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ABSTRACT

Recent work has shown deep learning can accelerate the prediction of physi-
cal dynamics relative to numerical solvers. However, limited physical accu-
racy and an inability to generalize under distributional shift limits its applica-
bility to the real world. We propose to improve accuracy and generalization
by incorporating symmetries into convolutional neural networks. Specifically,
we employ a variety of methods each tailored to enforce a different symmetry.
Our models are both theoretically and experimentally robust to distributional
shift by symmetry group transformations and enjoy favorable sample complex-
ity. We demonstrate the advantage of our approach on a variety of physical
dynamics including Rayleigh–Bénard convection and real-world ocean currents
and temperatures. Compared with image or text applications, our work is a sig-
nificant step towards applying equivariant neural networks to high-dimensional
systems with complex dynamics. We open-source our simulation, data and code at
https://github.com/Rose-STL-Lab/Equivariant-Net.

1 INTRODUCTION

Modeling dynamical systems in order to forecast the future is of critical importance in a wide range of
fields including, e.g., fluid dynamics, epidemiology, economics, and neuroscience [2; 21; 45; 22; 14].
Many dynamical systems are described by systems of non-linear differential equations that are
difficult to simulate numerically. Accurate numerical computation thus requires long run times and
manual engineering in each application.

Recently, there has been much work applying deep learning to accelerate solving differential equations
[46; 6]. However, current approaches struggle with generalization. The underlying problem is that
physical data has no canonical frame of reference to use for data normalization. For example, it
is not clear how to rotate samples of fluid flow such that they share a common orientation. Thus
real-world out-of-distribution test data is difficult to align with training data. Another limitation of
current approaches is low physical accuracy. Even when mean error is low, errors are often spatially
correlated, producing a different energy distribution from the ground truth.

We propose to improve the generalization and physical accuracy of deep learning models for physical
dynamics by incorporating symmetries into the forecasting model. In physics, Noether’s Law gives
a correspondence between conserved quantities and groups of symmetries. By building a neural
network which inherently respects a given symmetry, we thus make conservation of the associated
quantity more likely and consequently the model’s prediction more physically accurate.

∗Equal contribution
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A group of symmetries or simply group consists of a set G together with a composition map
◦ : G×G → G. The composition map is required to be associative and have an identity 1 ∈ G. Most
importantly, composition with any element of G is required to be invertible.

Groups are abstract objects, but they become concrete when we let them act. A group G has an
action on a set S if there is an action map · : G× S → S which is compatible with the composition
law. We say further that S is a G-representation if the set S is a vector space and the group acts on
S by linear transformations.

Definition 1 (invariant, equivariant). Let f : X → Y be a function and G be a group. Assume G
acts on X and Y . The function f is G-equivariant if f(gx) = gf(x) for all x ∈ X and g ∈ G. The
function f is G-invariant if f(gx) = f(x) for all x ∈ X and g ∈ G.

2.2 PHYSICAL DYNAMICAL SYSTEMS

We investigate two dynamical systems: Rayleigh–Bénard convection and real-world ocean current
and temperature. These systems are governed by Navier-Stokes equations.

2D Navier-Stokes (NS) Equations. Let w(x, t) be the velocity vector field of a flow. The field w
has two components (u, v), velocities along the x and y directions. The governing equations for this
physical system are the momentum equation, continuity equation, and temperature equation,

∂w

∂t
= −(w · ∇)w − 1

ρ0
∇p+ ν∇2w + f ; ∇ ·w = 0;

∂H

∂t
= κ∆H − (w · ∇)H, (DNS)

where H(x, t) is temperature, p is pressure, κ is the heat conductivity, ρ0 is initial density, α is the
coefficient of thermal expansion, ν is the kinematic viscosity, and f is the buoyant force.

2.3 SYMMETRIES OF DIFFERENTIAL EQUATIONS

By classifying the symmetries of a system of differential equations, the task of finding solutions is
made far simpler, since the space of solutions will exhibit those same symmetries. Let G be a group
equipped with an action on 2-dimensional space X = R

2 and 3-dimensional spacetime X̂ = R
3.

Let V = R
d be a G-representation. Denote the set of all V -fields on X̂ as F̂V = {w : X̂ → V :

w smooth}. Define FV similarly to be V -fields on X . Then G has an induced action on F̂V by
(gw)(x, t) = g(w(g−1x, g−1t)) and on FV analogously.

Consider a system of differential operators D acting on F̂V . Denote the set of solutions Sol(D) ⊆ F̂V .
We say G is a symmetry group of D if G preserves Sol(D). That is, if ϕ is a solution of D, then for all
g ∈ G, g(ϕ) is also. In order to forecast the evolution of a system D, we model the forward prediction
function f . Let w ∈ Sol(D). The input to f is a collection of k snapshots at times t− k, . . . , t− 1
denoted wt−i ∈ Fd. The prediction function f : Fk

d → Fd is defined f(wt−k, . . . ,wt−1) = wt. It
predicts the solution at a time t based on the solution in the past. Let G be a symmetry group of D.
Then for g ∈ G, g(w) is also a solution of D. Thus f(gwt−k, . . . , gwt−1) = gwt. Consequently, f
is G-equivariant.

2.4 SYMMETRIES OF NAVIER-STOKES EQUATIONS

The Navier-Stokes equations are invariant under the following five different transformations. Individ-
ually each of these types of transformations generates a group of symmetries of the system. The full
list of symmetry groups of NS equations and Heat equations are shown in Appendix B.6.

• Space translation: T sp
c w(x, t) = w(x− c, t), c ∈ R

2,

• Time translation: T time
τ w(x, t) = w(x, t− τ), τ ∈ R,

• Uniform motion: T um
c w(x, t) = w(x, t) + c, c ∈ R

2,

• Rotation/Reflection: T rot
R w(x, t) = Rw(R−1x, t), R ∈ O(2),

• Scaling: T sc
λ w(x, t) = λw(λx, λ2t), λ ∈ R>0.
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3 METHODOLOGY

We prescribe equivariance by training within function classes containing only equivariant functions.
Our models can thus be theoretically guaranteed to be equivariant up to discretization error. We
incorporate equivariance into two state-of-the-art architectures for dynamics prediction, ResNet
and U-net [48]. Below, we describe how we modify the convolution operation in these models for
different symmetries G to form four EquG-ResNet and four EquG-Unet models.

