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Abstract

Various differentially private algorithms instantiate the exponential mechanism, and
require sampling from the distribution exp(— f) for a suitable function f. When
the domain of the distribution is high-dimensional, this sampling can be computa-
tionally challenging. Using heuristic sampling schemes such as Gibbs sampling
does not necessarily lead to provable privacy. When f is convex, techniques from
log-concave sampling lead to polynomial-time algorithms, albeit with large poly-
nomials. Langevin dynamics-based algorithms offer much faster alternatives under
some distance measures such as statistical distance. In this work, we establish
rapid convergence for these algorithms under distance measures more suitable
for differential privacy. For smooth, strongly-convex f, we give the first results
proving convergence in Rényi divergence. This gives us fast differentially private
algorithms for such f. Our techniques and simple and generic and apply also to
underdamped Langevin dynamics.

1 Introduction

The Exponential Mechanism [McSherry and Talwar, 2007] is a commonly-used mechanism in differ-
ential privacy [Dwork and Roth, 2014]. There is a large class of mechanisms in the differential privacy
literature that instantiate the Exponential Mechanism with appropriate score functions, use it as a
subroutine, or sample from exp(— f) for some function f. This family includes differentially private
mechanisms for several important problems, such as PCA [Chaudhuri et al., 2013, Kapralov and
Talwar, 2013], functional PCA [Awan et al., 2019], answering counting queries [Hardt and Talwar,
2010], robust regression [Asi and Duchi, 2020], some combinatorial optimization problems [Gupta
et al., 2010], k-means clustering [Feldman et al., 2009], optimization of dispersed functions [Balcan
et al., 2018], convex optimization [Bassily et al., 2014, Minami et al., 2016], Bayesian data analy-
sis [Mir, 2013, Dimitrakakis et al., 2014, Wang et al., 2015, Wasserman and Zhou, 2010, Foulds et al.,
2016], linear and quantile regression [Reimherr and Awan, 2019], etc.

Implementing these mechanisms requires sampling from a distribution given by exp(— f) from some
domain D, for a suitable score function f. When the domain D is finite and small, this sampling is
straightforward. Several differentially private mechanisms instantiate the exponential mechanism
where D = R?, in which case this sampling is not straightforward.

Such sampling problems are not new and often occur in statistics and machine learning settings. The
common practical approach is to use heuristic MCMC samplers such as Gibbs sampling, which often
works well in problems arising in practice. However, given that convergence is not guaranteed, the
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resulting algorithms may not be differentially private. Indeed one can construct simple score functions
on the hypercube for which the natural Metropolis chain run for any polynomial time leads to a
non-private algorithm [Ganesh and Talwar, 2019]. There are also well-known complexity-theoretic
barriers in exactly sampling from exp(— f) if f is not required to be convex.

Several applications however involve convex functions f and this is the focus of the current work.
Indeed this is the problem of sampling from a log-concave distribution, which has attracted a lot
of interest. Here, there are two broad lines of work. The classical results in this line of work (e.g.
[Applegate and Kannan, 1991, Lovasz and Vempala, 2007]) show that given an oracle for computing
the function, one can sample from a distribution that is e-close? to the target distribution in time
polynomial in d and log % Here the closeness is measured in statistical distance. By itself, this does
not suffice to give a differentially private algorithm, as DP requires closeness in more stringent notions
of distance. The fact that the time complexity is logarithmic in % however allows for an exponentially
small statistical distance in polynomial time. This immediately yields ({, 6)-DP algorithms, and with
some additional work can also yield (-DP algorithms [Hardt and Talwar, 2010]. Techniques from
this line of work can also sometimes apply to non-convex f of interest. Indeed Kapralov and Talwar
[2013] designed a polynomial time algorithm for the case of f being a Rayleigh quotient to allow for
efficient private PCA.

