

Proof: It is easy to see that the problem is in PSPACE.
The proof of PSPACE-hardness is via a reduction from
the Quantified Boolean Formulas (QBF) problem which is
known to be PSPACE-complete (Garey and Johnson 1979).
Let F denote the given quantified Boolean formula. Let f
denote the Boolean expression that is quantified. Without
loss of generality, we can assume that f is a 3SAT formula
(Garey and Johnson 1979). Let X = {x0, x1, . . . , xn−1} be
the set of variables of f , and {c0, c1, . . . , cm−1} be the set
of clauses of f . Let F be (Qn−1xn−1) · · · (Q1x1)(Q0x0)f ,
where each Qi is either ∀ or ∃.

We give a reduction where the constructed DAG-SyDS
is 6-symmetric (i.e., each local function is r-symmetric for
some r ≤ 6).

For each i, 0 ≤ i < n, we use the notation ⊗i to denote
a binary Boolean operation as follows. If Qi is ∀, then ⊗i is
and; if Qi is ∃, then ⊗i is or.

For the reduction, we construct a reachability problem in-
stance whose SyDS S has an underlying graph with 2n +
m+ 2 nodes, on 2n+ 2 levels.

SyDS S contains the following nodes. We let Y = {y0, y1,
. . ., yn} be a set of n + 1 nodes, R = {r0, r1, . . ., rn−1} be
a set of n nodes, W = {w0, w1, . . ., wm−1} be a set of m
nodes, and h be an extra node.

The initial configuration C for the constructed problem
instance has the states of all nodes equal to 0.

The goal configuration D for the constructed problem in-
stance has h = 1, rn−1 = 1, each ri = 0 for 0 ≤ i < n− 1,
each yi = 0, and each wj equal to 1 iff the corresponding
clause cj contains a positive literal.

Node set Y will function as a cyclical counter, with in-
coming edges and local transition functions similar to those
for the n nodes in the construction presented in our proof of
Proposition 3.1. For each i, 0 ≤ i < n, node yi will corre-
spond to the variable xi in f .

Each node wi ∈W will correspond to clause ci.
Each node ri ∈ R will correspond to the quantified

Boolean formula (Qixi) · · · (Q0x0)f . In particular, at some
point in the operation of S , node rn−1 will have the value of
the quantified Boolean formula F .

Node h will serve as a control node. Once the value of
node h equals 1, it remains 1 forever more, forces node rn−1
to retain its value, and forces all the other nodes inR to have
value 0.

The underlying graph of S has directed edges (yi, yj) for
each i and j such that 0 ≤ i < j ≤ n. For each node wj ,
there are incoming edges from those Y nodes corresponding
to the variables occurring in clause cj . Node h has incoming
edges from the n+ 1 nodes in Y . Node r0 has an incoming
edge from y0, h, and from each node in W . For each node
ri, 1 ≤ i < n, there are incoming edges from ri−1, h, and
each yj where 0 ≤ j ≤ i.

The local transition function for each node in Y is the
function that retains the current value of the node if any of
the incoming variables equals 0, and changes the value of
the node otherwise.

The local transition function for each node wi ∈ W is
the same as clause ci, but using the values of the incoming
variables.
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The local transition function for h is as follows. If h = 1,
then 1. If h = 0 and the n+1 incoming edges from Y encode
the integer 2n + n− 1, then 1. Otherwise, 0.

The local transition function for r0 is as follows. If h = 1,
then 0. Otherwise, if y0 = 1, then the and of the incoming
variables from W . Otherwise, operation ⊗0 applied to r0
and the and of the incoming variables from W .

The local transition function for ri , 1 ≤ i < n − 1, is as
follows. If h = 1, then 0. Otherwise, if the i + 1 incoming
edges from Y encode the integer 2i + i, then ri−1. Other-
wise, if the incoming edges from Y encode the integer i,
then operation ⊗i applied to ri and ri−1. Otherwise, ri.

The local transition function for rn−1 is as follows. If
h = 0 and the n incoming edges from Y encode the inte-
ger 2n−1 + n − 1, then rn−2. If h = 0 and the n incoming
edges from Y encode the integer n−1, then operation⊗n−1
applied to rn−1 and rn−2. Otherwise, rn−1.

Note that SyDS S is 6-symmetric; the local transition
functions for nodes ri , 1 ≤ i ≤ n− 1, contain 6 symmetry
classes.