3.1 EQUIVARIANT NETWORKS

The key to building equivariant networks is that the composition of equivariant functions is equivariant.
Hence, if the maps between layers of a neural network are equivariant, then the whole network will
be equivariant. Note that both the linear maps and activation functions must be equivariant. An
important consequence of this principle is that the hidden layers must also carry a G-action. Thus,
the hidden layers are not collections of scalar channels, but vector-valued G-representations.

Equivariant Convolutions. Consider a convolutional layer F
R

din → FRdout with kernel K from a
R

din-field to a R
dout-field. Let Rdin and R

dout be G-representations with action maps ρin and ρout
respectively. Cohen et al. [11, Theorem 3.3] prove the network is G-equivariant if and only if

K(gv) = ρ−1
out(g)K(v)ρin(g) for all g ∈ G. (1)

A network composed of such equivariant convolutions is called a steerable CNN.

Equivariant ResNet and U-net. Equivariant ResNet architectures appear in [9; 10], and equiv-
ariant transposed convolution, a feature of U-net, is implemented in [49]. We prove in general that
adding skip connections to a network does not affect its equivariance with respect to linear actions
and also give a condition for ResNet or Unet to be equivariant in Appendix B.2.

Relation to Data Augmentation. To improve generalization, equivariant networks offer a better
performing alternative to the popular technique of data augmentation [13]. Large symmetry groups
normally require augmentation with many transformed examples. In contrast, for equivariant models,
we have following proposition. (See Appendix B.1 for proof.)

Proposition 1. G-equivariant models with equivariant loss learn equally (up to sample weight) from
any transformation g(s) of a sample s. Thus data augmentation does not help during training.

3.2 TIME AND SPACE TRANSLATION EQUIVARIANCE

CNNs are time translation-equivariant as long as we predict in an autoregressive manner. Convolu-
tional layers are also naturally space translation-equivariant (if cropping is ignored). Any activation
function which acts identically pixel-by-pixel is equivariant.

3.3 ROTATIONAL EQUIVARIANCE

To incorporate rotational symmetry, we model f using SO(2)-equivariant convolutions and activations
within the E(2)-CNN framework of Weiler and Cesa [49]. In practice, we use the cyclic group
G = Cn instead of G = SO(2) as for large enough n the difference is practically indistinguishable
due to space discretization. We use powers of the regular representation ρ = R[Cn]

m for hidden
layers. The representation R[Cn] has basis given by elements of Cn and Cn-action by permutation
matrices. It has good descriptivity since it contains all irreducible representations of Cn, and it is
compatible with any activation function applied channel-wise.

3.4 UNIFORM MOTION EQUIVARIANCE

Uniform motion is part of Galilean invariance and is relevant to all non-relativistic physics modeling.
For a vector field X : R2 → R

2 and vector c ∈ R
2, uniform motion transformation is adding a

constant vector field to the vector field X(v), T um
c (X)(v) = X(v) + c, c ∈ R

2. By the following
corollary, proved in Appendix B.3, enforcing uniform motion equivariance as above by requiring all
layers of the CNN to be equivariant severely limits the model.
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Corollary 2. If f is a CNN alternating between convolutions fi and channel-wise activations σi and
the combined layers σi ◦ fi are uniform motion equivariant, then f is affine.

To overcome this limitation, we relax the requirement by conjugating the model with shifted input
distribution. For each sliding local block in each convolutional layer, we shift the mean of input
tensor to zero and shift the output back after convolution and activation function per sample. In other
words, if the input is Pb×din×s×s and the output is Qb×dout

= σ(P ·K) for one sliding local block,
where b is batch size, d is number of channels, s is the kernel size, and K is the kernel, then

µi = Meanjkl (P ijkl) ; P ijkl 7→ P ijkl − µi; Qij 7→ Qij + µi. (2)

This will allow the convolution layer to be equivariant with respect to uniform motion. If the input is
a vector field, we apply this operation to each element.

Proposition 3. A residual block f(x) + x is uniform motion equivariant if the residual connection
f is uniform motion invariant.

By the proposition 3 above that is proved in Appendix B.3, within ResNet, residual mappings
should be invariant, not equivariant, to uniform motion. That is, the skip connection f (i,i+2) = I
is equivariant and the residual function f (i,i+1) should be invariant. Hence, for the first layer in
each residual block, we omit adding the mean back to the output Qij . In the case of Unet, when
upscaling, we pad with the mean to preserve the overall mean.

3.5 SCALE EQUIVARIANCE

Scale equivariance in dynamics is unique as the physical law dictates the scaling of magnitude, space
and time simultaneously. This is very different from scaling in images regarding resolutions [51]. For
example, the Navier-Stokes equations are preserved under a specific scaling ratio of time, space, and
velocity given by the transformation

Tλ : w(x, t) 7→ λw(λx, λ2t), (3)

where λ ∈ R>0. We implement two different approaches for scale equivariance, depending on
whether we tie the physical scale with the resolution of the data.

Resolution Independent Scaling. We fix the resolution and scale the magnitude of the input by
varying the discretization step size. An input w ∈ Fk

R2 with step size ∆x(w) and ∆t(w) can be
scaled w′ = T sc

λ (w) = λw by scaling the magnitude of vector alone, provided the discretization
constants are now assumed to be ∆x(w

′) = 1/λ∆x(w) and ∆t(w
′) = 1/λ2∆t(w). We refer to

this as magnitude equvariance hereafter.