The runtime of these log-concave sampling algorithms however involves large polynomials. A
beautiful line of work has reduced the dependence (of the number of function oracle calls) on the
dimension from roughly d'° in Applegate and Kannan [1991] to d* in Lovész and Vempala [2006],
Loviasz and Vempala [2007]. Nevertheless, the algorithms still fall short of being efficient enough
to be implementable in practice for large d. A second, more recent, line of work [Dalalyan, 2017,
Durmus and Moulines, 2019] have shown that “first order” Markov Chain Monte Carlo (MCMC)
algorithms such as Langevin MCMC and Hamiltonian MCMC enjoy fast convergence, and have
better dependence on the dimension. These algorithms are typically simpler and more practical
but have polynomial dependence on the closeness parameter €. This polynomial dependence on
€ makes the choice of distance more important. Indeed these algorithms have been analyzed for
various measures of distance between distributions such as statistical distance, KL-divergence and
Wasserstein distance.

These notions of distance however do not lead to efficient differentially private algorithms (see Ap-
pendix F). This motivates the question of establishing rapid mixing in Rényi divergence for these
algorithms. This is the question we address in this work, and show that when f is smooth and strongly
convex, discretized Langevin dynamics converge in iteration complexity near-linear in the dimension.
This gives more efficient differentially private algorithms for sampling for such f.

Vempala and Wibisono [2019] recently studied this question, partly for similar reasons. They consid-
ered the Unadjusted (i.e., overdamped) Langevin Algorithm and showed that when the (discretized)
Markov chain satisfies suitable mixing properties (e.g. Log Sobolev inequality), then the discrete
process converges in Rényi divergence to a stationary distribution. However this stationary distribu-
tion of the discretized chain is different from the target distribution. The Rényi divergence between
the stationary distribution and exp(— f) is not very well-understood [Roberts and Tweedie, 1996,
Wibisono, 2018], and it is conceivable that the stationary distribution of the discrete process is not
close in Rényi divergence to the target distribution and thus may not be differentially private. Thus
the question of designing fast algorithms that sample from a distribution close to the distribution
exp(—f) in Rényi divergence was left open.

In this work we use a novel approach to address these questions of fast sampling from exp(— f) using
the discretized Langevin Algorithm. Interestingly, we borrow tools commonly used in differential
privacy, though applied in a way that is not very intuitive from a privacy point of view. We upper
bound the Rényi divergence between the output of the discrete Langevin Algorithm run for 7" steps,
and the output of the continuous process run for time 77. The continuous process is known [Vempala
and Wibisono, 2019] to converge very quickly in Rényi divergence to the target distribution. This
allows us to assert closeness (in Rényi divergence) of the output of the discrete algorithm to the target
distribution. This bypasses the question of the bias of the stationary distribution of the discrete process.
Moreover, this gives us a differentially private algorithm with iteration complexity near-linear in the

3The letter ¢ commonly denotes the privacy parameter in DP literature, and the distance to the target
distribution in the sampling literature. Since most of the technical part of this work deals with sampling, we will
reserve ¢ for distance, and will let ¢ denote the privacy parameter.
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Figure 1: Summary of results. For each family of functions and process (either overdamped or
underdamped Langevin dynamics), an upper bound is listed on the step size 1 (and thus a bound
on the iteration complexity) needed to ensure the a-Rényi divergence between the discrete and
continuous processes is at most ¢ after time 7. Setting @ = O(In(1/9)/¢),e = (/2 gives that the
J-approximate max divergence is at most (, i.e. ({, 0)-differential privacy.

dimension. Our result applies to log-smooth and strongly log-concave distributions. While results of
this form may also be provable using methods from optimal transport, we believe that our techniques
are simpler and more approachable to the differential privacy community, and may be more easily
adaptable to other functions f of interest.

Our approach is general and simple. We show that it can be extended to the underdamped Langevin
dynamics which have a better dependence on dimension, modulo proving fast mixing for the con-
tinuous process. As a specific application, we show how our results lead to faster algorithms for
implementing the mechanisms in Minami et al. [2016].

As is common in this line of work, we ignore numerical issues and assume real arithmetic. The
results can be translated to the finite-precision arithmetic case by standard techniques, as long as
the precision is at least logarithmic in d and 7T'. The real arithmetic assumption thus simplifies the
presentation without affecting the generality of the results.