For 0 ≤ i < n, we let Fi be a Boolean function of n−i−1
variables, as follows:
Fi(xn−1, xn−2, . . . , xi+1) = (Qixi) · · · (Q1x1)(Q0x0)f(X)

We now establish the correctness of the reduction.
Let β be a tuple, possibly empty, of Boolean values. Let

l(β) denote the degree of β, i.e., the number of variables in
β. Let k(β) denote the integer encoded by β. (If β is empty,
then k(β) = 0.) For β such that l(β) < n, let j(β) = n −
l(β)− 1, and let t(β) = (k(β) + 1)2n−l(β) + n− l(β).

For any t ≥ 0, let Xt be the assignment to the variables
X of f where Xt(xi) = Ct(yi), 0 ≤ i ≤ n − 1. From
the proof in Theorem 3.1, the first n nodes of S undergo a
phase space cycle whose length is 2n. Thus, all 2n possible
assignments to X occur during this cycle. In particular, all
2n assignments to X are in the set {Xt | 0 ≤ t < 2n}.
Specifically, for any assignment α to X , Xk(α) = α.

For any assignment α to X , let W (α) be the assignment
of values to the nodes set W where wi equals the value of
clause ci for assignment α, 0 ≤ i ≤ m − 1. Then, for all
t ≥ 0, Ct+1[W ] =W (Xt).

For any given tuple β of n− i− 1 Boolean values corre-
sponding to values of the variables xn−1, xn−2, . . . , xi+1,
note that j(β) = i. Moreover, the value of Fj(β)(β) =

Fi(xn−1, xn−2, . . . , xi+1) is determined by the 2i+1 as-
signments to X occurring at times k(β)2n−l(β) through
(k(β) + 1)2n−l(β) − 1.
Claim 1: For all j′, 0 ≤ j′ < n, for all β such that j(β) =
j′, Fj(β)(β) = Ct(β)(rj(β)).
We prove the claim by induction on j′.
Basis Step: Suppose that j′ = 0. Consider any β such that
j(β) = 0. Then l(β) = n − 1, t(β) = 2k(β) + 3, and the
variables in β are (xn−1, xn−2, . . . , x1). By definition,

F0(xn−1, . . . , x1) = (Q0x0) f(xn−1, . . . , x1, x0).
Thus,

F0(xn−1, . . . , x1) =
f(xn−1, . . . , x1, 0) ⊗0 f(xn−1, . . . , x1, 1).

Let γ0 = (xn−1, xn−2, . . ., x1, 0) and γ1 = (xn−1, xn−2,
. . ., x1, 1). Then, F0(β) = f(γ0) ⊗0 f(γ1). Note that
γ0 = Xk(γ0) and γ1 = Xk(γ1). Also, k(γ0) = 2k(β) and
k(γ1) = 2k(β) + 1. Thus, at time 2k(β) + 1, W = W [γ0];
and at time 2k(β)+2,W =W [γ1]. Since at time 2k(β)+1,
h = 0, and y0 = 0, the local transition function for r0 sets
C2k(β)+2(r0) to be the and of the values of the incoming
edges from W at time 2k(β) + 1. Thus, C2k(β)+2(r0) =

f(γ0). Since at time 2k(β) + 2, h = 0, and y0 = 0, the
local transition function for r0 sets C2k(β)+3(r0) to be re-
sult of ⊗i applied to C2k(β)+2(r0) and the and of the values
of the incoming edges from W at time 2k(β) + 2. Thus,
C2k(β)+3(r0) = f(γ0) ⊗i f(γ1) = F0(β). This proves the
claim for j′ = 0.
Inductive Step: Now assume that the claim holds for a given
value of j′, 0 ≤ j′ < n− 1. We want to prove that the claim
holds for j′ + 1. Consider any β such that j(β) = j′ + 1.
We need to show that Fj′+1(β) = Ct(β)(rj′+1). We first
note that l(β) = n − j′ − 2, t(β) = (k(β) + 1)2j

′+2 +
j′ + 2, and the variables in β are (xn−1, xn−2, . . . , xj′+2).
(If j′ = n − 2, then β contains no variables.) By definition,
Fj′+1(β) = (Qj′+1xj′+1) · · · (Q1x1)(Q0x0)f(X). Thus,
Fj′+1(xn−1, xn−2, . . . , xj′+2) =

Fj′(xn−1, xn−2, . . . , xj′+2, 0) ⊗j′+1

Fj′(xn−1, xn−2, . . . , xj′+2, 1).
Let γ0 = (xn−1, xn−2, . . ., xj′+2, 0) and γ1 = (xn−1, xn−2,
. . ., xj′+2, 1). Then, Fj′+1(β) = Fj′(γ

0) ⊗j′+1 Fj′(γ
1).