To obtain magnitude equivariance, we divide the input tensor by the MinMax scaler (the maximum of
the tensor minus the minimum) and scale the output back after convolution and activation per sliding
block. We found that the standard deviation and mean L2 norm may work as well but are not as
stable as the MinMax scaler. Specifically, using the same notation as in Section 3.4,

σi = MinMaxjkl (P ijkl) ; P ijkl 7→ P ijkl/σi; Qij 7→ Qij · σi. (4)

Resolution Dependent Scaling. If the physical scale of the data is fixed, then scaling corresponds
to a change in resolution and time step size. To achieve this, we replace the convolution layers
with group correlation layers over the group G = (R>0, ·)n (R2,+) of scaling and translations. In
convolution, we translate a kernel K across an input w as such v(p) =

∑

q∈Z2 w(p+ q)K(q). The
G-correlation upgrades this operation by both translating and scaling the kernel relative to the input,

v(p, s, µ) =
∑

λ∈R>0,t∈R,q∈Z2

λw(λp+ q, λ2t, λµ)K(q, s, t, λ), (5)

where s and t denote the indices of output and input channels respectively. We add an axis to the
tensors corresponding the scale factor µ. Note that we treat the channel as a time dimension both with
respective to our input and scaling action. As a consequence, as the number of channels increases
in the lower layers of Unet and ResNet, the temporal resolution increases, which is analogous to
temporal refinement in numerical methods [24; 31]. For the input w̃ of first layer where w̃ has no
levels originally, w(p, s, λ) = λw̃(λp, λ2s).
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Our model builds on the methods of Worrall and Welling [51], but with important adaptations for
the physical domain. Our implementation of group correlation equation 5 directly incorporates the
physical scaling law equation 3 of the system equation DNS. This affects time, space, and magnitude.
(For heat, we drop the magnitude scaling.) The physical scaling law dictates our model should be
equivariant to both up and down scaling and by any λ ∈ R>0. Practically, the sum is truncated to 7
different 1/3 ≤ λ ≤ 3 and discrete data is continuously indexed using interpolation. Note equation 3
demands we scale anisotropically, i.e. differently across time and space.

4 RELATED WORK

Equivariance and Invariance. Developing neural nets that preserve symmetries has been a funda-
mental task in image recognition [12; 49; 9; 7; 29; 27; 3; 52; 10; 19; 50; 16; 42]. But these models
have never been applied to forecasting physical dynamics. Jaiswal et al. [23]; Moyer et al. [37]
proposed approaches to find representations of data that are invariant to changes in specified factors,
which is different from our physical symmetries. Ling et al. [30] and Fang et al. [17] studied tensor
invariant neural networks to learn the Reynolds stress tensor while preserving Galilean invariance, and
Mattheakis et al. [34] embedded even/odd symmetry of a function and energy conservation into neural
networks to solve differential equations. But these two papers are limited to fully connected neural
networks. Sosnovik et al. [44] extend Worrall and Welling [51] to group correlation convolution.
But these two papers are limited to 2D images and are not magnitude equivariant, which is still
inadequate for fluid dynamics. Bekkers [4] describes principles for endowing a neural architecture
with invariance with respect to a Lie group.

Physics-informed Deep Learning. Deep learning models have been used often to model physical
dynamics. For example, Wang et al. [48] unified the CFD technique and U-net to generate predictions
with higher accuracy and better physical consistency. Kim and Lee [25] studied unsupervised
generative modeling of turbulent flows but the model is not able to make real time future predictions
given the historic data. Anderson et al. [1] designed rotationally covariant neural network for learning
molecular systems. Raissi et al. [40; 41] applied deep neural networks to solve PDEs automatically
but these approaches require explicit input of boundary conditions during inference, which are
generally not available in real-time. Mohan et al. [35] proposed a purely data-driven DL model
for turbulence, but the model lacks physical constraints and interpretability. Wu et al. [53] and
Beucler et al. [5] introduced statistical and physical constraints in the loss function to regularize the
predictions of the model. However, their studies only focused on spatial modeling without temporal
dynamics. Morton et al. [36] incorporated Koopman theory into a encoder-decoder architecture but
did not study the symmetry of fluid dynamics.

Video Prediction. Our work is related to future video prediction. Conditioning on the observed
frames, video prediction models are trained to predict future frames, e.g., [33; 18; 54; 47; 39; 18].
Many of these models are trained on natural videos with complex noisy data from unknown physical
processes. Therefore, it is difficult to explicitly incorporate physical principles into these models. Our
work is substantially different because we do not attempt to predict object or camera motions.

5 EXPERIMENTS

We test our models on Rayleigh-Bénard convection and real-world ocean currents. We also evaluated
on the heat diffusion systems, see Appendix C for more results. The implementation details and a
detailed description of energy spectrum error can be found in Appendices D and B.7.

Evaluation Metrics. Our goal is to show that adding symmetry improves both the accuracy and
the physical consistency of predictions. For accuracy, we use Root Mean Square Error (RMSE)
between the forward predictions and the ground truth over all pixels. For physical consistency, we
calculate the Energy Spectrum Error (ESE) which is the RMSE of the log of energy spectrum. ESE
can indicate whether the predictions preserve the correct statistical distributions of the fluids and obey
the energy conservation law, which is a critical metric for physical consistency.

Experimental Setup. ResNet[20] and U-net[43] are the best-performing models for our tasks
[48] and are well-suited for our tasks. Thus, we implemented these two convolutional architectures
equipped with four different symmetries, which we name Equ-ResNet(U-net). We use a rolling
window approach to generate sequences with step size 1 for the RBC data and step size 3 for the
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Table 2: The RMSE and ESE of the ResNet(Unet) and four Equ-ResNets(Unets) pre-
dictions on the original and four transformed test sets of Rayleigh-Bénard Convection. Augm is
ResNet(Unet) trained on the augmented training set with additional samples applied with random
transformations from the relevant symmetry group. Each column contains all models’ prediction
errors on the original test set and four different transformed test sets.