1.1 Other Related Work

Wang et al. [2015] discuss the issue of privacy when using approximate samplers at length and
consider two algorithms. The first one (OPS) that samples approximately from exp(— f) considers
closeness in statistical distance and thus can only be efficient when coupled with the first kind of
samplers above, i.e. those that have a logarithmic dependence on the closeness parameter. The
second algorithm they analyze is a variant of Stochastic Gradient Langevin Dynamics (SGLD). The
algorithm adds additional noise for privacy, and while it is shown to be private for suitable parameters,
it does not ensure convergence to the target distribution. Differentially private approximations to
SGLD have also been studied in Li et al. [2019]. Note that in contrast, we do not need to modify the
Langevin dynamics which ensures convergence as well as privacy.

There is a large body of work on Langevin algorithms and their variants. We refer the reader to
the surveys by Roberts and Rosenthal [2004] and Vempala [2005]. There has been a recent spate
of activity on analyzing these algorithms and their stochastic variants, under different kinds of
assumptions on f and we do not attempt to summarize it here.

1.2 Results and Techniques

Our results are summarized in Figure 1. Combined with results from Vempala and Wibisono [2019] on
the convergence of the continuous process, the first result gives the following algorithmic guarantee,
our main result:

Theorem 1. Fix any o > 1. Let R be a distribution satisfying R(x) oc e~/ () for I-strongly convex
and L-smooth f with global minimum at 0. Let P be the distribution arrived at by running discretized
overdamped Langevin dynamics using f with step size n = O(m Ny &) for continuous time

T = O(aln4BL) (e for O(“ & d) steps) from initial distribution N(O I;). Then we have
D.(P||R), Do(R||P) < =.

This is the first algorithmic result for sampling from log-smooth and strongly log-concave distributions
with low error in Rényi divergence without additional assumptions. In particular, if for a =
1+ 2log(1/6)/¢ we have D, (P||R), Do(R||P) < (/2, then by Fact 4 we have that P, R satisfy



the divergence bounds of (¢, §)-differential privacy. In turn, given any mechanism that outputs R, R’
on adjacent databases satisfying ({, ¢)-differential privacy and the strong convexity and smoothness
conditions, Theorem 1 and standard composition theorems gives a mechanism that outputs P, P’ for
these databases such that the mechanism satisfies (3¢, 39)-differential privacy, P, P’ are efficiently
sampleable, and P, P’ obtain utility guarantees comparable to those of R, R'.

All results in Figure 1 are achieved using a similar analysis, which we describe here. Instead of
directly bounding the divergence between the discrete and continuous processes, we instead bound
the divergence between the discrete processes using step sizes 7, 77/k. Our resulting bound does not
depend on k, so we can take the limit as k goes to infinity and the latter approaches the continuous
process. Suppose within each step of size 7, neither process moves more than r away from the
position at the start of this step. Then by smoothness, in each interval of length 7)/k the distance
between the gradient steps between the two processes is upper bounded by Lr3. Our divergence

bound thus worsens by at most D, (N (0, 2?’7)||N(;r, 27’7)) where  is a vector with ||z|ly < Lri. The
divergence between shifted Gaussians is well-known, giving us a divergence bound.

Of course, since the movement due to Brownian motion can be arbitrarily large, there is no uncondi-
tional bound on r. Instead, we derive tail bounds for r, giving a divergence bound (depending on
) between the two processes conditioned on a probability 1 — § event for every §. We then show a
simple lemma which says that conditional upper bounds on the larger moments of a random variable
give an unconditional upper bound on the expectation of that random variable. By the definition of
Rényi divergence, exp((a/ — 1)D,/(P]|Q)) is a moment of exp((ax — 1) D4 (P]|Q)) for o’ > a, so
we can apply this lemma to our conditional bound on o’-Rényi divergence to get an unconditional
bound on a-Rényi divergence via Jensen’s inequality.

Finally, since our analysis only needs smoothness, the radius tail bound, and the fact that the process
is a composition of gradient steps with Gaussian noise, our analysis easily extends to sampling from
Lipschitz rather than strongly convex functions and analyzing the underdamped Langevin dynamics.

