A Multi-model Predictive Control Approach Based on Dynamic Discrepancy Reduced Order Modeling

Session: Advances in Process Control

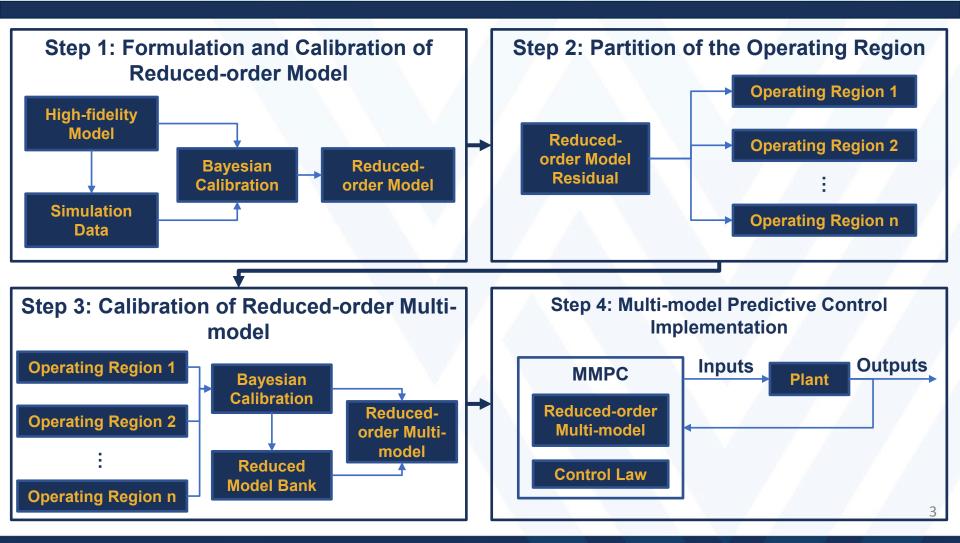
San Dinh^[1], Jose Bohorquez^[2], David S. Mebane^[2], Fernando V. Lima^[1]
[1] Department of Chemical and Biomedical Engineering
[2] Department of Mechanical and Aerospace Engineering
West Virginia University

AIChE Annual Meeting 2020 November 16th, 2020

Background

- Challenges and motivation:
 - Online implementation of Nonlinear Model Predictive Control (NMPC) requires a simplified dynamic model for real-time control
 - Multiple different models may be needed at different operating regions to reduce plant-model mismatch
 - Parameter estimation for dynamic modeling may not reflect the uncertainty propagation from model inputs to the model outputs
- Objectives:
 - Formulate and calibrate reduced-order multi-model
 - Implement the multi-model for NMPC

Proposed Framework

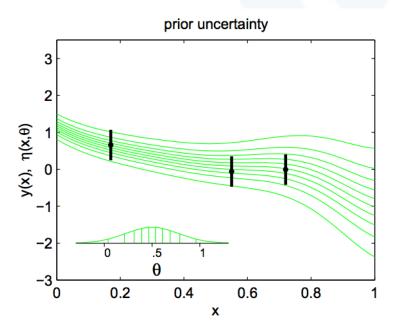


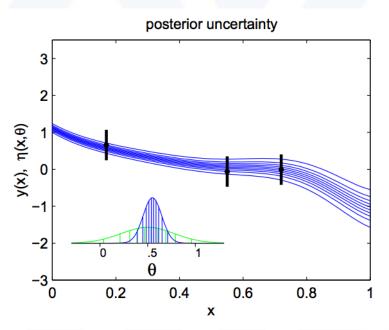
Bayesian Calibration

Let u be the model input, y(u) be the real measurement of the output, θ be the uncertainty vector, $\eta(u,\theta)$ be the model, $\sigma(u)$ be the discrepancy term (plant-model mismatch), and $\epsilon(u)$ be the measurement noise

$$y(u) = \eta(u, \theta) + \sigma(u) + \epsilon(u)$$

Bayesian calibration: Given the set of measurements $\{y(u)\}$, calculate the probability distribution of θ





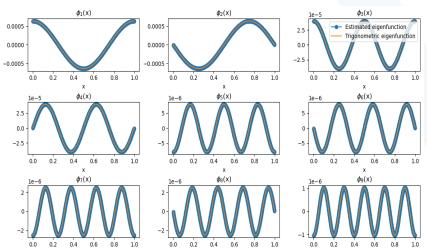
Dynamic Discrepancy with Bayesian Smoothing Spline Analysis of Variance