Root Mean Square Error(103) Energy Spectrum Errors

Orig UM Mag Rot Scale Orig UM Mag Rot Scale

ResNet 0.67±0.24 2.94±0.84 4.30±1.27 3.46±0.39 1.96±0.16 0.46±0.19 0.56±0.29 0.26±0.14 1.59±0.42 4.32±2.33
Augm 1.10±0.20 1.54±0.12 0.92±0.09 1.01±0.11 1.37±0.02 1.14±0.32 1.92±0.21 1.55±0.14
EquUM 0.71±0.26 0.71±0.26 0.33±0.11 0.33±0.11

EquMag 0.69±0.24 0.67±0.14 0.34±0.09 0.19±0.02

EquRot 0.65±0.26 0.76±0.02 0.31±0.06 1.23±0.04

EquScal 0.70±0.02 0.85±0.09 0.44±0.22 0.68±0.26

U-net 0.64±0.24 2.27±0.82 3.59±1.04 2.78±0.83 1.65±0.17 0.50±0.04 0.34±0.10 0.55±0.05 0.91±0.27 4.25±0.57
Augm 0.75±0.28 1.33±0.33 0.86±0.04 1.11±0.07 0.96±0.23 0.44±0.21 1.24±0.04 1.47±0.11
EquUM 0.68±0.26 0.71±0.24 0.23±0.06 0.14±0.05

EquMag 0.67±0.11 0.68±0.14 0.42±0.04 0.34±0.06

EquRot 0.68±0.25 0.74±0.01 0.11±0.02 1.16±0.05

EquScal 0.69±0.13 0.90±0.25 0.45±0.32 0.89±0.29

ocean data. All models predict raw velocity and temperature fields up to 10 steps ahead auto-
regressively. We use the MSE loss function that accumulates the forecasting errors. We split the data
60%-20%-20% for training-validation-test across time and report mean errors over five random runs.

5.1 EQUIVARIANCE ERRORS

The equivariance errors can be defined as EET (x) = |T (f(x)) − f(T (x))|, where x is an input,
f is a neural net, T is a transformation from a symmetry group. We empirically measure the
equivariance errors of all equivariant models we have designed. Table 1 shows the equivariance errors
of ResNet and Equ-ResNet. The transformation T is sampled in the same way as we generated
the transformed Rayleigh-Bénard Convection test sets. See more details in Appendix B.5.

5.2 EXPERIMENTS ON SIMULATED RAYLEIGH-BÉNARD CONVECTION DYNAMICS

Data Description. Rayleigh-Bénard Convection occurs in a horizontal layer of fluid heated from
below and is a major feature of the El Niño dynamics. The dataset comes from two-dimensional
turbulent flow simulated using the Lattice Boltzmann Method [8] with Rayleigh number 2.5× 108.
We divide each 1792 × 256 image into 7 square subregions of size 256 × 256, then downsample to
64 × 64 pixels. To test the models’ generalization ability, we generate additional four test sets : 1)
UM: added random vectors drawn from U(−1, 1); 2) Mag: multiplied by random values sampled
from U(0, 2); 3) Rot: randomly rotated by the multiples of π/2; 4) Scale: scaled by λ sampled from
U(1/5, 2). Due to lack of a fixed reference frame, real-world data would be transformed relative to
training data. We use transformed data to mimic this scenario.

Table 1: Equivariance Er-
rors of ResNet(Unets) and
Equ-ResNet(Unets).

EET (103) UM Mag Rot Scale

ResNets 2.010 1.885 5.895 1.658
EquResNets 0.0 0.0 1.190 0.579

Unets 1.070 0.200 1.548 1.809
EquUnets 0.0 0.0 0.794 0.481

Prediction Performance. Table 2 shows the prediction
RMSE and ESE on the original and four transformed
test sets by the non-equivariant ResNet(Unet) and
four Equ-ResNets(Unets). Augm is ResNet(Unet)
trained on the augmented training set with additional samples
with random transformations applied from the relevant sym-
metry group. The augmented training set contains additional
transformed samples and is three times the size of the original
training set. Each column contains the prediction errors by
the non-equivariant and equivariant models on each test set.
On the original test set, all models have similar RMSE, yet
the equivariant models have lower ESE. This demonstrates that incorporating symmetries preserves
the representation powers of CNNs and even improves models’ physical consistency.

On the transformed test sets, we can see that ResNet(Unet) fails, while Equ-ResNets(Unets)
performs even much better than Augm-ResNets(Unets). This demonstrates the value of equiv-
ariant models over data augmentation for improving generalization. Figure 2 shows the ground truth
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the training set. All the equivariant models outperform the non-equivariant baseline on RMSE,
and EquScal-ResNet achieves the lowest RMSE. For ESE, only the EquMag-ResNet(Unet) is
worse than the baseline. Also, it is remarkable that the EquRot models have significantly lower ESE
than others, suggesting that they correctly learn the statistical distribution of ocean currents.

Comparison with Data Augmentation. We also compare Equ-ResNets(Unets)

ResNets(Unets) that are trained with data-augmentation (Augm) in Table 4. In all
cases, equivariant models outperforms the baselines trained with data augmentation. We find that
data augmentation sometimes improves slightly on RMSE but not as much as the equivariant
models. And, in fact, ESE is uniformly worse for models trained with data augmentation
than even the baselines. In contrast, the equivariant models have much better ESE than the
baselines with or without augmentation. We believe data augmentation presents a trade-off
in learning. Though the model may be less sensitive to the various transformations we con-
sider, we need to train bigger models longer on many more samples. The models may not
have enough capacity to learn the symmetry from the augmented data and the dynamics of
the fluids at the same time. By comparison, equivariant architectures do not have this issue.

Table 4: Prediction RMSE and ESE com-
parison on the two ocean currents test sets.