As an immediate application, we recall the work of Minami et al. [2016], who give a ({,d)-
differentially private mechanism that (approximately) samples from a Gibbs posterior with a strongly
log-concave prior, for applications such as mean estimation and logistic regression. Their iteration
complexity of O(d?/§2) proved in Minami et al. [2016, Prop. 13] gets improved to O(d/¢*) using
our main result. We note that the privacy parameters in ((, §)-DP that one typically aims for are ¢
being constant, and J being negligible. However, it is still an interesting open problem to improve the
iteration complexity’s dependence on (.

We start with some preliminaries in Section 2. We prove a “one-sided” version of Theorem 1
in Section 3 and Section 4, extend this analysis to prove Theorem 1 in Section 5, and prove the result
for the underdamped case in Section 6. We discuss future research directions in Section 7. Most
proofs are deferred to the supplementary materials.

2 Preliminaries

2.1 Langevin Dynamics and Basic Assumptions

For the majority of the paper we focus on the overdamped Langevin dynamics in R?, given by the
following stochastic differential equation (SDE):

dxt = *Vf(l’t)dt + \/§dBt,

Where B; is a standard d-dimensional Brownian motion. Under mild assumptions (such as strong
convexity of f), it is known that the stationary distribution of the SDE is the distribution p satisfying
p(z) oc e~ /@), Algorithmically, it is easier to use the following discretization with steps of size 7:

i.e., we only update the gradient used in the SDE at the beginning of each step. Restricted to the
position at times that are multiples of 7, equivalently:

Tty = Tin — NV f(Tin) + &

Where &; ~ N (0, 2n1) are independent samples. Throughout the paper, when we refer to the result of
running a Langevin dynamics for continuous time t, we mean the distribution x4, not the distribution



Z¢n. When the iteration complexity (i.e. number of steps) is of interest, we may refer to running a
Langevin dynamics for continuous time 7' equivalently as the result of running it for 7" steps (of
size n).

A similarly defined second order process is the underdamped Langevin dynamics, given by the
following SDE (parameterized by v, u > 0):

dvy = —yvdt — pV f (zy)dt + /2yud By, dz; = vdt.

Again, under mild assumptions it is known that the stationary distribution of this SDE is the distribu-

tion p satisfying p(z) oc e~/ (@)+1v13/24) 50 that the marginal on z is as desired. Algorithmically, it
is easier to use the following discretization:

dvy = —yudy — /Nf(i%m)dt + /2vudBy, dz; = v, dt. (D

In the majority of the paper we consider sampling from distributions given by m-strongly convex,
L-smooth functions f. To simplify the presentation, we also assume f is twice-differentiable, so
these conditions on f can be expressed as: for all z, mI < V2 f(z) < LI. We make two additional
simplifying assumptions: The first is that the stationary point of f is at 0, as if f’s true stationary
point is * # 0, we can sample from g(z) := f(x — z*) and then shift our sample by =* to get a
sample from f instead (z* can be found ulsing e.g. gradient descent). The second is that m = 1, as if

m # 1, we can sample from g(x) = f (ﬁx) and rescale our sample by /m instead.

2.2 Rényi Divergence

Definition 2 (Rényi Divergence). For 0 < o < oo, a # 1 and distributions p,v, such that
supp(p) = supp(v) the a-Rényi divergence between i and v is

1 «a 1 @
Dy (u||lv) = 7111/ ) dr = InE,.., [M(x) } .
a—1 supp(v) l/(x)ail a—1 V(x)a

The «-Rényi divergence for a = 1 (resp. o) is defined by taking the limit of D, (u||v) as «
approaches 1 (resp. oo) and equals the KL divergence (resp. max divergence).

