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Background

« Challenges and motivation:

* Online implementation of Nonlinear Model Predictive
Control (NMPC) requires a simplified dynamic model for
real-time control

« Multiple different models may be needed at different
operating regions to reduce plant-model mismatch

« Parameter estimation for dynamic modeling may not
reflect the uncertainty propagation from model inputs to
the model outputs

* Objectives:
 Formulate and calibrate reduced-order multi-model
* Implement the multi-model for NMPC ,
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Proposed Framework
e

Step 1: Formulation and Calibration of
Reduced-order Model

Step 2: Partition of the Operating Region
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Bayesian Calibration
e

Let u be the model input, y(u) be the real measurement of the output, 8 be the uncertainty
vector, n(u, 8) be the model, o(u) be the discrepancy term (plant-model mismatch), and e(u) be
the measurement noise

yw) =nw,0) + o) +e(w)
Bayesian calibration: Given the set of measurements {y(u)}, calculate the probability distribution
of 6
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Dynamic Discrepancy with Bayesian Smoothing Spline
Analysis of Variance

Reducing the order of the high-fidelity model introduces uncertainty into the model
representation:

X = freduced (xr u,o(x,u, 9)) = fhigh—fidelity (x,u)
The discrepancy function to characterize such uncertainty is chosen to be a Bayesian
Smoothing Spline Analysis of Variance (BSS-ANOVA) model:
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Calibration with Approximated Bayesian Computation

Given by propagating the Initial guess of the
uncertainty through the model parameter distribution
[ reduced | (Prior distribution)
Bayes’ theorem: \
Likelyhood(x|0) x P(0
P(0]x) = y (x|0) x IP(0)

[ Likelyhood(x|6) x P(8)dxd6

Normalization constant; will be canceled out if
using Markov Chain Monte Carlo for calibration

Approximated Bayesian Computation for likelihood function’s approximation:

Matching the second moment of
the reduced-order model to the
high-fidelity model |

! nex <— +(0i(9)—)’|ﬂi(9)—xi|)2>
ev2ml, P 22 :
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Multi-model Representation

* To increase accuracy, the structure of the reduced-

order model remains constant, but its parameters are 10
calibrated at different operating regions 8
* The reduced-order multi-model parameters, 6, are =
defined as:
number of model 4 | |
0(u) = Z [itn reglon(u)e th region - u, vt
i=1

« If each region is represented as a union of a set of Sl geh INOTHE o (=g
is represented by a union of

polyhedra S = U{4;u = b;}\_4, let A;(j), b;(j) be the j™ g convex polyhedra
row of A;, b; respectively. The sigmoid indicator :
function with smoothing constant k; is defined as:

1
Is(u) = z 1_[ 1 + e~ ks(A4i(j)u —by)
i j

» I;(u) are smooth, continuous functions, and the
closed form derivatives are available for optimization
packages

Indicator function IA(u)
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Nonlinear Model Predictive Control Formulation

« Steady-state model is solved to find the terminal constraints:
0= f(xsprusp)
Vsp = h(Xsp, Usp)
» The initializations of the current time step is the optimal solution of the previous time
« Continuous form Nonlinear Model Predictive Control (NMPC) formulation:

Setpoint Tracking —l Terminal Constraint —I

to+P to+P
minjt (y(t) — ysp)TQ(y(t) — ysp)dt + ft u' (H)TRU' (t)dt + (u(P) — usp)TRf(u(P) — usp)

0 0

s.t x(t) = fx(t),u(®) (1)
y(®) = h(x(t),u(®)) (2)
Ymin < V(&) < Ymax YVt € [to, o + P] (3)
Umnin < U(t) < Upgye VT E [ty to + P] (4)

* Reduced-order multi-model is used in (1) and (2) for the NMPC implementation
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Fischer-Tropsch Synthesis Reaction

e
Reaction stoichiometry:
nCo + 2nH, —» (—CH, —),, + nH,0
« COlyAl, O, catalyst: assume the water gas shift and oxidation reactions are negligible(")
« Langmuir-Hinshelwood type reaction, mass transfer effect is neglected
* Reaction rate = rate(Temperature, Partial Pressure of CO and H,)

Selectivity : « = a(Temperature, Partial Pressure of CO and H,)

Anderson-Schulz-Flory Distribution(*)

Probability of chain growth: «
(—CH3 =), > (—CH3z —)pns1

SELECTMITY

1—« Termination to

Hydrocarbons ‘ CnH2p
CnH2n+2

Low a, high light High a, high heavy
hydrocarbons hydrocarbons
concentration concentration

(*) Azadi, Brownbridge, Kemp, Mosbach, Dennis, Kraft (2015)

(**) Dry, M.E. (1990)
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Fischer-Tropsch Slurry Bubble Column

Slurry bubble column reactor with internal cooling tubes is used for industrial Fischer-
Tropsch synthesis because of its thermal management capability().

« Manipulated variables: coolant flow rate, superficial gas velocity

« Controlled variables: temperature, chain growth probability

Unwnvlm o Dynamic model assumptions:
| : Hydrodynamic:
Cooling pug | Mame | [wer 3 &8 Well « Large & small bubbles holdup
. fow | | [mixed AN ixed « Large & small bubbles velocity
\ P » Heat transfer coefficient
\ £ o [25T08 o ke | 2 Mass balance
N - ° Large bubble: PFR

Catalyst o - « Small bubble: CSTR
pellets in o~ o » Liquid slurry: CSTR with reaction
paraffin * VLE between bubbles and liquid
ol i fu-u, fus Energy balance

syngas g v . * Quasi steady-state for gas phase

Image source: (*) syngas

(*) Maretto, C., & Krishna, R. (1999).
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Liquid phase for reactor temperature
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Reduced-order Model of Fischer-Tropsch Reactor

High-fidelity Model Reduced-order Model
! t

Unconverted gas Unconverted gas

| | |
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« 2CSTR and 1 PFR at equilibrium « 1CSTR
» 25 state variables « 3 state variables
* Hydrodynamics and VLE are * Hydrodynamics and VLE are
derived from experiments() calibrated using BSS-ANOVA

11

(*) Maretto, C., & Krishna, R. (1999).
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Multi-model representation of Fischer-Tropsch Reactor

» Input set is divided based on residual of reduced-order model at desired steady-
states

» The combined reduced-order of the multi-models with indicator functions is
formulated from the reduced-order models in each region
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Calibration Results of Fischer-Tropsch Reactor

» The discrepancy functions are recalibrated within each operating region. Each discrepancy function
contains the first 5 eigenfunctions of the Karhunen-Loeve expansion.

» The smoothing constant of 0.1 is chosen for the indicator function of the multi-model representation to
ensure the convergence of the reduced-order model
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Online Implementation of NMPC

« The high-fidelity model is used as the real process to test the NMPC with 6 second controller step size
*  NMPC successfully brings the process to the new setpoints without violating the input constraints
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Even though the reduced-order
multi-model has some additional
indicator functions, smaller model
mismatch leads to faster online
computational time than the
reduced-order model 14
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Conclusions and Acknowledgments

Conclusion:

* Online implementation shows that the developed reduced-order multi-model is applicable for NMPC
» Future work involves online calibration of reduced-order model for online control
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