RMSE ESE

Testtime Testdomain Testtime Testdomain

ResNet 0.71±0.07 0.72±0.04 0.83±0.06 0.75±0.11
AugmUM 0.70±0.01 0.70±0.07 1.06±0.06 1.06±0.04
AugmMag 0.76±0.02 0.71±0.01 1.08±0.08 1.05±0.8
AugmRot 0.73±0.01 0.69±0.01 0.94±0.01 0.86±0.01
AugmScal0.97±0.06 0.92±0.04 0.85±0.03 0.95±0.11
EquUM 0.68±0.06 0.68±0.16 0.75±0.06 0.73±0.08
EquMag 0.66±0.14 0.68±0.11 0.84±0.04 0.85±0.14
EquRot 0.69±0.01 0.70±0.08 0.43±0.15 0.28±0.20

EquScal 0.63±0.02 0.68±0.21 0.44±0.05 0.42±0.12

U-net 0.70±0.13 0.73±0.10 0.77±0.12 0.73±0.07
AugmUM 0.68±0.02 0.68±0.01 0.85±0.04 0.83±0.04
AugmMag 0.69±0.02 0.67±0.10 0.78±0.03 0.86±0.02
AugmRot 0.79±0.01 0.70±0.01 0.79±0.01 0.78±0.02
AugmScal0.71±0.01 0.77±0.02 0.84±0.01 0.77±0.02
EquUM 0.66±0.10 0.67±0.03 0.73±0.03 0.82±0.13
EquMag 0.63±0.08 0.66±0.09 0.74±0.05 0.79±0.04
EquRot 0.68±0.05 0.69±0.02 0.42±0.02 0.47±0.07
EquScal 0.65±0.09 0.69±0.05 0.45±0.13 0.43±0.05

Figure 3 shows the ground truth and the predicted
ocean currents at time step 1, 5, 10 by different mod-
els. We can see that equivariant models’ predictions
are more accurate and contain more details than the
baselines. Thus, incorporating symmetry into deep
learning models can improve the prediction accuracy
of ocean currents. The most recent work on this dataset
is de Bezenac et al. [15], which combines a warping
scheme and a U-net to predict temperature. Since
our models can also be applied to advection-diffusion
systems, we also investigated the task of ocean temper-
ature field predictions. We observe that EquUM-Unet
performs slightly better than de Bezenac et al. [15]. For
additional results, see Appendix E.

6 CONCLUSION AND FUTURE WORK

We develop methods to improve the generalization of
deep sequence models for learning physical dynamics.
We incorporate various symmetries by designing equiv-
ariant neural networks and demonstrate their superior
performance on 2D time series prediction both theoreti-
cally and experimentally. Our designs obtain improved physical consistency for predictions. In the
case of transformed test data, our models generalize significantly better than their non-equivariant
counterparts. Importantly, all of our equivariant models can be combined and can be extended
to 3D cases. The group G also acts on the boundary conditions and external forces of a system
D. If these are G-invariant, then the system D is strictly invariant as in Section 2.3. If not, one
must consider a family of solutions ∪g∈GSol(gD) to retain equivariance. To the best of our best
knowledge, there does not exist a single model with equivariance to the full symmetry group of
the Navier-Stokes equations. It is possible but non-trivial, and we continue to work on combining
different equivariances. Future work also includes speeding up the the scale-equivariant models and
incorporating other symmetries into DL models.

ACKNOWLEDGMENTS

This work was supported in part by Google Faculty Research Award, NSF Grant #2037745, and the
U. S. Army Research Office under Grant W911NF-20-1-0334. The Titan Xp used for this research
was donated by the NVIDIA Corporation. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also
thank Dragos Bogdan Chirila for providing the turbulent flow data.

9



Published as a conference paper at ICLR 2021

REFERENCES

[1] Brandon Anderson, Truong-Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. In Advances in neural information processing systems (NeurIPS), 2019.

[2] John David Anderson and J Wendt. Computational fluid dynamics, volume 206. Springer, 1995.

[3] Erkao Bao and Linqi Song. Equivariant neural networks and equivarification. arXiv preprint
arXiv:1906.07172, 2019.

[4] Erik J Bekkers. B-spline cnns on lie groups. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=H1gBhkBFDH.

[5] Tom Beucler, Michael Pritchard, Stephan Rasp, Pierre Gentine, Jordan Ott, and Pierre Baldi.
Enforcing analytic constraints in neural-networks emulating physical systems. arXiv preprint
arXiv:1909.00912, 2019.

[6] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

[7] Benjamin Chidester, Minh N. Do, and Jian Ma. Rotation equivariance and invariance in
convolutional neural networks. arXiv preprint arXiv:1805.12301, 2018.

[8] Dragos Bogdan Chirila. Towards lattice Boltzmann models for climate sciences: The GeLB
programming language with applications. PhD thesis, University of Bremen, 2018.

[9] Taco S. Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning (ICML), pages 2990–2999, 2016.

[10] Taco S. Cohen and Max Welling. Steerable CNNs. arXiv preprint arXiv:1612.08498, 2016.

[11] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on
homogeneous spaces. In Advances in Neural Information Processing Systems, pages 9142–9153,
2019.

[12] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant
convolutional networks and the icosahedral CNN. In Proceedings of the 36th International
Conference on Machine Learning (ICML), volume 97, pages 1321–1330, 2019.

[13] Tri Dao, Albert Gu, Alexander J Ratner, Virginia Smith, Christopher De Sa, and Christopher
Ré. A kernel theory of modern data augmentation. Proceedings of machine learning research,
97:1528, 2019.

[14] Richard H. Day. Complex economic dynamics-vol. 1: An introduction to dynamical systems
and market mechanisms. MIT Press Books, 1, 1994.

[15] Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical pro-
cesses: Incorporating prior scientific knowledge. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=By4HsfWAZ.

[16] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry in
convolutional neural networks. In International Conference on Machine Learning (ICML),
2016.

[17] Rui Fang, David Sondak, Pavlos Protopapas, and Sauro Succi. Deep learning for turbulent
channel flow. arXiv preprint arXiv:1812.02241, 2018.