Rényi divergence is a standard notion of divergence in information theory, and Rényi divergence
bounds translate to differential privacy guarantees:

Definition 3 (Approximate Differential Privacy). The §-approximate max divergence between distri-
butions p, v is defined as:

Pry [z €S| —0
D} = In —=*
OO(MHV) SQSLtpp(u):Ilg"ifu[XGS]Zé . PI’;I;NV[QC S S]
Fact 4 ([Mironov, 2017, Proposition 3]). For « > 1 if u, v satisfy Do, (u||v) < ¢, thenfor0 < 6 < 1:
In(1/6
Dl i) < ¢ + 22,

3 Langevin Dynamics with Bounded Movements

As a first step, we analyze the divergence between the discrete and continuous processes conditioned
on the event &, that throughout each step of size 1 they stay within a ball of radius r around their
location at the start of the step. We will actually analyze the divergence between two discrete processes
with steps of size 7 and 7)/k respectively, and obtain a bound on their divergence independent of k.
The former is exactly the discrete Langevin dynamics with step size n. The limit of the latter, as &
goes to infinity, is the continuous Langevin dynamics. Thus the same bound applies to the divergence
between the discrete and continuous processes. We set up discretized overdamped Langevin dynamics
with step sizes 7, 77/k as random processes which record the position at each time that is a multiple
of n/k.

Let z; denote the position of the chain using step size 1 at continuous time ¢, and x} denote the
position of the chain using step size n/k at time ¢. If £, does not hold at time ¢* (more formally, if



maxyeo,¢+)[| ¢ — T|¢/n|nll2 > 7), we will instead let z; = L for all ¢ > ¢*. We want to bound the
divergence after T steps of length 7, i.e. the divergence between the distributions of x1;, and x’Tn. Let
Xo.; denote the distribution of {;,/; }o<i<;, and define X, ; analogously. By the post-processing
property of Rényi DP (i.e. data processing inequality; see Fact 18 in supplementary materials), it
suffices to bound the divergence between X.7, and X (’):T - Note that we can sample from Xg.7,
(resp X{.p;,) by starting with {zo} (resp {x(}) sampled from the distribution X, from which we
start the Langevin dynamics, and applying the following randomized update T'k times:

* To draw a sample from Xo.7, given a sample {;, /1 }o<i<; from Xo.;:
- If 2y, /1 = L append z(j41)n/k = L to {1 fo<i<; to get a sample from Xo.j 1.

— Otherwise, append = (j41)n/k = Tjn/k — £V (T |5 /k)n) + ;. Where {5 ~ N(0, 2”Id)
to get a sample from Xg.;41. Then if H:c(]_H)n/k — Z|(j+1)/k)nll > 7 (e & no
longer holds) replace x (1), With L.

We will denote this update by ). More formally, ¢ is the map from distributions to
distributions such that X¢.;4+1 = ¥(Xo.;).

* To draw a sample from X, we instead use the update ¢/’ that is identical to ¢ except ¢’
uses the gradient at 2, /i instead of I/L ikl

We now have Xo.rr = 9°7%(Xo) and X}, = (¥')°T*(Xy). The divergence between
P(X), ' (X) for some X can be bounded by the Rényi divergence between two Gaussians, and then
a composition theorem gives the following bound on the divergence between the final tuples.
Lemma 5. For any L-smooth f, any initial distribution Xy over x, x{), and the distributions over
tuples Xo.11, X(’):Tk as defined above, we have:

TaL?*r?
Do (Xo:rwl[Xo.ri), Da(Xg.rn|| Xok) < fn-
Note that if we are running the process for continuous time 7, then 7' = 7 /7. r will end up being
roughly proportional to /7, so the above bound is then roughly proportional to 7.

4 Removing the Bounded Movement Restriction

In this section, we will prove the following “one-sided” version of Theorem 6:

Theorem 6. Fix any o« > 1. Let R be a distribution satisfying R(x) e~ 1@ for 1-strongly
convex and L-smooth f with global minimum at 0. Let P be the distribution arrived at by running

~ 2
discretized overdamped Langevin dynamics using f with step size n = O( for continuous

1 €
7L41n? a F)
time T = aln 2L (e for O(“ &7 &) steps) from initial distribution N (0, +14). Then we have
D, (P||R) <.

To remove the assumption that the process never moves more than r away from its original position
within each step of size 1, we give a tail bound on the maximum value r that the process moves
within one of these steps.