Reducing the order of the high-fidelity model introduces uncertainty into the model representation:

$$\dot{x} = f_{reduced}(x, u, \sigma(x, u, \theta)) = f_{high-fidelity}(x, u)$$

The discrepancy function to characterize such uncertainty is chosen to be a Bayesian Smoothing Spline Analysis of Variance (BSS-ANOVA) model:

$$\sigma(u) = \theta_0 + \sum_{r=1}^{R} \sum_{l=1}^{\infty} \theta_{r,l} \times \phi_l(u_r)$$



First 9 basis functions of the BSS-ANOVA

The effect of each input is represented by the sum of orthogonal functions ϕ_{l} , and the stochastic parameters θ are calibrated

The basis functions are added one at a time to increase accuracy of the discrepancy function

Calibration with Approximated Bayesian Computation

Given by propagating the uncertainty through the model $f_{reduced}$

Bayes' theorem:

$$\mathbb{P}(\theta|x) = \frac{\mathbb{L}ikelyhood(x|\theta) \times \mathbb{P}(\theta)}{\int \mathbb{L}ikelyhood(x|\theta) \times \mathbb{P}(\theta)dxd\theta}$$

Normalization constant; will be canceled out if using Markov Chain Monte Carlo for calibration

Approximated Bayesian Computation for likelihood function's approximation:

Matching the <u>first</u> moment of the reduced-order model to the high-fidelity model

Matching the <u>second</u> moment of the reduced-order model to the high-fidelity model

$$\mathbb{L}ikelyhood(x|\theta) = \frac{1}{\varepsilon\sqrt{2\pi}} \prod_{i} exp\left(-\frac{(\mu_{i}(\theta) - x_{i})^{2} + (\sigma_{i}(\theta) - \gamma|\mu_{i}(\theta) - x_{i}|)^{2}}{2\varepsilon^{2}}\right)$$

Multi-model Representation

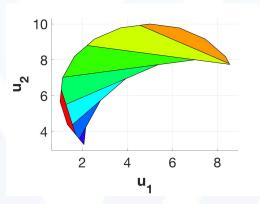
- To increase accuracy, the structure of the reducedorder model remains constant, but its parameters are calibrated at different operating regions
- The reduced-order multi-model parameters, θ , are defined as:

$$\theta(u) = \sum_{i=1}^{number\ of\ model} I_{i^{th}\ region}(u)\theta_{i^{th}\ region}$$

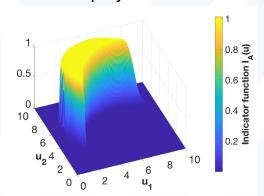
• If each region is represented as a union of a set of polyhedra $S = \bigcup \{A_i u \geq b_i\}_{i=1}^N$, let $A_i(j)$, $b_i(j)$ be the j^{th} row of A_i , b_i respectively. The sigmoid indicator function with smoothing constant k_s is defined as:

$$I_S(u) = \sum_i \prod_i \frac{1}{1 + e^{-k_S(A_i(j)u - b_i)}}$$

• $I_S(u)$ are smooth, continuous functions, and the closed form derivatives are available for optimization packages



Example: Non-convex region is represented by a union of 8 convex polyhedra



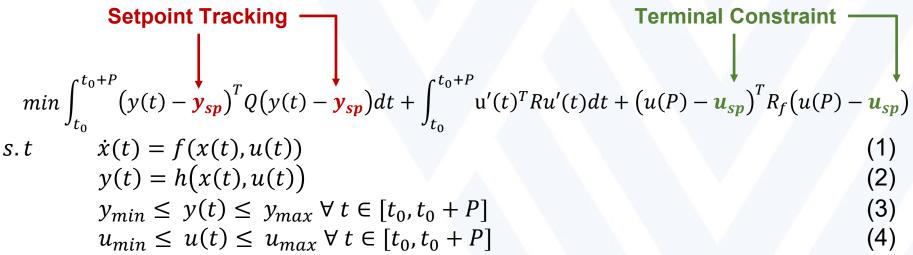
Example: Indicator function

Nonlinear Model Predictive Control Formulation

Steady-state model is solved to find the terminal constraints:

$$0 = f(x_{sp}, u_{sp})$$
$$y_{sp} = h(x_{sp}, u_{sp})$$

- The initializations of the current time step is the optimal solution of the previous time
- Continuous form Nonlinear Model Predictive Control (NMPC) formulation:



Reduced-order multi-model is used in (1) and (2) for the NMPC implementation

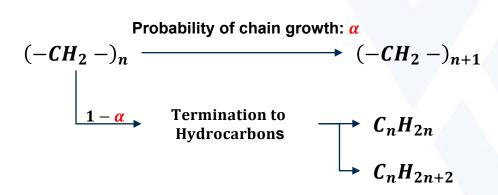
Fischer-Tropsch Synthesis Reaction

Reaction stoichiometry:

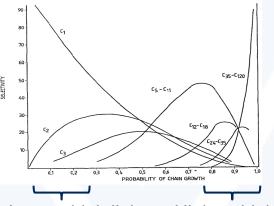
$$nCO + 2nH_2 \rightarrow (-CH_2 -)_n + nH_2O$$

- CO/γAl₂O₃ catalyst: assume the water gas shift and oxidation reactions are negligible^(*)
- · Langmuir-Hinshelwood type reaction, mass transfer effect is neglected
- Reaction rate = rate(Temperature, Partial Pressure of CO and H_2)

Selectivity : $\alpha = \alpha$ (Temperature, Partial Pressure of *CO* and H_2)



Anderson-Schulz-Flory Distribution(**)



Low α, high <u>light</u> hydrocarbons concentration

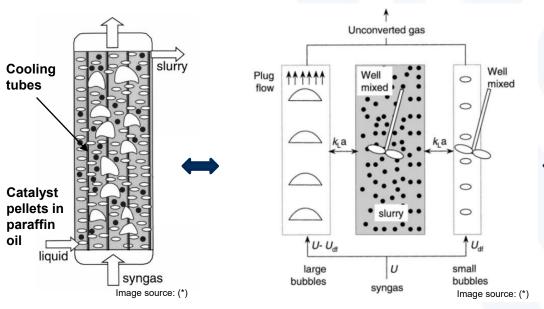
High α, high heavy hydrocarbons concentration

9

Fischer-Tropsch Slurry Bubble Column

Slurry bubble column reactor with internal cooling tubes is used for industrial Fischer-Tropsch synthesis because of its thermal management capability^(*).

- Manipulated variables: coolant flow rate, superficial gas velocity
- Controlled variables: temperature, chain growth probability



Dynamic model assumptions:

Hydrodynamic:

- Large & small bubbles holdup
- Large & small bubbles velocity
- Heat transfer coefficient.

Mass balance

- Large bubble: PFR
- Small bubble: CSTR
- Liquid slurry: CSTR with reaction
- VLE between bubbles and liquid

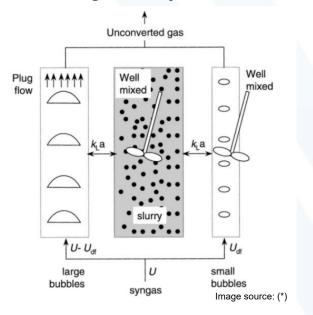
Energy balance

- Quasi steady-state for gas phase
- Liquid phase for reactor temperature

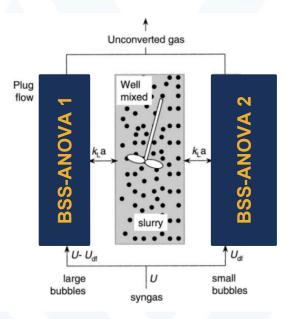
10

Reduced-order Model of Fischer-Tropsch Reactor

High-fidelity Model



Reduced-order Model



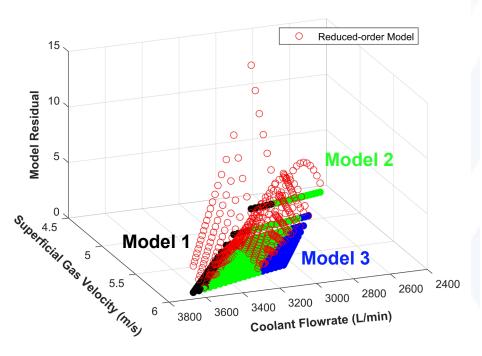
- 2 CSTR and 1 PFR at equilibrium
- 25 state variables
- Hydrodynamics and VLE are derived from experiments(*)