[18] Chelsea Finn, Ian Goodfellow, and Sergey Leine. Unsupervised learning for physical interaction
through video prediction. In Advances in neural information processing systems, pages 64–72,
2016.

[19] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
convolutional neural networks for equivariance to lie groups on arbitrary continuous data. arXiv
preprint arXiv:2002.12880, 2020.

10



Published as a conference paper at ICLR 2021

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv:1505.04597, 2015.

[21] Herbert W Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653,
2000.

[22] Eugene M. Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

[23] Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, and Premkumar Natarajan.
Invariant representations through adversarial forgetting. arXiv preprint arXiv:1911.04060, 2019.

[24] Ihn S Kim and Wolfgang JR Hoefer. A local mesh refinement algorithm for the time domain-
finite difference method using maxwell’s curl equations. IEEE Transactions on Microwave
Theory and Techniques, 38(6):812–815, 1990.

[25] Junhyuk Kim and Changhoon Lee. Deep unsupervised learning of turbulence for inflow
generation at various Reynolds numbers. Journal of Computational Physics, page 109216,
2020.

[26] Anthony W. Knapp. Lie Groups Beyond an Introduction, volume 140 of Progress in Mathematics.
Birkhäuser, Boston, 2nd edition, 2002.

[27] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution
in neural networks to the action of compact groups. In Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80, pages 2747–2755, 2018.

[28] Serge Lang. Algebra. Springer, Berlin, 3rd edition, 2002.

[29] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 991–999, 2015.

[30] Julia Ling, Andrew Kurzawskim, and Jeremy Templeton. Reynolds averaged turbulence
modeling using deep neural networks with embedded invariance. Journal of Fluid Mechanics,
2017.

[31] Vadim Lisitsa, Galina Reshetova, and Vladimir Tcheverda. Finite-difference algorithm with
local time-space grid refinement for simulation of waves. Computational geosciences, 16(1):
39–54, 2012.

[32] Gurvan Madec et al. NEMO ocean engine, 2015. Technical Note. Institut Pierre-
Simon Laplace (IPSL), France. https://epic.awi.de/id/eprint/39698/1/

NEMO_book_v6039.pdf.

[33] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. arXiv preprint arXiv:1511.05440, 2015.

[34] Marios Mattheakis, Pavlos Protopapas, D. Sondak, Marco Di Giovanni, and Efthimios Kaxiras.
Physical symmetries embedded in neural networks. arXiv preprint arXiv:1904.08991, 2019.

[35] Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed convolutional
LSTM: An efficient deep learning framework to model high fidelity 3D turbulence. arXiv
preprint arXiv:1903.00033, 2019.

[36] Jeremy Morton, Antony Jameson, Mykel J. Kochenderfer, and Freddie Witherden. Deep
dynamical modeling and control of unsteady fluid flows. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[37] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, and Greg Ver Steeg. Invariant
representations without adversarial training. In Advances in Neural Information Processing
Systems (NeurIPS), pages 9084–9093, 2018.

[38] Peter J. Olver. Applications of Lie groups to differential equations, volume 107. Springer
Science & Business Media, 2000.

11



Published as a conference paper at ICLR 2021

[39] Sergiu Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, John Alejandro Castro-Vargas, S. Orts-
Escolano, J. Garcia-Rodriguez, and Antonis A. Argyros. A review on deep learning techniques
for video prediction. ArXiv, abs/2004.05214, 2020.

[40] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part I): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

[41] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[42] Anupam K. Gupta Rohan Ghosh. Scale steerable filters for locally scale-invariant convolutional
neural networks. arXiv preprint arXiv:1906.03861, 2019.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[44] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. In
International Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=HJgpugrKPS.

[45] Steven H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. CRC press, 2018.

[46] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating
Eulerian fluid simulation with convolutional networks. In Proceedings of the 34th International
Conference on Machine Learning (ICML), volume 70, pages 3424–3433, 2017.

[47] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing
motion and content for natural video sequence prediction. In International Conference on
Learning Representations (ICLR), 2017.

[48] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. arXiv preprint arXiv:1911.08655, 2019.

[49] Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. In Advances in
Neural Information Processing Systems (NeurIPS), pages 14334–14345, 2019.

[50] Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant CNNs. Computer Vision and Pattern Recognition (CVPR), 2018.

[51] Daniel Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. In Advances in
Neural Information Processing Systems (NeurIPS), pages 7364–7376, 2019.

[52] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Har-
monic networks: Deep translation and rotation equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5028–5037, 2017.

[53] Jin-Long Wu, Karthik Kashinath, Adrian Albert, Dragos Chirila, Prabhat, and Heng Xiao. En-
forcing statistical constraints in generative adversarial networks for modeling chaotic dynamical
systems. Journal of Computational Physics, page 109209, 2019.

[54] Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dynamics: Probabilistic
future frame synthesis via cross convolutional networks. In Advances in neural information
processing systems (NeurIPS), pages 91–99, 2016.

12





Published as a conference paper at ICLR 2021

2. The tensor product

V ⊗W =

{

∑

i

vi ⊗ wi : vi ∈ V,wi ∈ W

}

is a G-representation with action g · v ⊗ w = (gv)⊗ (gw).

Definition 8 (irreducible). Let V be a G-representation.

1. If W is a subspace of V and is closed under the action of G, i.e. gw ∈ W for all w ∈
W, g ∈ G, then we say it is a subrepresentation.

2. If 0 and V itself are the only subrepresentations of V , then it is irreducible.

Irreducible representations are the “prime” building blocks of representations. A compact Lie group
is one which is closed and bounded. The rotation group SO(2,R) is compact, but the group (R,+)
is not. All finite groups are also compact Lie groups. The following theorem vastly simplifies our
understanding of possible representations of compact Lie groups (see e.g. Knapp [26]).

Theorem 4 (Weyl’s Complete Reducibility Theorem). Let G be a compact real Lie group. Every
finite-dimensional representation of V is a direct sum of irreducible representations V = ⊕iVi.