Lemma 7. Let c be a sufficiently large constant. Letn < t55 +1 and let X be an initial distribution
over R? satisfying that for all § > 0,

il < 5% (Va+ Vi) 21— i @)
2[ AT +1)

Let x¢ be the random variable given by running the discretized overdamped Langevin dynamics
starting from X for continuous time t. Similarly, let x, be the random variable given by running
continuous overdamped Langevin dynamics starting from X for continuous time t. Then with
probability at least 1 — & over the path {z; : t € [0, Tn|} and with probability at least 1 — 6 over the
path {z} : t € [0,Tn]}:

¥t < T : (|20 = 2pepminllys |25 — 2l smpnll, < L (‘/ng V IH(T/(;)) Vi



Intuitively, the /7 accounts for movement due to Brownian motion, which dominates the movement

due to the gradient, and ¢L(+v/d + /In(T/3)) is a tail bound on norm of the gradient by smoothness.
This gives us a bound on the Rényi divergence between the continuous and discrete processes
conditioned on a probability 1 — 4 event for all 0 < § < 1. By absorbing the failure probability of this
event into the probability of large privacy loss in the definition of (¢, §)-differential privacy we can
prove iteration complexity bounds matching those in Figure 1 for running discretized overdamped
Langevin dynamics with (¢, §)-differential privacy. Since these bounds do not improve on those in
the ones derived from our final (unconditional) divergence bounds, we omit the proof here. To prove
a Rényi divergence bound, we need to remove the conditioning. We start with the following lemma,
which takes bounds on conditional moments and gives an unconditional bound on expectation:

Lemma 8. Let Y be a random variable distributed over Rxq that has the following property
(parameterized by positive parameters 3,y < 1,0 > 1 + ~): For every 0 < § < 1/2, there is a
probability > 1 — § event Es such that E [Y9|55] < 5% Then we have:

1 1 ¥ ng‘y 9(1-’-’}/) 1 9
< Be (yTHy = < pl/692/6
E[Y}fﬁe(y+ A +> (9(1+7)—1>6 2 0—1

Putting it all together, we get the following lemma:

Theorem 9. For any 1-strongly convex, L-smooth f, let P be the distribution of states for discretized
overdamped Langevin dynamics with step size 1 and Q) be the distribution of states for continuous
overdamped Langevin dynamics, both run from any initial distribution X satisfying (2) for contmuous
time T that is a multiple of 1) (i.e. for T /7 steps). Then fora > 1, > 0, if n = O( - & ) we
have Do (P||Q), Da(Q||P) < e.

TL* ln «

We provide some high level intuition for the proof here. Plugging Lemma 7 into Lemma 5 gives a
bound on roughly the o’-Rényi divergence between P conditioned on some probability 1 — §; event
and @ conditioned on some probability 1 — J5 event for every 41, do. We apply Lemma 8 once for

P and once for @) to remove the conditioning, giving a bound of ~ , /1 on the actual o’-Rényi
divergence between P, @ if 7 is sufficiently small (as a function of o/ ). Using Jensen’s inequality,
we can turn this into a bound of € on the a-Rényi divergence between P, Q for any « if o is large

enough (which in turn requires 7 to be small enough).

We now apply results from Vempala and Wibisono [2019] and the weak triangle inequality for Rényi
divergence to get a bound on the number of iterations of discrete overdamped Langevin dynamics
needed to achieve a-Rényi divergence e:

Lemma 10. If R(z) = e~ 1) is a probability distribution over R% with stationary point 0 and f is
1-strongly convex and L-smooth, then for all o > 1 we have:

1 d
D, (N —1 < —-InL.

It is well-known that 1-strong convexity of f implies that p oc e~/ satisfies log-Sobolev inequality
with constant 1 (see e.g. Bakry and Emery [1985]). We then get:

Lemma 11 (Theorem 2, Vempala and Wibisono [2019]). Fix any f that is 1-strongly convex. Let Q4
be the distribution arrived at by running overdamped Langevin dynamics using f for continuous time
t from initial distribution Qq. Then for R = e=f and any oo > 1:

Da(Qi|[R) < e7/* Dy (Qol|R).
Theorem 6 follows from Lemmas 10 and 11 and a weak triangle inequality for Rényi divergences.

