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Background

• Challenges and motivation:
• Online implementation of Nonlinear Model Predictive 

Control (NMPC) requires a simplified dynamic model for 
real-time control

• Multiple different models may be needed at different 
operating regions to reduce plant-model mismatch

• Parameter estimation for dynamic modeling may not 
reflect the uncertainty propagation from model inputs to 
the model outputs 

• Objectives:
• Formulate and calibrate reduced-order multi-model
• Implement the multi-model for NMPC
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Bayesian Calibration
Let 𝑢𝑢 be the model input, 𝑦𝑦(𝑢𝑢) be the real measurement of the output, 𝜃𝜃 be the uncertainty 
vector, 𝜂𝜂(𝑢𝑢,𝜃𝜃) be the model, 𝜎𝜎(𝑢𝑢) be the discrepancy term (plant-model mismatch), and 𝜖𝜖(𝑢𝑢) be 
the measurement noise

𝑦𝑦 𝑢𝑢 = 𝜂𝜂 𝑢𝑢,𝜃𝜃 + 𝜎𝜎 𝑢𝑢 + 𝜖𝜖 𝑢𝑢
Bayesian calibration: Given the set of measurements {𝑦𝑦 𝑢𝑢 }, calculate the probability distribution 
of 𝜃𝜃

Image source: Higdon, Kennedy, Cavendish, Cafeo, 
Ryne (2004) 
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Dynamic Discrepancy with Bayesian Smoothing Spline 
Analysis of Variance

Reducing the order of the high-fidelity model introduces uncertainty into the model 
representation:

𝑥̇𝑥 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥,𝑢𝑢,𝜎𝜎 𝑥𝑥,𝑢𝑢,𝜃𝜃 = 𝑓𝑓ℎ𝑖𝑖𝑖𝑖𝑖−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥,𝑢𝑢)
The discrepancy function to characterize such uncertainty is chosen to be a Bayesian 
Smoothing Spline Analysis of Variance (BSS-ANOVA) model:

𝜎𝜎 𝑢𝑢 = 𝜃𝜃0 + �
𝑟𝑟=1

𝑅𝑅
�

𝑙𝑙=1

∞
𝜃𝜃𝑟𝑟,𝑙𝑙 × 𝜙𝜙𝑙𝑙(𝑢𝑢𝑟𝑟)

The effect of each input is represented by the 
sum of orthogonal functions 𝜙𝜙𝑙𝑙, and the 
stochastic parameters 𝜃𝜃 are calibrated

The basis functions are added one at a time 
to increase accuracy of the discrepancy 
function 

First 9 basis functions of the BSS-ANOVA
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Calibration with Approximated Bayesian Computation

Bayes’ theorem:

ℙ 𝜃𝜃 𝑥𝑥 =
𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃 𝒙𝒙 𝜽𝜽 × ℙ(𝜽𝜽)

∫𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃 𝒙𝒙 𝜽𝜽 × ℙ 𝜽𝜽 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

Given by propagating the 
uncertainty through the model 
𝒇𝒇𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

Initial guess of the 
parameter distribution 
(Prior distribution)

Normalization constant; will be canceled out if 
using Markov Chain Monte Carlo for calibration  

Approximated Bayesian Computation for likelihood function’s approximation:

𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃𝕃 𝒙𝒙 𝜽𝜽 =
𝟏𝟏

𝜺𝜺 𝟐𝟐𝟐𝟐
�
𝒊𝒊

𝒆𝒆𝒆𝒆𝒆𝒆 −
𝝁𝝁𝒊𝒊 𝜽𝜽 − 𝒙𝒙𝒊𝒊 𝟐𝟐 + 𝝈𝝈𝒊𝒊 𝜽𝜽 − 𝜸𝜸 𝝁𝝁𝒊𝒊 𝜽𝜽 − 𝒙𝒙𝒊𝒊 𝟐𝟐

𝟐𝟐𝜺𝜺𝟐𝟐

Matching the first moment of the 
reduced-order model to the high-
fidelity model

Matching the second moment of 
the reduced-order model to the 
high-fidelity model
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Multi-model Representation

Example: Non-convex region 
is represented by a union of 
8 convex polyhedra

Example: Indicator function

• To increase accuracy, the structure of the reduced-
order model remains constant, but its parameters are 
calibrated at different operating regions

• The reduced-order multi-model parameters, 𝜃𝜃, are 
defined as:

𝜃𝜃 𝑢𝑢 = �
𝑖𝑖=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑖𝑖𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑢𝑢)𝜃𝜃𝑖𝑖𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

• If each region is represented as a union of a set of 
polyhedra S = ⋃{𝐴𝐴𝑖𝑖𝑢𝑢 ≥ 𝑏𝑏𝑖𝑖}𝑖𝑖=1𝑁𝑁 , let 𝐴𝐴𝑖𝑖 𝑗𝑗 , 𝑏𝑏𝑖𝑖(𝑗𝑗) be the 𝑗𝑗𝑡𝑡𝑡
row of 𝐴𝐴𝑖𝑖 , 𝑏𝑏𝑖𝑖 respectively. The sigmoid indicator 
function with smoothing constant 𝑘𝑘𝑠𝑠 is defined as:

𝐼𝐼𝑆𝑆 𝑢𝑢 = �
𝑖𝑖

�
𝑗𝑗

1
1 + 𝑒𝑒−𝑘𝑘𝑠𝑠(𝐴𝐴𝑖𝑖 𝑗𝑗 𝑢𝑢 −𝑏𝑏𝑖𝑖)

• 𝐼𝐼𝑆𝑆 𝑢𝑢 are smooth, continuous functions, and the 
closed form derivatives are available for optimization 
packages
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Nonlinear Model Predictive Control Formulation

• Steady-state model is solved to find the terminal constraints:
0 = 𝑓𝑓(𝑥𝑥𝑠𝑠𝑠𝑠,𝑢𝑢𝑠𝑠𝑠𝑠)
𝑦𝑦𝑠𝑠𝑠𝑠 = ℎ 𝑥𝑥𝑠𝑠𝑠𝑠,𝑢𝑢𝑠𝑠𝑠𝑠

• The initializations of the current time step is the optimal solution of the previous time
• Continuous form Nonlinear Model Predictive Control (NMPC) formulation:

𝑚𝑚𝑚𝑚𝑚𝑚�
𝑡𝑡0

𝑡𝑡0+𝑃𝑃
𝑦𝑦 𝑡𝑡 − 𝒚𝒚𝒔𝒔𝒔𝒔

𝑇𝑇𝑄𝑄 𝑦𝑦 𝑡𝑡 − 𝒚𝒚𝒔𝒔𝒔𝒔 𝑑𝑑𝑑𝑑 + �
𝑡𝑡0

𝑡𝑡0+𝑃𝑃
u′ 𝑡𝑡 𝑇𝑇𝑅𝑅𝑢𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑢𝑢 𝑃𝑃 − 𝒖𝒖𝒔𝒔𝒔𝒔

𝑇𝑇𝑅𝑅𝑓𝑓 𝑢𝑢 𝑃𝑃 − 𝒖𝒖𝒔𝒔𝒔𝒔

𝑠𝑠. 𝑡𝑡 𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢 𝑡𝑡 ) (1)
𝑦𝑦 𝑡𝑡 = ℎ 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 (2)
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑦𝑦 𝑡𝑡 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ∀ 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + 𝑃𝑃] (3)
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢 𝑡𝑡 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ∀ 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + 𝑃𝑃] (4)

• Reduced-order multi-model is used in (1) and (2) for the NMPC implementation

Setpoint Tracking Terminal Constraint
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Fischer-Tropsch Synthesis Reaction
Reaction stoichiometry:

𝒏𝒏𝒏𝒏𝒏𝒏 + 𝟐𝟐𝟐𝟐𝑯𝑯𝟐𝟐 → −𝑪𝑪𝑯𝑯𝟐𝟐 − 𝒏𝒏 + 𝒏𝒏𝑯𝑯𝟐𝟐𝑶𝑶
• CO/𝜸𝜸Al2O3 catalyst: assume the water gas shift and oxidation reactions are negligible(*)

• Langmuir-Hinshelwood type reaction, mass transfer effect is neglected
• Reaction rate = rate(Temperature, Partial Pressure of 𝑪𝑪𝑪𝑪 and 𝑯𝑯𝟐𝟐)

Selectivity : 𝜶𝜶 = 𝜶𝜶(Temperature, Partial Pressure of 𝑪𝑪𝑪𝑪 and 𝑯𝑯𝟐𝟐)