Thus to classify the possible finite-dimensional representations of G, one need only to find all possible
irreducible representations of G.

B ADDITIONAL THEORY

B.1 EQUIVARIANT NETWORKS AND DATA AUGMENTATION

A classic strategy for dealing with distributional shift by transformations in a group G is to augment
the training set S by adding samples transformed under G. That is, using the new training set
S ′ =

⋃

g∈G g(S). We show that data augmentation has no advantage for a perfectly equivariant
parameterized function fθ(x) since training samples (x, y) and (gx, gy) are equivalent. That is, fθ
learns the same from (x, y) as from (gx, gy) but with only possibly different sample weight. The
following is a more formal statement of Proposition 1.

Proposition 5. Let G act on X and Y . Let fθ : X → Y be a parameterized class of G-equivariant
functions differentiable with respect to θ. Let L : Y ×Y → R be a G-equivariant loss function where
G acts on R by χ, we have,

χ(g)∇θL(fθ(x), y) = ∇θL(fθ(gx), gy).

Proof. Equality of the gradients follows equality of the functions L(fθ(gx), gy) =
χ(g)L(g−1fθ(gx), y) = χ(g)L(fθ(x), y).

In the case of RMSE and rotation or uniform motion, the loss function is invariant. That is, equivariant
with χ(g) = 1. Thus the gradient for sample (x, y) and (gx, gy) is equal. In the case of scale, the
loss function is equivariant with G = (R>0, ·) and χ(λ) = λ. In that case, the sample (gx, gy) is the
same as the sample (x, y) but with sample weight χ(g).

B.2 ADDING SKIP CONNECTIONS PRESERVES EQUIVARIANCE

We prove in general that adding skip connections to a network does not affect its equivariance with
respect to linear actions in the following proposition 6. Define f (ij) as the functional mapping
between layer i and layer j.

Proposition 6. Let the layer V (i) be a G-representations for 0 ≤ i ≤ n. Let f (ij) : V (i) → V (j)

be G-equivariant for i < j. Define recursively x(j) =
∑

0≤i<j f
(ij)(x(i)). Then x(n) = f(x(0)) is

G-equivariant.
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Proof. Assume x(i) is an equivariant function of x(0) for i < j. Then by equivariance of f (ij) and
by linearity of the G-action,

∑

0≤i<j

f (ij)(gx(i)) =
∑

0≤i<j

gf (ij)(x(i)) = gx(j),

for g ∈ G. By induction, x(n) = f(x(0)) is equivariant with respect to G.

Both ResNet and U-netmay be modeled as in Proposition 6 with some convolutional and activation
components f (i,i+1) and some skip connections f (ij) = I with j − i ≥ 2. Since I is equivariant for
any G, we thus have:

Corollary 7. If the layers of ResNet or U-net are G-representations and the convolutional
mappings and activation functions are G-equivariant, then the entire network is G-equivariant.

Corollary 7 allows us to build equivariant convolutional networks for rotational and scaling transfor-
mations, which are linear actions.

B.3 RESULTS ON UNIFORM MOTION EQUIVARIANCE

In this section, we prove that for the combined convolution-activation layers of a CNN to be uniform
motion equivariant, the CNN must be an affine function. We assume that the activation function is
applied pointwise. That is, the same activation function is applied to every one-dimensional channel
independently.

Proposition 8. Let X be a tensor of shape h × w × c and K be convolutional kernel of shape
k×k× c. Let f(X) = X ∗K be a convolutional layer which is equivariant with respect to arbitrary
uniform motion X 7→ X +C for C a constant tensor of the same shape as X . That is Cijk = c for
all i, j, k for some fixed c ∈ R. Then the sum of the weights of K is 1.

Proof. Since f is equivariant, X ∗K+C = (X+C)∗K. By linearity, C ∗K = C. Then because
C is a constant vector field, C ∗K = C(

∑

v K(v)). As C is arbitrary,
∑

v K(v) = 1.

For an activation function to be uniform motion equivariant, it must be a translation.

Proposition 9. Let σ : R → R be a function satisfying σ(x+ c) = σ(x) + c. Then σ is a translation.

Proof. Let a = σ(0). Then σ(x) = σ(x+ c)− c. Choosing c = −x gives σ(x) = a+ x.

Proposition 10. Let X and K be as in Prop 8. Let f be a convolutional layer with kernel K and
σ an activation function. Assume σ : R → R is piecewise differentiable. Then if the composition
ϕ = σ ◦ f is equivariant with respect to arbitrary uniform motions, it is an affine map of the form
ϕ(X) = K ′ ∗X + b, where b is a real number and

∑

v K
′(v) = 1.

Proof. If f is non-zero, then we can choose a tensor X , and constant tensor C full of c ∈ R, and
p ∈ Z

2 such that c and β = (f(X))p are any two real numbers. Let λ =
∑

v K(v). As before
f(C) = λC. Equivariance thus implies

σ(β + cλ) = σ(β) + c.

Note λ 6= 0, since if λ = 0, then σ(β) = σ(β)+ c implies c = 0. However c is arbitrary. Let h = cλ.
Then

σ(β + h)− σ(β)

h
=

1

λ
.

This holds for arbitrary β and h, and thus we find σ is everywhere differentiable with slope λ−1.
So σ(x) = x/λ+ b for some b ∈ R. We can then rescale the convolution kernel K ′ = K/λ to get
ϕ(X) = K ′ ∗X + b.

Corollary 11 (Corollary 2). If f is a CNN alternating between convolutions fi and pointwise
activations σi and the combined layers σi ◦ fi are uniform motion equivariant, then f is affine.

Proof. This follows from Proposition 9 and the fact that composition of affine functions is affine.
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Since our treatment is only for pointwise activation functions, it remains a possibility that more
descriptive networks can be constructed using activation functions which span multiple channels.

Proposition 12 (Proposition 3). A residual block f(x) + x is uniform motion equivariant if the
residual connection f is uniform motion invariant.