4.1 Langevin Dynamics with Bounded Gradients

With only a minor modification to the analysis of the strongly convex and smooth case, we can
also give a discretization error bound when f is B-Lipschitz instead of strongly convex (while still
L-smooth). We derive a simple tail bound similar to Lemma 7 in the appendix, and then repeat the
analysis of Theorem 9 using the new tail bound. This gives:



Theorem 12. For any B-Lipschitz, L-smooth function f, let P be the distribution of states for
discretized overdamped Langevin dynamics with step size n and () be the distribution of states
for continuous overdamped Langevin dynamics, both run from arbitrary initial distribution for

continuous time T that is a multiple of . Then fora > 1, > 0, ifn = O( 1

2
LA B§+d> we have
Do (PllQ) <e.

S Making The Bound Bi-Directional

In this section, we show that with slight modifications to the proof of Theorem 6, D, (P||R) and
D,,(R||P) can be simultaneously bounded, proving Theorem 1. We first need a lemma analogous to
Lemma 11 to show that D, (R||Q) decays exponentially:

Lemma 13. Fix any f that is 1-strongly convex. Let Q; be the distribution arrived at by running
overdamped Langevin dynamics using f for continuous time t from initial distribution Qo such that
—log Qq is I-strongly convex. Then for the distribution R satisfying R(z) o< e~/ @), any o > 1, and
any t:

Da(R||Qr) < ™"/ Da(R]|Qo)-

This proof follows similarly to Lemma 2 in Vempala and Wibisono [2019]. If D, (R]||Qo) and
D, (Qo||R) were both initially not too large, Lemma 13 along with Lemma 11, Theorem 9 would be
enough to arrive at Theorem 1. Unfortunately in general we can’t hope for any () to satisfy this, but
the following lemmas let us show that for Qo = N(0, I), Do (R||Q+) and D, (Q¢||R) are both not
too large for a reasonably small choice of ¢.

Lemma 14 (Lemma 14, Vempala and Wibisono [2019]). Fix any f that is 1-strongly convex. Let
Q¢ be the distribution arrived at by running overdamped Langevin dynamics using f for continuous
time t from initial distribution Qo. Fix any g > 1, and let ay = 1+ €*'(ag — 1). Then for the
distribution R satisfying R(x) o e=/(®);

1—1/050

D (QuIR) < T2

Doy (Qol|R).
Lemma 15. Let Qo = N(0,1;). If R(z) = e~ /@) is a probability distribution over R? with
stationary point 0 and f is 1-strongly convex and L-smooth, then for all « > 1 we have:

Do (R[|Qo) < dlog L.

In addition:
dLlog L

Dit1/p(@QollR) < —

Theorem 1 now follows from these lemmas, Theorem 9, Lemma 11 and the weak triangle inequality
for Rényi divergence.

6 Underdamped Langevin Dynamics

Our approach can also be used to show a bound on the discretization error of underdamped Langevin
dynamics. We again start by bounding the divergence between two discrete processes with step
sizes 1) and 1/ k, whose limits as k goes to infinity are the discretized and continuous underdamped
Langevin dynamics. Again let z; denote the position of the chain using step size 7 at continuous
time ¢, and x} denote the position of the chain using step size 7/k. Let v¢, v; denote the same but
for velocity instead of position. If e.g. for the first chain we ever have ||z — 2|« /| ll2 > 7 wWe
will let (x4, v¢) equal L for all ¢ > ¢*. We want to bound the divergence between the distributions
XO:Tk over {(xin/k, Uin/k)}OgiSTk and X(IJ:Tk over {(l‘;n/k’ Ugn/k)}OSiSTk' A sample from XO:Tk
or X .. can be constructed by applying the following operations T'k times to {(zo, vo) } sampled
from an initial distribution X:

* To construct a sample from X¢.7, given a sample {(;,,/x, Viy /i) Jo<i<; from Xo.;:

- If (xjn//wvjn/k) =1 append (Iin/krvvi’r]/k) =1to {(xin/kyvin/k)}OSiﬁj-



— Otherwise, append (2(j11)y/k> V(j+1)n/k) Where:

U 7 n
v+ vm/k = L=73)0m/e— V(@) T80 Gn/k = Tjn/kt VG478

and §; ~ N(0,2yuiIq). Then if || 11yy/k — T|(j+1)/k|nll2 > 7 (.. & no longer
holds) replace (2 (j11)n/k, V(j4+1)n k) With L.