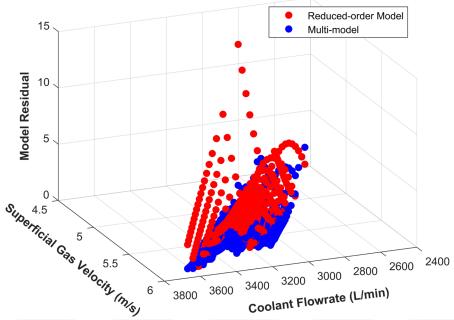
- 1 CSTR
- 3 state variables
- Hydrodynamics and VLE are calibrated using BSS-ANOVA

(*) Maretto, C., & Krishna, R. (1999).

Multi-model representation of Fischer-Tropsch Reactor

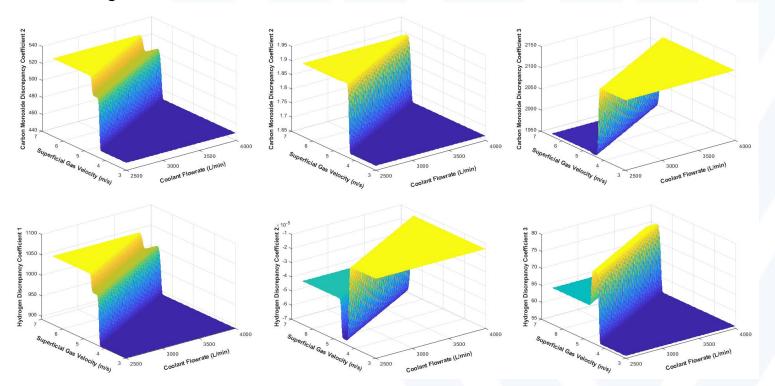
- Input set is divided based on residual of reduced-order model at desired steadystates
- The combined reduced-order of the multi-models with indicator functions is formulated from the reduced-order models in each region





Calibration Results of Fischer-Tropsch Reactor

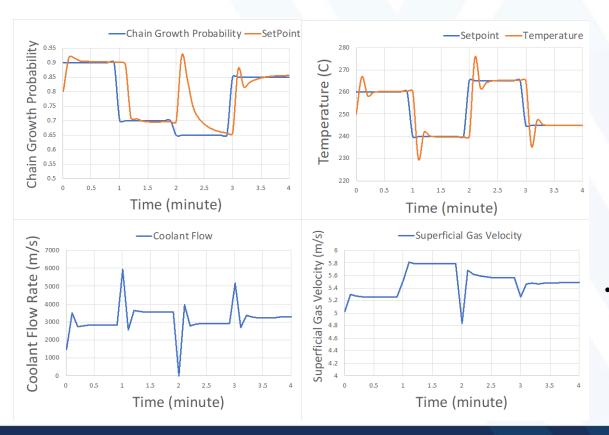
- The discrepancy functions are recalibrated within each operating region. Each discrepancy function contains the first 5 eigenfunctions of the Karhunen-Loeve expansion.
- The smoothing constant of 0.1 is chosen for the indicator function of the multi-model representation to ensure the convergence of the reduced-order model



First 3 parameters of the discrepancy functions representing the VLE of Hydrogen and Carbon Monoxide

Online Implementation of NMPC

- The high-fidelity model is used as the real process to test the NMPC with 6 second controller step size
- NMPC successfully brings the process to the new setpoints without violating the input constraints



NMPC Model	Computation Time/ Step (Seconds)
High-fidelity	29.4
Reduced- order	5.6
Reduced- order Multi- model	3.4

Even though the reduced-order multi-model has some additional indicator functions, smaller model mismatch leads to faster online computational time than the reduced-order model

Conclusions and Acknowledgments

Conclusion:

- Online implementation shows that the developed reduced-order multi-model is applicable for NMPC
- Future work involves online calibration of reduced-order model for online control

Acknowledgments:

- National Science Foundation CAREER Award 1653098
- West Virginia University and São Paulo Research Foundation (WVU-FAPESP) grant # 2018/04933-5
- West Virginia University: Lima CODES Research Group

15

Other research directions: ttps://fernandolima.faculty.wvu.edu/