Proof. We denote the uniform motion transformation by c by T um
c (w) = w + c. Let f be an

invariant residual connection which is a composition of convolution layers and activation functions.
Then we compute

f(T um
c (w)) + T um

c (w) = f(w) +w + c

= (f(w) +w) + c

= T um
c (f(w) +w).

as desired.

B.4 RESULTS ON SCALE EQUIVARIANCE

We show that a scale-invariant CNN in the sense of equation 1 would be extremely limited. Let
G = (R>0, ·) be the rescaling group. It is isomorphic to (R,+). For c a real number, ρc(λ) = λc

gives an action of G on R. There is also, e.g., a two-dimensional representation

ρ(λ) =

(

1 log(λ)
0 1

)

.

Proposition 13. Let K be a G-equivariant kernel for a convolutional layer. Assume G acts on the
input layer by ρin and output layer by ρout. Assume that the input layer is padded with 0s. Then K is
1x1.

Proof. If v 6= 0 then there exists λ ∈ R>0 such that λv is outside the radius of the kernel. So
K(λv) = 0. Thus by equivariance, for some n,

K(v) = λnρ−1
outK(λv)ρin = 0.

B.5 EQUIVARIANCE ERROR.

In practice it is difficult to implement a model which is perfectly equivariant. This results in
equivariance error EET (x) = |T (f(x)) − f(T (x))|. Given an input x with true output ŷ and
transformed data T (x), the transformed test error TTE = |T (ŷ)− f(T (x))| can be bounded using
the untransformed test error TE = |ŷ − f(x)| and EE.

Proposition 14. The transformed test error is bounded

TTE ≤ |T |TE + EE. (6)

Proof. By the triangle inequality

|T (ŷ)− f(T (x))| ≤ |T (ŷ)− T (f(x))|+ |T (f(x))− f(T (x))|
= |T ||ŷ − f(x)|+ EE.

For uniform motion TTE ≤ EE + TE since |T (ŷ) − T (f(x))| = |ŷ + c − f(x) − c| = TE.
Consider x and y as flattened into a vector. |T | = sup|x|=1|T (x)| denotes the operator norm. For
g ∈ SO(2), acting by Tg on vector fields, |Tg| = 1. For scaling Tλ(w)(x, t) = λw(λx, λ2t),
|Tλ| = λ/

√
λ4 = 1/λ.
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Ocean Currents We used the reanalysis ocean currents velocity data generated by the NEMO
(Nucleus for European Modeling of the Ocean) simulation engine 2. We selected an area from
each of the Atlantic, Indian and North Pacific Oceans from 01/01/2016 to 08/18/2017 and extracted
64×64 sub-regions for our experiments. The corresponding latitude and longitude ranges for the
selected regions are (-44∼-23, 25∼46), (55∼76, -39∼-18) and (-174∼-153, 5∼26) respectively. We
not only test all models on the future data but also on a different domain (-180∼-159, -40∼-59) in
South Pacific Ocean from 01/01/2016 to 12/15/2016. Also, the most recent work on this dataset
is [15], which unified a warping scheme and an U-net to predict temperature. So to compare our
equivariant models with state-of-arts, we also investigate our models on the task of temperature field
predictions. Since the data back to year 2006 that [15] used is no longer available, we collect more
recent temperature data from a square region (-50∼-20, 20∼50) in Atlantic Ocean from 01/01/2016
to 12/31/2017.

D.2 EXPERIMENTS SETUP

We tested our convolutional equivariant layers in two architecture, 18-layer ResNet and 13-layer
U-net. One of our goals is to show that adding equivariance improves the physical accuracy of
state-of-the-art dynamics prediction. ResNet and U-net are the popular state-of-the-art methods at
the moment and our equivariance techniques are well-suited for their architecture. The reason we did
not use recurrent models, such as Convolutional LSTM, is that they are slow to train especially for our
case where the input length is large. This does not fit our long-term goal of accelerating computation.

The input to each model is a l × 64 × 64 × 2-size tensor representing the past l timesteps of the
velocity field. The output is a single velocity field. The value of l is a hyper-parameter we tuned. We
found the optimal value of l to be around l = 25. To predict more timesteps, we apply the model
autoregressively, dropping the oldest timestep and concatenating the prediction to the input.

To make this a fair comparison, we adjust the hidden dimensions for different equivariant models
to make sure that the number of parameters in all models are about the same for either architecture,
which can be found in Table 6. Table 7 gives the hyper-parameter tuning ranges for our models. Note
that the hidden dimension and the number of layers of the shallow CNNs for the heat diffusion task
are also well-tuned.

The loss function used is the MSE between the predicted frames and the ground truth for next k
steps, where k is a parameter we tuned. We found k = 3 or 4 give the best performance. We use
60%-20%-20% training-validation-test split in time and use the validation set for hyper-parameters
tuning based on the average error of predictions. The training set corresponds to the first 60% of the
entire dataset in time and the validation/test sets contains the following 40%. For fluid flows, we
standardize the data by the average of velocity vectors and the standard deviation of the L2 norm of
velocity vectors. For sea surface temperature, we did the exact same data preprocessing described in
de Bezenac et al. [15].

Table 6: The number of parameters in each model and time costs for training an epoch on 8 V100
GPUs.

ResNet Reg UM Mag Rot Scale U-net Reg UM Mag Rot Scale

Params (106) 11.0 11.0 11.0 10.2 10.7 6.2 6.2 6.2 7.1 5.9

Time(min) 3.04 5.21 5.50 14.31 160.32 2.15 4.32 4.81 11.32 135.72

E ADDITIONAL RESULTS

Table 8 shows the RMSEs of temperature predictions. Figure 8 shows the ground truth and the
predicted velocity norm fields (

√
u2 + v2) at time step 1, 5 and 10 by the U-net and four Equ-Unet

2The data are available at https://resources.marine.copernicus.eu/?option=com_

csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024
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