Let ¢ denote this update, i.e. Xo.;4+1 = ¥ (Xo.5).

* To construct a sample from X1, the update (which we denote ¢') is identical to 1) except
we use the gradient at m;n/k instead of x/tj/kjn to compute v(j4 1)y /k-

We remark that unlike in our analysis of the overdamped Langevin dynamics, for finite k,
Xo:1k, X{.7; do not actually correspond to the SDE (1) with step size 7, 7/k. However, we still have
the property that the limit of X7 (resp. X{.r;) as k goes to infinity follows a discretized (resp.
continuous) underdamped Langevin dynamics, which is all that is needed for our analysis. Similarly
to Theorem 9 we have:

Theorem 16. For any 1-strongly convex, L-smooth function f, let P be the distribution of states
for discretized underdamped Langevin dynamics with step size 1 and Q) be the distribution of states
for continuous underdamped Langevin dynamics, both run from any initial distribution on xq, vgy
satisfying appropriate tail bounds, for continuous time T that is a multiple of n. Then for a > 1,

e>0ifn= O(min{m v/l 2 Hwe have Do (P||Q) < e.

We give here some intuition for why the proof achieves an iteration complexity for underdamped
Langevin dynamics with a quadratically improved dependence on d, ¢ compared to overdamped
Langevin dynamics. The tail bound on the maximum movement within each step of size 5 (and in
turn the norm of the discretization error due to the gradient) has a quadratically stronger dependence
on 7 in the underdamped case than in the overdamped case. In turn, in underdamped Langevin
dynamics the “privacy loss” of hiding this error with Brownian motion also improves quadratically as
a function of 7.

7 Discussion and Open Questions

Our work raises several interesting questions. While our bounds are for log-smooth and strongly
log-concave distributions, it would be interesting to relax these assumptions. The known results for
the continuous process in the underdamped case are only for weaker measures, and it is compelling
to extend them to Rényi divergence. Our result has a seemingly curious property: the finite time
behaviour of the discrete chain is shown to be close in Rényi divergence to the target distribution, yet
we do not know if the stationary distribution of the discrete chain satisfies this property. Addressing
this gap in our understanding is left to future work. There are several variants of these methods
that have been studied (e.g. Metropolis Adjusted Langevin Algorithm, Hamiltonian Monte Carlo,
Stochastic Gradient Langevin Dynamics) and extending our techniques to these methods would
be interesting. Finally, applying these tools to specific non-convex functions of interest such as
the Rayleigh quotient may lead to more practical efficient algorithms for problems such as private
PCA [Kapralov and Talwar, 2013].

We note that our bound on iteration complexity for the overdamped Langevin dynamics are propor-
tional to O(1/£2), as opposed to e.g. a O(1/£'/2) dependence in Mou et al. [2019] for KL-divergence.
In many differential privacy applications we would set ¢ to be not too small a constant, so this gap may
be acceptable from a practical standpoint. Obtaining better dependencies on € remains an interesting
question. We believe the loss of a 1/¢2 factor in our “unconditioning” argument is unavoidable, and
so alternate analyses may be needed to improve this dependence.

Broader Impact

This work gives faster algorithms for a class of differentially private algorithms. The use of differen-
tially private algorithms has in many cases such as the US Census Bureau, allowed release of useful
aggregate statistics while protecting privacy of individual respondents. In some cases, differentially
private algorithms may have lower utility compared to those which do not enjoy provable privacy,



which may otherwise be used. Differentially private algorithms give a way to quantify privacy loss
and can help decision makers choose an appropriate points on the Pareto curve. Works such as ours
will (over time) enable better privacy-utility trade-offs amongst computationally efficient algorithms
and thus push the Pareto curve.
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