Note that t(γ0) = (k(γ0) + 1)2j
′+1 + j′+1. Since k(γ0) =

2k(β), t(γ0) = (2k(β) + 1)2j
′+1 + j′ + 1 = k(β)2j

′+2 +

2j
′+1 + j′ + 1. Also, k(γ1) = 2k(β) + 1, and t(γ1) =

(k(γ1) + 1)2j
′+1 + j′ + 1 = (2k(β) + 2)2j

′+1 + j′ + 1 =

(k(β) + 1)2j
′+2 + j′ + 1. By the inductive hypothesis,

Fj′(γ
0) = Ct(γ0)(rj(γ0)) = Ct(γ0)(rj′), and Fj′(γ

1) =
Ct(γ1)(rj(γ1)) = Ct(γ1)(rj′).

At time t(γ0) = k(β)2j
′+2 + 2j

′+1 + j′ + 1, the j′ + 2

incoming edges to rj′+1 from Y encode the integer 2j
′+1 +

j′ + 1, so the local transition function for rj′+1 evaluates to
be the value of rj′ . Thus, Ct(γ0)+1(rj′+1) = Ct(γ0)(rj′) =

Fj′(γ
0). The local transition function for rj′+1 has rj′+1 re-

tain its current value until t(γ1) = (k(β)+1)2j
′+2+ j′+1.

At time t(γ1) = (k(β) + 1)2j
′+2 + j′ + 1, the j′ + 2 in-

coming edges to rj′+1 from Y encode the integer j′ + 1,
so the local transition function for rj′+1 evaluates to be
the result of applying operation ⊗j′+1 to rj′+1 and rj′ .
Thus, Ct(γ1)+1(rj′+1) = Ct(γ1)(rj′+1) ⊗j′+1 Ct(γ1)(rj′) =

Fj′(γ
0) ⊗j′+1 Fj′(γ

1) = Fj′+1(β). However, note that
t(β) = (k(β) + 1)2j

′+2 + j′ + 2 = t(γ1) + 1. Thus,
Fj′+1(β) = Ct(β)(rj′+1), and Claim 1 follows.

Note that each node in Y and W cycles with a period that
divides 2n+1. Since D has all nodes in Y equal to 0, and
this only occurs at a time that is a multiple of 2n+1, D is
reachable iff it is reachable at a time that is a multiple of
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2n+1.
Note that C(h) = 0 and D(h) = 1. Furthermore, node

h is stable with value 1 at time 2n + n, and h is equal to
0 at all prior times. Thus D is reachable iff it is reachable
at a time t such that t ≥ 2n + n. Considering node set Y ,
D is reachable iff it is reachable at a time that is a nonzero
multiple of 2n+1.

Note that every node of S has the same value for every
time that is a nonzero multiple of 2n+1. Thus,D is reachable
iff it is reachable at time 2n+1, i.e., iff D = C2n+1 .

Recall that D(h) = C2n+1(h) and D[Y ] = C2n+1 [Y ].
Since C2n+1−1[Y ] consists of all 1’s, each C2n+1(wj) equals
1 iff the corresponding clause cj contains a positive lit-
eral. Thus, D[W ] = C2n+1 [W ]. The nodes in R − {rn−1}
are stable with value 0 at time 2n + n + 1, and so have
the same value in D and C2n+1 . Thus, D = C2n+1 iff
D(rn−1) = C2n+1(rn−1). Since D(rn−1) = 1, D = C2n+1

iff C2n+1(rn−1) = 1.
Note that node rn−1 is stable at time 2n + n, so
C2n+1(rn−1) = C2n+n(rn−1). Thus D is reachable iff
C2n+n(rn−1) = 1. Let β be the empty tuple. As has been
shown above, Fj(β)(β) = Ct(β)(rj(β)). Note that l(β) = 0,
k(β) = 0, j(β) = n − 1, and t(β) = (k(β) + 1)2n−l(β) +
n − l(β) = 2n + n. Thus, C2n+n(rn−1) = Fn−1, which is
the value of the given quantified Boolean formula F . Thus
F is true iff D is reachable from C, and this completes our
proof of Theorem 4.1.