−𝑪𝑪𝑯𝑯𝟐𝟐 − 𝒏𝒏 −𝑪𝑪𝑯𝑯𝟐𝟐 − 𝒏𝒏+𝟏𝟏

𝑪𝑪𝒏𝒏𝑯𝑯𝟐𝟐𝟐𝟐

Probability of chain growth: 𝜶𝜶

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐭𝐭𝐭𝐭
𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇s

𝑪𝑪𝒏𝒏𝑯𝑯𝟐𝟐𝟐𝟐+𝟐𝟐

𝟏𝟏 − 𝜶𝜶

Anderson-Schulz-Flory Distribution(**)

Low 𝜶𝜶, high light
hydrocarbons 
concentration

High 𝜶𝜶, high heavy
hydrocarbons 
concentration

(*) Azadi, Brownbridge, Kemp, Mosbach, Dennis, Kraft (2015)
(**) Dry, M.E. (1990)
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Fischer-Tropsch Slurry Bubble Column

Dynamic model assumptions:
Hydrodynamic:
• Large & small bubbles holdup
• Large & small bubbles velocity
• Heat transfer coefficient
Mass balance
• Large bubble: PFR
• Small bubble: CSTR
• Liquid slurry: CSTR with reaction
• VLE between bubbles and liquid
Energy balance
• Quasi steady-state for gas phase
• Liquid phase for reactor temperature

Slurry bubble column reactor with internal cooling tubes is used for industrial Fischer-
Tropsch synthesis because of its thermal management capability(*).
• Manipulated variables: coolant flow rate, superficial gas velocity
• Controlled variables: temperature, chain growth probability

(*) Maretto, C., & Krishna, R. (1999).

Cooling 
tubes

Image source: (*) Image source: (*)

Catalyst 
pellets in 
paraffin 
oil
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Reduced-order Model of Fischer-Tropsch Reactor

Image source: (*)
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High-fidelity Model Reduced-order Model

• 2 CSTR and 1 PFR at equilibrium
• 25 state variables
• Hydrodynamics and VLE are 

derived from experiments(*)

• 1 CSTR
• 3 state variables
• Hydrodynamics and VLE are 

calibrated using BSS-ANOVA

(*) Maretto, C., & Krishna, R. (1999).
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Multi-model representation of Fischer-Tropsch Reactor

• Input set is divided based on residual of reduced-order model at desired steady-
states 

• The combined reduced-order of the multi-models with indicator functions is 
formulated from the reduced-order models in each region

Model 1

Model 2

Model 3
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Calibration Results of Fischer-Tropsch Reactor

First 3 parameters of the discrepancy functions representing the VLE of Hydrogen and Carbon Monoxide

• The discrepancy functions are recalibrated within each operating region. Each discrepancy function 
contains the first 5 eigenfunctions of the Karhunen-Loeve expansion.

• The smoothing constant of 0.1 is chosen for the indicator function of the multi-model representation to 
ensure the convergence of the reduced-order model
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Online Implementation of NMPC
• The high-fidelity model is used as the real process to test the NMPC with 6 second controller step size
• NMPC successfully brings the process to the new setpoints without violating the input constraints

NMPC Model Computation 
Time/ Step 
(Seconds)

High-fidelity 29.4

Reduced-
order 5.6

Reduced-
order Multi-
model

3.4

• Even though the reduced-order 
multi-model has some additional 
indicator functions, smaller model 
mismatch leads to faster online 
computational time than the 
reduced-order model
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Conclusions and Acknowledgments
Conclusion:
• Online implementation shows that the developed reduced-order multi-model is applicable for NMPC
• Future work involves online calibration of reduced-order model for online control
Acknowledgments:
• National Science Foundation CAREER Award 1653098
• West Virginia University and São Paulo Research Foundation (WVU-FAPESP) grant # 2018/04933-5
• West Virginia University: Lima CODES Research Group

Other research directions: 
https://fernandolima.faculty.wvu.edu/

https://fernandolima.faculty.wvu.edu/

	Slide Number 1
	Background
	Proposed Framework
	Bayesian Calibration
	Dynamic Discrepancy with Bayesian Smoothing Spline Analysis of Variance
	Calibration with Approximated Bayesian Computation
	Multi-model Representation
	Nonlinear Model Predictive Control Formulation
	Fischer-Tropsch Synthesis Reaction
	Fischer-Tropsch Slurry Bubble Column
	Reduced-order Model of Fischer-Tropsch Reactor
	Multi-model representation of Fischer-Tropsch Reactor
	Calibration Results of Fischer-Tropsch Reactor
	Online Implementation of NMPC
	Slide Number 15