4.2 Reducing the Number of Symmetry Classes
In this section, we show how the reachability problem for
r-symmetric SyDSs (for any fixed r) can be reduced to the
same problem for symmetric SyDSs. In particular, this re-
duction ensures that when we start with a DAG-SyDS, the
reduction also produces a DAG-SyDS. Our approach uses
the idea of embedding, which is defined below. In this defi-
nition, we use the notation C → D to indicate that D is the
successor of C.

Definition 4.1 Given two SyDSs S = (G(V,E),F) and
S ′ = (G′(V ′, E′),F ′), let h be an onto function from V ′

to V . Let ĥ be the function that maps each configuration C
of S into the configuration C′ of S ′ such that for each node
v′ ∈ V ′, C′(v′) = C(h(v′)). We say that h is an embedding
of S into S ′ if for each configuration C of S , lettingD be the
configuration such that C → D in S , ĥ(C)→ ĥ(D) in S ′.
The next lemma shows a property of an embedding.

Lemma 4.1 Given SyDSs S and S ′, and an embedding h
from S into S ′, the reachability problem for S is polynomi-
ally reducible to the reachability problem for S ′.

Proof: In Definition 4.1, since h is an onto function, ĥ is
injective. For every configuration C of S and every t ≥ 0,
by induction on t, ĥ(Ct) = (ĥ(C))t. Thus, C reaches a given
configuration D iff ĥ(C) reaches the configuration ĥ(D).

We can now state a result which shows that a suitable em-
bedding can be constructed efficiently.

Theorem 4.2 For any fixed value of r, there is a polyno-
mial time algorithm that given a directed r-symmetric SyDS

S = (G(V,E),F), constructs a directed symmetric SyDS
S ′ = (G′(V ′, E′),F ′) and an embedding h of S into S ′.
Moreover, if G is acyclic, then so is G′.

Proof: See (Rosenkrantz et al. 2020).
The following is the main result of Section 4.2.

Theorem 4.3 For any fixed value of r, the reachability
problem for directed r-symmetric SyDSs is polynomial-time
reducible to the reachability problem for directed symmetric
SyDSs, and the reachability problem for DAG r-symmetric
SyDSs is polynomial-time reducible to the reachability prob-
lem for DAG symmetric SyDSs.

Proof: From Lemma 4.1 and Theorem 4.2.
Theorems 4.1 and 4.3 together imply the following main

result of Section 4.

Theorem 4.4 The Reachability problem for DAG-SyDS
with symmetric local functions is PSPACE-complete.

5 Convergence Guarantee for DAG-SyDSs
As mentioned earlier, (Chistikov et al. 2020) showed that
the convergence guarantee problem is PSPACE-complete
for SyDSs on general directed graphs. Here, we show that
this problem remains computationally intractable even for
DAG SyDSs.

Theorem 5.1 The convergence guarantee problem for DAG
SyDSs is co-NP-complete, even when restricted to dags with
three levels and 3-symmetric functions.

Proof (idea): The reduction is from 3SAT (Garey and John-
son 1979). The details are given in (Rosenkrantz et al. 2020).

6 Results for Monotone DAG-SyDSs
The class of monotone Boolean functions were defined in
Section 2. A monotone DAG-SyDS is a DAG-SyDS in
which every local function is monotone. In this section,
we show that the reachability problem for monotone DAG-
SyDSs can be solved efficiently. This result is based on the
following theorem.

Theorem 6.1 For a DAG monotone SyDS, every phase
space cycle is a fixed point, and the length of any transient
does not exceed the number of levels.

Proof: See (Rosenkrantz et al. 2020).
The following is a direct corollary of Theorem 6.1.

Corollary 6.1 The Reachability problem is efficiently solv-
able for monotone DAG-SyDSs.

7 Directions for Future Work
We conclude by mentioning two directions for future re-
search. For example, it is of interest to consider DAG-SyDSs
where local functions are from other classes (e.g., weighted
threshold functions (Crama and Hammer 2011)). Similarly,
one may also consider restrictions on the graph structure
(e.g., dags where nodes have bounded in-degrees) and in-
vestigate the complexity of reachability and other problems.
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